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We consider the long-term relationship between human demogra-
phy, food production and Holocene climate via an archaeological
radiocarbon date series of unprecedented sampling density and
detail. There is striking consistency in the inferred human popula-
tion dynamics across different regions of Britain and Ireland during
the middle and later Holocene. Major cross-regional population
downturns in population coincide with episodes of more abrupt
change in north Atlantic climate and witness societal responses in
food procurement as visible in directly dated plants and animals,
often with moves towards hardier cereals, increased pastoral-
ism and/or gathered resources. For the Neolithic, this evidence
questions existing models of wholly endogenous demographic
boom-bust. For the wider Holocene, it demonstrates that climate-
related disruptions have been quasi-periodic drivers of societal and
subsistence change.

radiocarbon | archaeology | Britain | Ireland

Introduction

The relationship between human population dynamics, crises
in food production and rapid climate change is a pressing
modern concern in considerable need of higher resolution,
chronologically-longitudinal perspectives. We have collected a
large series of radiocarbon dates from archaeological sites in
Britain and Ireland, which is a globally unique region for (a)
its high density of archaeological radiocarbon sampling, (b) its
unusually high proportion of well-identified botanical and faunal
material and (c) its balance of dates from both research projects
and rescue archaeology. For the first time, this high-resolution
evidence can be considered over four different geographic re-
gions and a broad Holocene timespan as a proxy for human
demographic variability and subsistence response. We identify
several episodes of regionally-consistent population decline – the
later 4th millennium BCE, the early 1st millennium BCE and
the 13th-15th century CE respectively – that also appear associ-
ated with episodes of rapid Holocene climate change towards
more unstable, cooler-wetter conditions. We also demonstrate
the existence of structured responses to these changes in the form
of altered human food production strategies. The most obvious
such episodes during the middle and later Holocene are likely
consistent with altered north Atlantic storm regimes, reduced
solar insolation and climate-related cultural and demographic
impacts across north-western Europe.

Archaeological radiocarbon dates typically come from sam-
ples of bone, charred or waterlogged wood and seeds that are
taken in order to date specific stratigraphic events in the surviving
archaeological record. When considered in large-scale aggregate
however, they also provide an anthropogenic signal of changing
overall levels of past human activity and ultimately population.
Some commentators highlight taphonomic and investigative bi-
ases in this record, but there is increasing agreement that, if
these biases are controlled for and if the number of available
dates is sufficiently high, an important demographic signal re-
mains (see Materials and Methods). While in many areas of the

world, the anthropogenic radiocarbon record is insufficient to
support such aggregate treatment, in Britain and Ireland there
is a long well-resourced tradition of sampling, both from active-
mode academic research and responsive-mode, development-
led archaeology. Furthermore, parts of Britain and Ireland lie
towards the perceived margins of effective European-type agri-
culture and thereby can offer many of the same insights onmiddle
and later Holocene population stability, climate change and food
production as other north Atlantic Islands (Greenland, Iceland),
but for a much longer and larger history of human settlement. We
have therefore gathered over 30,000 existing archaeological dates
from British and Irish databases, publications and grey literature
reports, while also recording information about sample prove-
nance, context and material/species (figure 1). The changing
intensity of this anthropogenic radiocarbon record through time
can bemodelled via summation of the post-calibration probability
distributions of individual dates (see Materials and Methods).

Results and Discussion
Looking at the overall summed distribution (figure 1C), there
is a dramatic upswing in radiocarbon dates ca.4000-3850 BCE
that coincides closely with the first arrival of Early Neolithic
cereal agriculture in Britain and Ireland. Although caution is
required in inferring actual population growth rates directly from
rates-of-change in summed radiocarbon, the latter values exceed
1% during this earliest phase, are unlikely to be explained by
increased fertility amongst farming groups alone and must in
part therefore be due to migrant farmers from the European
mainland, a conclusion that is consistent with current archaeo-

Significance

The relationship between human population, food production
and climate change is a pressing concern in need of high-
resolution, long-term perspectives. Archaeological radiocar-
bon dates have increasingly been used to reconstruct past
population dynamics, and Britain and Ireland provide both
radiocarbon sampling densities and species-level sample iden-
tifications that are globally unrivalled. We use this evidence to
demonstrate multiple instances of human population down-
turn over the Holocene that coincide with periodic episodes
of reduced solar activity and climate reorganisation as well
as societal responses in terms of altered food procurement
strategies.
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Fig. 1. (A) The kernel-smoothed intensity of archaeological radiocarbon
dates from Britain and Ireland showing uneven spatial sampling (the sub-
regions used in figure 2 are marked with white borders), (B) the proportion
of dated samples with genus or species level identifications, (C) a summed
probability distribution of all dates compared with a 95% Monte-Carlo
envelope of equivalent random samples drawn from a fitted logistic model
of population growth and plateau.

logical and genetic evidence (1,2). After this Early Neolithic peak,
there follows decline ca.3500-3000 BCE and continued moderate
downturn thereafter. This is followed by slow Late Neolithic and
Early Bronze Age recovery up to a new peak ∼2000 BCE, again
for which there is a strong isotopic and genetic argument in favour
of significant population replacement by groups from continental
Europe (2,3,4). After ∼1000 BCE (the last part of the Bronze
Age), there is then another striking decline and, while a higher
uncertainty in the calibration curve at this point inhibits precise
characterisation of timing and duration, substantial recovery is
only visible again by ∼400 BCE. The Roman period exhibits a
trough in the aggregate radiocarbon time series that is unlikely
to represent a valid picture in England and Wales due to a far
weaker tradition of dating Roman sites via radiocarbon (where
pottery and coinage is typically used for dating instead, over
the period ∼50-400 CE), but may well be valid in Scotland and
Ireland (see below and Supplementary Information 2). After the
Roman period, there is evidence for sustained early Medieval
growth, followed by an abrupt decline approximately consistent
with the demographic collapse surrounding the historically well-
documented episodes of the Great Famine and Black Death
(∼1270-1450 CE).

This radiocarbon record can be further disaggregated into
sub-regions (following commonly proposed divisions, 5) to
consider local consistency with, or departure from, the pan-
regional pattern (figure 2). Restricting comparison to the post-
Mesolithic period where dynamics are more abrupt, north-west
England/Wales versus Scotland exhibits the highest pairwise cor-
relation (with the range among all regional pairs being r=0.69-
0.86), while Ireland exhibits more volatile dynamics than the

Fig. 2. Regional summed probability distributions – for (A) south-east Eng-
land, (B) northern/western England and Wales, (C) Scotland and (D) Ireland
– compared with a 95% Monte Carlo envelope produced by permutation of
each date’s regional membership.

others (CV=0.52, with the range of the other three being 0.39-
0.42). In addition, the specific local radiocarbon trends exhibited
by a given region in excess or deficit of the cross-regional pattern
typically match very well with that region’s known archaeolog-
ical record, such as the very reduced archaeological evidence
from Ireland in the Roman period ∼1-400 CE and then sharper
than average upward Irish growth ∼400-800 CE in a period
of both peak, archaeologically-observed settlement activity and
historically-documented Irish monastic influence abroad (Sup-
plementary Information 2). However, it is striking that all four
chosen sub-regions show the same sharp Early Neolithic demo-
graphic peak ∼4000-3500 BCE then decline, the same peak at
the beginning of the Bronze Age ∼2000 BCE, Late Bronze Age
decline∼1000-800 BCE, a subsequent peak in the Late Iron Age
∼250 BCE and then decline in the later Medieval period ∼1250
CE at the end of the sequence. The particular cross-regional
consistency at these points in the overall time series suggests an
exogenous factor of some kind.

Evidence for an Early Neolithic boom-and-bust in the British
Isles has already been noted by previous research, alongside
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Fig. 3. Radiocarbon-inferred population and North Atlantic climate proxies:
(A) aggregate anthropogenic radiocarbon dates from Britain and Ireland (as
figure 1C, y-axis is linear), (B) total solar irradiance (12), (C) GISP2 potassium
ion density (note descending axis, [17]), and (D) North Atlantic ice rafted
debris (note descending axis, 19). Shaded blue zones indicate suggested
onset and further duration of cold-wet episodes with the first one, the well-
known “8.2kyr” event prior to the Neolithic and not addressed directly here.

explanations stressing a collapse due either to ecological over-
reach by incoming farmers or the abandonment of cereal agri-
culture in response to declining climate conditions (6-8). Fig-
ure 3 compares the radiocarbon record with well-known climate
archives and suggests that an exogenous cause is likely for all
three observed episodes of cross-regional population stagnation
during (a) the end of the Early Neolithic, (b) the final Bronze
Age and earliest Iron Age, and (c) the late Medieval, associated
with relatively rapid changes towards more unstable conditions
in Britain and Ireland, as well as colder winters and wetter sum-
mers. In particular, pan-regional demographic decline in these
three episodes is consistent with reduced insolation at Hallstatt-
type grand solar minima (every 2100-2500 years, 9-16). They are
likewise consistent with periodic episodes of increased terrestrial
salt input to the Greenland ice sheet, which in historical periods
has been shown to be an excellent glaciochemical indicator of
stormier, winter-like conditions and the increased dominance of
Atlantic westerlies (17-19). Broadly coincident, later Holocene
changes are also observable in North Atlantic oceanic regimes
as separately exhibited by increased ice-rafted surface debris and
reduced deep-water contributions (20-22). This evidence collec-
tively suggests quasi-periodic solar-forcing of atmospheric and

Fig. 4. The changing relative importance of major food sources across
Britain and Ireland as visible in food samples directly dated for radiocarbon:
(A) hazelnuts, (B) wheat (undifferentiated by species), (C) barley, oats and
legumes, and (D) animals (those regularly used food sources). The coloured
lines are calculated as the proportions (only calculated from ∼4250 BCE on-
wards due to small sample sizes prior to this). Ordinary summed probability
distributions are shown in the grey (y-axes are all rescaled 0-1 for easier
comparison) and an accompanying permutation tests are provided in figures
SI6-SI7.

oceanic circulation with wider climatic consequences, associated
with accentuated Siberian Highs and Icelandic Lows. We argue
that these reorganisations have repeatedly exerted downward
pressure on human population in certain parts of north-western
Europe as evident for three decline phases in the high-resolution
British and Irish archaeological radiocarbon record. It is very
probable that similarly-timed impacts were felt by human pop-
ulations in less well-documented parts of Eurasia (as already
partially evident for earlier episodes, 23-24), albeit with different
expression in local weather patterns, varying local human re-
sponse and ultimately different positive or negative consequences
for local human society. An important proximate downward forc-
ing mechanism on human population in Britain and Ireland is
likely to be exacerbated food production from reduced growing
degree days for cereal agriculture and increased risk of crop
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loss and food insecurity due to storms. However, accompanying
social dislocation and intensified epidemic outbreaks are possible
accompanying phenomena. By contrast, intervening episodes of
climatic amelioration may have provided good conditions for
population expansion in certain areas, with the broadly simultane-
ous Early Neolithic colonisation of southern Scandinavia, Ireland
and Britain being one probable example (25).

Radiocarbon-dated plant and animal food sources further
provide an unusually well-resolved time series of potential
changes in British and Irish food production (figure 4), as long
as we are careful to consider the possible confounding effects
of changing human depositional practices with regard to food
remains (26). Overall, the summed probability distribution of
dates from starchy food plants (cereals and hazelnuts) broadly
matches the demographic signal observed in the entire radio-
carbon dataset, but in contrast the relative proportion of each
plant type varies significantly. Hazelnuts (Corylus avellana), a key
comestible for Mesolithic communities prior to the arrival of
agriculture, dominate the starchy plant data up to ∼4000 BCE,
decline in relative popularity with the earliest Neolithic, but then
rebound for half a millennium or more during the Middle-Late
Neolithic (∼3500-2500 BCE), before declining again (for permu-
tation tests, see Supplementary Information 3). In contrast, wheat
(Triticum sp.) is a high value cereal that first appears and increases
sharply at the very start of the British and Irish Neolithic, and
then declines equally sharply by the end of the Early Neolithic.
Much later during the Bronze Age, its relative presence in the
radiocarbon record grows slowly again to a peak ∼1000 BCE,
before collapsing once more. Barley (Hordeum sp.) is a hardier
cereal species which also arrives as part of the earliest farming
activity and is present throughout later periods. It is less popular
than wheat early on, but far more visible during the Middle-
Late Neolithic period of inferred population downturn (taking
the British Isles as a whole). Oats (Avena sp.) only appear in con-
sequential amounts in Britain and Ireland from theRomanperiod
but become increasingly popular in the later Medieval period,
partly replacing or complementing barley as a hardier, lower-risk,
lower status food for both humans and foddered animals. The
use of oats or oat/barley mixes as spring-sown, back-up crops,
especially after initial harvest failures is also well-known from
Great Famine/Black Death era, English manorial accounts (27).
Radiocarbon samples for individual food animal species are fewer
and encompass a wider range of meat, hide, wool and dairying
strategies not to mention different kinds of deposition. However,
comparison between the proportion of animal and plant food data
suggests the greater importance of animals (as wild food) prior to
the Neolithic and then also their high visibility (as domesticated
herds) again in the Late Neolithic and Early Bronze Age (with a
focus on Bos and Sus sp.) whilst more complicated and regionally
differentiated stock-keeping strategies emerge from the Middle
Bronze Age onwards (Supplementary Information 3).

Although subject to changing cultural depositional practice
and representing only a fraction of the wider archaeobotani-
cal and zooarchaeologoical record, the above-described highs
and lows of directly-dated food species offer a temporally high-
resolution proxy for shifting food production strategies under
both advantageous and deleterious climate conditions. For exam-
ple, wheat has always been a higher value, potentially higher yield
cereal, and often a cash crop in later periods (particularlyTriticum
aestivum). It is therefore unsurprising that the proportion of
dated wheat samples grows during peak demographic episodes
but declines sharply in at least two of the inferred episodes
of demographic stagnation and climate downturn: Middle/Late
Neolithic and Late Bronze Age/Early Iron Age. In the former
episode (after ∼3500 BCE), barley takes over as a hardy alter-
native cereal resource during the initial phase of demographic
decline/stagnation, but then gathered hazelnuts and cattle herd-

ing become dominant strategies during the later stages and as
population slowly rebounds. These indicators are consistent with
what we know from larger, indirectly dated bone and crop samples
fromenvironmental archaeology (Supplementary Information 3).
For the latter episode (after ∼1000 BCE), changes occur over
what appears to be a shorter period, but again there are propor-
tional increases in barley, animal products and possibly hazelnuts,
and overall decline in wheat. Underlying the aggregate wheat
pattern however is also regional variation, with sharper wheat
declines in Ireland and north/west England, for example, but
actually increased wheat proportions in south-eastern England.
Such gradual regional differentiation is also a clear feature of
land cover and land use from the Middle Bronze Age onwards
as inferred from British and Irish pollen archives (Supplementary
Information 4). Contrasting patterns of wheat investment are also
potentially consistent with two alternative responses to harvest
failure attested in historical periods: (a) resource switching to
back-up crops in some areas (or by certain social groups) but also
(b) continued speculation by others on high value wheat produc-
tion as wider demand for it spikes. South-eastern England would
also be the area that retained the most amenable weather con-
ditions under climate downturn. For the Late Medieval period,
crop and animal sample sizes from radiocarbon dates are much
lower and the radiocarbon evidence therefore more equivocal,
but contemporary documentary sources point clearly to heavily
adjusted plant and animal husbandry in the period 1270-1450
CE (28). They also offer an important empirical basis for causal
linkages between decreased weather stability and lower tempera-
tures, declining food supply per capita, and further lagged human
consequences such as multi-year famines, human and animal epi-
demics, widespread cereal market speculation, labour shortages
and agricultural dis-intensification, increased violent conflict and
overall population decline (29). Given these linkages, it is striking
that the while a naïve assumption might be that food produc-
tion and resource switching strategies should have become more
successful as they became more technologically sophisticated
through time, the population consequences of climate downturns
appear no less severe, suggesting no major enhanced resilience in
later periods and indeed potentially additional demographic and
subsistence risks for economically-integrated, socially-stratified
and increasingly nucleated late prehistoric to Medieval societies.

Conclusions
Through a data-intensive approach to the British and Irish radio-
carbon evidence we are therefore able to provide a detailed, long-
term demographic proxy for the first time, which amongst other
things, demonstrates at least three regionally-consistent episodes
of population downturn. While other Holocene climate changes
may also have had human impacts in this region, and other Eu-
ropean regions need not have responded in the same way, these
shared episodes of demographic changematch quasi-period shifts
to more unstable weather regimes in the north Atlantic and well-
known solar grand minima. Furthermore, each downturn across
Britain and Ireland was of varying longer-term consequence, with
subsistence responses such as resource-switching and food diver-
sification that varied through time. Exogenous climatic factors
appear more likely to account for these consistencies than en-
dogenous population over-reach on its own, although both these
processes may well have operated in tandem. In any case, both
archaeological and historical evidence suggest that human action
has always played a role in either mitigating or exacerbating
climate-driven effects.

Materials and Methods
A radiocarbon date is a measurement of residual radioactivity in a sam-
ple containing carbon, with the most widely cited measurement being a
‘conventional radiocarbon age’ that has been corrected for carbon isotopic
fractionation (30). This age has a measurement error that is typically assumed
to be a Gaussian distribution. Calibrating this radiocarbon age against ob-
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served variability in atmospheric radiocarbon through time (as documented
by known standards which are mostly tree-ring sequences for the Holocene
[31]) produces a post-calibration probability distribution which is irregular
due to the non-linear shape of the calibration curve (32). For a regional
dataset of many such calibrated probability distributions, it has become
commonplace to sum them, under the assumption that a large mass of
probability in certain parts of this aggregate time series offers a proxy
for greater overall anthropogenic activity and higher human population in
that timespan (6). Concerns that certain archaeological sites or site phases
have garnered disproportionate and misleading numbers of dates (e.g.
because they were better resourced scientific projects) can been addressed
by pooling adjacent dates from the same site and rescaling these sub-
site clusters before summing distributions between different sites. In this
paper, we cluster temporally uncalibrated dates from the same site that
are within 100 years of each other (via a complete-linkage, agglomerative
hierarchical method [33]). Date distributions falling in the same cluster are
pooled and divided by the number of contributing dates in the cluster,
before these pooled distributions are aggregated overall. Some software for
radiocarbon date calibration normalise the post-calibration distribution of
each date to ensure it sums to 1 under the curve before summing multiple
dates or performing any other modelling procedure. However, this rescaling
leads to not all calendar dates having equal probability of occurrence and
creates abrupt spikes in the summed probability distributions at points
where the calibration curve is steep (34). We have therefore chosen not
to rescale the calibrated date distributions before summation, but address
the methodological implications in greater detail in SI, and consider the
alternative result where dates are normalised, concluding that the paper’s
main conclusions remain consistent in either case.

To explore the degree to which an observed summed probability distri-
bution is well-described by a theoretical null model of demographic change,

we first fit such a model (e.g. exponential, logistic, uniform) to the observed
data on the calendar scale. In this case, a logistic model was preferred
given the observed distributional shape and an assumption that there
might be post-Neolithic, pre-Roman upper bound to population growth. The
model of expected population intensity is then back-calibrated, and a set
of conventional radiocarbon ages (equal to the number of observed dates)
is simulated proportional to the modelled per-C14 year amplitude. These
simulated dates are then calibrated and summed. Repeating this process
many times (e.g. 1000) provides a global goodness-of-fit test and 95% critical
envelope with which to assess local departures from the theoretical model
(6,35). A second kind of test used here holds constant the date of a given
sample but shuffles its label (e.g. the geographic region it comes from
or the material type/species of the sample). This permutation test creates
conditional random sets (e.g. 1000) and a 95% critical envelope with which
to assess region-specific or species-specific departures from the global trend
(33). Such a technique also addresses the challenge of reduced sample sizes
(e.g. for particular plants), as the resulting envelopes are correspondingly
larger in such cases.
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