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Abstract

Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution.
At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in
distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a
benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to
represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from
1270 galaxies at z0.5 3.0 < . The clumps are detected from rest-frame UV images, as described in our previous
paper. Their physical properties (e.g., rest-frame color, stellar mass (M*), star formation rate (SFR), age, and dust
extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models.
We carefully test the procedures of measuring clump properties, especially the method of subtracting background
fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump
U−V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the
color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies)
changes with redshift and M* of the host galaxies: at a fixed M*, the slope becomes steeper toward low redshift,
and at a fixed redshift, it becomes slightly steeper with M*. Based on our SED fitting, this observed color gradient
can be explained by a combination of a negative age gradient, a negative E(B−V ) gradient, and a positive specific
SFR gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump
regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those
of the diffuse component or intra-clump regions.

Key words: galaxies: evolution – galaxies: formation – galaxies: starburst – galaxies: star formation – galaxies:
structure – ultraviolet: galaxies

Supporting material: machine-readable table

1. Introduction

1.1. Overview: Clumps and Their Formation and Evolution

To understand how the morphology and structure of galaxies
evolve over cosmic time requires knowledge of not only
integrated galaxy properties but also substructures of galaxies.
Current facilities enable us to resolve distant galaxies and study
their spatially resolved physical properties, including (I)
substructures (e.g., Elmegreen & Elmegreen 2005; Elmegreen
et al. 2007, 2009a, 2009b; Genzel et al. 2008, 2011; Förster
Schreiber et al. 2011; Guo et al. 2012b, 2015; Wuyts
et al. 2012; Tadaki et al. 2014; Shibuya et al. 2016; Soto

et al. 2017), (II) color variation (e.g., Menanteau et al. 2004;
McGrath et al. 2008; Tortora et al. 2010; Gargiulo et al.
2011, 2012; Guo et al. 2011; Szomoru et al. 2011; Boada
et al. 2015; Tacchella et al. 2015b; Chan et al. 2016; Liu et al.
2016), (III) star formation variation (e.g., Wuyts et al. 2013;
Hemmati et al. 2014, 2015; Tacchella et al. 2015a; Barro
et al. 2016; Mieda et al. 2016; Nelson et al. 2016a, 2016b), and
(IV) mass distribution and central concentration (e.g., Saracco
et al. 2012; Szomoru et al. 2013; Lang et al. 2014; van Dokkum
et al. 2014; Barro et al. 2017; Mosleh et al. 2017).
A common and important substructure of distant star-

forming galaxies is giant off-center star-forming clumps. These
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clumps are seen in deep and high-resolution rest-frame UV
and optical images (e.g., Conselice et al. 2004; Elmegreen &
Elmegreen 2005; Elmegreen et al. 2007, 2009a; Förster
Schreiber et al. 2011; Guo et al. 2012b, 2015; Wuyts et al.
2012; Murata et al. 2014; Tadaki et al. 2014; Shibuya
et al. 2016; Soto et al. 2017). They are also detected in high-
resolution emission-line maps of Hα (e.g., Genzel et al. 2008,
2011; Wisnioski et al. 2011; Livermore et al. 2012, 2015;
Mieda et al. 2016; Fisher et al. 2017a) and CO (e.g., Jones
et al. 2010; Swinbank et al. 2010; Dessauges-Zavadsky
et al. 2017b). The clumps appear to be much larger, brighter,
and more massive than local star-forming regions. Their typical
stellar mass (M*) is M10 107 9

– (e.g., Elmegreen et al. 2007;
Guo et al. 2012b; Soto et al. 2017). Their actual sizes are
uncertain due to the resolution limit of current observations,
ranging from ∼1 kpc (e.g., Elmegreen et al. 2007; Förster
Schreiber et al. 2011) to a few hundred pc (e.g., Livermore
et al. 2012). The clumps resemble mini-starbursts in their
galaxies (e.g., Bournaud et al. 2015; Zanella et al. 2015) and
have specific star formation rates (sSFRs) that are higher than
those of their surrounding areas by a factor of several, evident
by their blue UV–optical colors or enhanced Hα surface
brightness (e.g., Guo et al. 2012b; Wuyts et al. 2012, 2013;
Hemmati et al. 2014; Mieda et al. 2016).

The formation and evolution of clumps provide important
tests of our knowledge of star formation, feedback, and galactic
structure formation. Clumps are thought to form through
gravitational instability in gas-rich turbulent disks (e.g., Noguchi
1999; Immeli et al. 2004a, 2004b; Bournaud et al. 2007, 2009;
Elmegreen et al. 2008; Dekel et al. 2009; Ceverino et al. 2010,
2012; Dekel & Burkert 2014; Inoue et al. 2016). This view is
supported by some observations, especially for massive clumpy
galaxies (e.g., Elmegreen et al. 2007; Bournaud et al. 2008;
Genzel et al. 2008, 2011; Guo et al. 2012b, 2015; Hinojosa-Goñi
et al. 2016; Mieda et al. 2016; Fisher et al. 2017a). The
kinematic signatures of the clumpy galaxies, however, can also
have an ex situ origin, such as gas-rich mergers (e.g., Hopkins
et al. 2013), which also has some supporting observations (e.g.,
Puech et al. 2009; Puech 2010; Wuyts et al. 2014; Guo et al.
2015; Straughn et al. 2015; Ribeiro et al. 2017).

The evolution of clumps is under intense debate. Some
models predict that, due to clump—clump and clump—disk
interactions and dynamical friction, clumps will migrate toward
the gravitational centers of their host galaxies and eventually
coalesce into a young bulge as a progenitor of today’s bulges
(e.g., Bournaud et al. 2007; Elmegreen et al. 2008; Ceverino
et al. 2010; Bournaud et al. 2014; Mandelker et al. 2014).
Observational evidence of this scenario is the age (or color)
variation of clumps with galactocentric distance (clump age
gradient). Some studies (e.g., Förster Schreiber et al. 2011; Guo
et al. 2012b; Shibuya et al. 2016; Soto et al. 2017) found that
clumps close to galactic centers are older than those in the
outskirts, broadly consistent with the prediction of the inward
migration scenario. In this scenario, clumps need to survive
longer than ∼150Myr to be able to travel to galactic centers.

On the other hand, some models predict a short lifetime of
clumps (50 Myr) because of the quick disruption of clumps
by either tidal forces or stellar feedback (e.g., Murray
et al. 2010; Genel et al. 2012; Hopkins et al. 2012; Buck
et al. 2017; Oklopčić et al. 2017). The disrupted stars from
clumps would contribute to the formation of thick disks (e.g.,

Bassett et al. 2014; Inoue & Saitoh 2014; Struck &
Elmegreen 2017). Clumps have high sSFR and therefore
strong star formation feedback for their M* (e.g., Genzel
et al. 2008; Newman et al. 2012), which enables the quick
disruption, although clumps with typical star formation
efficiency of a few percent per freefall time are not disrupted
(Krumholz & Dekel 2010). Although the observed stellar age
gradient and the older-than-100-Myr age of some clumps seem
contradictory to the quick disruption scenario, a few simula-
tions (e.g., Buck et al. 2017 and Oklopčić et al. 2017), argue
that these observations can be interpreted as clump regions
being contaminated by older disk stars and therefore may not
be an indicator of the long lifetime and inward migration of
clumps.
Understanding the evolution of clumps is important, because

it reveals whether clumps are a major contributor to bulge
formation, given their prevalence at high redshifts (e.g.,
Elmegreen et al. 2007; Tadaki et al. 2014; Guo et al. 2015;
Shibuya et al. 2016). Clumps may also significantly contribute
to the growth of supermassive black holes and active galactic
nuclei (AGNs) (e.g., Bournaud et al. 2011; Gabor & Bournaud
2013), which has both supporting (Bournaud et al. 2012; Guo
et al. 2012b) and contradicting (Trump et al. 2014) observa-
tional evidence.
Whether or not clumps are a major contributor to bulge

formation, they are important to further understand star
formation feedback, because they provide a sensitive diagnostic
of feedback models on sub-galactic scales. Moody et al. (2014)
showed that adding radiation pressure to a feedback recipe
significantly reduces the number of intermediate-mass clumps
(M M108
*  ) in their adaptive refinement tree (ART)

simulations (Kravtsov et al. 1997; Kravtsov 2003; Ceverino
& Klypin 2009), compared to having only supernova feedback.
Mandelker et al. (2017) further studied the dependence of
clump properties and evolution on feedback recipes in detail.
They found that including radiation pressure would increase the
baryonic surface density and baryonic mass thresholds for
clumps that are long-lived and not being disrupted in a few
freefall times. In the Feedback In Realistic Environments
(FIRE) simulation (Hopkins et al. 2014), where the feedback
recipe reduces star formation more than in the ART simula-
tions, clumps are reported to all have short lifetimes of
50Myr (Oklopčić et al. 2017). Therefore, the properties of
clumps (e.g., number, mass, star formation rate (SFR), and age)
are important to test the validity of feedback models.

1.2. A Challenge of Clump Studies and the Motivation
of This Paper

The resolution and sensitivity of current facilities pose a
significant challenge when comparing observations to models
and even observations to each other. Even with the Hubble
Space Telescope (HST), clumps at high redshifts can only be
marginally resolved or may even be unresolved. This limitation
raises the question whether an observed clump is actually a
single object or blending of a few nearby smaller clumps. For
example, Tamburello et al. (2015) argued that many of the
giant clumps (with M M108

* > ) identified in observations
are not due to in situ formation but are the result of the blending
of smaller structures due to the low resolution of the
observations. Similarly, Dessauges-Zavadsky et al. (2017a)
claimed that the clump masses observed in non-lensed galaxies
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with a limited spatial resolution of ∼1 kpc are artificially
increased due to the clustering of clumps of smaller mass. They
also stated that the sensitivity threshold used for the clump
selection strongly biases against clumps at the low-mass end.
Similarly, Fisher et al. (2017b) discussed the effects of clump
clustering on kpc-scale measurements of clumps. They inferred
that the clustering systematically increases the apparent size
and SFR of clumps in 1 kpc resolution maps and decreases the
measured SFR surface density of clumps by as much as a factor
of 20.

To address the issue of observational effects, in Guo et al.
(2015, hereafter Paper I), we proposed a physical definition that
UV-bright clumps are off-center discrete star-forming regions
that individually contribute more than 8% of the rest-frame UV
light of their galaxies. This definition is derived through
comparison with redshifted and size-matched nearby spiral
galaxies. Clumps defined this way are significantly brighter
than the H II regions of nearby large spiral galaxies, either
individually or blended, when physical spatial resolution and
cosmological dimming are considered. This objective and
physical definition enables a consistent study of clumps at
different redshifts, complementing clump studies of using the
appearance of galaxies by either visual inspection (e.g., Cowie
et al. 1995; van den Bergh et al. 1996; Elmegreen et al. 2004,
2007; Elmegreen & Elmegreen 2005) or other automated
algorithm (e.g., Conselice 2003; Conselice et al. 2004; Förster
Schreiber et al. 2011; Guo et al. 2012b; Wuyts et al. 2012;
Murata et al. 2014).

Under this definition, in Paper I, we measured the fraction of
star-forming galaxies that have at least one off-center clump
( fclumpy). The redshift evolution of fclumpy changes with the M*
of the host galaxies. Low-mass ( M Mlog 9.8* <( ) ) galaxies
keep an almost constant fclumpy of ∼60% from z 3~ to
z 0.5~ . Intermediate-mass ( M M9.8 log 10.6* <( ) ) and
massive ( M Mlog 10.6* ( ) ) galaxies drop their fclumpy from
55% at z∼3.0 to 40% and 15%, respectively, at z 0.5~ . We
found that (1) the trend of disk stabilization predicted by
violent disk instability matches the fclumpy trend of massive
galaxies; (2) minor mergers are a viable explanation of the
fclumpy trend of intermediate-mass galaxies at z 1.5< , given a
realistic observability timescale; and (3) major mergers are
unlikely to be responsible for the fclumpy trend in all masses
at z 1.5< .

This paper is the second of a series aiming to understand the
observational effects of clump studies and hence constructing a
direct and unbiased comparison between observation and theory.
We measure the physical properties of the clumps detected in
Paper I and provide our clump catalog to the community. The
goal of this paper is not to use our measurements to test models.
Rather, it is to present a sample that, to the best of our
knowledge, represents the observed “clumps” in the literature. At
present, observers and theorists have not reached a consensus on
whether the observed “clumps” are the same phenomenon that is
seen in simulations. A critical step of reaching the consensus is to
understand the physical properties of the observed clump over
wide redshift and mass ranges. Public catalogs containing
detailed information on clumps, however, are still insufficient
(for example, see the compilation of Dessauges-Zavadsky et al.
2017a). The catalog presented in this paper is our contribution to
establishing a benchmark of direct comparisons, providing a data
set to allow (1) theorists to understand the observed “clumps” in a

wide range of redshifts and galaxy M* and (2) observers to
examine the observational effects for a large sample of clumps.
In this paper, we briefly summarize the galaxy sample and

clump sample in Section 2. In Section 3, we describe the
measurement of multiband photometry of individual clumps
and test its accuracy. We particularly test the effects of different
methods of subtracting the surrounding background of clumps,
because the contamination by disk stars is a major uncertainty
when interpreting the observed properties. In Section 4, we
describe the measurement of the stellar population of clumps.
We also present a few sanity checks on the accuracy of the
measurement. In Section 5, we show a few examples of the
measured physical properties, which we think may be of
interest to most readers. In Section 6, we briefly introduce the
clump catalog and a few cautions for using it.
Throughout the paper, we adopt a flat ΛCDM cosmology

with 0.3mW = , 0.7W =L and use the Hubble constant in terms
of h H 100 km s Mpc 0.700

1 1º =- - . All magnitudes in the
paper are in AB scale (Oke 1974) unless otherwise noted. We
use a Chabrier initial mass function (IMF; Chabrier 2003).

2. Data and Sample Selection

2.1. Galaxy Sample

The galaxies used in this paper are from the CANDELS/
GOODS-S sample presented in Paper I, which is based on the
CANDELS survey (Grogin et al. 2011; Koekemoer et al.
2011). We do not include the CANDELS/UDS sample of
Paper I in this paper, because UDS only has four HST bands,
not enough for carrying out spatially resolved spectral energy
distribution (SED) fitting for individual clumps. While
referring readers to Paper I for details, we briefly summarize
the key selection criteria here.
The multiband photometry catalog of GOODS-S is described

by Guo et al. (2013). The photometric redshift (photo-z) was
measured by the method of Dahlen et al. (2013). The M* and
SFR were measured through SED fitting. CANDELS has
generated a unified M* catalog (Mobasher et al. 2015; Santini
et al. 2015), where each galaxy is fit by 12 SED-fitting codes
with different combinations of synthetic stellar population
models, star formation histories, fitting methods, etc. For each
galaxy, we quote the median of the best-fit M* of the 12 SED-
fitting codes as its M*. We also use the median SFR of the 12
SED-fitting codes as our SFR measurement.
Star-forming galaxies are selected to have M M109

* > ,
sSFR 10 Gyr1 1> - - , and z0.5 3 < . We also use an
apparent magnitude cut of H 24.5F160W < AB to ensure
reliable morphology and size measurements of the galaxies.
We only use galaxies whose effective radii along the galaxy
semimajor axis (SMA) is larger than 0 2, because clumps
cannot be resolved in smaller galaxies. To minimize the effect
of dust extinction and clump blending, we only use galaxies
with an axial ratio q 0.5> .
After the above selection criteria, and further excluding

galaxies that are not covered by the Advanced Camera for
Surveys (ACS) images, the sample used for detecting clumps
consists of 1655 galaxies (some of them may not contain
clumps). As a comparison, the CANDELS/UDS sample in
Paper I contains 1584 galaxies.
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2.2. Clump Sample

Clump detection is detailed in Paper I. Briefly, clumps are
detected in rest-frame near-UV (NUV; 2800~ Å), i.e., ACS
F435W at z0.5 1.0 < , F606W at z1.0 2.0 < , and
F775W at z2.0 3.0 < . First, the detection image is
smoothed. The smoothed image is then subtracted from the
original image to make a contrast image. After low-S/N pixels
are masked out, only off-center “blobs” are detected from the
filtered image as regions with at least five contiguous pixels.
We choose rest-frame NUV because it is observed by HST
filters for the whole GOODS-S field across the redshift range of

z0.5 3.0 < . Some clumps are brighter and more prominent
in rest-frame far-UV ( 1500~ Å), as found by Soto et al. (2017),
which makes far-UV also an efficient band to detect active star-
forming clumps. However, deep far-UV observations are only
available for about one-third of the area of GOODS-S for
galaxies at z0.5 1.5 < . To increases our sample size, we use
the NUV detection in this paper. Future large and deep far-UV
surveys are needed to promote studies of far-UV clumps.

In Paper I, we only refer to those “blobs” that contribute at
least 8% of the total UV luminosity of their galaxies as clumps
(see Section 1 for the relevant discussion). This objective and
physical definition is necessary when considering clumps as a
distinct feature from normal nearby H II regions and studying
the redshift evolution of clumps and clumpy galaxies (as in
Paper I). This definition, however, has a few caveats. First, this
definition only selects very UV-bright star-forming regions
with f L L 8%LUV clump

UV
galaxy
UVº > and identifies all fainter star-

forming regions as non-clumps. This bisection of star-forming
regions implies an abrupt change of the properties of star
formation regions. Theoretical models, however, predict a wide
and continuous distribution of clump properties (e.g., Moody
et al. 2014; Mandelker et al. 2017). Second, the number of
clumps is predicted to increase toward low luminosity
(Mandelker et al. 2017). Excluding fainter star-forming regions
results in an incomplete and biased clump sample. Third, the
threshold of 8% is determined based on redshifting only one
local galaxy (M101) in Paper I and may not fully represent all
clumps. In this paper, we tend to be more inclusive and include
blobs down to f 3%LUV = . This inclusion enlarges our clump
sample, but it may also include regions that are similar to
normal nearby H II regions. We leave it to readers to decide a
preferred fLUV threshold. Overall, the sample has 1547 clumps
with f 8%LUV  , 854 clumps with f5% 8%LUV < , and 792
with f3% 5%LUV < . In total, 3193 clumps are detected
from 1270 galaxies. Figure 1 shows these clumpy galaxies in
the SFR–M* and SMA–M* diagrams.

2.3. Selection Effects

To detect clumps in rest-frame NUV, we use different HST
bands at different redshifts: F435W (B) at z0.5 1: < F606W
(V ) at z1 2: < and F775W (i) at z2 3 < . The clump
detection is affected by the sensitivities of the three bands.
Paper I shows that the clump magnitude of 50% completeness
of our detection is about 28.5, 28.5, and 27.8 AB in B, V, and i,
respectively. As a result, fainter clumps are harder to detect at
higher redshifts.

A more relevant way to evaluate the incompleteness is
calculating it as a function of fLUV rather than a function of the
clump apparent magnitude. Our clump definition is based on
fLUV because (1) our clump finder detects clumps from a

contrast image, showing how bright the clumps are relative to
their host galaxies, and (2) using a relative ratio of an intrinsic
parameter enables direct comparisons between observations
with different sensitivities. Paper I shows that at z0.5 1.0 < ,

z1.0 2.0 < , and z2.0 3.0 < , the 50% completeness
occurs at fLUV=0.03, 0.06, and 0.10, respectively. A large
fraction of clumps with low fLUV is missed in our clump
detection at high redshift. For example, we might miss 90% of
clumps with fLUV=0.03 at z 2> . This effect raises an
important caution of using our clump catalog: it is a
“representative” rather than a “complete” catalog. Incomplete-
ness needs to be taken into account when deriving measure-
ments that require a complete sample, e.g., the stellar mass
function of clumps.
Specifically, our relative definition of clumps, namely,

selecting clumps based on fLUV rather than on their absolute
luminosity, would introduce two biases. The first is a redshift-
dependent bias. At high redshifts, only high fLUV clumps are
detected. Therefore, statistical results of clump properties are
dominated by high fLUV clumps. Moreover, high fLUV clumps
at high redshifts are intrinsically much brighter or more
luminous than the corresponding (i.e., same fLUV) clumps at
lower redshift. In contrast, at low redshifts, statistical results are
contributed by all fLUV clumps. To help readers to evaluate this
effect, we list the number of clumps with different fLUV at
different (z, M*) bins in Table. 1.
The second bias is introduced by the total UV luminosity of

galaxies with different M*. Massive star-forming galaxies have
higher UV luminosity than lower-mass galaxies. Clumps
detected from massive galaxies are therefore intrinsically UV
brighter than those from lower-mass galaxies. In other words,
intrinsically faint clumps can only be selected from low-UV-
luminosity galaxies. In contrast, from UV-bright galaxies, only
UV-bright clumps can be selected. This bias would mainly
affect comparisons of the distributions of clump properties
(e.g., SFR distribution) between galaxies with different M*.
Both biases are introduced because for a given fLUV class, the
absolute clump UV luminosity may vary considerably among
the different redshift and/or galaxy M*ranges. The robustness
of our results against both biases can be tested by calculating
the results using clumps with different fLUV separately (see
Section 5.2).

3. Multiband Clump Photometry

For each clump, we measure its multiband photometry from
HST images in the bands of F435W, F606W, F775W, F814W,
F850LP, F105W, F125W, F140W,18 and F160W. The HST
images have the capability to resolve at the kpc scale at

z0.5 3.0 < . We use the IRAF/PSFMATCH package to
match the point spread functions (PSFs) of all the bands to
that of F160W, whose FWHM is about 0 17. Details of the
PSF-matching method are described in Guo et al. (2011,
2013). As shown in Figure5 of Guo et al. (2013), for an
aperture of 3 pixels, the accuracy of the PSF matching is
within 5%.
For each clump, we use an aperture of 0 18 (3 pixels) to

measure the flux in each band. We then multiply all the fluxes
by a factor of 1.5 for the aperture correction. This factor is
derived through the curve of growth of the F160W PSF (see the
middle panel of Figure5 of Guo et al. 2013). This method

18 This band was taken by 3D-HST (Brammer et al. 2012).
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assumes that each clump is an unresolved source, which is
reasonable for the HST resolution in F160W, because the
FWHM of F160W (0 17) corresponds to ∼1 kpc (∼1.4 kpc) at
z=0.5 (at z1.5 3.0  ). The assumption of an unresolved
source makes it easy to calculate the clump light that is out of
our fixed aperture.

3.1. Diffuse Background Subtraction

A challenge is how to subtract the light from the underlying
diffuse component (or intra-clump regions) of the galaxies.
Clumps are believed to be “embedded” in a diffuse back-
ground. Therefore, in a clump location, the observed light is
contributed by both clump stars and background stars.

Figure 1. Clumpy galaxy sample split into three redshift bins. Galaxies in the CANDELS/GOODS-S with H 24.5F W160 < AB are plotted in the SFR–M* and
SMA–M* diagrams. Galaxies with sSFR 0.1Gyr 1> - are black, while those with sSFR 0.1 Gyr 1 - are gray. Galaxies with at least one detected off-center clump (with
f L L 3%LUV clump

UV
galaxy
UV º ) are red. The red points all have an axial ratio q 0.5> . Black solid, dotted, and dashed lines in the upper panels show the relations of

sSFR = 0.1, 1, and 10 Gyr−1. Black horizontal lines in the lower panels show our size cut of 0 2.

Table 1
Number of Clumps in the Sample

M Mlog 9.8gal

*
<( ) a,b

M M9.8 log 10.6gal

*
 <( ) M Mlog 10.6gal

*
( )

z0.5 1.0 < 230 galaxies 113 galaxies 16 galaxies
654 clumps 304 clumps 38 clumps
171/198/285 107/83/114 13/16/9

z1.0 2.0 < 363 galaxies 239 galaxies 67 galaxies
947 clumps 658 clumps 140 clumps
182/273/492 218/173/267 60/32/48

z2.0 3.0 < 93 galaxies 127 galaxies 22 galaxies
181 clumps 230 clumps 41 clumps
10/25/146 26/45/159 5/9/27

Notes.
a M gal

* means M* of host galaxies.
b In each (M gal

* , z) bin, the three numbers in the third row are the numbers of clumps in three fLUV bins: 0.03–0.05, 0.05–0.08, and 0.08> .
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Separating the two contributions is scientifically critical. Some
numerical simulations (e.g., Buck et al. 2017; Oklopčić et al.
2017) found a radial variation of clump ages: older for inner
(small galactocentric distance) clumps and younger for outer
(large galactocentric distance) clumps, which seems to support
the inward migration scenario (see discussion in Section 1).
These simulations, however, found no clump migration, and
they argued that the clump age gradient in their simulations is
the result of the contamination of disk (i.e., background) stars.
To make a direct comparison with models, background
subtraction is important to eliminate the contamination.

Observationally, subtracting the diffuse background is
important for measuring clump photometry. After PSF
matching to the F160W resolution, some clumps may disappear
due to the reduced contrast between clumps and the back-
ground. Moreover, some intrinsically blue clumps are almost
“invisible” in red bands (e.g., F160W), again due to small
clump–background contrasts (e.g., see clumps in Figure 2 and
discussion in Soto et al. 2017). For these clumps, we fix their
centers as those detected in the non-PSF-matched NUV bands
to measure the aperture photometry. The accuracy of the
photometry significantly relies on the precision of the diffuse
background subtraction, because the photometry is in fact the
measurement of the “excess” flux above the diffuse back-
ground flux.

To subtract the diffuse background light, in each band, we
first mask out the locations of all detected clumps with circular
masks. Then, for each clump, we measure the background flux
from an annulus around the clump to calculate the average local

background surface brightness (i.e., flux per pixel) in the clump
vicinity. We then subtract the background flux within the
clump aperture of 0 18 (i.e., the local background surface
brightness times the clump area). The subtracted background
for the clump is contributed by two sources: the local diffuse
background and the PSF wings of nearby clumps and the
analyzed clump itself. Figure 2 illustrates the method.
Two parameters control this method: (1) the size (radius) of

the clump mask and (2) the size of the background annulus. We
try different combinations of them (see Table 2). For an
aggressive subtraction (e.g., bgsub_v6), the clump mask size is
small, leaving more pixels as background (or intra-clump)
pixels, and the background annulus starts right next to the
clump region. In contrast, a conservative subtraction (e.g.,
bgsub_v1) masks more pixels as clump regions and measures
the background far away from the clump regions. As shown in
Table 2, the difference between aggressive subtraction
(bgsub_v6) and conservative subtraction (bgsub_v1) is about
a factor of 1.9 in clumps’ F160W flux. If no background is
subtracted (bgsub_v0), the F160W flux of clumps is about a
factor of 3.2 higher than that of bgsub_v6. Here we use F160W
flux to show the effect of background subtraction, because this
issue is most significant in F160W due to the faint clump fluxes
in this band.
We choose method bgsub_v4 as our fiducial one based on a

test of fake clumpy galaxies. In this test, we use the WFC3
F160W PSF as fake clumps and insert four fake clumps into a
constant diffuse background. For each fake galaxy, we choose
one clump as the target clump and normalize its flux to unity.
The fluxes of other fake clumps are randomly drawn from the
range of 0.1–10 relative to the flux of the target clump. The
separation between the fake clumps is drawn from the observed
distribution of clump–clump distances. The surface brightness
of the constant background ranges from 0.01% to 10% of the
peak surface brightness of the target fake clump.
We apply all subtraction methods to the fake galaxies and

test which one recovers the input flux of the target clump the
best. The most affecting parameter in this test is the flux ratio
between the target fake clump and its closest neighbor. On
average, method bgsub_v4 recovers the target flux the best over
the range of the clump flux ratio. It recovers 95% of the target
flux when the neighbor clump is not brighter than the target one
by a factor of 2. It overestimates the target flux by a factor of
1.1 when the neighbor clump is five times brighter.
Background subtraction, however, is more complicated than

the above test. Technically, a few issues are not covered by the
test. First, some clumps may be more extended than WFC3
PSFs. Second, the diffuse background is not constant in the
galaxy-size scale. Third and more importantly, different clumps
have different distances to their neighbor clumps and different
clump-to-neighbor flux ratios, which means the best back-
ground-subtraction configuration may vary from clump to
clump.
Physically, whether or not the background should be

subtracted depends on the scientific goals. For example, if
the goal is to study the clump properties (e.g., mass, SFR, etc.),
the background needs to be subtracted. If, however, the goal is
to study the dynamics of clump regions, the background should
be kept. To enable as many topics as possible, we release the
clump catalogs with all the background-subtraction methods
(including no subtraction), allowing readers to choose the
optimal method for their research. Moreover, the very

Figure 2. Illustration of diffuse light subtraction. A galaxy (Galaxy ID =
25508 in the catalog) is shown in ACS F606W used to detect clumps (top left),
smoothed ACS F606W to match the resolution of WFC3 F160W (top right),
WFC3 F160W (bottom left), and a mask image (bottom right). Four clumps are
detected in this galaxy, as shown by the green circles with a radius of 0 18 (3
pixels) in each panel. In the mask image (bottom right), the area within 0 24 (4
pixels) of the center of each clump is masked out (i.e., black pixels in the
panel). These pixels are not used in calculating the diffuse background. The
pixels outside the galaxy are also masked out, because they are out of the
SExtractor segmentation map of the galaxy. For one clump (Clump ID=4 in
the catalog), we show the annulus (magenta circles) used as our fiducial method
(bgsub_v4 in Table 2) to measure the surface brightness of the diffuse
background (or intra-clump regions). The annulus (between the two magenta
circles) has inner and outer radii of 0 24 and 0 36. Only the white pixels (i.e.,
those not masked out due to clump locations) between the two magenta circles
are used to calculate the surface brightness of the diffuse background.
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aggressive subtraction (bgsub_v6) and no subtraction
(bgsub_v0) can be used as the lower and upper limits of
clump fluxes to evaluate the uncertainty caused by subtracting
the diffuse background. The “fiducial” method (bgsub_v4) is
chosen to simplify the paper, focusing on the clump properties.
We will discuss the effects of background subtraction on clump
properties more in Section 5.7.

3.2. Accuracy of Photometry

Background subtraction affects photometric accuracy. An
aggressive method (e.g., bgsub_v6) subtracts a higher fraction
of light from clumps than a conservative method does. In the
former, the remaining clump flux is fainter, and the relative
error of the clump flux is therefore larger (or the clump S/N is
lower). To test the photometric accuracy, we measure the
photo-zs of individual clumps by using their HST photometry.
The code and details of our photo-z method are described in
Guo et al. (2012a). Models used to measure photo-zs are
extracted from the library of PEGASE 2.0 (Fioc & Rocca-
Volmerange 1997). For integrated galaxies, our photo-z code
achieves a similar accuracy as those used in official CANDELS
photo-z catalogs (Dahlen et al. 2013). To test the photo-z
accuracy of clumps, we only use clumps with spectroscopic
redshifts (spec-zs) and f 8%LUV > .

Table 2 shows that when the background subtraction is too
aggressive (e.g., bgsub_v6), the scatter (the normalized median
absolute deviation NMADs ) and outlier (defined as sources with

z z1 0.15D + >∣ ∣ ( ) ) fraction of the photo-z measurement are
large. In contrast, conservative (or no) subtraction (bgsub_v1 or
bgsbu_v0) yields much improved photo-z statistics.

The photo-z result of the fiducial subtraction method is
shown in Figure 3. The NMADs (normalized median absolute
deviation) and outlier fraction of bgsub_v4 are 0.074 and
6.66%, both of which are about a factor of 2.5 larger than the
values of the CANDELS official photo-z catalogs of Dahlen
et al. (2013). Worse photo-z accuracy of clumps is expected
because (1) clumps are much fainter than integrated galaxies
(e.g., see Figure 4); (2) clumps only have photometry of a few
HST bands, while integrated galaxies usually have more than
15 bands; (3) clump photometry only samples the relatively
featureless regime of the SEDs of star-forming population

models, i.e., rest-frame UV–optical without a strong Balmer/
D4000 break; and (4) background subtraction itself induces a
source of uncertainty. Considering all these factors, the photo-z
accuracy is acceptable. In this paper, clump photo-zs are only
used for the purpose of testing their photometry. They are not
used for deriving clump properties. We use the redshifts of the
host galaxies to derive clump properties.
Some clumps have catastrophic photo-z measurements with
z z1 0.20D + >∣ ∣ ( ) (dashed lines in Figure 3), which may

indicate problematic photometry. We exclude such clumps in
our later analyses but still keep them in the published catalog.
We set a flag badczflag= 1 in the catalog to label these clumps.
In total, 720 (out of 3193) clumps are thereby excluded.
Among the 720 clumps, 264, 187, and 269 clumps have UV
fractional luminosity f 0.08LUV  , f0.05 0.08LUV < , and

f0.03 0.05LUV < , respectively.

4. Measuring Clump Properties

4.1. SED Fitting

We derive the physical properties (M*, SFR, age, and dust
reddening) of clumps by fitting their HST SEDs to stellar
population synthesis models retrieved from the library of
Bruzual & Charlot (2003)with a Chabrier IMF (Chabrier 2003).
The details of our SED-fitting code are described in Guo et al.
(2012a). Briefly, we use a set of τ-models in which star
formation history (SFH) declines exponentially with time. The
set of models consists of grid points in a parameter space
spanned by redshift, dust extinction E(B−V), SFH character-
ized by τ and age, and metallicity. The available values of each
parameter are shown in Table 3. We apply the Calzetti
extinction law (Calzetti et al. 1997, 2000) and the recipe of
Madau (1995) to the models to account for dust extinction and
the opacity of the intergalactic medium (IGM) in the universe.
We use the minimal 2c value to decide the best-fit model.
During the SED fitting, the redshift of a clump is fixed to that
of its host galaxy (spec-z if available, photo-z otherwise). For
each clump, we Monte Carlo sample its photometry in each
band 100 times from a Gaussian distribution whose mean is
equal to the observed flux and whose standard deviation is
equal to the flux uncertainty. We then fit the 100 resampled
SEDs. For each stellar population parameter, the average of the

Table 2
Diffuse Background Measurement

Method
Clump Mask

Sizea Background Apertureb
Median Relative F160W

Fluxc
Photo-z

NMADs d,e
Photo-z
Outlierf Comment

(arcsec) (arcsec) (normalized)

bgsub_v6 0.18 0.18–0.30 0.67 0.114 6.99% Very aggressive subtraction
bgsub_v5 0.18 0.24–0.36 0.86 0.088 6.86% L
bgsub_v4 0.24 0.24–0.36 1.00 0.074 6.66% Fiducial subtraction
bgsub_v3 0.24 0.24–0.42 1.08 0.072 6.59% L
bgsub_v2 0.24 0.30–0.42 1.14 0.073 6.55% L
bgsub_v1 0.24 0.36–0.48 1.25 0.063 6.44% Very conservative subtraction
bgsub_v0 L L 2.17 0.042 5.76% No background subtraction

Notes.
a The radius of clump regions masked out when calculating the diffuse background (see green circles in Figure 2). One pixel is 0 06.
b The inner and outer radii of the aperture used to measure the diffuse background (see the magenta circles in Figure 2).
c Median of clumps’ F160W fluxes normalized by those of bgsub_v4.
d NMAD: normalized median absolute deviation; z z z1.48 median 1NMAD specs = ´ D - D +(∣ ( )∣ ( )), where z z zphoto specD = - .
e Only use clumps with spec-z and f 0.08LUV  .
f Outliers are defined as z z1 0.15D + >∣ ∣ ( ) .
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100 best-fit values is used as the best value, and the 16th and
84th percentiles of the 100 best-fit values are used as the 1σ
confidence level.

SED-fitting results significantly rely on the assumed SFHs.
Unfortunately, the SFHs of clumps are little known. Here we
choose the τ-model and constant SFH model because they are
commonly used in the SED fitting of distant galaxies. Recently,
other models (e.g., the inverse τ-model and delayed τ-model)
have also been frequently used in the literature. An unrealistic
SFH model would result in systematic errors of the derived
parameters, especially for age. Lee et al. (2017) tested the
effects of different models on the derived parameters for
integrated CANDELS galaxies. They generated mock SEDs
with known intrinsic parameters and fit the SEDs with different
SFH models. They found that (1) M* is the most robust
parameter and nearly unaffected by the adapted models; (2) the
constant SFH recovers age (defined as the period from the
onset of star formation to the time the object is observed) with
little systematic offset, while the τ-model underestimates age
by ∼0.3 dex (for a system of 1 Gyr old); and (3) for systems
with MSFR 0.01 yr 1> -

 , the constant SFH overestimates
SFR by 0.25 dex, while the τ-model recovers SFR with little
systematic offset. We expect similar systematic errors due to
SFH assumptions in our clump SED fitting. However, since our
data cover a much shorter wavelength range and have larger

photometric uncertainties, the random errors of our clump SED
fitting are larger than integrated galaxy SED fitting. We do not
find any systematic trend between clump age and the SED-
fitting preferred SFHs.

4.2. Tests of Clump Properties. I. Mass-to-light Ratio

We test the accuracy of clump properties in three ways. The
first is the mass-to-light ratio (M/L). Among all HST bands,
F160W is the reddest and therefore serves as the best M*
indicator in our method. We expect that the M/L of clumps is
similar to or slightly smaller than that of integrated galaxies at a
given M*, because clumps are believed to be younger. In
Figure 4, we plot the relation between M* and F160W
magnitude for clumps and integrated CANDELS/GOODS-S
galaxies. In each panel, we plot clumps that are detected from
galaxies within a given M* and redshift range (as shown by the
label and dotted horizontal lines in each panel), but we also plot
all CANDELS/GOODS-S galaxies (not just our sample
galaxies), regardless of their M*, within the redshift range.
Clumps follow a similar relation with integrated galaxies.

This result is especially true at z0.5 1.0 < , when F160W is
sampling ∼9000Å, very close to the peak of stellar emission.
In this redshift range, the variation of M/L caused by different
stellar populations is the smallest. At higher redshifts, the M/L
of clumps is slightly smaller than that of integrated galaxies,

Figure 3. Comparison between the photo-zs of clumps and the redshifts of their host galaxies. The photo-zs of clumps are measured through HST-band PSF-matched
photometry (see the text). Our fiducial background-subtraction method bgsub_v4 (see Table 2) is used. Blue stars, cyan triangles, and red circles show clumps with
UV fractional luminosity f L L 0.08LUV clump

UV
galaxy
UVº > , f0.05 0.08LUV< < , and f0.03 0.05LUV< < . For each color, the solid symbols show the clumps whose

host galaxies have high-quality spectroscopic redshifts, while open symbols show the clumps whose host galaxies only have photo-zs from CANDELS. The solid line
shows the one-to-one correspondence, while the two dotted lines show z z1 0.15D + =∣ ∣ ( ) , which is used to calculate the outlier fraction. The two dashed lines show

z z1 0.2D + =∣ ∣ ( ) . Clumps whose photo-zs are worse than this criterion may have inaccurate multiband photometry and hence are excluded from our later analyses.
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demonstrated by the fact that clumps are lying toward the lower
boundary of the galaxy M*–magnitude relation. The difference
could be caused by a bandpass coverage effect. At z 1 , HST
filters are shifted to cover a bluer side of the SED than at z 1< ,
probing more of the young star component and less of the old
star component. As a consequence, our clump mass measure-
ment is likely overweighting the UV luminosity and artificially
biasing the M/L to lower values. The difference, however, is

small, because galaxies with M* similar to that of clumps at
z 1> are also very actively forming stars. Overall, this test
shows that there are no obvious, significant systematics in the
M* measurement of clumps. Also, the large scatter of clumps
with bad clump photo-z (i.e., those with badczflag=1; orange
circles in the figure) supports our decision of not including
them in later analyses, because their problematic photometry
causes large uncertainties in M*.

Figure 4. M*–magnitude (F160W) diagram of clumps. Each panel shows clumps detected from galaxies within a given M* and redshift bin as the labels indicate.
Similar to Figure 3, in each panel, blue, cyan, and red clumps have f L L 0.08LUV clump

UV
galaxy
UVº > , f0.05 0.08LUV< < , and f0.03 0.05LUV< < , respectively. The

orange clumps are those excluded because of their large photo-z errors z z1 0.2D + >∣ ∣ ( ) . The gray contours and points show the distribution of all CANDELS/
GOODS-S galaxies (not just our sample galaxies) within the same redshift range of each panel but simultaneously for all mass ranges. In each panel, the two
horizontal dotted lines show the M* range of the host galaxies. The black dots in each panel show the host galaxies of detected clumps.
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4.3. Tests of Clump Properties. II. Color–mass Diagram

The second test is the color–M* diagram. In Figure 5, we
plot both clumps and integrated galaxies in the diagram of
rest-frame U−V versus M*. Clumps have similarly blue
colors as those galaxies whose M*is comparable to the clump
M*, but clumps are bluer than their host galaxies. This result
is expected, since clumps are selected as UV-bright regions
from their galaxies. At a given redshift and galaxy M*, clump
colors show a relation with their M*: massive clumps are
redder than lower-mass clumps. Also, for a given clump mass,
UV-bright clumps (blue stars) are bluer than UV-faint clumps
(red dots), as expected. We also notice that some clumps are
as red as red-sequence galaxies, i.e., above the separation line
of the blue cloud and the red sequence of integrated galaxies
from Borch et al. (2006): U V M M0.227 log *- = ´ ( ) ( ) –

z1.16 0.352 0.79 0.02 ,- ´ + -( ) where the last term is to
convert the Vega magnitude in Borch et al. (2006) to AB. The
very red colors may indicate problematic photometry, because
our clump identification is designed to select star-forming
(and implicitly low dust extinction) clumps. We therefore
exclude all clumps above the separation line (solid black lines
in Figure 5) in our later analyses. In the catalog, we set a
flag veryredflag= 1 to label them. The fraction of the
veryredflag= 1 clumps increases with redshift: ∼1% at

z0.5 1.0 < , ∼7% at z1.0 2.0 < , and ∼8% at 2.0 
z 3.0< . This result is likely caused by the filter coverage: at
higher redshift, HST filters are shifted to cover bluer
wavelengths, resulting in large uncertainties in the measure
of the rest-frame V-band luminosity. In total, 142 clumps are
thereby excluded (after badczflag= 1 is applied), reducing the
clean sample to 2331 clumps.

4.4. Tests of Clump Properties. III. SFR and E(B−V)

The third test is clump SFR and dust extinction E(B−V ). In
addition to the SED fitting, we also estimate the SFRs and
E(B−V )s of clumps by using the slope and luminosity of
their rest-frame UV continuum. Compared to SED fitting, this
method is less model-dependent and requires no prior
information on the SFH of galaxies. We first calculate the
UV slope through a linear fit of flog blµ( ) , where f is flux, λ
is wavelength, and β is the UV slope. We then use the Calzetti
extinction law (Calzetti et al. 1994, 2000) to convert the

rest-frame UV slope of a clump into its dust-reddening
E(B−V) and calculate the unobscured SFR from its dust-
corrected rest-frame UV continuum by using the formula in
Kennicutt (1998), which applies to systems with constant star
formation over timescales of ∼100Myr. The rest-frame UV
continuum used here covers the wavelength range of
1400–2800Å. We require the clumps to have at least two
HST bands to sample this range. Under this requirement, the
bluest HST band in our data set (F435W) only enables the
measurement of UV SFRs for clumps at z 1.5 . Therefore,
although the UV SFR is less model-dependent than the SED-
fitting-derived SFR, we only use the former to test the latter.
For the whole clump sample, we still use SED-fitting-derived
SFRs as our measurement.
Figure 6 shows very good agreement between SED-fitting-

and UV-continuum-derived SFRs and E(B−V )s. The
average difference between SED and UV SFRs ( SFRD =
log SFR log SFRSED UV-( ) ( )) is about 0.07 dex, and the 1σ
scatter of ΔSFR is about 0.4 dex—slightly larger than the
typical SFR uncertainty for integrated galaxies in the
literature. For E(B−V ), the average difference is about
0.02, and the 1σ scatter is about 0.1. The agreement in the
higher-redshift range z2.0 3.0< < is better than that in the
lower range z1.5 2.0< < , because in the former, three or
more HST bands are sampling the rest-frame UV continuum,
enabling a more accurate measurement, while in the latter,
only two HST bands are available.
Overall, the above tests find no obvious and significant

systematics in our measurements of clump properties. Some
major stellar population parameters—M*, SFR, and E(B−V )
—are measured to a reasonable accuracy level. All of these
tests also provide criteria to exclude problematic clumps from
the sample. As a summary, we exclude clumps that have (1)
bad photo-z (badczflag=1) or (2) very red U−V color
(veryredflag=1).

4.5. Tests of Clump Properties. IV. Comparison
with Integrated Values

We also carry out two additional sanity checks to use the
integrated values as constraints on clump properties. For each
galaxy, (1) the total M* in clumps should be lower than the
integrated M* of the host galaxy and (2) the total SFR in
clumps should be smaller than the integrated SFR of the host
galaxy. These tests provide additional information on the
robustness of our measurements. We only use the clean sample
of 2331 clumps (see Section 4.3) for this test.
In our fiducial background-subtraction method (bgsub_v4),

13 galaxies (1% of the total 1270 galaxies) fail the total clump
mass test, while 32 galaxies (3% of the total galaxies) fail the
total SFR test. The reasons of failure, however, are different
between the mass and SFR tests. Among the 13 failed galaxies
in the mass test, only two of them have a single clump that is
more massive than the integrated galaxy (such clumps are
flagged with badmassflag=1 in the catalog). In the SFR test,
however, 21 of 32 failed galaxies contain a single clump with
SFR larger than the integrated SFR of the galaxies. If we
exclude these 21 clumps with overestimated SFR, only 11
galaxies (1%) fail the SFR test. The failure fraction also
depends on the background subtraction, with aggressive
subtraction resulting in less failure galaxies or clumps.

Table 3
Parameter Space of SED Fitting

Parameter Range

Redshift 0.0 to 7.0 with a bin size of 0.01
E(B−V )a 0.0 to 1.0, E B V 0.05D - =( )
Metallicity Solar
Age (Gyr)b 1, 2, 3, 5, 8 10 , 10 , 10 , 102 1 0 1´ - -( ) , up to 13
τ (Gyr) 1, 2, 3, 5, 8 10 , 10 , 101 0 1´ -( ) , and ¥c

Notes.
a E(B−V ) runs up to 0.3 for models with t 4.0t > = .
b Age is defined as the period from the onset of star formation (i.e., the
beginning of the τ-model or constant SFH model) to the time the object is
observed.
c t = ¥ means a constant SFH.

(This table is available in its entirety in machine-readable form.)
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5. Observed Clump Properties

In this section, we present some observed clump properties
that may be of interest to readers. We only present these results
and discuss their systematics and uncertainties. The theoretical
interpretations and implications of the observed clump proper-
ties are beyond the scope of this paper and are thereby left for
future work. In most figures in this section, we divide our
sample into different redshift and galaxy M* bins (same as in
Figures 4 and 5). The symbols and colors in these figures are
also the same as in Figures 4 and 5 unless otherwise stated. All

of these properties are measured with our fiducial diffuse
background subtraction bgsub_v4 (see Table 2).

5.1. Specific Star Formation Rate versus M*

Figure 7 shows the relation between sSFR and M*
for clumps (colored symbols) and integrated CANDELS/
GOODS-S galaxies with F160W<26 AB (gray contours and
points). In most panels, the sSFR of clumps increases with the
decrease of clump M*. In contrast, galaxies below 1010 M
have an almost constant sSFR, evident by the almost horizontal

Figure 5. Similar to Figure 4 but showing the color–M*diagram of clumps (color symbols) and CANDELS/GOODS-S galaxies (gray contours and points). The solid
line in each panel is the separation between the red sequence and blue cloud derived in Borch et al. (2006). In each panel, the two vertical dotted lines show the M*
range of the host galaxies where clumps are identified (see also the M* label).
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gray contours. On average, when clumps’ M* is significantly
lower than their host galaxies’ M*, the sSFR of clumps is about
5 times higher than the typical sSFR in galaxies with M*
similar to their host galaxies (i.e., compare massive clumps
with contours within the two vertical dotted lines). This result
is consistent with other studies (e.g., Guo et al. 2012b; Wuyts
et al. 2012). The clear trend is for clumps’ sSFR to increase
with the decrease of M*, with the most massive clumps having
sSFR similar to that of their host galaxies. Very low-mass
clumps’ sSFR is up to 30 times higher than that of the host
galaxies.

5.2. Radial Variation of Clump Color (Color Gradient)

Figure 8 shows the variation of the clump U−V color as a
function of galactocentric distance normalized by the SMA of
their host galaxies (color gradient). The clump age gradient and
sSFR gradient are usually used to test theoretical models of
clump formation and evolution. These quantities, however, can
only be derived through colors (SEDs) in our data set.
Therefore, we first present the color gradient, because it is
directly observed and the most robust result among all
gradients discussed in this paper.

We find a color gradient in almost all panels at z 2< :
clumps at small galactocentric distance (normalized by the
SMA of their galaxies) are redder, while those at large distance
are bluer. This result is similar to many other studies in the
literature, e.g., Förster Schreiber et al. (2011), Guo et al.

(2012b), Tadaki et al. (2014), Shibuya et al. (2016), and Soto
et al. (2017). At z 2 , clumps show almost no color gradients.
Our large data set covering wide ranges of redshift and M*

enables us to study the dependence of the color gradient on
redshift and galaxy M* for the first time. At the same galaxy
M*, the color gradient becomes steeper toward lower redshifts.
Also, at the same redshift, the gradient becomes slightly steeper
toward more massive galaxies.
We also calculate the color gradient of intra-clump regions

(or diffuse background). To this purpose, we measure the
multiband photometry of the host galaxies in circular annuli
after masking the clump regions. We then use the same method
as in Section 4 to derive the physical properties of intra-clump
regions. Figure 8 shows that, overall, (1) intra-clump regions
(brown lines in the figure) are redder than clumps and (2) the
color gradient of intra-clump regions is flatter than that of
clumps. In the lowest-M*bin ( M10 109 9.8

– ), the intra-clump
regions’ color gradient is almost flat in all redshift bins. We
also find marginal evidence (through a linear fit) that the slope
of intra-clump regions’ color gradient becomes steeper with
galaxy M* at z 1 . This result is consistent with recent studies
of the color gradient of integrated light in galaxies, e.g., Liu
et al. (2016), Tacchella et al. (2017), and Wang et al. (2017).
Figure 8 implies that clumps’ color gradient at z 2< would

be changed if the colors were measured by using the fluxes
without background subtraction. The color gradients of the
diffuse background (brown solid lines) are significantly

Figure 6. Comparisons of SFRs (left) and dust extinction E(B−V )s (right) measured through SED fitting and rest-frame UV continuum. The blue, cyan, and red data
points are clumps with f L L 0.08LUV clump

UV
galaxy
UVº > , f0.05 0.08LUV< < , and f0.03 0.05LUV< < , respectively. Black circles with error bars show the median and

16th and 84th percentiles of the data. Clumps at z 1.5 do not have enough HST filters to sample their rest-frame UV continuum and therefore are not shown in the
figure.
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different from that of clumps (large black circles): the former is
almost flat, while the latter decreases with the normalized
galactocentric distance. If the measurements without back-
ground subtraction are used, clumps would be redder than with
background subtraction, with a big impact especially on the
age–extinction determination. Moreover, without background
subtraction, the clump color gradient would be flatter (see the
top left panel of Figure 14 and more discussion in Section 5.7).

This result indicates that color gradients of clumps can only be
made shallower—not the opposite—by the contribution of the
diffuse background. It is hard to justify the observed color
gradients in clumps as being introduced only by background
contamination, which in the worst case would “dilute” those
gradients. Therefore, the existence of a negative color gradient
can be considered quite robust with respect to background
contamination (or background-subtraction method).

Figure 7. Similar to Figure 5 but showing the sSFR–M*relation of clumps and integrated CANDELS/GOODS-S galaxies with F160W<26 AB. Colored symbols,
gray contours and points, and vertical dotted lines have the same meaning as in Figures 4 and 5. Black circles with error bars show the median and 16th and 84th
percentiles of clump sSFRs in individual M* bins. The solid black curves show the polynomial fit of the star formation sequence of Whitaker et al. (2014), and the
dashed black lines are the solid lines scaled up by a factor of five.
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On the other hand, since the individual clumps contribute
only a few percent to the total UV light of their galaxies and
even less to the M* of the galaxies, the global color gradient of
galaxies is actually dominated by the diffuse component,
which is supported by the broad consistency between our
measurement of the color gradient of the diffuse component
and other measurements of the global color gradient in the
literature.

The color gradient in Figure 8 is measured when the
(projected) galactocentric distance is normalized by the SMA
of the galaxies. We also use the physical projected galacto-
centric distance (in units of kpc) to measure the color gradient.
Qualitatively, all of the above results are not changed. The
slopes of the clump color gradient using the physical distance
are actually steeper than those using the normalized distance,
except in the lowest-mass bin at the highest redshift. We keep

Figure 8. Variation of the rest-frame U−V color of clumps as a function of their galactocentric distance normalized by SMA from host galaxy centers. Blue, cyan,
and red points and black circles with error bars are the same as in Figures 4, 5, and 7. The galactocentric distance of clumps (dclump) is scaled by the SMA of their
galaxies. In each panel, the black solid line and dotted curves show the best linear fit ( U V dlog SMAclumpa b- = +( ) ( )) and its confidence level to the color
points. The intersection (α) and slope (β) of each linear fit are shown in the lower left corner of each panel. The values within the parentheses are errors. Solid and
dashed light brown curves in each panel show the median and deviation of the radial gradient of the U−V color of intra-clump regions. The intersection (αd) and
slope (βd) of the best linear fit to the diffuse component gradient are shown in the lower right corner.
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using the normalized galactocentric distance for other gradients
below.

Figure 8 also provides tests of the two selection effects
discussed in Section 2.3: redshift-dependent and galaxy
M*-dependent biases, both introduced by our relative definition
of clumps with a fixed fLUV (i.e., at higher redshifts or higher
galaxy M*, only high fLUV clumps are detected). For clumps in
galaxies with M 10.8* < at z 2.0< (where we have enough
clumps), we recalculate the clump U−V color gradient by
dividing clumps into three subsamples: 0.03�fLUV<0.05,
0.05�fLUV<0.08, and fLUV�0.08. The three subsamples
in each (z, M*) bin show almost the same gradient, indicating
that our results have almost no dependence on the adopted fLUV
thresholds. The comparison between different galaxy M* bins
at a given redshift is also robust with respect to the fLUV
threshold. For example, the result of the clump color gradient
slopes increasing with galaxy M* is still true even when we
match the intrinsic luminosity of clumps in different galaxy M*
bins (e.g., by comparing low-fLUV clumps from galaxies with
M 9.8* > with high-fLUV clumps from galaxies with M 9.8*  ).
Overall, we conclude that our results of clump color gradient are
not significantly affected by the selection effects.

5.3. Age Gradient

An important test of different clump evolution models is the
age gradient. The inward migration scenario (e.g., Bournaud
et al. 2007; Elmegreen et al. 2008; Ceverino et al. 2010;
Bournaud et al. 2014; Mandelker et al. 2014) predicts a
negative age gradient: inner (small galactocentric distance)
clumps are older, while outer (large galactocentric distance)
clumps are younger. In these models, clumps spend a few
hundred Myr migrating from galaxy outskirts to galactic
centers. Therefore, the age difference between inner and outer
clumps should also be on the order of a few hundred Myr. Such
a negative age gradient is found by some observations (e.g.,
Förster Schreiber et al. 2011; Guo et al. 2012b; Soto
et al. 2017), consistent with the inward migration scenario. A
few simulations, e.g., FIRE (Oklopčić et al. 2017) and NIHAO
(Buck et al. 2017), however, argue that the age gradient may be
a result of clumps being contaminated by old disk stars that
happen to be in clump locations. Although these simulations
are able to reproduce the trend of the observed clump age
gradient, clump migration is not found in them. The clump ages
in FIRE are significantly shorter—less than 50Myr. In this
paper, as discussed in Section 3, we try different diffuse
background-subtraction configurations to statistically minimize
the contamination of “disk” stars.

Figure 9 shows clump age as a function of clump
galactocentric distance scaled by SMA. In our SED fitting,
age is defined as the period from the onset of star formation
(i.e., the beginning of the exponentially declining τ-model or
constant SFH model) to the time the object is observed. The
existence of a clump age gradient depends on the redshift and
M* of their host galaxies. We fit the relation log age a= +( )

dlog SMAclumpb ´ ( ) to our clump data and use β and its
uncertainty (values are shown in the figure) to determine if an
age gradient is significant. For galaxies with M M1010.6

* < 
and z 2.0< , β is smaller than zero by more than 3σ. We
therefore conclude an existence of clump age gradients for
these galaxies. For galaxies at z 2.0 , β is consistent with
zero within ∼1σ, indicating a flat age distribution with
galactocentric distance, namely, no gradient. For very massive

(M M1010.6
*  ) galaxies at z 2.0< , β deviates from zero by

about 2σ, showing a marginal age gradient. Given the small-
number statistics of very massive galaxies, no firm conclusion
can be drawn from our data set for them. Future studies of
larger samples are needed.
Using the best-fit relation, we can calculate the age

difference between inner and outer clumps. We use
d SMA 0.5clump = as the typical location of inner clumps. At
a distance smaller than this, we cannot separate clumps from
galactic bulges due to the resolution of HST images (see Paper I
for related discussions). For outskirts, we use d SMAclump =
2.0 as the typical location of the outer clumps. This choice is
motivated by the fact that, for star-forming galaxies with Sérsic
index n=1, the disk size is about 2×SMA. For galaxies with
M M1010.6
* <  and z 1.0< , the age difference between

d SMA 0.5clump = and 2.0 is about 700Myr, while for
galaxies with M M1010.6

* <  and z1.0 2.0 < , the age
difference is about 250–300Myr.
We also compare clump age gradients with the age gradients

of the diffuse background (brown lines and values in the figure).
The diffuse background properties are measured from the
annulus photometry as described in Section 5.2. We use the
same SED-fitting procedure to derive the properties, e.g., age,
M*, SFR, E(B−V ), etc. Here we compare the slopes of the
best-fit gradients (β for clumps and db for diffuse background in
the figure). At M M1010.6

* <  and z 2.0< , where we
find obvious (>3σ) clump age gradients, the clump age gradient
is significantly steeper than the diffuse background’s age
gradient. In fact, the diffuse background only shows an obvious
(>3σ) age gradient for low-mass galaxies with M M109.8

* < .
Moreover, at z 2.0< , the age of inner clumps (d SMAclump <
0.5) is older than that of the inner part of the diffuse background.

In our SED fitting, the lower limit of the age of the stellar
population models is 10 Myr (see Table 3). Using younger
models in our SED-fitting procedure would result in an
unphysically high SFR for some clumps. As a result of the age
limit, a small fraction of clumps are stalled at log age Gyr ~( )

2- (more obviously seen in the two panels of z0.5 1.0 <
and M M1010.6

* < ). For these clumps, we likely over-
estimate their ages. This caveat, however, does not signifi-
cantly bias our age-gradient measurement, because the
number of these possibly very young clumps is small. In
observation, so far only one clump (Zanella et al. 2015) was
measured to be younger than 10 Myr. Although some
simulations, e.g., FIRE, predict very short-lived clumps,
our lower age limit is still younger than the mean lifetime
of their massive clumps (∼20 Myr; Oklopčić et al. 2017),
giving our measurements enough diagnostic power to test
their models.

5.4. Dust Extinction Gradient

Figure 10 shows the radial variation of clump dust
extinction, E(B−V ), as a function of galactocentric distance.
Overall, clumps show a negative E(B−V ) gradient: inner
clumps are more dust-extincted, while outer clumps have little
extinction. The slopes of the clump E(B−V ) gradients depend
on galaxy M*: at a given redshift, the gradient becomes steeper
as galaxy M* increases. For a given galaxy M*, however, the
gradient shows no obvious dependence on redshift.
Because of the age–dust degeneracy, the observed clump

U−V color gradient (Figure 8) can be explained by an age
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gradient, an extinction gradient, or a combination of both. Our
SED fitting measures age and E(B−V ) simultaneously and
attributes the observed U−V gradient to both age (Figure 9)
and E(B−V ) (Figure 10). If there was no age gradient as
shown in Figure 9, the E(B−V ) gradient would be much
stronger, and vice versa.

One way to test our SED-fitting procedure is to study the
E(B−V ) gradient of the diffuse component and compare it
with the literature. Diffuse background and clumps have similar
slopes for the E(B−V ) gradients, but clumps are system-
atically less dust-extincted. This result is not surprising,

because clumps are selected as UV-bright regions and hence
are likely to have less dust extinction.
We compare our measurements (brown lines in Figure 10)

with those of Wang et al. (2017; green dashed lines) and
Tacchella et al. (2017; purple dashed line). The methods used
by Wang et al. and Tacchella et al. are different from ours.
Wang et al. calibrated the relation between E(B−V ) (and
sSFR) and colors in the rest-frame UVI diagram (a substitute of
the UVJ diagram) of integrated galaxies and applied the
calibrations to multiwavelength multi-aperture photometry.
Tacchella et al. used the rest-frame UV continuum to measure

Figure 9. Similar to Figure 8, but for the radial gradient of the age of clumps.
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E(B−V ) and sSFR for massive galaxies at z 2.2~ . Both
Wang et al. and Tacchella et al. used all pixels to measure the
profiles, while we only use intra-clump pixels (i.e., those not
masked as clump locations; see the white pixels in the bottom
right panel of Figure 2). This difference may result in different
slopes of the E(B−V ) profiles in our and their studies. In this
test, however, we only focus on the absolute values within the
galactocentric ranges covered by both our and other studies
(i.e., betwen 0.5 and 2 SMA).

The measurements of the two groups, although derived by
different methods, show good agreement with our results. The

difference between their and our E(B−V ) profiles is within
the scatter of our measurements, except for the most massive
bin at z 1.0< , where both our and Wang et al.’s samples suffer
from small-number statistics.
Overall, this result demonstrates that our SED-fitting

procedure induces no significant systematics compared with
other studies. When breaking the age–dust degeneracy, our
method yields consistent results with similar studies in the
literature. Based on our results, we argue that to explain the
observed clump U−V gradient requires both an age gradient
and an E(B−V ) gradient simultaneously. Liu et al. (2016) also

Figure 10. Similar to Figure 9, but for the radial gradient of dust extinction, E(B−V ), of clumps. Green and purple dashed lines show the E(B−V ) profiles
measured by Wang et al. (2017) and Tacchella et al. (2017).
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showed that the observed color gradient of galaxies is composite
with both stellar population and E(B−V ) gradients.

An additional method to assess the simultaneous need of
both age and dust extinction gradient is to “marginalize” over
either age or E(B−V ). In this method, we assume no radial
gradient for one quantity and use the other one to explain the
observed UV color gradients of clumps. This method requires
clumps near galactic centers to be unrealistically old/dusty.

We use clumps in galaxies with M M9.8 log 10.6* <( )
at z1.0 2.0 < as an example. The UV colors of these
clumps drop from U−V∼0.8 at near galactic centers to ∼0

at ∼3×SMA. If we fix E(B−V )=0.0 for all radii and
assume a constant SFH, the inner clumps need to be as old as
∼5 Gyr to reach U−V∼0.8, which is older than the age of
the universe at z 1.5~ . If we choose a τ-model with
τ=0.5 Gyr for the SFH, the inner clumps would have an
age of 1 Gyr. This age is younger than the age of the universe
but still two times older than the characteristic timescale of SF,
suggesting the clump SF is being quenched, which is
inconsistent with the prominent UV luminosity of the clumps.
On the other hand, if we fix the clump age as 30Myr across

all radii, the inner clumps need to have E(B−V )∼0.5 to

Figure 11. Similar to Figure 10, but for the radial gradient of the sSFR of clumps and diffuse background.
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reach U−V∼0.8. According to the Calzetti extinction law
adopted in our paper, ANUV 2800A( ) of the inner clumps would
therefore be 3.6 mag, resulting in the dust-corrected NUV
luminosity of inner clumps being ∼30 times brighter than what
we observed. With such high attenuation, even a single clump
(considering each contributing 5% of the “observed” UV
luminosity of the galaxy) would easily have an SFR larger than
the global SFR of the total galaxy. Therefore, we believe that
dust extinction alone cannot fully explain the observed clump
U−V gradient. This test of E(B−V ) has little dependence on
the choice of clump age and SFH.

5.5. sSFR Gradient

Figure 11 shows the sSFR gradient of clumps. At z 2.0<
(except for the most massive galaxies, M M1010.6

*< <
M1011.4
, at z0.5 1.0 < , where the sample size is tiny),

clumps exhibit strong radial variation: the sSFR of inner
clumps (at d SMA 0.5clump = ) is about 1 dex lower than that
of outer clumps (at d SMA 0.5clump  ).
Similar to the test of the dust extinction gradient, we also

measure the sSFR gradients of the diffuse background (brown
lines) and compare our results with those of Wang et al. (2017;

Figure 12. Similar to Figure 9, but for the radial gradient of M* of clumps.
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green dashed lines) and Tacchella et al. (2017; purple dashed
line). Our results show excellent agreement with these studies
at z 1.0< and z 2.0 . At z1.0 2.0 < , however, our
measurements are higher, although still within the uncertain-
ties, than those of Wang et al. A possible reason is the redshift
distributions: the sample of Wang et al. is in fact at z 1.4< ,
while our sample covers the whole redshift range of

z1.0 2.0 < . The lack of z 1.4> (and more actively star-
forming) galaxies in Wang et al. therefore biases their
measurement to lower values compared to our sample. Overall,

good agreement between our and other studies ensures the
accuracy of our sSFR gradient measurement.
Our results, together with those of Wang et al. and Tacchella

et al., show that the diffuse background (or integrated) sSFR
gradient (or sSFR profile) is almost flat from the galactic center
to 2×SMA. Beyond 2×SMA, our results show marginal
evidence of an increasing sSFR toward large galactocentric
distance. At z 2.0< , the clump sSFR gradient is steeper than
that of the diffuse component: inner clumps have similar or
even lower sSFR than the diffuse background, while outer

Figure 13. Similar to Figure 9, but for the radial gradient of M* surface density of clumps. Magenta dashed lines and pink dotted lines show the profiles measured by
Nelson et al. (2016a) and Mosleh et al. (2017), respectively.
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clumps’ sSFR is about ∼0.5 dex higher than that of the
background.

5.6. Stellar Mass and Stellar Mass Density Gradients

Figure 12 shows the radial variation of M* of clumps. In all
redshift and galaxy M* bins where the sample size is large
enough, clumps show a significant M* gradient: inner clumps
are on average more massive than outer clumps by a factor of a
few tens to hundred.

Figure 13 shows the radial variation of the stellar mass
density ( *S ) of clumps. Here *S is calculated within a circle
with a radius of 0 18 (3 pixels), namely, the aperture size that
is used to measure the clump photometry. Clumps show a
significant *S gradient in almost all redshift and galaxy M*
bins (except for the two most massive bins with small sample
statistics): inner clumps are on average denser than outer
clumps by a factor of ∼10–30.

In fact, the *S measured above should be treated as the lower
limit of the true clump *S . In this paper, we assume clumps are
unresolved sources and use 0 18 as their radius. This choice is
comparable to the FWHM of HST F160W, below which
sources are unresolved. The actual size of clumps is uncertain,
ranging from ∼100 pc to ∼1 kpc. Our aperture of 0 18 is equal
to ∼1.5 kpc at z 1~ , which is much larger than most clump
size measurements in the literature. Our clump size is therefore
an upper limit of the size of an unresolved source. Accordingly,
the measured *S is a lower limit. Moreover, the *S gradient
will only be true if clump size has no dependence on
galactocentric distance.

We also show *S profiles of diffuse components from our
sample (brown lines in the figure) and from Nelson et al.
(2016a; magenta dashed lines) and Mosleh et al. (2017; pink

dotted lines). Nelson et al. (2016a) converted the observed
F140W light profile into a mass surface density profile by
applying the integrated M*-to-F140W ratio as a constant scale
factor at all radii. Mosleh et al. (2017) used FAST (Kriek
et al. 2009) to measure M* at each radius. Both Nelson et al.
(2016a) and Mosleh et al. (2017) provided *S profiles in units
of kpc. We scaled their galactocentric distance by the average
size of galaxies in their samples in each redshift and M* bin.
Overall, the agreement is good: the difference between our and
their studies is within the confidence level of our measure-
ments. The slopes of the profiles differ from one study to
another. As we discuss in the comparison of E(B−V ) profiles,
we only focus on the absolute values rather than the slopes to
test any significant systematics. Given this purpose, the
encouraging comparison results support the accuracy of our
measurement.
On average, clump *S is a few times lower than that of the

diffuse background at the same galactocentric distance. Wuyts
et al. (2012) studied the *S of clump pixels in massive galaxies
at z0.5 2.5 < and found that when clumps are detected
from the rest-frame U band, the *S of clump pixels is about
10 times smaller than the *S of diffuse background at the half-
light radius determined in the U band. Our results are broadly
consistent with those of Wuyts et al. (2012).
The above result is apparently surprising, as one may

expect that clumps are on average denser than the diffuse
component, because clumps represent star-forming regions
and, given their estimated ages (tens to hundreds of Myr), are
expected to be dominated by stars. A few factors are
contributing to this result. First and most importantly, as
discussed above, the clump *S measurement should be treated
as a lower limit. Our aperture of 0 18 is actually an upper
limit of clump size. This value corresponds to about 1.5 kpc at
z 1~ . If the intrinsic clump size is 500 pc (some authors even
argue for smaller ones), the clump mass surface density is
underestimated by a factor of nine with our aperture size.
Second, our fiducial background subtraction reduces the
clump mass by a factor of two compared to the case of no
subtraction.

5.7. Effects of Diffuse Background Subtraction

All gradients present in this section are based on our fiducial
diffuse background subtraction (bgsub_v4 in Table 2 and
Section 3). Different subtractions would result in different
gradients. It is important to test if the gradients observed in this
section are robust to different subtraction methods. Particularly,
it is interesting to test if changing the background subtraction
would make the age gradient flat. As argued by Buck et al.
(2017) and Oklopčić et al. (2017), the negative clump age
gradient (inner old, outer young) may be a result of clumps
being contaminated by disk stars. To test the robustness, we
repeat all previous measurements with different background-
subtraction methods in Table 2. Here we only use one redshift
and galaxy M* bin ( z1.0 2.0< < and M M109.8

*< <
M1010.6
) to illustrate the effects. This bin is representative

and may be of interest to many readers.
The test results are shown in Figure 14. For the U−V color,

the overall trend of color gradient is preserved from very
aggressive subtraction (bgsub_v6; blue) to no subtraction
(bgsub_v0; red), although the clump colors become redder
gradually from bgsub_v6 to bgsub_v0. This is expected
because background stars are older than clump stars

Figure 14. Effects of different diffuse background subtractions. As an example,
we show the gradients of rest-frame U−V color, age, sSFR, and M* surface
density of clumps in galaxies with z1.0 2.0< < and M M109.8

*< <
M1010.6
. Different colored lines show the median relations with different

diffuse background-subtraction methods as indicated by the labels (see Table 2
for details). Our fiducial subtraction method (bgsub_v4) is shown by the black
lines.
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(Figure 8), and adding diffuse background light to clumps
makes the latter redder. Moreover, the panel shows that outer
clumps are affected by background subtraction more than inner
clumps are.

Age and sSFR gradients are significantly affected by
background subtraction. From very aggressive subtraction
(bgsub_v6; blue) to very conservative subtraction (bgsub_v1;
purple), both gradients become flatter. Eventually, when no
background subtraction is applied (bgsub_v0; red), both
gradients become flat. This change is again mostly driven by
the effects of outer clumps. From bgsub_v6 to bgsub_v1, the

age (sSFR) of clumps at d4 SMAclump´ becomes older
(smaller) by a factor of three (six). Inner clumps, however, are
hardly changed in various subtractions. For example, in most of
the subtraction methods, the sSFR and age of the clumps with a
galactocentric distance smaller than SMA are little changed.
The M* surface density is similar to the U−V color: the

overall trend is preserved, but the amplitude changes. From
bgsub_v1 (purple) to bgsub_v6 (blue), *S decreases by a factor
of three, because more and more light is subtracted from
clumps. No subtraction (bgsub_v0; red) is even denser than
aggressive subtraction (bgsub_v6; blue) by another factor of

Table 4
Clump Catalog Columns

Column Name Note Reference

Part I: Galaxy Properties

1 Galaxy ID CANDELS ID Guo et al. (2013)
2 R.A. J2000 L
3 Decl. J2000 L
4 Redshift Dahlen et al. (2013)
5 M* Mlog  Mobasher et al. (2015); Santini et al. (2015)
6 M* error dex L
7 SFR Mlog yr 1-

( ) L
8 SFR error dex L
9 Rest-frame U mag Kocevski et al. (2017)
10 Rest-frame V mag L
11 Rest-frame J mag L
12 SMA arcsec van der Wel et al. (2014)
13 SMA error arcsec L

Part II: Observed Clump Properties

14 Clump ID Guo et al. (2015)
15 Clump R.A. J2000 L
16 Clump decl. J2000 L
17 Clump detection band Guo et al. (2015) or Section 2.2
18 Clump fLUV Guo et al. (2015)
19 Background-subtraction configuration Section 3.1; Table 2
20, 21 F435W flux and error μJy Section 3
22, 23 F606W flux and error μJy L
24, 25 F775W flux and error μJy L
26, 27 F814W flux and error μJy L
28, 29 F850LP flux and error μJy L
30, 31 F105W flux and error μJy L
32, 33 F125W flux and error μJy L
34, 35 F140W flux and error μJy L
36, 37 F160W flux and error μJy L
38 Galactocentric distance normalized by galaxy SMA Guo et al. (2015)

Part III: Derived Clump Properties

39 Clump photo-z Section 3.2
40 badczflag Section 3.2
41, 42, 43 M* and its lower and upper 1σ Mlog  Section 4.1
44, 45, 46 SFR and its lower and upper 1σ log(M yr–1) L
47, 48, 49 E(B−V ) and its lower and upper 1σ L
50, 51, 52 Age and its lower and upper 1σ log(Gyr) L
53, 54, 55 τ and its lower and upper 1σ log(Gyr) L
56, 57 Rest-frame U and error mag L
58, 59 Rest-frame B and error mag L
60, 61 Rest-frame V and error mag L
62, 63 UV SFR and error log(M yr–1), dex Section 4.4
64, 65 UV E(B−V ) and error L
66 veryredflag Section 4.3
67 badmassflag Section 6
68 extremesfrflag L
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three, approaching the *S profile of the diffuse background
(brown, magenta, and pink lines in the middle panel of
Figure 13).

Overall, we conclude that background-subtraction methods
(except for the no-subtraction one) would not change our
conclusions on the existence of the U−V, age, sSFR, and *S
gradients of clumps, although they may alter the amplitude and
slope of each gradient. Also, outer clumps are more vulnerable
to background subtraction than inner clumps are.

6. Catalog Release and Use

We release the clump catalogs with the electronic version of
this paper. The columns of the catalog are described in Table 4.
We release the clump parameters measured with all back-
ground-subtraction methods in Table 2. In the released catalog,
Columns 19–68 are repeated for each background-subtraction
method (the method is given by Column 18).

We also suggest that readers apply the following criteria to
exclude clumps with problematic photometry or derived
properties.

1. badczflag=1. These clumps have catastrophic photo-zs
compared with the redshifts of their galaxies, which
implies photometric errors (see Section 3.2).

2. veryredflag=1. These clumps have rest-frame U−V
colors redder than the separation of the blue cloud and red
sequence of integrated galaxies, which also indicates a
photometry problem (see Section 4.3).

3. badmassflag=1. These clumps’ M* is larger than that of
their host galaxies, indicating an error in either photo-
metry or SED fitting (see Section 4.5).

4. extremesfrflag=1. These clumps’ log(SFR/( M yr−1))
is larger than 3 or smaller than −2, indicating that the
SED fitting chooses an extreme solution, possibly due to
an error in either photometry or SED fitting.

7. Summary

As a step to establish a benchmark of direct comparisons of
clumps between observations and theoretical models, we
present a sample of clumps that, to the best of our knowledge,
represents the commonly observed non-lensed “clumps”
discussed in the literature. This sample contains 3193 clumps
detected from 1270 galaxies at z0.5 3.0 < . The clumps are
detected from rest-frame UV images as described in Paper I.
The physical properties of the clumps (e.g., rest-frame color,
M*, SFR, age, and dust extinction) are measured through fitting
clump SEDs to synthetic stellar population models.

We carefully test the procedures of measuring clump
properties in a few ways: (1) clump M/L, (2) clump color–M*
diagram, (3) SFRs and E(B−V )s measured by both SED
fitting and UV continuum, and (4) as an indirect test,
comparisons between our and others’ measurements of the
radial profiles of physical properties. We also test the effects of
subtracting background fluxes from the diffuse component (or
intra-clump regions) of galaxies on the observed clump
gradients.

We show some examples of the measured physical proper-
ties. We find that clumps show radial U−V color variation:
clumps close to galactic centers are redder than those in
outskirts. The slope of the color gradient (clump color as a
function of the galactocentric distance scaled by the SMA of

galaxies) changes with redshift and stellar mass of the host
galaxies: at a fixed stellar mass, it becomes steeper toward low
redshift; and at a fixed redshift, it becomes steeper toward
massive galaxies. Based on our SED fitting, this observed color
gradient can be explained by a combination of a negative
age gradient, a negative E(B−V ) gradient, and a positive
sSFR gradient of clumps. The color gradients of clumps
are steeper than those of intra-clump regions (“disks”).
Correspondingly, the radial gradients of the derived physical
properties of clumps are different from those of the diffuse
component (intra-clump regions or “disks”).
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