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Abstract
Neurons are equipped with homeostatic mechanisms that counteract long-term perturba-

tions of their average activity and thereby keep neurons in a healthy and information-rich

operating regime. While homeostasis is believed to be crucial for neural function, a system-

atic analysis of homeostatic control has largely been lacking. The analysis presented here

analyses the necessary conditions for stable homeostatic control. We consider networks of

neurons with homeostasis and show that homeostatic control that is stable for single neu-

rons, can destabilize activity in otherwise stable recurrent networks leading to strong non-

abating oscillations in the activity. This instability can be prevented by slowing down the

homeostatic control. The stronger the network recurrence, the slower the homeostasis has

to be. Next, we consider how non-linearities in the neural activation function affect these

constraints. Finally, we consider the case that homeostatic feedback is mediated via a cas-

cade of multiple intermediate stages. Counter-intuitively, the addition of extra stages in the

homeostatic control loop further destabilizes activity in single neurons and networks. Our

theoretical framework for homeostasis thus reveals previously unconsidered constraints on

homeostasis in biological networks, and identifies conditions that require the slow time-con-

stants of homeostatic regulation observed experimentally.

Author Summary

Despite their apparent robustness many biological system work best in controlled environ-
ments, the tightly regulated mammalian body temperature being a good example. Biologi-
cal homeostatic control systems, not unlike those used in engineering, ensure that the
right operating conditions are met. Similarly, neurons appear to adjust the amount of
activity they produce to be neither too high nor too low by, among other ways, regulating
their excitability. However, for no apparent reason the neural homeostatic processes are
very slow, taking hours or even days to regulate the neuron. Here we use results from
mathematical control theory to examine under which conditions such slow control is nec-
essary to prevent instabilities that lead to strong, sustained oscillations in the activity. Our
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results lead to a deeper understanding of neural homeostasis and can help the design of
artificial neural systems.

Introduction
Neurons in the brain are subject to varying conditions. Developmental processes, synaptic plas-
ticity, changes in the sensory signals, and tissue damage can lead to under- or overstimulation
of neurons. Both under- and overstimulation are undesirable: prolonged periods of excessive
activity are potentially damaging and energy inefficient, while prolonged low activity is infor-
mation poor. Neural homeostasis is believed to prevent these situations by adjusting the neural
parameters and keeping neurons in an optimal operating regime. Such a regime can be defined
from information processing requirements [1, 2], possibly supplemented with constraints on
energy consumption [3]. As homeostasis can greatly enhance computational power [4–6], and
a number of diseases have been linked to deficits in homeostasis [7–10], it is important to
know the fundamental properties of homeostatic regulation, its failure modes, and its
constraints.

One distinguishes two homeostatic mechanisms: synaptic and intrinsic excitability homeo-
stasis [11, 12]. In case of over-excitement, synaptic homeostasis scales excitatory synapses
down and inhibitory synapses up, while intrinsic homeostasis increases the firing threshold of
neurons. Intrinsic homeostasis is the subject of this study. Intrinsic homeostasis correlates bio-
physically to changes in the density of voltage gated ion channels, [13–16], as well as the ion
channel location in the axon hillock [17, 18].

All homeostatic mechanisms include an activity sensor and a negative feedback that coun-
ters deviations of the activity from a desired value. Control theory describes the properties of
feedback controllers and the role of its parameters [19]. In engineering one typically strives to
bring a system rapidly to its desired state with minimal residual error. It is reasonable to
assume that neural homeostasis has to be fairly rapid too in order to be effective, although it
should not interfere with the typical timescales of perceptual input or of neural processing
(millisecond to seconds). However, intrinsic excitability homeostasis is typically much slower,
on the order of many hours to days ([13, 15, 20, 21], but see [14]). One hypothesis is that this is
sufficiently fast to keep up with typical natural perturbations, but an alternative hypothesis,
explored here, is that stable control necessitates such slow homeostasis. Note that the speed of
homeostasis is the time it takes to reach a new equilibrium after a perturbation and does not
rule out that homeostatic compensation can start immediately after the perturbation; it just
takes a long time to reach its final value.

In computational studies homeostatic parameters are usually adjusted by hand to prevent
instability, but a systematic treatment, in particular in networks, is lacking. In a recent study a
network with excitatory and inhibitory populations with distinct homeostatic control was stud-
ied and with linear stability analysis it was found that instabilities can occur when the inhibi-
tory homeostasis is faster than the excitatory one [22]. However, numerous questions remain:
Is homeostatic control consisting of multiple stages equally stable? How do non-linearities in
the input-output relation of the neurons affect results? Finally, because in that study a separa-
tion of time-scales between the neural activity and homeostasis was assumed, only a constraint
on the ratio of homeostatic speeds of the two populations was found, but not on their absolute
speeds. It raises the question how the homeostatic speed relates to the neural time-constants.

In this study we analyze three aspects of the stability conditions for networks of neurons
equipped with homeostasis. 1) We show that homeostasis can destabilize otherwise stable
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networks and that, depending on the amount of recurrence, stable homeostatic feedback needs
to be slower for networks than for single neurons. 2) We analyze how homeostatic stability is
affected by non-linearities in the neuron’s input-output relation. In general systems with non-
linearities require slower homeostasis than linear analysis predicts. 3) We show that having
multiple intermediate stages in the feedback loop, common in biological signaling cascades,
tends to destabilize control, despite the overall feedback being slower. The results put con-
straints on the design and interpretation of homeostatic control and help to understand biolog-
ical homeostasis.

Results

Homeostatic framework
To examine the stability of homeostatic control we first analyze a single neuron with homeosta-
sis, a schematic is shown in Fig 1A. We describe the activity of the neuron as a function of time
with a firing rate r1(t). A common approximation for the firing rate dynamics is

t1
dr1ðtÞ
dt

¼ �r1ðtÞ þ gðuðtÞ � yðtÞÞ ð1Þ

Fig 1. Single neuron homeostasis. A) Schematic illustration of the homeostatic model. The input current is transformed through an input-output relation
and a filter. The input-output curve is shifted by a filtered and integrated copy of the output firing rate, so that the average activity matches a preset goal value.
F1 (time-constant τ1) denotes a filter describing the filtering between input and output of the neuron; F2 (time-constant τ2) is a filter between the output and
the homeostatic controller. B) The response of the model for various settings of the homeostatic time-constants. The value of τ1 was fixed to 10ms (thin lines),
while τ2 and τ3 were varied. Center plot: the response of the neuron can either be stable (top left plot; white region), a damped oscillation (top right plot, gray
region), or unstable (bottom right plot, striped region). The surrounding plots show the firing rate of the neuron and the threshold setting in response to a step
stimulus.

doi:10.1371/journal.pcbi.1004357.g001
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which can be understood as follows: The time-constant τ1 determines how rapidly the firing
rate changes in response to changes in the input and how rapidly it decays in the absence of
input. We use τ1 = 10 ms. The value of τ1 serves as the time-constant with respect to which all
the other time-constants in the system will be defined. As only the ratios between time-con-
stants will matter, the results are straightforwardly adapted to other values of τ1.

The f-I curve g() describes the relation between net input to the neuron and its firing rate.
We assume that homeostasis acts effectively as a bias current which shifts the f-I curve, consis-
tent with experimental data [15]. The total input is u(t) − θ(t), where u(t) is proportional to
external input current to the neuron, typically from synaptic input. Crucially, θ(t) is the home-
ostatically controlled firing threshold of the neuron. While physiologically both the threshold
current and threshold voltage of neurons are affected by homeostasis [13], our model com-
prises both indistinguishably.

The homeostatic controller takes its input from averaged activity, rather than reading out
activity directly (see also section Cascaded Homeostatic Control below). To obtain the aver-
aged activity r2(t) of the neuron, the firing rate r1(t) is filtered with a linear first order filter with
a time-constant τ2

t2
dr2ðtÞ
dt

¼ �r2ðtÞ þ r1ðtÞ ð2Þ

Biophysically, the intra-cellular calcium concentration is a very likely candidate for this sensor
[11] in which case τ2 is around 50ms.

The last step in the model is to integrate the difference between the average activity and the
pre-defined desired activity level rgoal

t3
dr3ðtÞ
dt

¼ r2ðtÞ � rgoal ð3Þ

rgoal was typically set to 1Hz, but its value is inconsequential. The feedback loop is closed by set-
ting the threshold in Eq (1) equal to this signal, that is θ(t) = r3(t). Thus, if the activity remains
high for too long, r2 and r3 increase, increasing the threshold and lowering the firing rate, and
vice versa if the activity is below the set-point rgoal for too long.

An attentive reader might have noticed that θ is a current, while r3 is a rate. Formally this
inconsistency can be resolved by defining θ(t) = γr3(t) where γ has dimensions A/Hz, and by
giving α (defined below) dimensions Hz/A. However, for simplicity we use dimensionless
units; this does in no way affect our results. Also note, that while r1 is assumed positive, r3 and
θ are not as they are the difference between actual and goal rate and thus can take negative
values.

Note that in contrast to the earlier equations, Eq (3) does not have a decay term on the right
hand side, i.e. a term of the form −r3(t). This means that instead of a leaky integrator, it is a per-
fect integrator which keeps accumulating the error in the rate (r2(t) − rgoal) without any decay.

Mathematically, this can be seen by re-writing Eq (3) as r3ðtÞ ¼ 1
t3

R t

�1½r2ðt0Þ � rgoal� dt0. Perfect
integrators are commonly used in engineering solutions such as PID controllers and are very
robust. A perfect integrator ensures that, provided the system is stable, the goal value rgoal is
eventually always reached, as otherwise r3(t) keeps accumulating. The time-constant τ3 is
therefore not strictly a filter time-constant, but it determines how rapidly errors are integrated
and thus how quickly homeostasis acts. Although it might appear challenging to build perfect
integrators in biology, evidence for them has been found in bacterial chemotaxis [23, 24]. It is
straightforward to extend our theory to a leaky integrator; for small leaks, this does not affect
our results.
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Local stability of homeostatic control in the single neuron
In general the f-I curve is non-linear. To determine the stability to small perturbations around
the homeostatic set-point, a linear approximation of the f-I curve is made, g(x?) = α(x − x?),
where x? = g−1(rgoal) is the total input at the set-point, and α is the slope of the f/I curve at the
set-point. An extension to general non-linear f-I curves is presented below.

Using the linearization, we can borrow results from linear control theory to examine the sta-
bility of the set of differential equations that define the neural and homeostatic dynamics. One
needs to solve the differential equations at the equilibrium point and check whether the solu-
tions diverge. Various equivalent approaches have been developed to determine stability of
controllers [25]. Here we write the set of first order equations, Eqs (1)–(3) in matrix form

d
dt

r1ðtÞ

r2ðtÞ

r3ðtÞ

0
BBB@

1
CCCA ¼ M

r1ðtÞ

r2ðtÞ

r3ðtÞ

0
BBB@

1
CCCAþ bðtÞ

with matrix

M ¼

� 1
t1

0 � a
t1

1
t2

� 1
t2

0

0 1
t3

0

0
BBBB@

1
CCCCA

and vector

bðtÞ ¼

a
t1
uðtÞ

0

� 1
t3
rgoal

0
BBBB@

1
CCCCA

In this linearized case, the gain α can be absorbed in τ3. A shallower f-I curve (α< 1) implies a
weaker feedback, and is fully equivalent to a proportionally slower τ3; in both cases it takes lon-
ger for the system to attain the goal value. In the limit that τ3 � τ1, τ2 the firing rate settles
exponentially with a time-constant τ3/α in response to a perturbation, that is,
r1ðtÞ � rgoal / e�at=t3 .

The theory of differential equations states that the solution to the set of equations is the
sum of a particular solution (which is unimportant for our purposes) and solutions to the
homogeneous equation, which is the equation with b = 0. With the ‘ansatz’ ri(t) = ci e

λt, one
finds that in order to solve the homogeneous equation, the vector c = (c1, c2, c3) must be an
eigenvector ofM with eigenvalue λ. This means that λ has to solve the characteristic polyno-
mial, det(M − λI) = −(1 + τ1 λ)(1 + τ2 λ)τ3 λ − α = 0. The three eigenvalues ofM are in general
complex numbers and determine the stability of each mode as follows:

• If an eigenvalue is real and negative, the corresponding mode is stable as the exponential eλt

decays to zero over time.

• If an eigenvalue is complex and the real part is negative, the corresponding mode decays over
time as a damped oscillation. In the context of homeostasis such activity oscillations might
be biologically undesirable, in particular when they persist for many cycles.

Stability of Neuronal Networks with Homeostatic Regulation
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• Finally, the solution of the linearized system will diverge if any of the eigenvalues has a posi-
tive real part. In practice, some mechanism, such as a squashing or rectifying f-I curve, will
restrain the firing rate and strong sustained oscillations in the firing rate will occur. (For two
dimensional systems this can be proven using the Poincare-Bendixson theorem [26]). In this
case homeostatic control is unstable.

Which of these above scenarios occurs depends in our model solely on the ratio between the
three τi parameters. In most of what follows, we determine the required value of τ3 for given τ1
and τ2, i.e. we determine the required homeostatic timeconstant given the neural and calcium
timeconstants.

Fig 1B shows simulated responses of a single neuron’s firing rate r1(t), and the threshold
variable r3(t) to a step input for various settings of the time-constants. It can be observed that
only for extremely short values of τ3 the neuron is unstable (striped region). In this case the fir-
ing rate oscillates continuously. In the gray region the neuron is stable but displays damped
oscillations after changes in the activity. Stability without oscillation (white region) can always
be achieved by taking τ3 slow enough. The explicit stability condition follows from the Routh–
Hurwitz stability criterion (see Methods). It yields

t3 > t03

where

t03 � a
t1t2

t1 þ t2

The above stability criterion confirms the intuition that slower feedback is more stable than fast
feedback. When τ2 is 50ms, τ3 needs to be longer than 8ms to obtain stability (assuming α = 1).

Our main assumption is that the oscillation associated to the instability is to be avoided at
all cost. While oscillations by themselves occur in many circumstances in neuroscience and
have important functional roles, these particular oscillations here are uncontrollable and can
not be stopped. Furthermore, the external input to the neuron has virtually no control over the
oscillation’s phase, frequency or amplitude. Turning stimulation on or off hardly affects the
neuron’s oscillatory activity, Fig 1B, bottom right. The oscillating state is almost the opposite of
homeostasis, as it would be challenging for neurons to code information when oscillating like
this. Especially if excitability is regulated through the insertion and removal of ion-channels,
the oscillating state is also metabolically costly.

To warrant the absence of damped oscillations a similar criterion can be derived (Methods,
Eq (13)) and in this example case τ3 needs to be longer than 220ms to avoid damped oscilla-
tions. In summary, for single neurons simple homeostatic control is stable even when it is very
fast. Therefore, the stability of the homeostatic controller would not appear an issue for homeo-
stasis of intrinsic excitability. Such very fast homeostasis might not even be desirable, because it
will filter out components of the input slower than the homeostatic control. For instance in Fig
1B (top left), the neural response equals the stimulus with changes slower than* 100ms fil-
tered out.

Global stability in non-linear neurons
While the above linear treatment covers the stability to small perturbations, stability to arbi-
trary perturbations is what ultimately matters. To analyze this the non-linearity of the f/I curve
has to be taken into account. Unfortunately, non-linear stability analysis is generally much
harder. Furthermore, stability proofs are typically sufficiency proofs, necessity proofs are rare.

Stability of Neuronal Networks with Homeostatic Regulation
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For the particular system under study, Eqs 1–3, it can be shown that it is guaranteed to be stable
only when for all x (see Supplementary Information)

0 <
~g ðxÞ
x

<
t3
t03

ð4Þ

where ~g ðxÞ ¼ gðx þ x?Þ � gðx?Þ ¼ gðx þ x?Þ � rgoal is the f-I curve re-centered around the set-

point (~g ð0Þ ¼ 0). The criterion thus becomes

t3 > max
~g ðxÞ
x

� �
t1t2

t1 þ t2

It is known as the Aizerman conjecture [27], and although not generally true and counter-
examples do exist, it is known to hold for this particular 3 dimensional system [28]. The crite-
rion replaces the local slope α with the slope of the line that goes through (x?, rgoal) and enve-
lopes the f-I curve. Note that for a linear f-I curve this criterion equals the linear criterion,
otherwise it is always more stringent than the linear criterion. We will further explore this crite-
rion below.

Local stability in recurrent networks
Next, we analyze the stability of homeostatic control in a network of neurons. For networks the
conditions on homeostatic control are more stringent than for single neurons. In Fig 2A the
population firing rate of a simulated network is plotted as the strength of the recurrent connec-
tions is increased while all other network and homeostasis parameters are fixed (left to right
plot). Increasing the recurrent connections in the network leads to strong, persistent oscilla-
tions, while, importantly, without homeostasis the network is stable (top panels, dotted curves).
To prevent instability the feedback needs to be slower in networks than for single neurons.

To analyze this, again first in the limit of small perturbations, we consider a network of N
neurons connected with fast synapses via an N × N weight matrix V. In the absence of homeo-
stasis the firing rate dynamics obeys

t1
d
dt

r1ðtÞ ¼ �r1ðtÞ þ GðVr1ðtÞ þ uðtÞÞ ð5Þ

where r1(t) is a N-dimensional vector containing all firing rates in the network, and u(t) is a
vector of external input to the neurons in the network and G denotes the relation g() working
on each of its elements. The recurrent feedback is contained in the term V r1(t). Linearized this
becomes

t1
d
dt

r1ðtÞ ¼ ðW � IÞr1ðtÞ þ auðtÞ

where we define the gain-scaled weight matrixW = αV, where α is again the slope of the f/I curve
at the homeostatic set-point. After the linearization, the dynamics of these networks can be ana-
lyzed in terms of the eigen-modes. We denote the eigenvalues ofW withwn. There are no a priori
restrictions onW. The synapses can be excitatory or inhibitory, and one can impose Dale’s prin-
ciple (which will affect the eigenvalue spectrum of the weight matrix [29], but does not change
our results otherwise). For clarity we focus in the main text on cases where the eigenvalues are
real, in the Methods the generalization to complex eigenvalues is presented. A typical example of
a network where the eigenvalues are guaranteed to be real are symmetric networks that are used
in many applications, such as noise filtering and evidence accumulation [30].

Stability of Neuronal Networks with Homeostatic Regulation
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Fig 2. Homeostasis can destabilize activity in otherwise stable networks. A) Activity in a homeostatic network with varying levels of recurrence, but
identical homeostatic parameters (τ1 = 10ms, τ2 = 50ms, τ3 = 500ms). Without homeostasis even the strongly recurrent network is stable (top row). With
homeostasis, although the network in stable in the absence of synaptic coupling (left), with increasing recurrence the network shows increasing oscillatory
activity (middle,wm = 0.8), and becomes unstable for strong recurrence, leading to unabating oscillations (right,wm = 0.95). B) The requirements on the
homeostatic time-constant as a function of the recurrence of the network, expressed in terms of the network time-constant, which equals τ1/(1 −wm). Shown
are the minimal value of τ3 to ensure stability, potentially with damped oscillations (solid curve) and the minimal value of τ3 for a stable firing rate without
oscillation (dashed curve). C) The interference of homeostatic control with a neural integrator. The response of an ideal leaky-integrator with 1s time-constant
(gray curve) to a pulse at 2s, and a bi-phasic pulse at 10 s. The response of a stable, but oscillatory homeostatic network is very different from the non-
homeostatic case (black curve, τ3 = 7s). Only when the homeostasis is slow enough to be oscillation-free, the response approximates that of the ideal
integrator (dashed curve, τ3 = 420s).

doi:10.1371/journal.pcbi.1004357.g002
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For such networks we define the largest eigenvalue, wm = max(wn), as the recurrence of the
network. The recurrent excitatory connectivity slows down the effective time-constant of a
given mode [30, 31]. This can be seen by writing the equation for each mode as
t1

1�wn

drnðtÞ
dt

¼ �rnðtÞ þ a
1�wn

unðtÞ, from which the time-constant of a given mode is then identified

as τ1/(1 − wn). The network time-constant is defined as the time-constant of the slowest mode,
i.e. τ1/(1 − wm). Without homeostasis the network activity is stable as long as wm < 1.

In the presence of homeostatic regulation, the system becomes 3N-dimensional. It is
described by the rate of each neuron r1, its filtered version r2, and its threshold r3. The corre-
sponding linearized differential equation is

d
dt

r1

r2

r3

0
BBB@

1
CCCA ¼ M

r1

r2

r3

0
BBB@

1
CCCAþ

a
t1
uðtÞ

0

� 1
t3
rgoal

0
BBBB@

1
CCCCA

whereM is now a block-matrix, given by

M ¼

1
t1
ðW � IÞ 0 � a

t1
I

1
t2
I � 1

t2
I 0

0 1
t3
I 0

0
BBBB@

1
CCCCA ð6Þ

We proceed as above to determine the stability of this system. In analogy with the single neu-
ron case, there are three eigenvalues for the full system per eigenvector ofW, so that we obtain
3N eigenvalues. In principle, one should now research the stability of each eigenvector ofW.
Yet the analysis can be simplified for networks with strictly real eigenvalues. In a network with-
out homeostasis the most critical mode is the one with the largest eigenvalue. This also holds in
networks with homeostasis: the network is stable if and only if this mode is stable (see Methods
for proof). Thus, rather than analyzing the full network, we only need to analyze the stability of
this most critical mode, which is given by a three dimensional system similar to the single neu-
ron system studied above with the pre-factor of r1(t) on the right hand side as only modifica-
tion,

t1
dr1ðtÞ
dt

¼ �½1� wm�r1ðtÞ þ a½uðtÞ � yðtÞ� ð7Þ

The other equations for homeostatic control, Eqs 2 and 3, remain unchanged. The resulting
three dimensional system describes the dynamics of the critical eigenmode and its homeostatic
variables. The stability is now determined by the roots of the polynomial

ð1� wm þ t1lÞð1þ t2lÞt3lþ a ¼ 0 ð8Þ

The network is again stable if all roots of this polynomial have a negative real part. Application
of the Routh–Hurwitz criterion (Methods) yields the stability condition t3 > tcrit3 , where

tcrit3 ¼ a
1� wm

t1t2
t1 þ ð1� wmÞt2

� �
ð9Þ

In Fig 2B we vary the integration time of the network by changing wm and plot the values for
τ3 required for stability. The minimal, critical value of τ3 is shown with the solid black curve.
Eq (9) yields for (1 − wm)τ2 � τ1 that τ3 ≳ τ1/(1 − wm)

2, while for (1 − wm)τ2 � τ1 this can be
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approximated as τ3 ≳ τ2/(1 − wm). When, for example, the network has an integration time-
constant of 1s, τ3 needs to be at least 4.8s to prevent instability. If the network integration time-
constant is 10s, this increases to 50s.

The linear stability analysis of networks with complex eigenvalues of the weight matrix is
analogous, except that rather than only the largest, each eigenvalue needs to be checked (see
Methods).

The stability to arbitrary perturbations again requires taking the non-linearity of the f/I
curve into account. Nonlinear stability analysis of the network (Eq (5) supplemented with
homeostasis) is presented in the Supplementary Information based on Lyapunov theory. The
τ3, unfortunately a rather complicated expression, required for stability depends on the maxi-
mum slope of the f/I curve. The criterion value for τ3 is always slower than the value found
using the linear theory, Eq (9), because, first, global stability implies local stability, but not vice
versa, and secondly, the non-linear theory only provides a sufficiency condition for stability.
We apply the criterion below.

Oscillation-free homeostasis
The sustained oscillations associated to the instability are detrimental for neural information
processing as they are uncontrollable and hinder information coding, yet are energetically
expensive. Damped oscillations are less harmful. However, in particular for strongly recurrent
networks, damped oscillations can interfere with the desired network response. As an illustra-
tion of this we show the response of an ideal leaky integrator, such as might be used for evi-
dence integration in Fig 2C (gray curve). When rapid homeostasis is active, the response shows
strong oscillations that occludes the network’s integrative properties (black curve). Only when
homeostasis is made so slow that no damped oscillations occur (dashed curve), the response
approximates that of the ideal integrator.

In recurrent networks the value of τ3 required to ensure homeostasis without damped oscil-
lations is much larger than the value required to prevent persistent oscillation, compare dashed
curve to solid curve in Fig 2B. Interestingly, as is shown in the Methods, for long integration
times it increases as the square of the integration time (slope of 2 on the log-log plot). For
example if the network integration time-constant is 1s, the minimal homeostatic time-constant
is 420s to prevent transient oscillations. And if the network integration time-constant is 10s, a
realistic value in for instance working memory networks [32], this values increases to 11hrs. In
summary, in particular if an oscillation-free response is required, strongly recurrent networks
with long time-constants require homeostasis many orders of magnitudes slower than single
neurons and there is a strong dependence on the network time-constant.

Variability and heterogeneity
To examine the generality of the results we included variability and heterogeneity in the model.
First, we wondered whether heterogeneity in the time-constants, likely to occur in real neurons,
could prevent the synchronous oscillations associated to the instability. Hereto we drew for
each neuron the homeostatic time-constants from a gamma-distribution with an adjustable
coefficient of variation (CV) and a given mean. To quantify the destabilizing effect of homeo-
stasis, we defined the dimensionless critical recurrence strength wc. It is the maximal recurrence
for which the network is still stable, possibly with damped oscillations. That is, wc is the value
at which the real part of the largest eigenvalue crosses zero. For networks without homeostasis,
the critical recurrence is one, but homeostasis limits this to lower values.

Stability is again determined by the stability matrix of Eq (6), however, in the heterogeneous
case the dimension reduction is not possible and the spectrum of the full matrix was examined.
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When the CV is zero, all neurons have the same set of time-constants and the stability corre-
sponded to that of the homogeneous networks. As the heterogeneity increased, the average
maximal allowed recurrence first increased slightly after which it decreased, Fig 3A. Moreover,
as can be seen from the error bars, for a given realization of the time-constants, the stability
can either be higher or lower than that of the homogeneous network. Hence random heteroge-
neity of the time-constants does not robustly lead to increased stability. The effect of heteroge-
neity on the transition between the damped oscillatory and oscillation-free regime is similar.

Next, we added noise to the neurons and analyzed how this affected the transition to insta-
bility. The noise might potentially have a stabilizing effect by de-synchronizing the population.
Gaussian noise with a correlation time of 1ms and a standard deviation equivalent to 0.1Hz
was added to the input. We measured the fluctuations as the standard deviation of the popula-
tion firing rate once the system had reached steady state, Fig 3B. These fluctuations comprise
both the effect of noise and the periodic oscillations caused by the instability. Without noise,
fluctuations are absent when the recurrence is less than the critical amount (Fig 2A), and are
strong above this point, Fig 3B (dashed curve). With noise, fluctuations are always present
(solid curve) and increase close to the transition to instability. Above the transition point the
fluctuations are similar to the noise-free model. In a network with homeostasis the resulting
fluctuations were always larger than without (gray line). The reason is that in the homeostatic
network the noise is continuously exciting a damped resonant system, amplifying the fluctua-
tions. Importantly, the amount of recurrence at which the transition to the unstable regime
occurs, does not shift with noise, implying that noise does not increase stability. Rather the
opposite happens. Already in the approach to instability (around a recurrence of 0.75), homeo-
stasis increases the fluctuations in the population firing rate (black curve diverges from gray
curve).

Fig 3. Effects of heterogeneity and noise on homeostatic stability of a network. A) The stability as a
function of heterogeneity in the neurons’ homeostatic time-constants. The time-constants τ1, τ2, τ3 for each
neuron were drawn from gamma-distributions with means 10, 50 and 100ms, respectively, and a CV given by
the x-axis. The curve represents the mean maximal recurrence allowed to ensure a stable system. It
decreases with heterogeneity. Error bars represent the standard deviation over 1000 trials. Simulation of 10
neurons, connected with a random, fixed weight matrix. B) Noise does not ameliorate instability. The
fluctuations in the population firing rate, due to both noise and oscillations, are plotted as a function of the
network recurrence. Without noise, fluctuations are only present when the recurrence exceeds the critical
value (dashed curve). With noise, the fluctuations are already present in the stable regime and increase close
to the transition point (solid curve). The homeostasis in the system amplifies noise compared to the non-
homeostatic system (grey line). Homeostatic time-constants were 10, 50 and 100ms.

doi:10.1371/journal.pcbi.1004357.g003
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Spiking networks
Next, we compared the theory to simulations of networks of spiking neurons (see Methods).
The connection strength was such that the network was stable and noise was injected to all
neurons to prevent population synchrony. The homeostatic control was implemented exactly
as above: the average rate r2(t) was extracted by filtering the spikes (τ2 = 50ms), and this was
fed into the integrator as above. The homeostatic target rate was set to 4Hz.

In this asynchronous regime, the population firing rate of the spiking network can be rea-
sonably approximated by the rate equation with a non-linear f-I curve (Eq (1)) and recurrent
feedback. In order to be able to compare the spiking network to the theory we turned homeo-
stasis off and gave small step stimuli to the network and measured how quickly the firing rate
equilibrated as a function of the connection strength, Fig 4A. In the rate model this equilibra-
tion time is τ1/(1 − wm). A fit to this relation gave τ1 � (11.5±1.5)ms and also yielded the pro-
portionality between the synaptic strength and wm, which we calibrated as above so that wm = 1
corresponds to the critical amount of recurrence in the linearized model without homeostasis.
As networks close to critical recurrence are slow and difficult to simulate, we used a value of
wm = 0.6, so the required homeostatic time-constants are fairly short.

The linear stability criterion, Eq (9) yields that when τ3 � 64ms the network should be sta-
ble. However, the simulated network is less stable than the linear criterion predicts. The net-
work shows strong oscillations for such rapid homeostasis, Fig 4B, second plot from below. In
simulations a minimal value of τ3 around 240ms was needed to stabilize the network.

To include the effect of the non-linearity we first used the Lyapunov-based criterion (see
above and S1 Text) which yielded τ3 � 1200ms. To see if a tighter bound was possible, we
applied the Aizerman criterion to the slowest mode. Note that this is strictly only valid for a 3
dimensional system and not the 3N dimensional system. Thus we assume that the eigenmodes
of the system do not or only weakly couple. Under this assumption stability is guaranteed

Fig 4. Homeostatic regulation in a network of integrate-and-fire neurons. A) The effective time-constant
of the network as a function of recurrent connection strength. Circles denote simulation results and the curve
is the fitted relation τ1/(1 −wm). Inset shows the f-I curve of the unconnected network (lower curve), the slope
at the set-point (lower line) and slope of the envelop (upper line). F-I curve of the connected network (upper
curve) is shown for comparison. B) Example population response to step stimuli for varying values of τ3
corresponding to, from top-to bottom: τ3 = 380ms (stable according to Aizerman criterion); τ3 = 240ms
(empirically stable); τ3 = 200ms (edge of instability); τ3 = 64ms (linear criterion). Bottom panel: network
without homeostasis.

doi:10.1371/journal.pcbi.1004357.g004
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when

taiz3 ¼ ab
1� bwm

t1t2
t1 þ ð1� bwmÞt2

� �
ð10Þ

where b ¼ maxx
~g ðxÞ
x

� �
=a. In other words in the Aizerman criterion, the slope at the origin of

~gðxÞ is replaced by the slope of the linear envelope. The parameters α and β are extracted from
the f-I curve of the unconnected network, Fig 4A, inset. When applied to our simulations, the
criterion leads to a value of taiz3 ¼ 380ms, which is not far from the minimal value found
numerically. This indeed leads to stable homeostasis, Fig 4C, top.

Cascaded homeostatic control
The above results assumed a simple controller with only three components in the feedback
loop, r1, r2, and r3, but homeostatic control of excitability has many intermediate stages, for
instance synthesis, transport and insertion of ion-channels are likely involved. Therefore we
asked how the stability of homeostatic control changes with longer feedback cascades. Our
intuition was that adding more elements to the feedback cascade would slow down the feed-
back, and therefore would increase stability. However, we found that adding more filters actu-
ally de-stabilizes the network.

We first simplify our model from three to two filters, and analyze what happens to the criti-
cal amount of network recurrence if we add a third filter, Fig 5A. With two filters (τ1 = 10ms, τ2
= 50ms) the critical recurrence is one, the same as for a network without homeostasis (gray
curve). The addition of a third filter, such that the time-constants are (τ1, τ2, τ3) = (10, 50, τ) is
destabilizing even if the third filter has a time-constant slower than any other time-constant

Fig 5. Networks with longer feedback cascade are less stable. A) The effect of adding a third filter to a
two filter cascade. The stability is expressed as the maximum recurrence allowed in the network before it
becomes unstable (transient oscillations allowed). The system with three filters is always less stable than the
two filter system. The time-constants were set τ1 = 10, τ2 = 50 in the case of two filters, and τ1 = 10, τ2 = 50, τ3
= x, as well as τ1 = 10, τ2 = x, τ3 = 50 for the three filter case. B) Stability versus the number of filters for
various filter cascades. As a function of filter number, time-constants were set linear 10, 20, 30, 40, . . .
(dashed), constant with slow final integrator 10, 500, 500, . . ., 500, 5000 (dot-dashed), or exponential 10, 20,
40, . . . (solid) and 10, 30, 90, . . .ms (thick solid). The inset show the time-constants for a cascade with 10
filters for the various cases. Except for the last case, stability decreases with the number of filters.

doi:10.1371/journal.pcbi.1004357.g005
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(dashed curve). Only for a very long time-constant it had no detrimental effect. Alternatively,
one can add an intermediate filter, such that the time-constants are (τ1, τ2, τ3) = (10, τ, 50).
Also this is destabilizing (solid line). In this case the destabilizing effect can be minimized by
taking τ as short as possible. The filter then has a negligible effect, and the system resembles the
two filter system again.

More generally, assuming that there is no intermediate feedback between the filters and that
each element can be approximated by a linear filter, our formalism can be extended to an arbi-
trary number of intermediate elements in the feedback loop. Suppose that we have K filters,
each with its own time-constant τk. The threshold is taken from the K-th filter, i.e. θ(t) = rK(t).
We thus have for the linearized system

t1
dr1ðtÞ
dt

¼ �½1� wm�r1ðtÞ þ uðtÞ � rKðtÞ

tk
drkðtÞ
dt

¼ �rkðtÞ þ rk�1ðtÞ k ¼ 2 . . .K � 1

tK
drKðtÞ
dt

¼ �rgoal þ rK�1ðtÞ

The corresponding characteristic polynomial in this case is

1þ ltKð1� wm þ lt1Þ
YK�1

k¼2

ð1þ ltkÞ ¼ 0 ð11Þ

This expression is invariant to permutations of the time-constants τ2, . . ., τK−1. The stability is
again determined by the real part of the solutions to the polynomial. As analytic results such as
Routh-Hurwitz analysis, quickly grow in complexity for an increasing number of filters, we
solve the polynomial numerically.

As the time-constants or even the number of steps in the homeostatic feedback in neurons
is not known, we examined the stability with various hypothetical settings of the additional fil-
ters, Fig 5B. When the time-constants were set linearly increasing as τi = 10, 100, 200, 300,
. . .ms, the stability decreased most strongly as the number of stages K increased (dashed
curve). Using τi = 10, 500, 500, . . ., 500, 5000, stability decreased also with the number of filters
(dot-dashed curve). When the time-constants were set exponentially as τi = 10, 20, 40, 80 . . .
stability decreased when using only few filters, and leveled off with more filters (black curve).
With a stronger exponential increase τi = 10, 30, 90, 270 . . . the stability reached a minimum
for 4 filters and then slightly increased to a constant level (thick black curve). Thus in general
addition of filters does not lead to stabilization of the system. This result is not dependent on
these particular time-constants, also when for instance τ3,4,. . .K are orders of magnitude slower
than τ1 and τ2, the destabilization occurs.

We wondered what choice of time-constants will be most stable for a given number of fil-
ters. Suppose a cascade where the time-constant of the firing rate τ1 and of the threshold setting
τK are fixed. In analogy with the three filter network, setting the time-constants of the interme-
diate stages as short as possible is the most stable configuration. Even adding an intermediate
filter with a time-constant much slower than τK will not stabilize the system. The intuition
behind these results is that not only the speed of the feedback matters, but its phase delay mat-
ters as well. With sufficient filtering the negative homeostatic feedback will be out of phase
with the firing rate, amplifying perturbations. This effect is similar to the typically destabilizing
effect of delays in control theory.

Next we use Eq (11) to study how network recurrence and cascade depth interact. As an
example, consider the case where τ1 = 10ms, τ2 = 20ms, and wm = 0.99. If wm increases to 0.995
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the required τ3 doubles from 4.7 to 9.7 s. Alternatively, adding an intermediate filter with a
time-constant of 50ms also approximately doubles the required time-constant of the integrator
to 9.5s. When we increase both wm and increase the number of filters, the required τ3 quadru-
ples to 19.5s. Thus the effect of recurrence and cascade length are complementary.

Parallel controllers
One can wonder if stability can be rescued in another way. For instance, it is not unreasonable
to assume that biology uses multiple, parallel homeostatic regulators. While a general theory of
such systems is lacking, some cases can be incorporated in our framework, for instance if multi-
ple feed-backs use the same error signal, stability is determined by the quickest feedback. An
addition of a parallel feedback, even if it is slower can only destabilize the system. The stability
can be analyzed using the above techniques, adding the extra controller to the feedback-loop.
As a technicality, because the system is invariant to the division of labor between the two feed-
back loops, the stability matrix gains a zero eigenvalue, which can be safely ignored. The system
with parallel controllers is always less stable than the system with a single controller, even if the
second controller is slower than the first one, Fig 6.

Discussion
We have systematically analyzed instabilities in the neural activity that arise from homeostasis
of intrinsic excitability. In the worst case, homeostasis can lead to continuous oscillations of the
activity. Homeostasis can also give rise to damped oscillations, which are probably less disas-
trous to information processing, provided the oscillations do not persist too long. To our

Fig 6. Parallel controllers do not lead to increased stability. The maximal recurrence is plotted against
the time-constant of the second feedback loop. The τ3 time-constant of the system with single feedback is
indicated by the arrow. The system with the extra feedback loop (solid curve) is always less stable than the
system with a single feedback loop (dashed line), even if the additional feedback is much slower than the
original one. The control loop is shown in the inset.

doi:10.1371/journal.pcbi.1004357.g006
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knowledge such damped oscillations in the homeostatic response have not been observed
experimentally, although averaging of experimental data could have obscured their detection.
Nevertheless, we think that they are unlikely to occur in biology because substantial cost is
involved in alternating up-down regulation of excitability, and because the homeostatic control
can strongly interact with the network activity (Fig 2C).

Our control theoretic framework for homeostasis sets constraints on homeostatic control to
prevent either form of instability and we have focused on three contributions to the stability:
recurrent network interactions, depth of the feedback loop, and non-linearities. First, we find
that a typical single neuron model with just a few filters in the feedback loop has no stability
issues even when the homeostatic control is very fast. However, this is no longer true when net-
work interactions are included. The stronger the recurrence of the network, the slower the feed-
back needs to be. Networks with time-constants on the order of seconds have been proposed to
explain sensory evidence integration, decision making and motor control [32–34]. For homeo-
stasis to be oscillation-free, the minimal homeostatic time-constant scales quadratically with
the network time-constant. Thus in particular for networks with slow dynamics, the required
homeostasis can become of the order of hours, a value comparable to experimentally observed
homeostatic action [13, 15, 20, 21].

Stability typically decreases further when the number of stages in the feedback loop
increases, Fig 5. This effect complements the effect of the recurrence, so that for recurrent net-
works consisting of neurons with long homeostatic cascades, even slower homeostasis is
required. The instability can not be prevented by including heterogeneity or adding noise to
the system and is also found in spiking network simulations.

The above results are mainly based on the linearized system, which describes stability to
small perturbations. In addition, we have derived the condition for stability to arbitrary size
perturbations in the case that the f-I curve is non-linear. The non-linear f-I curve limits the
minimal homeostatic time-constant even further. Ideally, one would like to know the stability
requirements for any given non-linear homeostatic controller. However, only in a very limited
number of cases extensions of mathematical results to either multiple non-linearities in the
control loop or to higher dimensional systems (i.e. with longer feedback cascades) are known.
These are topics of current control theory research.

Stability of homeostatic control has been the main consideration in this study. This is of
course of utmost importance biologically, but it is unlikely to be the only criterion. There can
also be cases where rapid acting homeostasis is needed. For instance, one might want to mini-
mize periods of prolonged hyperactivity, while in a recent study fast synaptic homeostasis was
required to counter synaptic plasticity [35]. It suggests that homeostatic control is constrained
“from below and from above”, and therefore more finely tuned than previously thought.

Unfortunately data on the time-course of the homeostasis of intrinsic excitability, its media-
tors and regulation cascade is limited, hindering a direct comparison of data to our analysis.
Nevertheless, a number of predictions follows from this work: we predict homeostasis to be
slower in brain regions with strong recurrent connections and long network integration times.
Secondly, we predict that intermediate steps in the homeostatic feedback cascade are rapid so
as to prevent instability.

A recent complementary study examined homeostatic control for a network with separate
excitatory and inhibitory populations and a shallow feedback loop (K = 2) and found as the
only requirement for stability that the homeostasis of excitatory neurons is at least as fast as
that of inhibitory neurons [22]. When excitation and inhibition are subject to equally fast
homeostasis, the system is identical to the one studied here. As for these shallow feedback
loops the homeostasis is always stable (our Fig 5A), no constraint on the speed of homeostasis
relative to the neural and network timescales arises in that study. It should be possible to use
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our framework to extend those two population results to deeper feedback cascades. Other tar-
gets for extension and application of this study include excitatory/inhibitory balanced net-
works, controllers with parallel slow and fast components, as well as models that include
dynamical synapses. Also the interaction with ‘Hebbian’modification of the intrinsic excitabil-
ity [36] will be of interest. Finally, these results might be important for other regulatory feed-
back systems such as synaptic homeostasis and spike frequency adaptation.

Methods

Stability in recurrent network
In the main text we state that stability of a homeostatic network is determined by the stability
of the mode with the largest eigenvalue. Here we prove that if the reduced linear (3D) model
based on the largest eigenvalue is stable, then so is the full (3N dimensional) linearized network
model. Given the interaction matrixM of the full network, Eq (6), it is easy to show that the

eigenvectors of the matrixM have the form

en

anen

bnen

0
@

1
A, where en is an eigenvector of theW

matrix, and αn and βn are complex numbers. This means that the filtered firing rates (the vec-
tors r2 and r3) follow the firing rates r1 with a phase lag and arbitrary amplitude. We assume
that N × NmatrixW is symmetric so that it is diagonizable by an orthogonal matrix, that isW
= UT DU, where D is a diagonal matrix with the eigenvalues wn on the diagonal and UUT = I.
We analyzeM in the eigenspace ofW using the matrix U3N = U	 I3, where	 is the Kronecker

product. In these coordinatesM ¼ U3NMUT
3N and equals

M ¼

1
t1
ðD� IÞ 0 � 1

t1
I

1
t2
I � 1

t2
I 0

0 1
t3
I 0

0
BBBB@

1
CCCCA:

In these coordinates, there is no interaction between the various eigenmodes. The stability of
each mode is given by Eq (9). Because the factor (1 − wn) is positive and minimal for wn = wm,
stability of the eigenmode with eigenvalue wm implies stability for all other modes for which wn


 wm.
The stability condition is found from the Routh–Hurwitz stability criterion [25]. It states

that the third order polynomial
P3

i¼0 cil
i ¼ 0 has exclusively negative roots when 1) all the

coefficients ci are larger than zero, and 2) c0 c3 < c1 c2. Applied to homeostatic control this
yields Eq (9).

Non-symmetric networks
The analysis can be extended to networks with non-symmetric weight matrices. Symmetry of
W implies that the eigenvalues of the matrixW are real. For non-symmetricW, the eigenvalues
are no longer guaranteed to be real but can be complex. The Routh-Hurwitz criterion needs
now to be applied after splitting the real and imaginary parts of the polynomial. The conditions
that guarantee negative real parts for the solutions of the polynomial λ3 + c1 λ

2 + c2 λ + c3 = 0

with complex coefficients ci are [37]: 1) <(c1)> 0, 2) <ðc1Þ<ðc1�c2 � c3Þ � Iðc2Þ2 > 0, and 3)

½<ðc1Þ<ðc1�c3Þ � <ðc3Þ2�½<ðc1Þ<ðc1�c2 � c3Þ � Iðc2Þ2� � ½<ðc1ÞIð�c1c3Þ � <ðc3ÞIðc2Þ�2 > 0,
where �c denotes the complex conjugate of c, and < and I the real and imaginary parts. In this
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case one has c1 = 1/τ2 + (1 − wn)/τ1, c2 = (1 − wn)/τ1 τ2, c3 = 1/τ1 τ2 τ3, where wn is the complex
eigenvalue. Splitting the real and imaginary parts as wn = wr + iwi, these conditions combine to
the condition t3 � tcc3 with

tcc3 ¼ 1

1� wr

t1t2½t1 þ ð1� wrÞt2� þ 1
2
t32w

2
i ½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t1ð1� wrÞ=ðt2w2

i Þ
p �

½t1 þ ð1� wrÞt2�2 þ w2
i t22

ð12Þ

In contrast to the case of symmetricW, these conditions have to be checked for all N eigen-
values ofW. By taking the limit of infinite wi it can be shown that stability is guaranteed for
any complex wn when τ3 > τ2/(1 − wr), which is more stringent than the condition given in Eq
(9). Under this condition any network, including non-symmetric ones, is guaranteed to be sta-
ble to small pertubations.

Oscillation-free response
To guarantee an oscillation-free response of the network, the eigenvalues need to be negative
and real. For a given wn this implies that all the solutions of the polynomial

PðlÞ ¼ ð1� wn þ t1lÞð1þ t2lÞt3lþ 1

have to be real. As in our analysis above, the largest eigenvalue ofW is the most critical one so
that we only need to study the case wn = wm.

The polynomial is negative for large, negative λ and positive for large, positive λ. For all
solutions to be real, the polynomial has to dip down after the first zero-crossing and cross zero
again, after which it crosses the x-axis a final time. The condition on the minimum of the dip,
given by P0(λc) = 0 and P00(λc)> 0, is that it should be below zero, i.e. P(λc)< 0. This yields the
condition t3 � tco3 with

tco3 ¼ 1

ð1� wmÞ2ðt1 � t02Þ2
ðt1 � 2t02Þð2t1 � t02Þðt1 þ t02Þ þ 2ðt21 � t1t2 þ t22Þ3=2
h i

ð13Þ

where we defined t02 ¼ ð1� wmÞt2. In the limit of strong recurrence tco3 ¼ 4
t1

t1
1�wm

� �2

, which

implies that the required time-constant τ3 scales quadratically with the network time-constant,
τ1/1 − wm.

Spiking network simulations
A population of 16000 linear integrate-and-fire neurons was coupled with a 2% connection
probability via excitatory synapses modeled as exponentially decaying conductances (5ms syn-
aptic time-constant). It is possible to add inhibitory connections to the network, but as long as
the network remains in the mean-driven regime this should not affect the results. The mem-

brane voltage of each neuron obeyed tmem
dVðtÞ
dt

¼ �VðtÞ þ Vrest þ RIðtÞ, where tmem = 20ms,

Vrest = −60mV and R = 1MO. In addition, upon reaching the threshold (Vthr = −50mV) the
voltage reset (Vreset = Vrest, 5ms refractory period). The current I consisted of recurrent input,
external drive and homeostatic bias, I(t) = ge(t)(V(t) − Ee)+I(t) − hr3(t). The factor h converts
the filtered firing rate r3 to a current and sets the strength of the homeostatic control. It was set
to 1 pA/Hz. The homeostatic control was implemented as in the rate based networks: the aver-
age rate r2(t) was extracted by filtering the spikes (τ2 = 50ms), and this was fed into the integra-
tor. The homeostatic target rate was set to 4Hz. The external current I(t) contains both
stimulation and a Gaussian white noise term (σ = 75pA) to prevent population synchrony.
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Supporting Information
S1 Text. Derivation of homeostatic stability criteria for non-linear networks. The derivation
of stability when the f/I curve is non-linear. Both for the full (3N-dimensional) network, as well
as for the system reduced to the slowest eigenvalue.
(PDF)
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