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Abstract16

Experimental evidence has shown that both homeostatic and Hebbian synaptic plasticity17

can be expressed presynaptically as well as postsynaptically. In this review, we discuss some of18

the functional consequences of this diversity in expression loci. In particular, using a biologically19

tuned model of spike-timing-dependent plasticity (STDP) we show that a combination of both20

pre- and postsynaptic components leads to 1) more reliable receptive fields, 2) rapid recovery21

of forgotten information, 3) and reduced response latencies, compared to a model with post-22

synaptic expression only. The diversity of expression of synaptic plasticity thus has important23

functional consequences. We propose that a considerable research effort is needed to better elu-24

cidate how the specific locus of expression of homeostatic and Hebbian plasticity alters network25

computations.26
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Introduction27

Synapses shape the computations of the nervous system. The combination of thousands of exci-28

tatory and inhibitory synaptic inputs determine whether a neuron fires or not. Furthermore, the29

synapse is known to be a key site of information storage in the brain, although not the only one30

[1]. Changes in the synapses are hypothesized to allow neuronal networks to change function and to31

adapt through Hebbian and Hebbian-like mechanisms. At the same time, large perturbations in ac-32

tivity levels such as those occurring during synaptogenesis or eye-opening require negative feedback33

so that the network can keep its activity level within reasonable bounds and continue performing its34

computational tasks properly [2]. Such homeostatic control of neuronal activity can occur through35

changes in intrinsic neuronal properties such as control of dendrite excitability [3, 4], somatic ex-36

citability [5, 1] and movement of the axon hillock relative to the soma [6]. However, in this review37

we focus on homeostatic processes at the synapse such as synaptic scaling, which provides a form of38

negative feedback to counter changes in the activity levels, while providing synaptic normalisation39

and competition among inputs [7].40

As we explain in detail in this review, irrespective of whether synaptic plasticity is Hebbian or41

homeostatic, the expression locus of plasticity matters. A fundamental distinction is whether the42

change is pre- or postsynaptic. Changes in the number of postsynaptic receptors typically only43

modify the synaptic gain. However, long-term changes in the presynaptic release probability al-44

ter the short-term dynamics of the synapse [8, 9, 10, 11, 12, 13, 14]. Synaptic dynamics such as45

short-term depression and facilitation describe how the synaptic efficacy changes during repeated46

stimulation of the synapse over a time course of hundreds of milliseconds [11, 15, 16, 17]. These47

short-term modifications of synaptic efficacy (reviewed in [17]) have been proposed to underlie com-48

putations like gain control [18], redundancy reduction [19] and adaptive filtering [20]. In the context49

of a recurrent neuronal network, they can affect the activity dynamics and allow the formation and50

switching among attractor states [21, 22], and have been proposed as the basis for working memory51

[23].52

Synaptic plasticity can thus affect network dynamics, but this poses several questions: What53

are the functional implications of expressing long-term plasticity pre- or postsynaptically? What54

are the underlying expression mechanisms? Why is there such a large diversity in the expression?55

And why is there sometimes both pre- and postsynaptic expression? In this review, we begin56

by discussing pre- and postsynaptic components of Hebbian and homeostatic synaptic plasticity.57

Then we examine some of the consequences of the variability of the expression locus of synaptic58

plasticity, including those that we recently identified using a biologically tuned computational model59

of neocortical spike-timing-dependent plasticity (STDP) [14].60
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The biological underpinnings of pre- and postsynaptic expression of plasticity61

As old as the field of long-term synaptic plasticity itself is the question of how precisely informa-62

tion is stored in neuronal circuits. Historically, Donald Hebb and Jerzy Konorski argued for the63

strengthening of already existing connections between neurons as a means for information storage,64

whereas Santiago Ramon y Cajal favoured the growth of new connections [24]. Several relatively65

recent studies have found evidence that the formation of new synapses is important for long-term66

information storage in neuronal circuits [25, 26, 27, 28]. Indeed, there is strong evidence both in67

mammals and in the sea slug Aplysia that structural plasticity via formation of new afferent inputs68

is essential for protein-synthesis dependent long-term memories [29]. The creation of new afferents69

would correspond to an increase in the number of release sites (see Box 1: Methods), but it should70

be noted that the number of release sites might be different from the number of anatomical contacts71

[e.g. 30].72

With already existing connections between neurons, there are essentially only two possible ways73

of increasing synaptic strength: either presynaptic release is increased, or postsynaptic receptor74

channels are upregulated [31, 32]. Both can be achieved in a number of ways. The presynaptic75

release probability is controlled by various factors, such as the number and sensitivity of presynaptic76

calcium channels, as well as other presynaptic ion channels that can modulate neurotransmitter77

release (such as the epithelial sodium channel ENaC in case of synaptic scaling at the Drosophila78

neuromuscular junction [33, 34]), the setpoint of presynaptic calcium sensors involved in eliciting79

neurotransmitter release, e.g. the synaptotagmins 1, 2 and 9 [35], and the size of the pool of readily80

releasable vesicles as well as its replenishment rate (in case of homeostasis, see [36, 37]) [11, 35].81

The postsynaptic contribution to the synaptic response is determined by the number and location82

of postsynaptic receptors, as well as their properties (e.g. conformational state [38] and subunit83

composition [39, 40]). In addition, the geometry of the extracellular space and the apposition of the84

release sites have also been suggested as important determinants of the response amplitude [41, 42].85

Experimentally, determination of the expression locus is far from trivial and a battery of tech-86

niques has been applied (see Box 1). In long-term potentiation (LTP) experiments, evidence for87

most of the above mechanisms has been found. The historic pre versus post controversy is now typ-88

ically interpreted as a reflection of the diversity of LTP phenomena, which we now know depends on89

multiple factors such as age, synapse state, neuromodulation, synapse type, and induction protocol90

[31, 43, 44, 45, 46, 47, 48, 49, 50] (but see [51]). A combination of pre- and postsynaptic expression91

is also possible [31].92

A similar pre- or postsynaptic expression question exists for synaptic homeostasis. While most93

studies have focused on postsynaptic expression, also here a wide variety in expression, including94

presynaptic expression [52, 53, 54], has been observed, and for instance whether the expression is95

pre- or postsynaptic appears to depend on developmental stage [55, 56]. Sometimes diversity in96

mechanisms can even be observed within one system. For instance, in homeostatic plasticity experi-97
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ments in the hippocampus both pre- an postsynaptic expression was observed, while some CA3-CA398

connections were unexpectedly reduced after activity deprivation, other connections strengthened99

as expected, perhaps to prevent network instability [57]. Also some forms of synaptic scaling at the100

Drosophila and mammalian neuromuscular junction (NMJ) are presynaptic: loss of postsynaptic101

receptors is compensated by increased transmitter release, which restores the mean amplitude of102

evoked EPSPs [34, 58]. A presynaptic locus of expression of homeostatic plasticity at the NMJ103

is perhaps to be expected, given that the postsynaptic partner — the muscle myotube — does104

not integrate its inputs like a neuron does, but rather serves to fire in response to activation at the105

synaptic input. The pre- and postsynaptic components of the NMJ are therefore tightly co-regulated106

in synaptogenesis and after damage to ensure proper activation of the muscle [59], so when postsy-107

naptic NMJ sensitivity is reduced, it is in this context not entirely surprising that the presynaptic108

machinery compensates accordingly by upscaling neurotransmitter release. This example illustrates109

how the locus of expression must be understood in the context of function of the synapse type at110

hand.111

Further indication that the exact expression locus is functionally important comes from the112

fact that both short-term plasticity [60] and long-term plasticity [50] can be expressed in a synapse113

specific manner. In the case of short-term plasticity, connections from the same presynaptic neurons114

onto different cells can short-term depress or facilitate depending on the target cell type [61, 62].115

Similarly, while spike-timing-dependent plasticity (STDP) exists at both horizontal and vertical116

excitatory inputs to visual cortex layer-2/3 pyramidal cells, the mechanistic underpinnings as well117

as the precise temporal requirements for induction are different [63]. Such specificity suggests that118

the specific locus of expression of long-term plasticity at a given synapse type is meaningful for the119

proper functioning of microcircuits in the brain, as otherwise tight regulation of expression locus120

would not have arisen during the evolution of the brain.121

BOX1: Methods to determine the locus of plasticity122

[Note, this section is proposed to be a separate text box (as in TINS)]123

The properties of synaptic release can be used to determine the locus of synaptic plasticity by124

a variety of methods. Among these there are methods for studying vesicle release, such as FM1-43125

dye labelling to explore changes presynaptic release [64], glutamate uncaging to explore changes126

in postsynaptic responsiveness or spine size [65, 66], measuring NMDA:AMPA ratio to look for127

insertion of postsynaptic receptors [67, 46], employing the use-dependent NMDA receptor blocker128

MK-801 to look for changes in glutamate release [68, 69], or exploring changes in paired-pulse ratio129

suggesting a change in probability of release [13, 46] (although see [70]).130

It is also common to employ spontaneous release as a metric of the locus of expression, as each131

spontaneously released vesicle gives rise to a well-defined single postsynaptic quantal response known132

as a miniPSC. This approach is often used in studies of homeostatic plasticity (e.g. [71]), because133
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here it is important to measure synaptic changes globally across a majority of inputs to a cell, but134

this method has also been used to explore Hebbian plasticity [72, 67]. An increase in miniPSC135

frequency in the absence of a change in miniPSC amplitude is typically interpreted as indicating136

higher release probability or an increase in the number of synaptic contacts, while an increased137

miniPSC amplitude is most often thought to reflect an increase in postsynaptic responsiveness138

due to more efficacious postsynaptic receptors. Alternative interpretations of spontaneous release139

experiments are, however, also possible, for example in the case of AMPA-fication of silent synapses,140

which leads to an apparent change in release probability even though unsilencing is a postsynaptic141

process [72].142

In the scenario where individual synapses are monitored, it is possible to employ methods that143

rely on the response variability. One such method is non-stationary noise analysis [73], which has144

been used to determine the effect of homeostasis on inhibitory connections [74], although this method145

can be unreliable for dendritic synapses [75]. In the related coefficient of variation (CV) analysis,146

the peak synaptic response is modelled as a binomial process. The process has as parameters the147

release probability Pr, the number of release sites N , and the response to each vesicle, the quantal148

amplitude q. The CV — which is experimentally quantified as the response standard deviation over149

the mean — is independent of q, namely CV =
√

1−Pr
PrN , and therefore an increase in the mean150

without an increase in CV can be interpreted as a postsynaptic increase of q [76]. Conversely, if151

plasticity is presynaptically expressed, then a change in CV is expected, since the CV is a measure152

of noise and since the chief source of noise in neurotransmission is the presynaptic stochasticity of153

vesicle release. The CV analysis method does, however, come with several caveats. In particular,154

accidental loss or gain of afferent fibers in extracellular stimulation experiments, or unsilencing or155

growth of new synapses will confuse the results [76]. It is also not obvious that release is independent156

at different sites, in which case the binomial model is not suitable [76]. By assuming that one of157

the parameters does not change during the experiment (e.g. fixed N as is reasonable to assume in158

some plasticity experiments [77, 78]) the variance and mean of postsynaptic responses can be used159

to estimate Pr = mean
Nq and q = variance

mean + mean
N [31, 79, 14].160

An alternative way to determine whether synaptic changes correspond to alterations of release161

probability or of quantal response amplitude is to examine the postsynaptic response to a pair or a162

train of presynaptic stimuli. The idea is that when the release probability is high, the vesicle pool163

will be depleted more quickly, leading to a more strongly depressing train of postsynaptic responses.164

When combined with CV analysis, this method can be used to measure all three parameters — Pr,165

N , and q — of the binomial release model [80]. By fitting these phenomenological models before and166

after plasticity induction, one can determine which combination of parameters were changed due to167

plasticity. It should be noted that experimental results from paired-pulse experiments should also168

be treated with caution. For example, unsilencing or specific postsynaptic upregulation of release169

sites with quite different release probability may lead to changes in short-term dynamics that could170
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erroneously be interpreted as presynaptic in origin, even though the actual site of expression is171

postsynaptic [70]. There are also postsynaptic contributions to synaptic short-term dynamics [81,172

82, 83], that can complicate the interpretation of experiments. It is therefore better to employ several173

methods in parallel in the same study — such as CV analysis, paired-pulse ratio, NMDA:AMPA174

ratio, and spontaneous release [13, 46] — to independently verify the locus of expression.175

Recently, inference methods of short-term plasticity and quantal parameters have been intro-176

duced [84, 85, 86]. The sampling method of [84] is particularly well suited to deal with the strong177

correlation and uncertainty in the synapse parameters. Based on this method we revealed interest-178

ing variations between different neuronal connections and proposed more informative experimental179

protocols based on irregular spike-trains, which would be promising to apply in plasticity experi-180

ments.181

END BOX1182

Consequences of diversity in locus of plasticity183

While the diverse pathways of plasticity induction and expression are increasingly unravelled, their184

functional roles are still largely an open question. We have already mentioned that different plas-185

ticity expression sites have different effects on short-term synaptic dynamics and therefore on the186

network dynamics, but the “embarrassment of riches” in the possible expression sites of plasticity187

[45], paralleled in many other biological systems, has a number of other important consequences as188

well:189

• It provides robustness to the system and multiple ways to maintain the capacity for plasticity,190

despite internal or external disruption. Evolutionarily this can be advantageous, as the pop-191

ulation can be functionally similar but diverse in mechanism, thus allowing better adaptation192

to novel circumstances [87].193

• It provides flexibility to local circuits, so that, via synapse-type-specific plasticity, different194

microcircuit components can be independently regulated [50]. For example, long-term de-195

pression (LTD) at layer 4 to layer 2/3 connections, but not at layer 2/3 to 2/3 synapses,196

is more readily induced during the critical period [88, 89], while thalamocortical LTP is al-197

ready strongly diminished before the critical period has begun [90]. The locus of expression198

of long-term plasticity at these different synapse types also differs.199

• Different plasticity protocols are affected by distinct forms of neuromodulation and these200

neuromodulators can specifically control forms of STDP that express, for example, postsy-201

naptically [91, 92, 93], providing a potential link between behaviourally relevant behaviours202

and expression loci.203

• The different plasticity sites can differ in stability properties: some changes might be quick to204
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induce, but hard to stabilise and vice versa. This in turn can provide neuronal networks with205

the necessary flexibility to quickly adapt to environmental changes (see below).206

• The locus of expression of plasticity will change the trial-to-trial variability of the synaptic207

response and overall reliability of neurotransmission (see below).208

Finally, it is noteworthy that by the diversity of expression mechanisms, LTD is not necessarily the209

opposite of LTP. In other words, contrary to what is assumed in virtually all computational models,210

LTP induction followed by LTD induction might leave the synapse in a different state, despite the211

apparent synaptic weight being the same.212

Recently, we have started exploring some of these consequences using computational models.213

Pre- and postsynaptic expression of STDP214

In STDP experiments, where spikes from the presynaptic neuron are paired with millisecond preci-215

sion with postsynaptic ones, the question of pre- versus postsynaptic expression has been extensively216

examined as well. Depending on factors such as synapse type, brain area and experimental condi-217

tions, there is evidence for both pre- and postsynaptic changes [13, 46, 94, 95, 63, 96]. Because of the218

synapse-type specificity of STDP [50], we tuned a computational model to STDP data using only219

connections between visual cortex layer-5 pyramidal cells [97, 13, 46]. At this synapse it has been220

observed that using STDP induction protocols potentiation has both pre- and postsynaptic compo-221

nents [46], while LTD is expressed presynaptically only [13]. Presynaptic-only time-dependent LTD222

has also been found in other synapse-types and brain areas [94, 96].223

Our model of STDP allows for distinct pre- and postsynaptic expression, Fig.1a. This phe-224

nomenological model relies on three dynamic variables, one which tracks past presynaptic activity225

x+(t), and two that track postsynaptic activity, y+(t) and y−(t). These traces increase with every226

spike and decay exponentially between spikes. The plasticity is expressed as a function of the traces,227

but in contrast to traditional STDP models where just the synaptic weight changes as a function of228

them [98], here both the release probability and the quantal amplitude are independently modified.229

In our model, we assume that the number of release sites N is fixed and that it does not change on230

the time-scale of the experiments, consistent with experimental observations [77, 78]. However, the231

model could be straightforwardly generalised to also include changes in N .232

Even though we model the observed phenomenology rather than the biophysical or mechanistic233

details, with caution the components of the model can be interpreted to correspond specific phys-234

iological components. The presynaptic trace (x+), for example, could represent glutamate binding235

to postsynaptic NMDA receptors, which when depolarised by postsynaptic spikes unblocks NMDA236

receptors, leading to classical postsynaptic LTP [32]. Similarly, the postsynaptic trace y+ can237

be interpreted as retrograde nitric oxide (NO) signalling, which is read out by presynaptic spikes238

and leads to presynaptically expressed LTP [46]. Finally, the postsynaptic trace y− can be linked239
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Figure 1: A schematic of our biologically tuned STDP model with pre- and postsynaptic expression.
a) The synaptic weight is the product of the release probability P and the quantal amplitude q.
Changes in these parameters due to STDP are modelled as functions of presynaptic activity trace
x+ and postsynaptic activity traces y+ and y−.
b) The fitted model captures the estimated changes in release probability (left) and quantal am-
plitude (right) for both positive timing (presynaptic spikes 10 ms before postsynaptic ones; blue)
and negative timing (presynaptic spikes 10 ms after postsynaptic ones; red), as a function of the
frequency of STDP pairings. Symbols indicate data, while lines denote the model fit.
c) After LTP, the release probability is enhanced, which leads to stronger short-term depression.
The change in short-term synaptic dynamics in the model (bottom) mimics the data (top).
Panels b and c are reproduced from [14].

to endocannabinoid (eCB) retrograde release, which triggers presynaptically expressed LTD when240

coincident with presynaptic spikes [13, 94, 96].241

As mentioned above, we fitted our model to experimental data of one synapse type only (layer-242

5 pyramidal cells onto layer-5 pyramidal cells in the visual cortex) [97, 13, 46], across different243

frequencies and timings. To ensure the biological realism of the model, we further constrained the244

model fitting by using data from NO and eCB pharmacological blockade experiments in which either245

presynaptic LTD or LTP expression alone was abolished [46]. Furthermore, we verified that our246

model captured the expected interaction of short and long-term plasticity correctly (see Fig.1c),247

which permits the exploration of the functional implications of changes in short-dynamics due to248

the induction of long-term plasticity.249

Functional consequences of pre- and postsynaptic expression250

The model reveals several functional implications of expressing synaptic plasticity pre- as well as251

postsynaptically. First, by increasing the release probability, trial-to-trial reliability from synaptic252

transmission can be increased. Thus, joint pre- and postsynaptic plasticity can lead to a larger253

increase in the signal-to-noise ratio (SNR) than postsynaptic modification alone (Fig.2a). The254

functional impact on SNR of this joint modification is consistent with improved sensory perception255

and its electrophysiological correlates observed in auditory cortex [99].256
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savings and shortens response latencies compared to postsynaptic expression alone.
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than with postsynaptic changes alone. Inputs that were stimulated (“on”) obtain high signal-to-
noise ratio (“SNR”) for postsynaptic-only potentiation (dark blue arrows), but combining pre- and
postsynaptic potentiation yields considerably better SNR (dark red arrows). Weakly stimulated
inputs (“off”) obtain lower SNR in either condition (light blue and light red arrows). Our modelling
results are in keeping with modifications of in-vivo synaptic responses to a tone from on and off
receptive field positions (dark and light green arrows) [99].
b) Rapid relearning and memory savings with asymmetrically combined pre- and postsynaptic
expression of long-term plasticity. Top: A network initially learns the blue stimulus. This initial
learning is slow because the changes in q are slow. After learning, the memory is overwritten
with the red stimulus. When switching back to the initial blue stimulus, the relearning is more
rapid compared to the first exposure. Middle: Presynaptically, LTP and LTD can reverse each
other completely. Bottom: LTP has a postsynaptic component that does not reverse quickly, which
means a postsynaptic trace is left behind after overwriting with novel information. This hidden
trace enables rapid relearning of previously learnt but overwritten information.
c) Schematic of a firing-rate model with feedforward and feedback connections as described in [20]
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Pr affects the short-term dynamics, while changing the postsynaptic amplitude q only scales the
postsynaptic response. Comparison of changes in the response dynamics in a recurrent network
model when the recurrent synapses are subject to changes in Pr or q. Increases in the release
probability shorten the latency more than increases in the postsynaptic amplitude (right).
Panels a and b were reproduced from [14].
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Secondly, the pre- and postsynaptic components may evolve on different timescales. Using a257

simple receptive field development simulation, we propose that this might enable a form of memory258

savings. Memory savings is a concept introduced by Hermann Ebbinghaus and means that repeated259

learning of information is easier, even if the initially learned information appears to have been for-260

gotten [100]. In the data we saw no evidence for any decrease in the postsynaptic component q,261

perhaps because its decrease maybe very slow. For completeness, we assumed that a slow homeo-262

static process could decrease q, but its presence is not essential to our arguments. When memories263

were overwritten, the presynaptic component of the old memory was erased quickly but the post-264

synaptic component stayed largely intact. As a result, information that was initially learned but265

subsequently overwritten could rapidly be recovered upon relearning, provided that the postsynaptic266

component had not yet decayed completely (Fig. 2b). This mechanism could thus enable the brain267

to adapt quickly to different environments or to different tasks without fully forgetting previous268

learned information. This effect mirrors that of monocular deprivation experiments showing lasting269

postsynaptic structural effects on spine density that enable more rapid visual cortex plasticity after270

repeated monocular deprivation [101, 102].271

Finally, while the effects reported in [14] considered feedforward networks, the changes in release272

probability under STDP also has consequences for recurrent networks. Excitation-dominated re-273

current networks connected through strong short-term depressing synapses can have long response274

latencies, that are governed by the synaptic dynamics. We used the model presented in [20] to275

examine the effect of different expression loci in recurrent network. Fig. 2c illustrates the response276

of a firing-rate model when the release probability Pr is increased, versus a case in which the277

quantal amplitude q is increased. The pre- and postsynaptic modifications were set such that the278

peak responses were identical. In both cases the response latency was shortened, but when release279

probability was allowed to increase due to LTP, response latency shortened about twice as much280

compared to the case where only postsynaptic plasticity was enabled.281

Discussion282

To model the impact of synaptic plasticity on circuit computations, it is important to know how283

synapses change during Hebbian and homoeostatic plasticity. Here, we have discussed several284

possible expression sites of synaptic plasticity. We have demonstrated three candidate effects in285

a model where both pre- and postsynaptic components are modified: 1) a change in the release286

probability can improve the SNR in the circuit, 2) the difference in the time scales of modification287

can lead to the formation of hidden memory traces, and 3) as a result of changes in synaptic288

dynamics, the response latency in recurrent networks can be shortened with plasticity. The possible289

functional impact of combining pre- and postsynaptic plasticity is certainly not restricted to the290

three findings we illustrate here. We have rather just scratched the surface of what is likely an291

emerging field of study.292
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There is a large range of open issues. For instance, it has long been argued that the stability of293

memory in spite of continuous molecular turn-over is a quite remarkable problem for nature to solve294

[103, 104]. How synapses maintain stable information storage while staying plastic still remains295

unclear. The diversity of plasticity expression mechanisms could allow for a staged process by296

which initial changes are presynaptic, but later changes are consolidated structurally and distributed297

across pre- and postsynaptic compartments. It is, however, not unlikely that multiple expression298

mechanisms are active in tandem. How these pre- and postsynaptic alterations are coordinated to299

ensure the long-term fidelity of information storage will require extensive further research.300

Another important issue is the weight dependence of long-term plasticity — LTP is hard to301

induce at synapses that are already strong [105, 106, 107, 97] — which has important implications302

for the synaptic weight distribution, memory stability [108] and information capacity [109]. It has303

been shown that presynaptic modifications strongly depend on the initial release probability [31],304

which is expected as release probability is bounded between 0 and 1. This demonstrates that the305

weight-dependence can stem from presynaptic considerations. However, postsynaptic mechanisms306

such as compartmentalisation of calcium signals may also explain this weight dependence, as it leads307

to large spines with long necks being “write protected” [110, 111, 112, 113]. This finding together308

with the fact that spine volume is proportional to the expression of AMPA receptors [114] implies309

that small spines should be more prone to LTP, which is consistent with experimental observations310

[66]. Such pre- and postsynaptic mechanisms are of course not mutually exclusive and both may311

contribute to the weight dependence of plasticity [106].312

Long-term synaptic plasticity and homeostatic plasticity have been fruitful modelling topics that313

have clarified the role of plasticity in biological neuronal networks as well as inspired applications314

using artificial neuronal networks. Yet, despite experimental evidence for presynaptic components in315

both Hebbian plasticity and synaptic homeostasis, in the overwhelming majority of computational316

models presynaptic contributions have been ignored (for an exception, see [115]), or the models are317

agnostic about the expression and only adjust the synaptic weight. However, as we have seen, this318

is not a neutral assumption, and may affect the outcome of the plasticity on network function.319

Our discussion has been restricted to the plasticity of excitatory synapses. Inhibitory neurons,320

in all their diversity [116, 117, 118], bring yet another level of complexity as differential short-321

term dynamics of excitatory and inhibitory synapses yields considerably richer dynamics [119, 120,322

84, 60]. We suspect that only a small fraction of the richness and variety of the experimentally323

observed plasticity phenomena are understood and only a few computational models include them.324

A continued dialogue between theory and experiment should hopefully advance our understanding.325
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