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Abstract  
 
Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t-way test generation 
strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony 
Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and 
Harmony Search (HS). Although useful, meta-heuristic algorithms that make up these strategies often require 
specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. 
Hyper-heuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or 
generation of meta-heuristics automatically during the search process. This paper describes our experience with 
four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter 
(EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference 
Selection (FIS), using the t-way test generation problem as a case study. Based on the experimental results, we 
offer insights on why each strategy differs in terms of its performance. 
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1.   Introduction 

Testing is an important process in software development to help identify areas where the software is not 
performing as expected. This process is often expensive owing to the time taken to execute the set of test cases. 
It has been a research focus to find suitable sampling strategies to generate a small yet efficient set of test cases 
for testing a software system. 
 
Over the years, a plethora of sampling strategies has been proposed in the literature (including that of boundary 
value analysis, equivalence partitioning, and decision tables; to name just a few). Although useful for some 
classes of software testing problems, these sampling strategies have not been designed to effectively deal with 
faults due to interaction. For this reason, many (sampling) t-way strategies (where t indicates the interaction 
strength) have been proposed in the scientific literature. Some early algebraic based t-way strategies exploit 
exact mathematical properties of orthogonal arrays. These t-way strategies are often fast and produce optimal 
solutions, yet, they impose restrictions on the supported configurations and interaction strength. The emergence 
of computational based t-way strategies ease these restrictions allowing for the support for arbitrary 
configuration at the expense of producing high quality solutions rather than guaranteed optimal solutions.  
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Tackling this issue, and formulating interaction testing as an optimization problem, recent efforts have focused 
on the adoption of meta-heuristic algorithms as the basis for t-way testing strategy. Search Based Software 
Engineering (SBSE) [24], has developed many meta-heuristic based t-way strategies (e.g. based on Genetic 
Algorithms (GA) [14, 33], Particle Swarm Optimization (PSO) [4, 32, 45], Harmony Search (HS) [6], Ant 
Colony Optimization Algorithm (ACO) [14, 41], Simulated Annealing  [17] and Cuckoo Search (CS) [2]), 
which have been reported in the scientific literature. 
 
Meta-heuristic based strategies are known to produce a good quality t-way test suite. However, as suggested by 
the No Free Lunch theorem  [44], the search for a single meta-heuristic that can outperform others in all 
optimization problem instances is fruitless. Hybridization of more than one meta-heuristic can be useful in 
enhancing the performance of t-way strategies, as hybridization can capitalize on the strengths and compensate 
the deficiencies of each individual algorithm. 
  
Hybridization could be in the form of the integration of two or more search operators from different meta-
heuristics, partly or in full, creating a new algorithm. Hybridization could also be an ensemble of two or more 
heuristics and running them sequentially or in parallel.  Hyper-heuristics can also be viewed as a form of 
hybridization. Unlike the hybridization (including ensembles) of meta-heuristics, hyper-heuristics permit the 
integration of two or more meta-heuristic search operators from different meta-heuristics through one defined 
parent heuristic via non-domain feedback (i.e. (meta)-heuristic to choose (meta)-heuristics [10]). With a hyper-
heuristic, the selection of a particular search operator to be used at any particular instance can be adaptively (and 
dynamically) decided based on the feedback from its previous performance.  
 
In this paper, we explore the hybridization of meta-heuristics utilizing a hyper-heuristic approach. We present a 
new t-way testing strategy. In the context of our study, this paper focuses on an experimental study of hyper-
heuristic selection and acceptance mechanism for adaptively selecting low-level search operators. Although 
there has been existing work (e.g. timetabling problems), this methodology has not been considered for t-way 
test generation as a case study. This paper describes our comparative studies with four hyper-heuristic selection 
and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ) [9], Choice Function (CF) 
[20, 28], Improvement Selection Rules (ISR) [49], and the newly developed Fuzzy Inference Selection (FIS). 
These mechanisms utilize four common search operators comprising a Genetic Algorithm (GA) crossover 
search operator [25], Teaching Learning based Optimization (TLBO) algorithm’s peer learning search operator 
[39], Flower Algorithm’s global Pollination (FPA) search operator [48] and Jaya algorithm’s search operator  
[38]. 
 
The contributions of this paper can be summarized as follows:  
• A new experimental study of existing hyper-heuristic selection and acceptance mechanisms, using t-way test 

generation as a case study. The study also benchmarks the results against existing meta-heuristic based 
strategies. Based on the results, we provide guidelines for choosing the appropriate mechanism and some 
insights on why each strategy differs in terms of performance. 

• A new hyper-heuristic selection and acceptance mechanism based on Fuzzy Inference Selection (FIS). 
 
The paper is organized as follows. Section 2 presents the theoretical framework covering the t-way test 
generation problem, its mathematical notation, related work as well as the main components of the hyper-
heuristic. Section 3 describes the hyper-heuristic selection and acceptance mechanisms along with a description 
of each search operator. Section 4 presents our benchmarking experiments. Section 5 discusses our experimental 
observations. Finally, section 6 gives our concluding remarks along with the scope for future work.  

2.   Theoretical Framework 

2.1.   The t-way Test Generation Problem 

Mathematically, the t-way test generation problem can be expressed by Equation 1.  

      𝑓𝑓(𝑍𝑍) =  |{𝐼𝐼 𝑖𝑖𝑖𝑖 𝑉𝑉𝐼𝐼𝑉𝑉: 𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼}|     (1) 

   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 𝑆𝑆𝑐𝑐 𝑍𝑍 = 𝑍𝑍1,  𝑍𝑍2, … , 𝑍𝑍𝑖𝑖  𝑖𝑖𝑖𝑖 𝑃𝑃1,𝑃𝑃2, … …𝑃𝑃𝑖𝑖 ;  𝑖𝑖 = 1, 2, … , 𝑁𝑁   

where, f(Z) is an objective function (or the fitness evaluation ), Z (i.e., the test case candidate) is the set of 
decision variables Zi, VIL is the set of non-covered interaction tuples (I), the vertical bars | · | represent the 
cardinality of the set and the objective value is the number of non-covered interaction tuples covered by Z, Pi is 
the set of possible range of values for each decision variable, that is, Pi = discrete decision variables 
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(Zi(1)<Zi(2)<……<Zi(K)); N is the number of decision variables (i.e. parameters); and K is the number of 
possible values for the discrete variables. 
 
A simple configurable software system is used as a model to illustrate the t-way test generation problem. Figure 
1 represents the topology of a modern e-commerce software system based on the Internet [3]. The system may 
use different components or parameters. In this example, the system comprises five parameters. The client side 
has two parameters or two types of clients: those who use smart phones and those who use normal computers. 
There are different configurations in both cases. On the other side are different servers and databases. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. An E-commerce Software System [3] 

The term “value” (i.e. v) is used to describe the configuration of each component. Thus, the system in Figure 1 
can be summarized as a five-parameter system with a combination of three parameters with two values, and two 
parameters with three values, as in Table 1. 

Table 1. An E- Commerce System Components and Configurations 
 Components or Parameters 

Payment 
Server 

Smart 
Phone 

Web 
Server 

User 
Browser 

Business 
Database 

Configurations 
or Values 

Master Card iPhone iPlanet Chrome SQL 
Visa Card Blackberry Apache Explorer Oracle 

   Firefox Access 

To reduce the risk and ensure the quality of such software, manufacturers may need to test all combinations of 
interactions (i.e. exhaustive testing), which requires 72 test cases (i.e. 2×2×2×3×3). However, testing of all 
combinations is practically impossible given large configurations or large components. Considering the pairwise 
(2-way) test generation for the E-commerce yields only 9 test cases (see Table 2). It should be noted that all the 
2-way interaction tuples between parameters are covered at-least once. 

Table 2. Pairwise Test Suite for E-Commerce System 
Test No. Payment Server Smart Phone Web Server User Browser Business Database 

1 Master Card Blackberry iPlanet Firefox Oracle 
2 Visa Card iPhone Apache Firefox SQL 
3 Master Card iPhone iPlanet Explorer Access 
4 Visa Card Blackberry Apache Chrome Access 
5 Visa Card iPhone iPlanet Chrome Oracle 
6 Master Card Blackberry Apache Explorer SQL 
7 Master Card iPhone iPlanet Chrome SQL 
8 Visa Card iPhone Apache Explorer Oracle 
9 Visa Card iPhone iPlanet Firefox Access 
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2.2.   The Covering Array Notation 

In general, t-way testing has strong associations with the mathematical concept of Covering Arrays (CA). For 
this reason, t-way testing  often adopts CA notation for representing t-way tests [42].  The notation CAλ (N;t,k,v) 
represents an array of size N with v values, such that every N×t sub-array contains all ordered subsets from the v 
values of size t at least λ times, and k is the number of components. To cover all t-interactions of the 
components, it is normally sufficient for each component to occur once in the CA. Therefore, with λ=1, the 
notation becomes CA (N;t,k,v). When the CA contains a minimum number of rows (N), it can be considered an 
optimal CA according to the definition in Equation 2.  

      𝐶𝐶𝐶𝐶𝑁𝑁(𝑆𝑆, 𝑘𝑘, 𝑐𝑐)  =  𝑚𝑚𝑖𝑖𝑖𝑖{𝑁𝑁:Ǝ 𝐶𝐶𝐶𝐶𝜆𝜆(𝑁𝑁; 𝑆𝑆, 𝑘𝑘, 𝑐𝑐)}     (2) 

To improve readability, it is customary to represent the covering array as CA (N;t,k,v) or simply CA(N;t,vk). 
Considering CA (9; 2, 34) as an example, the covering array represents the strength of 2 with 4 parameters and 3 
values each. In the case when the number of component values varies, this can be handled by Mixed Covering 
Array (MCA), MCA(N;t,k,(v1,v2,…vk)) [16]. Similar to the covering array, the notation can be represented by 
MCA (N;t,k,vk). Using our earlier example of the E-commerce system in Figure 1, the test suite can be 
represented as MCA (9; 2, 2332).  

2.3.   Meta-Heuristic based t-way Strategies  

The t-way test suite generation is an NP-hard problem [31] and significant research efforts have been carried out 
to investigate the problem.  Computationally, the current approach can be categorized into one-parameter-at-a-
time (OPAT) and one-test-at-a-time (OTAT) methods [35].  
 
Derived from the in-parameter-order (IPO) strategy [31], the OPAT method begins with an initial array 
comprising of several selected parameters. The array is then horizontally extended until reaching all the selected 
parameters based on the required interaction coverage. This is followed by vertical extension, if necessary, to 
cover the remaining uncovered interactions. The iteration continues until all the interactions are covered.  
 
Credited to the work of AETG [15], the OTAT method normally iterates over all the combinatorial interaction 
elements and generates a complete test case per iteration. While iterating, the strategy greedily checks whether 
the generated solution is the best fit value (i.e. covering the most uncovered interactions) from a list of potential 
solutions.  
 
Adopting either the OPAT or the OTAT method, much effort has recently been focused on the use of meta-
heuristic algorithms as part of the computational approach for t-way test suite generation. Termed Search based 
Software Engineering (SBSE), the adoption of meta-heuristic based strategies often produces more optimal test 
suite sizes although there may be tradeoffs in terms of computational costs.  
 
Meta-heuristic based strategies can start with a population of random solutions. Then, one or more search 
operators are iteratively applied to the population in an effort to improve the overall fitness (i.e. in terms of 
greedily covering the interaction combinations). While there are many variations, the main difference between 
meta-heuristic strategies are the search operators. As far as the t-way test suite construction, meta-heuristics 
such as Genetic Algorithms (GA) [41], Ant Colony Optimization (ACO) [14], Simulated Annealing (SA) [18, 
21], Particle Swarm Optimization (PSTG [4], DPSO [45], APSO [32]), Cuckoo Search (CS) [2] and Harmony 
Search Strategy (e.g. HSS) [6] have been reported in the scientific literature.  
 
Each meta-heuristic algorithm has its own advantages and disadvantages. With hybridization, each algorithm 
can exploit the strengths and cover the weaknesses of the collaborating algorithms. Many recent results from the 
scientific literature (e.g. [22, 40]) seem to indicate that hybridization improves the performance of meta-
heuristic algorithms.  
 
We propose an elegant form of hybridization based on the use of hyper-heuristics. To be specific, our work 
investigates the use of common heuristic selection and acceptance mechanisms, based on Exponential Monte 
Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR) and the newly 
developed Fuzzy Inference Selection (FIS), for selection based hyper-heuristics as a strategy for t-way test suite 
constructions. Additionally, we also evaluate the effectiveness of our newly developed fuzzy inference based 
heuristic selection and acceptance mechanism.  
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2.4.   Hyper-Heuristics and Related Work 

Hyper-heuristics are alternative to meta-heuristics. Hyper-heuristics can be viewed as a high-level methodology 
which performs a search over the space formed by a set of low level heuristics which operate on the problem 
space. Unlike typical meta-heuristics, there is a logical separation between the problem domain and the high 
level hyper-heuristic. Apart from increasing the level of generality, hyper-heuristics can also be competitive 
with bespoke meta-heuristics.  
 
Generally, hyper-heuristics can be classified as generative or selective [10]. Generative hyper-heuristics 
combine low-level heuristics to generate new higher level heuristics. Selective hyper-heuristics select from a set 
of low-level heuristics. Our work is based on selective hyper-heuristics. Selective hyper-heuristics can be online 
or offline. The former is unsupervised and learning happens dynamically during the search process, whilst the 
latter requires an additional training step prior to addressing the problem. For our work, we deal with online 
selective hyper-heuristics. 
 
Owing to how the search process is undertaken, the aforementioned hyper-heuristic classification (i.e. selective 
or generative) can further be extended to either perturbative or constructive [10]. Perturbative heuristics (also 
known as improvement heuristics) manipulate complete candidate solutions by iteratively changing their 
component(s). In the case of selection methodologies, perturbative hyper-heuristics provide a combination of 
low-level meta-heuristic operators and/or simple heuristic searches with the aim of selecting and applying them 
for the improvement of the current solution.  Some problems addressed with such hyper-heuristics are vehicle 
routing [40], project scheduling [8], timetabling [11], GA parameter tuning [23], and CAs construction [27, 49].  
 
Constructive hyper-heuristics process partial candidate solutions by iteratively extending missing element(s) to 
build complete solutions. As a selection methodology, this approach combines several pre-existing low-level 
constructive meta-heuristic operators, selecting and using the (perceived) best heuristic for the current problem 
state. Combinatorial optimization problems such as production scheduling [13], cutting and packing [43], and  
timetabling [7] have been successfully addressed with this approach.  
 
In the context of the current study, some previous hyper-heuristics research is particularly relevant. Choice 
Function (CF) and Exponential Monte Carlo with Counter (EMCQ) [9] are among the earliest hyper-heuristics 
reported in the scientific literature. CF exploits the reinforcement learning framework to penalize and reward 
(meta)-heuristics through a set of choice functions (f1, f2, f3).  The first parameter f1 relates to the effectiveness of 
the currently employed heuristic. The second parameter f2 evaluates the effectiveness of two heuristics when 
used consecutively. The third parameter f3 increases the probability of a heuristic being selected, over time, to 
encourage exploration. EMCQ adopts a simulated annealing like probability density function that is a function 
of the number of iterations. A worsening fitness causes EMCQ to decrease its acceptance probability. Both CF 
and EMCQ are further discussed in the next section. 
 
With regard to the use of a fuzzy inference system, as part of a hyper-heuristic, Asmuni et al. [7] developed a 
constructive hyper-heuristic for addressing the timetabling problem. In their work, the Mamdani type fuzzy 
system is responsible for scheduling courses based on the perceived difficulty. Different orderings are 
considered, for example, the event with the highest crisp value (most difficult) is scheduled first. Recently, 
Gudino-Penaloza et al. [23] developed a new hyper-heuristic using a Takagi-Sugeno based fuzzy inference 
system to adaptively adjust the control parameters of a GA. Although using fuzzy inference system, the works 
of both Asmuni et al. and Gudino-Penaloza et al. have a slightly different focus. Specifically, our work deals 
with heuristic selection and not event ordering or adaptive meta-heuristic parameter control adjustment.  
 
As far as the t-way test suite generation problem is concerned, the work of Jia et al. [27] can be considered the 
pioneering effort to investigate the usefulness of hyper-heuristics for t-way test generation. Similar to EMCQ, 
the work adopts a simulated annealing based hyper-heuristic, called HHSA, to select from variants of six 
operators (i.e. single/multiple/smart mutation, simple/smart add and delete row). HHSA demonstrates good 
performance in terms of test suite size as well as displaying elements of learning in the selection of the search 
operators.  
 
Complementing Jia et al., Zamli et al. [49] implemented  improvement selection rules (ISR) utilizing a selection 
hyper-heuristic based on tabu search and three measures (quality, diversify and intensify) to assist the heuristic 
selection process. Although showing promising results, the ISR selection rules are too strict, supporting only 
Boolean outcomes. Furthermore, the original ISR also implemented full meta-heuristic algorithms (i.e. 
comprising of Teaching Learning based Optimization (TLBO) [39],  Global Neighborhood Algorithm (GNA) 
[5],  Particle Swarm Optimization (PSO)[29], and Cuckoo Search Algorithm (CS) [47]) as its search operators.  
As such, the original ISR implementation is computationally heavy. Addressing the limitation of ISR, the 
proposed FIS adopts fuzzy rules that are able to accommodate partial truth allowing smoother transition between 
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the search operators. Additionally, it also incorporates lightweight search operators to minimize computational 
resources.    
 

3.   The Hyper-Heuristic Selection and Acceptance Mechanism 

The selection and acceptance mechanism for selection based hyper-heuristics is shown in Figure 2. The hyper-
heuristic selection and acceptance mechanism is represented by the dashed rectangle.  
 

Non-domain feedback 
on the quality of the 
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         TLBO Peer Learning 
         Search Operator

Potential Solutions

Hyper-Heuristic Selection  and 
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Figure 2. The Hyper-Heuristic Selection and Acceptance Mechanism 

 
We compare the performance of Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), 
Improvement Selection Rules (ISR) and the newly developed Fuzzy Inference Selection (FIS) as the selection 
and acceptance mechanism. We use four common search operators comprising of a GA crossover operator, a 
TLBO peer learning search operator, an FPA global pollination search operator and Jaya algorithm’s search 
operator.  
 
The selection of the search operators needs to take into account the balance between diversification and 
intensification. As such, any arbitrary (but balanced) selection of the search operators is also possible. In our 
case, the FPA global pollination and the Jaya algorithm serve as the global search operators. The GA crossover 
and the TLBO peer learning serve as the local search operators.  

3.1 Description of the Selection and Acceptance Mechanism 

The next subsections detail the selection and acceptance mechanisms. 
 
3.1.1 The Exponential Monte Carlo with Counter  
 
The Exponential Monte Carlo with Counter (EMCQ) is a parameter free hyper-heuristic developed by Ayob and 
Kendall [9]. EMCQ probabilistically accepts lesser quality solutions (similar to simulated annealing [30]) in 
order to escape from local optima. In EMCQ, the probability density is defined in Equation 3 as: 

       Ψ= 𝑐𝑐−𝛿𝛿∗𝑇𝑇/𝑞𝑞    (3) 
 

  

where δ is the difference in fitness value between the current solution (Si) and the previous solution (S0) (i.e. δ= 
f(Si) – f(S0)), t is the iteration counter, and q is a control parameter for consecutive non-improving iterations.  
 
Like simulated annealing, the probability density, Ψ, decreases towards zero as T increases. However, unlike 
simulated annealing, EMCQ does not use any specific cooling schedule, hence, it has no specific parameters that 
require tuning. Another feature is that EMCQ allows dynamic manipulation of the q parameter to increase or 
decrease the probability of accepting lesser quality moves.  To be specific, q is always incremented upon a poor 
move, and reset to 1 upon a good move in order to enhance the diversification of the solution. 
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Referring to the pseudo code of EMCQ in Figure 3, line 1 initializes the populations of the required t-way 
interactions, I = {I1, I2… IM}. The value of M depends on the given inputs interaction strength (t), parameter (k) 
and its corresponding value (v).  Specifically, M captures the number of required interactions that needs to be 
captured in the constructed covering array. Mathematically, M can be obtained as the sum of products of each 
individual’s t-wise interaction. For example, for CA (9;2, 34), M takes the value of 3x3+3x3+3x3+3x3+3x3+3x3 
= 54. If MCA (9; 2, 32 22) is considered, then M takes the value of 3x3+3x2+3x2+3x2+3x2+2x2= 37. Line 2 
defines the maximum iteration ϴmax and population size, S. Line 3 randomly initializes the initial population of 
solutions Z = {Z1, Z2… ZN}. Line 4 selects the random initial search operator, H0. Line 5 applies H0 to generate 
initial solution, S0. Line 6 sets Sbest = S0 as an initial value and Hi =H0 as the initial search operator. The main 
loop starts in line 7 and will iterate until the coverage of all interaction tuples (I). Line 8 assigns 1 to variable T 
which acts as a loop counter. The inner while loop starts in line 9 with ϴmax as the maximum number of 
iterations. Line 10 applies the current Hi to produce best Si to be added in the final test suite, Fs. Line 11 
computes the fitness difference, δ = f(Si) – f(Sbest). In lines 12-15, if the fitness improves (i.e. δ > 0), Hi is kept 
for the next iteration. Here, q is reset to 1 in line 14 (i.e. because the fitness improves). Line 17 computes the 
probability density, Ψ. In line 18, upon a poor move, the solution might be accepted based on the probability 
density Ψ. If accepted, Hi is kept and q is reset to 1 (as in lines 19-21), otherwise, Hi is changed and q is 
incremented by 1 (see lines 23-25).  Lines 27-28 update the values of Sbest and T for the next iteration. If there 
are uncovered t-wise interaction, the mentioned procedure is repeated again until termination. 
 

Figure 3. Pseudo Code for EMCQ 
 
 

3.1.2 The Choice Function 
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The Choice Function (CF), termed Choice Function Accept All Moves, was first proposed by Kendall et al.[28]. 
Based on the reward and punish approach, CF utilizes the choice function (F) to select from a set of low level 
heuristics. The corresponding values of F are calculated and updated for each individual low level search 
operator during execution. In our implementation, we adopt the variant of the choice function implementation 
by Drake et al. [20]; the Modified Choice Function.   

Similar to the original choice function implementation, the calculation of F depends on three parameters f1, f2, 
and f3. Parameter f1 measures the effectiveness of the currently employed search operator hi. The value of f1 for a 
particular search operator is evaluated using Equation 4:  

      𝑓𝑓1(𝐻𝐻𝑖𝑖) = 𝐼𝐼((𝑆𝑆𝑖𝑖(𝐻𝐻𝑖𝑖))/𝑇𝑇(𝐻𝐻𝑖𝑖)  + 𝜙𝜙 𝑓𝑓1(𝐻𝐻𝑖𝑖)     (4) 

   

where I(S𝑖𝑖(H𝑖𝑖)  is the change in solution fitness produced by hi, T(H𝑖𝑖) is the time taken by the search operator hi, 
and ϕ is a parameter from the interval (0,1) which gives greater importance to the heuristic’s recent 
performance.   

Parameter f2 (Hi,Hj) measures the effectiveness of the current search operator hi when employed immediately 
following hj. The value of f2 is computed using Equation 5. 

     𝑓𝑓2(𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗) = 𝐼𝐼((𝑆𝑆𝑖𝑖(𝐻𝐻𝑖𝑖), (𝑆𝑆𝑗𝑗(𝐻𝐻𝑗𝑗))/𝑇𝑇�𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗�  + 𝜙𝜙𝑓𝑓2(𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗)     (5) 

where I((S𝑖𝑖(𝐻𝐻𝑖𝑖), (S𝑗𝑗(H𝑗𝑗)) is the change in fitness of hi and hj, T (Hi, Hj) is the time taken by both the heuristics 
and ϕ is same as in f1.  

Parameter f3 captures the time elapsed since the search operator hk had been called. The parameter f3 is computed 
using Equation 6: 

     𝑓𝑓3(𝐻𝐻𝑘𝑘) = 𝜏𝜏(𝐻𝐻𝑘𝑘) 𝑤𝑤ℎ𝑐𝑐𝑐𝑐𝑐𝑐 𝑘𝑘 = 0 𝑆𝑆𝑐𝑐 𝑁𝑁 − 1     (6) 

where N is equal to the total number of available operators. 
 
Using the calculated f1, f2, and f3 values, the Modified Choice Function F gives a score to each search operator in 
order to select the best one based on Equation 7. 

     𝐹𝐹𝑡𝑡(𝐻𝐻𝑖𝑖) = 𝜙𝜙𝑓𝑓1(𝐻𝐻𝑖𝑖) +  𝜙𝜙𝑓𝑓2(𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗) +  𝛿𝛿𝑓𝑓3(𝐻𝐻𝑖𝑖)     (7) 

where t represents the current invocation.  

Following the recommendation by Drake et al. [20], the values of ϕ and δ are initially set at 0.5. If the solution 
fitness improves in any iteration, ϕ is given the highest value of the interval (0, 1) whereas δ is given the lowest 
value. In case of a low-quality solution, the value of ϕ is decreased by 0.01 and the value of δ is automatically 
increased (see Equation 9). This leads to the diversification of the heuristic search process. The settings make 
the intensification factor prominent in the evaluation of F. For each iteration, the values of ϕt and δt in the 
Modified Choice Function are calculated as shown in Equations 8 and 9: 

    𝜙𝜙𝑡𝑡 =

�
0.99,                                          𝑖𝑖𝑓𝑓 𝑞𝑞𝑆𝑆𝑞𝑞𝑞𝑞𝑖𝑖𝑆𝑆𝑞𝑞 𝑖𝑖𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    

𝑚𝑚𝑞𝑞𝑚𝑚{𝜙𝜙𝑡𝑡−1 − 0.01,0.01} ,            𝑖𝑖𝑓𝑓 𝑞𝑞𝑆𝑆𝑞𝑞𝑞𝑞𝑖𝑖𝑆𝑆𝑞𝑞 𝑑𝑑𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑞𝑞𝑆𝑆𝑐𝑐𝑐𝑐      

     
 (8) 

    
 𝛿𝛿𝑡𝑡 = 1 − 𝜙𝜙𝑡𝑡 

   
 (9) 

For each heuristic, the value 0.01 always ensures some non-negative influence of the ϕ on the value of F. The 
complete pseudo code for the Modified Choice Function is shown in Figure 4.  
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Lines 1-3 perform the necessary initialization related to the t-way problem (similar to the case of EMCQ). Line 
4 initializes the value of ϕ and δ. Line 5 randomly selects any meta-heuristic Hi to produce an initial solution Si. 
The initial values for the three measures f1, f2, and f3 are computed (6-8). Line 9 sets the current heuristic Hi to 
last heuristic Hj. The main loop starts in line 10 and will iterate until the coverage of all interaction tuples (I). 
Line 11 assigns 1 to variable T which acts as a loop counter. The inner while loop starts in line 12 with ϴmax as 
the maximum number of iterations. The marking of the heuristics for selection begins in line 13 with the 
computation of the Modified Choice Function F. Line 14 applies the search operator which maximizes F. The 
best Si is added to the final test suite, Fs. The computation of the three measures is performed in lines 15-17. If 
the solution fitness improves (i.e. I((S𝑖𝑖(𝐻𝐻𝑖𝑖) ≥ 0)) the values of ϕ and δ are set to 0.99 and 0.01 (in lines 19-20) 
respectively. In line 21, the solution fitness of the last heuristic, Hj is also computed. In the case of a poor 
fitness, ϕ is decreased linearly (lines 24-25) and the new value for δ as δ = 1 - ϕ is computed in line 27. The 
solution fitness of the current heuristic is set to 0.00 (line 28) as it is poor. Lines 30-31 update Hj and T for the 
next iteration.   

Figure 4: Modified Choice Function 
 

3.1.3 Improvement Selection Rules 
 
The improvement selection rules (ISR) is proposed by Zamli et al. [49]. The main feature of ISR is that it 
exploits three rules via its improvement, diversification and intensification operators. The improvement operator 
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checks for improvements in the objective function. The diversification operator measures how diverse the 
current and the previously generated solutions are against the population of potential candidate solutions. 
Finally, the intensification operator evaluates how close the current and the previously generated solution are 
against the population of solutions. Apart from its three operators, ISR also exploits a Tabu List to penalize its 
poorly performing heuristics. Figure 5 summarizes the pseudo code for ISR.   
 

Figure 5. Improvement Selection Rules 

Lines 1-3 perform the t-way problem initialization (similar to the EMCQ and the choice function described 
earlier). Lines 4-5 select H0 randomly to produce S0 from the four available meta-heuristics. The main loop 
starts in line 6 and will iterate until the coverage of all interaction tuples (I). Line 7 assigns 1 to variable T which 
acts as a loop counter. The inner while loop starts in line 8 with ϴmax as the maximum number of iterations. In 
line 9, Hi is summoned to produce the best Si to be added to the final test suite, Fs. To decide whether to select a 
new LLH or not, the three operators, comprising the improvement, diversification and intensification (lines 10-
12) will be used. The improvement operator compares the current Si against the previous Si-1 from the final test 
suite Fs. F1 evaluates to true only if Si ≥ previous Si-1. The diversification operator exploits the hamming distance 
measure to evaluate the diversification of each Si solution (i.e. in terms of how far Si is from the population of 
candidate solutions).  Like the diversification operator, the intensification operator also exploits the hamming 
distance to evaluate the intensification of each previous S solution. Unlike the diversification operator, the 
intensification operator measures the intensification value, Iv, of Si against the final test suite Fs population (i.e. 
how close is Sbest to the final test suite). To be more specific, the intensification value can be defined as the 
cumulative sum of the hamming distance of each individual Fs population with Si.  Here, the current value of Iv 
will be compared to the previous value of Iv (i.e. from the previous iteration). F3 evaluates to true only if the 
current Iv ≤ the previous Iv. 

In line 13, the selection and acceptance mechanism, Ψ (Hi, F1, F2, F3) evaluates to true, if and only if, F1 = true 
and F2 = true and F3 = true. If Ψ (Hi, F1, F2, F3) evaluates to false, the new Hi will be selected (and the current 
Hi will be put in the Tabu List).  
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Referring to lines 18-22, the current Hi is penalized and will miss at least one turn from being selected in the 
next iteration. Apart from one’s own performance in terms of objective value improvement, diversification, and 
intensification, a particular search operator can be chosen more frequently than others owing to the random 
selection of search operators within the Tabu List (line 19). 

3.1.4 Fuzzy Inference Selection 
 
Finding the right fuzzy membership estimation is actually a very challenging process (as the only restriction that 
a membership function has to satisfy is its value be in [0,1] range). Design choices are often problem dependent, 
hence, cannot be easily generalized.  Literature [36] suggests at least three approaches for membership function 
estimation (i.e. expert-driven approaches via knowledge acquisition from experts, data-driven approaches via 
structuralisation of data, and principle of justifiable granularity via information granularity in terms of sufficient 
experimental evidence and high specificity). In our current work, we have adopted the variant of expert-driven 
(as we have exploited existing knowledge on the fuzzy inference as well as on our problem domain).  

A number of design choices are relevant in the implementation of the proposed Fuzzy Inference Selection (FIS) 
as follows: 

• Mamdani with triangular/trapezoidal membership – As fuzzy rules can be expressed as linguistic constraints 
that are easy to understand and maintain, Mamdani inference is preferred over Sugeno. Furthermore, 
previous studies which combine fuzzy and meta-heuristics often favor Mamdani inference. In fact, the 
majority of these studies used Mamdani inference with centroid defuzzification and implemented either 
triangular/trapezoidal or Gaussian membership function. Empirical analysis using both types of membership 
functions showed that triangular/trapezoidal membership functions gave better performance over Gaussian 
ones [12, 19]. Therefore, in this study, the fuzzy inference system that uses Mamdani type inference with 
triangular/trapezoidal membership function and centroid defuzzification has been chosen for our 
implementation. 

• Membership cardinality, fuzzy rules and normalization – The proposed FIS as the search operator selection 
and acceptance mechanism is derived from our earlier work on ISR described in [49]. Like ISR, FIS adopts 
three operators (i.e. improvement, diversification intensification) based on a Hamming distance measure. 
Recall that the improvement operator checks for improvements in the quality of the objective function. The 
diversification operator measures how diverse the current and the previously generated solutions are against 
the population of potential candidate solutions. Finally, the intensification operator evaluates how close the 
current and the previously generated solutions are against the population of solutions. Based on the three 
defined operators, we propose three membership functions representing input for each operator. Owing to its 
origin, the FIS fuzzy rules have been designed based on the ISR Boolean logic. However, unlike ISR which 
uses strict Boolean logic, the proposed FIS also accepts partial truth (i.e. based on some degree of 
membership) allowing more objective control to maintain or potentially change any particular search 
operator during runtime. In this case, the operator selection is set as the output variable.  Concerning 
normalization of input and output values, we exploit our knowledge on the maximum possible hamming 
distance range based on the specified input parameters and its values.   

• Linguistic terms and their overlapping functions – We have chosen three overlapping (and equal-width) 
linguistic terms for all membership functions between the multiple interval ranges of 0, 25, 50, 75 and 100. 
The choice for the number of linguistic terms can be seen as two sides of the same coin. Too many linguistic 
terms invite more rules, hence, potentially introduce more elaborate computations (and it also affects the 
widths and the interval ranges). Too little linguistic terms hinder good decision making.  As our application 
involves non-intricate fuzzy decision making, we foresee three linguistic terms for inputs and two linguistic 
terms for output are sufficiently adequate. Concerning overlapping, we have adopted the work of Mizumoto 
[34] which suggests that overlapping linguistic terms must start at their center points, where the performance 
of the fuzzy system is at best (i.e. considering completely  non-overlapping of linguistic terms may not fire 
any rules given out-of-range input values).   

 

Given the aforementioned design choices, we have elaborately experimented with a number of 
triangular/trapezoidal membership function estimations (with 3 membership functions, 3 input linguistic terms 
and 2 output linguistic terms)  and evaluated our results (i.e. guided by optimal mean results) against the well-
known covering arrays as published in [45]. As suggested by our findings, the current membership function 
estimation (as shown in Figure 6) gives the best overall performances.  
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OUTPUT MEMBERSHIP

FUZZY INFERENCE SELECTION

Maintain Selection Rules
RULE 1 : IF Quality IS Excellent AND Diversification IS Excellent AND Intensification IS Excellent 
                THEN Selection IS Maintain;

May Change  Selection Rules 
RULE 2 : IF Quality IS Excellent AND Diversification IS Excellent AND Intensification IS Good 
               THEN Selection IS May_Change;
RULE 3 : IF Quality IS Excellent AND Diversification IS Good AND Intensification IS Excellent 
                THEN Selection IS May_Change;
RULE 4 : IF Quality IS Good AND Diversification IS Excellent AND Intensification IS Excellent 
                THEN Selection IS May_Change;

Change  Selection Rules
RULE 5 : IF Quality IS Poor THEN Selection IS Change;
RULE 6 : IF Diversification IS Poor THEN Selection IS Change;
RULE 7 : IF Intensification IS Poor THEN Selection IS Change;
RULE 8 : IF Quality IS Good AND Diversification is Good AND Intensification IS Good 
                THEN Selection IS Change;
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Figure 6. Fuzzy Inference Selection 

The block, labeled INPUT MEMBERSHIP takes the crisp values of the three operators and fuzzifies them. The 
fuzzification process is based on three defined triangular/trapezoidal membership functions with linguistic terms 
namely Poor, Good and Excellent. It is worth noting that the triangular/trapezoidal membership functions for the 
diversification operator and improvement operator are identical. The values in the range of 0-50 are considered 
Poor. The values in the range of 25-75 are considered Good and the values in the range of 50-100 are 
considered Excellent. In the case of the intensification operator, the Excellent range and the Poor range are 
swapped (i.e. Excellent range is defined from 0-50 whilst the Poor range is defined from 50-100). There is no 
change as far as the Good range is concerned. 

Given the defined membership functions and based on the parameter inputs (i.e. interaction strength (t), 
parameter (k) and its corresponding value (v)), each of the crisp input from each operator need to undergo 
normalized scaling to fit in the defined percentage range. In general, the normalized values are computed as 
follows (based on Equation 10):   

      𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐹𝐹𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝑠𝑠 ∗ 100)/(𝐹𝐹𝑚𝑚𝑠𝑠𝑚𝑚)   (10) 

 

The Fmax value depends on the operator. Concerning the diversification operator, the Fmax corresponds to the 
maximum diversity possible (i.e. all the values within inputs are completely changed). For this reason, Fmax is 
always equal to the input parameter (k). As for the intensification operator, Fmax corresponds to the maximum 
intensification possible (i.e. again with all the values within inputs are completely changed). As such, Fmax for 
the intensification operator is also always equal to the input parameter (k). Contrary to this, Fmax calculation is 
different for the improvement operator.  Here, Fmax corresponds to the maximum possible interaction coverage 
given as input parameter (k) and interaction strength (t). Specifically, Fmax for the improvement operator can be 
mathematically defined by Equation 11.  

 

 
 

𝐹𝐹𝑚𝑚𝑠𝑠𝑚𝑚   𝑓𝑓𝑐𝑐𝑐𝑐 𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑚𝑚𝑐𝑐𝑖𝑖𝑆𝑆 𝑂𝑂𝑖𝑖𝑐𝑐𝑐𝑐𝑞𝑞𝑆𝑆𝑐𝑐𝑐𝑐 =  𝐶𝐶𝑘𝑘 𝑡𝑡 =  
𝑘𝑘!

𝑆𝑆! (𝑘𝑘 − 𝑆𝑆)!
   (11) 
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For the OUTPUT MEMBERSHIP block, a single output operator called Selection is defined. The Selection 
operator has three linguistic terms called Change, May Change, and Maintain represented by the triangular/ 
trapezoidal membership function (similar to intensification and diversification operators) taking the ranges of 0-
50, 25-75 and 50-100 respectively.  
 
The FUZZY RULES block lists the linguistic rules of FIS. The total number of rules r for a fuzzy system is 
determined by Equation 12.  

      𝑐𝑐 =  ∏ 𝑓𝑓𝑖𝑖 𝑁𝑁
𝑖𝑖    (12) 

where N is the total number of crisp inputs and fi is the number of terms for each input variable.  

In our case, there are potentially 33 or 27 rules for the FIS (as each operator takes three linguistic terms). Based 
on our observation, the rules can be reduced to 8 rules as shown in Figure 6. Specifically, the selection of the 
search operator will not be changed (i.e. Maintain) if all three operators’ values are evaluated as Excellent. The 
search operator may be changed (i.e. May Change) if any of the two operators’ values are Excellent and the third 
value is Good. FIS changes (i.e. Change) the search operator for the next iteration if any one of the operators is 
Poor or all operators are Good. 

Finally, the Fuzzy Inference Selection aggregates the reasoning and takes fuzzy actions in light of input/output 
memberships, linguistic variables and fuzzy rules. The fuzzy results are then forwarded to the DEFUZZIFIER 
block. This block translates the fuzzy results into crisp output using the Center of Gravity, based on the defined 
DEFUZZIFIER block in order to produce crisp values for the control variables (see Equation 13).  

      𝑈𝑈 =  ∫
𝑈𝑈 𝜇𝜇 (𝑈𝑈) 𝑠𝑠𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀

∫  𝜇𝜇 (𝑈𝑈) 𝑠𝑠𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀

 
  

Summing up, Figure 7 summarizes the complete FIS pseudo code.  

 

 

 

 

 

 

(13) 



14 
 
 

Figure 7. Fuzzy Inference Selection 

Lines 1-3 perform t-way problem initialization similar to the earlier described hyper-heuristics. The maximum 
operator value, F_Max, is computed in line 4. Line 5 defines the fuzzy rules used by the FIS. The main loop 
starts in line 6 which repeats the necessary steps until the coverage of all interaction tuples (I). Line 7 sets 
variable T to value 1. The inner loop starts in line 8 that runs for ϴmax. Line 9 selects Hi in order to produce a 
solution Si and add it to Fs. Lines 10-12 compute the values of the three operators (i.e. improvement F1, 
diversification F2, as well as intensification F3). These values will be utilized for the fuzzy based selection of Hi. 
Line 13 computes the scaled value for each operator Fi as Fscaled as Fscaled = (Factual×100)/Fmax . Lines 14-17, 
encompass the FIS logic. In line 14, the scaled value of each operator and the Selection output variable are 
translated into linguistic terms with trapezoidal membership functions (as depicted in the INPUT/OUTPUT 
MEMBERSHIP blocks in Figure 6). FIS, in line 15, combines all the fuzzy information for the DEFUZZIFIER 
block. The defuzzifier produces the crisp output in Line 16. Line 17 assigns the crisp output to the Selection 
variable. In lines 18-25, the fuzzy inference selection will decide, based on the Selection value, whether to 
maintain, change or may change the heuristic Hi for the next iteration. In case, the operator is found Poor (lines 
18-19), the current Hi will be replaced in the next iteration. When the Selection variable is in range (Selection > 
40.0 and ≤ 60.0), the current Hi may or may not be changed for the next iteration (lines 21-22). FIS keeps the 
current Hi (line 24) for the next iteration if the Selection variable is greater than 60. Line 26 updates T for the 
next iteration.  

3.2 Description of the Search Operators 

 
The next subsections provide the description of the adopted search operators. 
 
3.2.1 The Genetic Algorithm Crossover Search Operator 
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The crossover search operator is derived from the Genetic Algorithm [25]. The complete algorithm is defined in 
Figure 8. Initially, Sbest is set to Z0 in line 1. The loop starts in line 2. The crossover operation occurs between a 
randomly selected Zi against the existing Zi in the population over the randomized length (α) (in lines 3-5). If the 
newly updated Zi has a better fitness value, the value of Zi is updated accordingly (in lines 6-7). The fitness of 
the current Zi is checked against Sbest. Sbest will be updated if it has better fitness than Zi (in lines 9-10). 

 
Figure 8. GA Crossover Search Operator 

3.2.2 Teaching Learning based Optimization Peer Learning Search Operator 
 
As the name suggests, the TLBO peer learning search operator is derived from the learning phase of the 
Teaching Learning based Optimization Algorithm [39]. The algorithm was originally proposed as a local search 
operator. Figure 9 presents the complete algorithm. 
 
Initially, Sbest is set to Z0 in line 1. The loop starts from line 2. The learning happens within the loop (lines 3-10).  
The idea is that each student attempts to improve his knowledge through interaction with his peers. To be 
specific, the student Zi will select a random peer learner Zj (where Zi ≠ Zj) (line 3). The scaling factor is set 
randomly chosen from (0,1) in line 4. If Zi has better fitness than Zj, the latter is moved toward the former (line 
6) and vice versa (line 9). If the newly updated Zi has a poorer fitness value, no update is made to Zi (in lines 11-
12). The fitness of the current Zi is checked against Sbest and will be updated if it has better fitness than Zi (in 
lines 14-15). 



16 
 
 

Figure 9. TLBO Algorithm’s Peer Learning Search Operator 

 
3.2.3 Flower Pollination Algorithm Global Pollination Operator 
 
The FPA global pollination search operator is derived from the Flower Pollination Algorithm [48]. The global 
pollination operator exploits Lévy Flight motion to update all the (column-wise) values for Zi of interest instead 
of only perturbing one value, thus, making it a global search operator. The complete algorithm is summarized in 
Figure 10. 
 
Considering the flow of the global pollination operator, Sbest is initially set to Z0 in line 1. The loop starts in line 
2. The value of Zi will be iteratively updated using the transformation equation exploiting the Lévy Flight 
motion (in lines 4-6).  The Lévy Flight motion is a random walk that takes a sequence of jumps, which are 
selected from a heavy tailed probability function.  For our Lévy Flight implementation, we adopt the well-
known Mantegna’s algorithm [47]. Within this algorithm, a step length can be defined as (See Equation 14): 

      𝑆𝑆𝑆𝑆𝑐𝑐𝑖𝑖 =  𝑎𝑎

[𝑣𝑣]
1
𝛽𝛽
   (14) 

where 𝑆𝑆 and 𝑐𝑐  are approximated from the normal Gausian distribution in which: 

      𝑆𝑆 ≈ 𝑁𝑁(0,𝜎𝜎𝑎𝑎2)  ∙  𝜎𝜎𝑎𝑎            𝑐𝑐 ≈ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) ∙  𝜎𝜎𝑣𝑣 
  (15) 

For  𝑐𝑐  value estimation, we use 𝜎𝜎𝑣𝑣 = 1. For 𝑆𝑆 value estimation, we evaluate the Gamma function(ᴦ) with the 
value of 𝛽𝛽 = 1.5 [46], and  obtain 𝜎𝜎𝑎𝑎  using Equation 16: 

      𝜎𝜎𝑎𝑎 =   �
  ᴦ(1+𝛽𝛽 ) × 𝑐𝑐𝑖𝑖𝑖𝑖� 𝜋𝜋𝛽𝛽2  �

 ᴦ � (1+𝛽𝛽)
2  � × 𝛽𝛽 × 2 �𝛽𝛽−12 �  

�

1
𝛽𝛽

 
  

 (16) 

In our case, the Gamma function(ᴦ) implementation is adopted from William et al. [37]. 
 
If the newly updated Zi has a better fitness value, then the current Zi is replaced (in lines 6-7). The value of Sbest 
is also updated if it has a better fitness value than that of Zi (in lines 8-9). If the newly updated Zi has a poorer 
fitness value, no update is made to Zi (in lines 12-16). The fitness of the current Zi is checked against Sbest. Sbest 
will be updated if it has better fitness than Zi (in lines 13-14). 
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Figure 10. Flower Algorithm’s Global Pollination Operator 

 
3.2.4 Jaya Algorithm’s Search Operator 

 
The Jaya search operator is derived from the Jaya algorithm [38]. The complete description of the Jaya operator 
is summarized in Figure 11. 
 
Unlike the search operators described earlier (i.e. keeping track of only Sbest), the Jaya search operator keeps 
track of both Sbest and Spoor. As seen in line 6, the Jaya search operator exploits both Sbest and Spoor as part of its 
transformation equation.  Although biased towards global search, the transformation equation can also address 
local search. In the case when ΔS= Sbest -Spoor is sufficiently small, the transformation equation offset (in line 
with the term ʊ·(Sbest – Zi) - ζ·(Spoor – Zi)) will be insignificant relative to the current location of Zi allowing 
steady intensification process. 
 
As far as the flow of the Jaya operator is concerned, lines 1-2 sets up the initial values for Sbest = Z0 and Spoor = 
Sbest. The loop starts from line 3. Two random values ʊ and ζ are generated to compensate and scale down the 
delta differences between Zi with Sbest and Spoor in the transformation equation (in lines 4-6).  If the newly 
updated Zi has a better fitness value, then the current Zi is replaced accordingly (in lines 7-8). In a similar 
manner, the value of Sbest is also updated if it has a better fitness value than that of Zi (in lines 9-10). In the case 
when the newly updated Zi has a poorer fitness value, no update is made to Zi (in lines 13-20). In such a case, the 
fitness of the current Zi is checked against both the fitness of Sbest and Spoor. If the fitness of the current Zi is 
better than that of Sbest, Zi is assigned to Sbest (in lines 14-15).  Similarly, if the fitness of the current Zi is poorer 
than that of Spoor, Zi is assigned to Spoor (in lines 17-18). 
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Figure 11. Jaya Search Operator 

4.   The Experiments 

Our experiments focus on three related goals: (1) to characterize the performance of the implemented hyper-
heuristic with each other; (2) to gauge the distribution pattern of the selected search operators by each hyper-
heuristic selection and acceptance mechanism; and (3) to benchmark the implemented hyper-heuristics against 
other meta-heuristic approaches.    
 
We have divided our experiments into three parts. In the first part, we highlight the average time and size 
performance of the implemented hyper-heuristics. In the second part, we benchmark the size performance of our 
hyper-heuristic implementation against themselves as well as against existing meta-heuristic based strategies. 
 
As highlighted in an earlier section (see Figure 2), although all the hyper-heuristics are adopting different 
selection and acceptance mechanisms, they employ the same low level search operators (i.e. based on GA 
crossover search operator, TLBO peer learning search operator, FPA global pollination search operator, and 
Jaya search operator). In our experiments, all the hyper-heuristics have the same population size (ϴmax = 20) and 
the same maximum number of iterations (S=100).  All the hyper-heuristics use the same data structure and are 
implemented using the Java programming language.  For these reasons, comparative experiments amongst the 
various hyper-heuristics, we believe, are fair. 
 
The same observation cannot be generalized in the case of meta-heuristics based strategies. Each meta-heuristic 
requires the specific parameter settings (e.g. PSO relies on population size, inertia weight, social and cognitive 
parameters, while Cuckoo Search relies on elitism probability, iteration and population). As the meta-heuristic 
based strategy implementations are not available to us, we cannot modify the algorithm internal settings and 
fairly run our own experiments. For this reason, we opt only to compare test size performance and its average.  
 
Our experimental platform comprises of a PC running Windows 10, CPU 2.9 GHz Intel Core i5, 16 GB 1867 
MHz DDR3 RAM and a 512 MB of flash HDD.  We represent all our experimental results in the tables for all 
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the corresponding strategies. With the exception of the hyper-heuristic results, all other results are based on each 
strategy’s respective publication. Cells marked “NA” (not available) indicate that the results were not available 
for those specific configurations of the strategy. In line with the published results and the evidence in the 
literature, we have run each experiment 30 times and report the best and the average size (as shaded cells) as 
well as the best average time (as bold cells in Table 3) whenever possible for these runs to give a better 
indication for the performance of the strategies of interest. Additionally, we also record the normalized 
percentage distribution of low level search operators by each hyper-heuristic selection and acceptance 
mechanism for each benchmark experiment undertaken. 
 

4.1.   Characterizing the Implemented Hyper-Heuristic Selection and Acceptance Mechanisms 

 
To characterize the size and average time performances of the implemented hyper-heuristic selection and 
acceptance mechanism, we have adopted an experiment from  [45]. Table 3 highlights our results. In order to 
depict the variation of the obtained results (i.e. patterns) from each implemented hyper-heuristic selection and 
acceptance mechanism, we construct the box plots (see Figure 12) based on the results in Table 3. Meanwhile, 
Figure 13 summarizes the percentage distribution of low level search operators by each hyper-heuristic strategy. 

Table 3. Size and Average Time Performances for the Implemented Selection and Acceptance Mechanisms 

CA 

Exponential Monte Carlo with 
Counter Choice Function Improvement 

Selection Rules Fuzzy Selection 

Size  
Ave Time 

(sec) 
 

Size Ave 
Time 
(sec) 

 

Size Ave 
Time 
(sec) 

 

Size Ave 
Time 
(sec) 

 
Best Ave Best Ave Best Ave Best Ave 

CA1 (N; 2, 313) 18 19.05 29.71 18 19.45 20.37 18 18.90 30.12 17 18.65 30.28 
CA2 (N; 2, 1010) 155 157.20 116.49 157 172.05 116.71 156 157.35 127.18 153 157.10 131.21 
CA3 (N; 3, 36) 33 38.85 13.32 33 38.90 12.17 33 37.75 13.71 33 38.20 13.64 
CA4 (N; 3, 66) 323 326.70 165.28 323 327.40 165.70 322 326.20 168.22 323 326.15 170.56 

CA5 (N; 3, 106) 1485 1496.50 999.65 1483 1499.25 1000.10 1482 1486.80 1003.99 1481 1486.20 1005.23 

CA6 (N; 3, 524232) 100 107.35 42.13 100 113.20 36.76 100 105.55 48.22 100 105.95 43.35 
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f) Box Plot for CA6 (N; 3, 524232)

b) Box Plot for CA2 (N; 2, 1010)a) Box Plot for CA1 (N; 2, 313) c) Box Plot for CA3 (N; 3, 36)

d) Box Plot for CA4 (N; 3, 66) e) Box Plot for CA5 (N; 3, 106)
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Figure 12. Box Plots for Table 3 
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b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 

Figure 13. Search Operator Normalized Percentage Distribution for all CA1-CA6 in Table 3  

4.2.   Benchmarking against existing Meta-Heuristic based Strategies 

 
To put our work into perspective, we also benchmark our work against existing meta-heuristic based strategies 
as published in [4, 32, 45]. Tables 4–9 depict the results obtained for the comparative experiments. Figures 14–
19 summarize the percentage distribution of low level search operators by each hyper-heuristic strategy of 
interest. 

Table 4. Size Performance for CA (N; 2, 3k) 

K 

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies 

PSTG [4]  DPSO [45] APSO [32] CS [2] 
Exponential 
Monte Carlo 
with Counter 

Choice 
Function 

Improvement 
Selection Rules  Fuzzy Selection 

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave 
3 9 9.55 NA NA 9 9.21 9 9.60 9 9.83 9 9.7  9 9.90 9 9.67 
4 9 10.15 9 9.00 9 9.95 9 10.00 9 9.00 9 9.0 9 9.00 9 9.00 
5 12 13.81 11 11.53 11 12.23 11 11.80 11 11.24 11 11.3 11 11.30 11 11.23 
6 13 15.11 14 14.50 12 13.78 13 14.20 14 14.27 13 14.36 13 14.46 13 14.03 
7 15 16.94 15 15.17 15 16.62 14 15.60 15 15.07 15 15.23 15 15.10 14 15.07 
8 15 17.57 15 16.00 15 16.92 15 15.80 15 15.77 15 16.16 15 15.90 15 15.79 
9 17 19.38 15 16.43 16 18.31 16 17.20 15 16.23 15 16.43 15 16.10 15 15.97 

10 17 19.78 16 17.30 17 18.12 17 17.80 16 17.10 16 17.2 16 17.50 16 17.03 
11 17 20.16 17 17.70 NA NA 18 18.60 17 18.90 18 18.50 17 18.30 16 17.45 
12 18 21.34 16 17.93 NA NA 18 18.8 16 17.96 17 18.29 17 18.40 16 17.80 
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b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 
 

Figure 14. Search Operator Normalized Percentage Distribution for CA (N; 2, 3k) in Table 4 

Table 5. Size Performance for CA (N; 3, 3k) 

K 

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies 

PSTG [4] DPSO  [45] APSO [32]  CS [2] 
Exponential 
Monte Carlo 
with Counter 

Choice 
Function 

Improvement 
Selection Rules 

Fuzzy 
Inference 
Selection 

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave 
4 27 29.30 NA NA 27 28.90 28 29.00 27 28.83 27 29.20 27 30.06 27 27.23 
5 39 41.37 41 43.17 41 42.20 38 39.20 39 41.47 38 41.40 39 41.60 37 41.30 
6 45 46.76 33 38.30 45 46.51 43 44.20 33 38.63 33 38.37 33 38.47 33 36.77 
7 50 52.20 48 50.43 48 51.12 48 50.40 49 50.46 49 50.50 49 50.47 48 50.40 
8 54 56.76 52 53.83 50 54.86 53 54.80 52 53.27 52 53.93 52 53.27 53 53.40 
9 58 60.30 56 57.77 59 60.21 58 59.80 56 57.79 57 58.07 56 57.87 56 57.77 

10 62 63.95 59 60.87 63 64.33 62 63.60 59 61.17 60 60.77 60 60.10 59 61.03 
11 64 65.68 63 63.97 NA NA 66 68.20 63 63.87 64 65.27 63 63.67 63 63.53 
12 67 68.23 65 66.83 NA NA 70 71.80 65 67.61 66 68.13 65 66.93 65 66.13 

 

b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 

Figure 15. Search Operator Normalized Percentage Distribution for CA (N; 3, 3k) in Table 5 
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Table 6. Size Performance for CA (N; 4, 3k) 

k 

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies 

PSTG [4]  DPSO [45] APSO [32]  CS [2] 
Exponential 
Monte Carlo 
with Counter 

Choice 
Function 

Improvement 
Selection Rules 

Fuzzy Inference 
Selection 

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave 
5 96 97.83 NA NA 94 96.33 94 95.80 81 84.23 81 89.07 81 88.27 81 87.27 
6 133 135.31 131 134.37 129 133.98 132 134.20 130 133.33 129 133.83 129 134.17 129 134.10 
7 155 158.12 150 155.23 154 157.42 154 156.80 149 154.27 151 155.17 147 153.53 147 153.90 
8 175 176.94 171 175.60 178 179.70 173 174.80 172 174.96 173 175.47 171 174.83 171 174.47 
9 195 198.72 187 192.27 190 194.13 195 197.80 160 187.87 142 190.53 171 190.33 159 189.47 

10 210 212.71 206 219.07 214 212.21 211 212.20 206 209.00 205 208.83 206 208.77 206 208.67 
11 222 226.59 221 224.27 NA NA 229 231.00 221 224.67 222 226.13 221 224.33 221 223.13 
12 244 248.97 237 239.85 NA NA 253 255.80 237 238.51 237 239.21 236 238.11 235 237.43 

 

b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 

Figure 16. Search Operator Normalized Percentage Distribution for CA (N; 4, 3k) in Table 6 

Table 7.Size Performance for CA (N; 2, v7) 

V 

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies 

PSTG [4]  DPSO [45] APSO [32] CS [2] 
Exponential 
Monte Carlo 
with Counter 

Choice 
Function 

Improvement 
Selection Rules 

Fuzzy Inference 
Selection 

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave 
2 6 6.82 7 7.00 6 6.73 6 6.80 7 7.00 7 7.00 7 7.00 7 7.00 
3 15 15.23 14 15.00 15 15.56 15 16.20 15 15.13 15 15.13 15 15.17 14 15.00 
4 26 27.22 24 25.33 25 26.36 25 26.40 24 25.07 24 25.47 23 25.00 24 24.87 
5 37 38.14 34 35.47 35 37.92 37 38.60 34 35.83 34 36.63 34 35.90 34 35.70 
6 NA NA 47 49.23 NA NA NA NA 48 49.00 48 49.67 47 49.51 47 48.75 
7 NA NA 64 66.37 NA NA NA NA 64 65.93 64 66.85 64 66.25 64 65.65 
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b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 

Figure 17. Search Operator Normalized Distribution for CA (N; 2, v7) in Table 7 

Table 8. Size Performance for CA (N; 3, v7) 

v 

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies 

PSTG [4]   DPSO [45] APSO [32] CS [2] 
Exponential 

Monte Carlo with 
Counter 

Choice Function Improvement 
Selection Rules 

Fuzzy Inference 
Selection 

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave 
2 13 13.61 15 15.06 15 15.80 12 13.80 14 15.17 15 15.17 15 15.20 12 15.00 
3 50 51.75 49 50.60 48 51.12 49 51.60 49 50.6 48 50.53 48 50.57 48 50.47 
4 116 118.13 112 115.27 118 120.41 117 118.40 113 115.7 114 115.07 113 115.37 112 114.90 
5 225 227.21 216 219.20 239 243.29 223 225.40 217 220.37 215 219.00 216 218.65 216 218.60 
6 NA NA 365 370.57 NA NA NA NA 365 373.91 369 374.43 365 373.51 366 370.20 
7 NA NA 574 577.67 NA NA NA NA 575 579.00 575 580.91 575 579.75 575 577.80 

 

b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 

Figure 18. Search Operator Normalized Percentage Distribution for CA (N; 3, v7) in Table 8 
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Table 9. Size Performance for CA (N; 4, v7) 

V 

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies 

PSTG [4]  DPSO [45] APSO [32] CS [2] 
Exponential 

Monte Carlo with 
Counter 

Choice Function Improvement 
Selection Rules 

Fuzzy Inference 
Selection 

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave 
2 29 31.49 34 34.00 30 31.34 27 29.60 31 32.23 31 31.80 31 32.27 26 31.67 
3 155 157.77 150 154.73 153 155.2 155 156.80 151 155.30 151 155.27 151 154.53 150 154.40 
4 487 489.91 472 481.53 472 478.9 487 490.20 479 484.83 479 485.17 479 484.00 480 484.00 
5 1176 1180.63 1148 1155.63 1162 1169.94 1171 1175.20 1156 1161.47 1151 1160.03 1154 1162.43 1154 1161.03 
6 NA NA 2341 2357.73 NA NA NA NA 2348 2364.23 2353 2369.91 2352 2367.11 2349 2363.11 
7 NA NA 4290 4309.60 NA NA NA NA 4294 4311.10 4295 4312.70 4295 4311.90 4293 4310.54 

 

b) Choice Function a) Exponential Monte Carlo with Counter 

c) Improvement Selection Rules d) Fuzzy Inference Selection 

 

Figure 19. Search Operator Normalized Percentage Distribution for CA (N; 4, v7) in Table 9 

4.3.   Statistical Analysis 

We conduct our statistical analysis for all the obtained results (from Table 3 and Tables 4–9) based on the 1xN 
pair comparisons with 95% confidence level (i.e. α=0.05) and 90% confidence level (i.e. α=0.1). The Wilcoxon 
Rank-Sum is used to find whether the control strategy presents statistical difference with regards to the 
remaining strategies in the comparison.  The rationale for adopting the Wilcoxon Rank-Sum stemmed from the 
fact that the obtained results are not normally distributed, thus, rendering the need for a non-parametric test. 
 
The null hypothesis (H0) is that there is no significant difference as far as the test size is concerned for FIS and 
each individual strategy (i.e. the two populations have the same medians). Our alternative hypothesis (H1) is that 
test size for FIS is less than that of each individual strategy (i.e. FIS has a lower population median).  
 
To control the Type I - family wise error rate (FWER) owing to multiple comparisons, we have adopted the 
Bonferroni-Holm correction for adjusting α value (i.e. based on Holm’s sequentially rejective step down 
procedure [26]). To be specific, the p-values are first sorted in ascending order such that p1< p2<p3...<pi…<pk. 
Then, α is adjusted based on: 

 
           𝛼𝛼𝐻𝐻𝐻𝐻𝑠𝑠𝑚𝑚 = 𝛼𝛼

𝑘𝑘 −𝑖𝑖+1
          (17) 

 

  

where k is the total number of paired samples and i signifies the test number. 
 
If p1  < αHolm, the corresponding hypothesis is rejected and we are allowed to make a similar comparison for p2. 
If the second hypothesis is rejected, the test proceeds with the third and so on. As soon as a certain null 
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hypothesis cannot be rejected, all the remaining hypotheses are retained as well. The complete statistical 
analyses are shown in Tables 10–16.   
 

Table 10. Wilcoxon Rank-Sum Tests for Table 3 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction α Holm with 95% 

confidence level 
Bonferroni-Holm Correction α Holm with 90% 

confidence level 

FIS vs EMCQ 0.014 α Holm =0.016667, p-value < α Holm, 
 Reject Ho 

α Holm =0.033333, p-value < α Holm,  
Reject Ho 

FIS vs CF 0.014 α Holm =0.025, p-value < α Holm, 
 Reject Ho 

α Holm =0.05, p-value < α Holm,  
Reject Ho 

FIS vs ISR 0.376 α Holm =0.05, p-value > α Holm,  
Cannot reject Ho 

α Holm =0.10,  p-value > α Holm,  
Cannot reject Ho 

Table 11. Wilcoxon Rank-Sum Tests for Table 4 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction α Holm with 95% 

confidence level 
Bonferroni-Holm Correction α Holm with 90% 

confidence level 

FIS vs PSTG 0.0035 
α Holm =0.01,  p-value < α Holm ,  

Reject Ho 
α Holm =0.02,  p-value < α Holm ,  

Reject Ho 

FIS vs CF 0.004 α Holm =0.0125, p-value < α Holm ,  

Reject Ho 
α Holm =0.04, p-value < α Holm ,  

Reject Ho 

FIS vs  ISR 0.004 α Holm =0.016667, p-value < α Holm ,  
Reject Ho 

α Holm =0.06, p-value < α Holm ,  
Reject Ho 

FIS vs CS 0.0045 
α Holm =0.025, p-value < α Holm ,  

Reject Ho 
α Holm =0.08, p-value < α Holm ,  

Reject Ho 

FIS vs EMCQ 0.0125 
α Holm =0.05, p-value < α Holm ,  

Reject Ho 
α Holm =0.10, p-value < α Holm ,  

Reject Ho 
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of DPSO and APSO are ignored 

Table 12. Wilcoxon Rank-Sum Tests for Table 5 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction α Holm with 95% 

confidence level 
Bonferroni-Holm Correction α Holm with 90% 

confidence level 

FIS vs PSTG 0.004 α Holm =0.01,  p-value < α Holm,  
Reject Ho 

α Holm =0.02,  p-value < α Holm,  
Reject Ho 

FIS vs  CF 0.006 α Holm =0.0125, p-value < α Holm,  
Reject Ho 

α Holm =0.04, p-value < α Holm,  
Reject Ho 

FIS vs EMCQ 0.0105 
α Holm =0.016667, p-value < α Holm,  

Reject Ho 
α Holm =0.06, p-value < α Holm,  

Reject Ho 

FIS vs ISR 0.0105 
α Holm =0.025, p-value < α Holm, 

 Reject Ho 
α Holm =0.08, p-value < α Holm,  

Reject Ho 

FIS vs CS 0.025 α Holm =0.05, p-value < α Holm,  
Reject Ho 

α Holm =0.1, p-value < α Holm,  
Reject Ho 

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of DPSO and APSO are ignored 

Table 13. Wilcoxon Rank-Sum Tests for Table 6 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction α Holm with 95% 

confidence level 
Bonferroni-Holm Correction α Holm with 90% 

confidence level 

FIS vs PSTG 0.006 
α Holm =0.01,  p-value < α Holm, 

Reject Ho 
α Holm =0.02,  p-value < α Holm, 

Reject Ho 

FIS vs CS 0.006 
α Holm =0.0125, p-value < α Holm,  

Reject Ho 
α Holm =0.04, p-value < α Holm, 

Reject Ho 

FIS vs CF 0.0125 
α Holm =0.016667, p-value < α Holm, 

Reject Ho 
α Holm =0.06, p-value < α Holm, 

Reject Ho 

FIS vs ISR 0.025 
α Holm =0.0125, p-value > α Holm, 

Cannot Reject Ho 
α Holm =0.08, p-value < α Holm, 

Reject Ho 

FIS vs EMCQ 0.242 Cannot Reject Ho α Holm =0.1, p-value > α Holm, 
Cannot Reject Ho 

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of DPSO and APSO are ignored 
 

Table 14. Wilcoxon Rank-Sum Tests for Table 7 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction α Holm with 95% 

confidence level 
Bonferroni-Holm Correction α Holm with 90% 

confidence level 

FIS vs EMCQ 0.021 
α Holm =0.0125, p-value > α Holm, 

Cannot Reject Ho 
α Holm =0.025,  p-value < α Holm, 

Reject Ho 

FIS vs CF 0.0215 Cannot Reject Ho 
α Holm =0.033333, p-value < α Holm, 

Reject Ho 

FIS vs ISR 0.0215 Cannot Reject Ho 
α Holm =0.05, p-value < α Holm, 

Reject Ho 

FIS vs DPSO 0.072 Cannot Reject Ho 
α Holm =0.1, p-value < α Holm, 

Reject Ho 
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, APSO, and CS are ignored 
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Table 15. Wilcoxon Rank-Sum Tests for Table 8 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction α Holm with 95% 

confidence level 
Bonferroni-Holm Correction α Holm with 90% 

confidence level 

FIS vs CF 0.0135 
α Holm =0.0125, p-value > α Holm, 

Cannot Reject Ho 
α Holm =0.025,  p-value < α Holm, 

Reject Ho 

FIS vs EMCQ 0.014 Cannot Reject Ho 
α Holm =0.033333, p-value < α Holm, 

Reject Ho 

FIS vs ISR 0.014 Cannot Reject Ho 
α Holm =0.05, p-value < α Holm, 

Reject Ho 

FIS vs DPSO 0.046 Cannot Reject Ho 
α Holm =0.1, p-value < α Holm, 

Reject Ho 
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, APSO, and CS are ignored 

Table 16. Wilcoxon Rank-Sum Tests for Table 9 
Pair 

Comparison 
p-value in ascending 

order 
Bonferroni-Holm Correction:  

α Holm with 95% confidence level 
Bonferroni-Holm Correction: α Holm with 90% 

confidence level 

FIS vs EMCQ 0.0135 
 

α Holm =0.0125, p-value > α Holm , Cannot 
reject Ho 

α Holm =0.025,  p-value < α Holm, 
Reject Ho 

FIS vs ISR 0.0215 Cannot reject Ho 
α Holm =0.033333, p-value < α Holm, 

Reject Ho 

FIS vs DPSO 0.058 Cannot reject Ho 
α Holm =0.05, p-value < α Holm, 

Reject Ho 

FIS vs CF 0.0865 Cannot reject Ho 
α Holm =0.1, p-value < α Holm, 

Reject Ho 
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, APSO, and CS are ignored 

5.   Experimental Observation 

Reflecting on the work undertaken, a number of observations can be elaborated based on the results obtained from 
each experiment as well as the corresponding statistical analysis. 
 
Concerning the first part of the experiments elaborated in Section 4.1, Table 3 depicts the comparative 
performances of hyper-heuristics (and their selection and acceptance mechanism) amongst themselves. Here, we 
can observe that FIS dominates as far as getting the best average test sizes with 60.67% (i.e. 4 out of 6 entries) as 
compared to its other hyper-heuristics counterparts. ISR comes as the runner up with 33.33% (i.e. outperforming 
FIS in 2 entries). As for the best test size, FIS also manages to get best results with a percentage of 83.33% (i.e. 5 
out of 6 entries). In the case of CA3(N; 3, 36) and CA6(N; 3, 524232), it is interesting to note that although all 
hyper-heuristics share the best test size, ISR gives the best overall average. Conversely, in the case of involving 
CA4 (N; 3, 66), we can note that the strategy (i.e. ISR) that obtain the best test size will not necessarily produce 
the best test size averages. Concerning the average execution time, we observe that EMCQ and CF outperform 
other hyper-heuristic strategies with 50.00% (i.e. 3 out of 6 entries). ISR and FIS perform the poorest in all cases 
observed. 
 
The boxplot analysis of Table 3 in Figure 12 (a) to (f) reveals a number of salient characteristic and patterns of 
EMCQ, CF, ISR and FIS searching process. Considering CA1 (N; 2, 313), the distribution of box plot results is 
symmetric and the range of results is similar for all hyper-heuristics (i.e. similar bottom and top whiskers). CF 
and FIS have smaller interquartile range as compared to EMCQ and ISR. In this case, FIS has lowest median.  
As far as CA2 (N; 2, 1010) is concerned, the distribution of box plot results is symmetric for CF, ISR and FIS but 
not for EMCQ.  CF has large range of results (i.e. large top and bottom whiskers) and its median is far off the 
other hyper-heuristics medians (i.e. with EMCQ having the lowest median). In CA3 (N; 3, 36), the distribution of 
box plot results is asymmetric for all hyper-heuristics. Furthermore, all hyper-heuristics appear to have a large 
range of results with EMCQ and CF reaching the extreme top.  The interquartile range is similar for all hyper-
heuristics with ISR having the lowest median. Concerning CA4 (N; 3, 66), the distribution of box plot results is 
asymmetric for all hyper-heuristics. CF and EMCQ have the largest range of results as compared to other hyper-
heuristics. CF has the highest interquartile range. Here, FIS and ISR share the same lowest median. Similar to 
CA4 (N; 3, 66), the distribution of results is also asymmetric for CA5 (N; 3, 106).  CF has the largest range of 
results with EMCQ comes in as the runner up. The lowest median is shared between ISR and FIS. In CA6 (N; 3, 
524232), the distribution of box plot results is again asymmetric for all hyper-heuristics. CF has the largest range 
of results with EMCQ the runner up. ISR has the largest interquartile range yet with the smallest median.  
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Statistical analysis of Table 3 (given in Table 10) indicates that two null hypothesis are rejected for both 95% 
and 90% confidence levels. FIS is statistically better than MC and CF. However, there is no difference as far as 
the performance of FIS with ISR is concerned. 
 
Referring to pie chart representations in Figure 13(a) to (d) for CA1–CA6 in Table 3, we note that CF has more 
preference towards the Jaya search operators (with 37.99%). EMCQ and ISR appear to favor global pollination 
search operator (with 25.35% and 25.2% respectively) whilst FIS favors both crossover and peer learning search 
operators (with 25.05%). 
 
In the final part of the experiments highlighted in Section 4.3, benchmarking results highlight the overall 
comparative performances of our implemented hyper-heuristics. Unlike Table 3, the scope of comparison for the 
rest of the Tables (i.e. Tables 4–9 ) is extended to include comparison with both meta-heuristic and hyper-heuristic 
based strategies (although without average time comparison). Table 4 demonstrates that FIS outperforms all other 
strategies as far as the best average test size with 90% (i.e. 9 out of 10 entries). The other 10% (1 out of 10) of the 
best average test size has been produced by APSO. Concerning the best test size, hyper-heuristic strategies 
generally outperform the meta-heuristic counterparts. Each hyper-heuristic has a nearly fair share of the best test 
size entries (i.e. FIS with 90%, EMCQ with 70%, ISR with 60%, and CF with 50%). The closest rival from the 
meta-heuristic strategy comes from DPSO (with 60%), APSO (with 50%) and CS (with 50%). PSTG gives the 
poorest performance with 30%. 
 
Statistical analysis of Table 4 (given in Table 11) favors the alternate hypothesis for both 95% and 90% 
confidence levels indicating that FIS has better performance than PSTG, CF, ISR, CS and EMCQ (whilst 
ignoring the contributions of DPSO and APSO). 
 
Concerning pie chart representations in Figure 14(a) to (d) CA (N; 2, 3k) in Table 4, we again see that CF has 
more preference towards the Jaya search operators (with 34.78%). As for other hyper-heuristics, EMCQ favors 
the global pollination search operator (with 25.11%) whilst ISR favors the Jaya search operator (with 25.43%) 
and FIS favors the peer learning search operator (with 26.83%). 
 
In Table 5, we observe FIS gives the best average test size with 88.88% (i.e. 8 out of 9 entries). The other best 
average test size entries are shared amongst CS with 11.11% (i.e. 1 out of 9 entries), EMCQ with 11.11% (i.e. 1 
out of 9 entries) and DPSO with 11.11% (i.e. 1 out of 9 entries) respectively. As far as the best test size is 
concerned, hyper-heuristics are outperforming the meta-heuristic ones. DPSO and APSO are two of the meta-
heuristic strategies that produce commendable results with the hyper-heuristics counterparts. It is interesting to 
note that while APSO gives the best test size for CA (N; 3, 38), it is EMCQ and ISR that give the best average 
test size. 
 
Statistical analysis of Table 5 (given in Table 12) favors the alternate hypothesis for both 95% and 90% 
confidence levels. FIS has statistically better performance than PSTG, CF, EMCQ, ISR and CS (i.e. ignoring the 
contributions of DPSO and APSO). 
 
 Pie chart representations in Figure 15(a) to (d) for CA (N; 3, 3k) in Table 5, we observe similar findings for CF 
as in the two cases earlier (i.e. refer to Figure 13 and 14). We note that CF has more preference towards the Jaya 
search operators (with 31.31%). EMCQ favors the peer learning search operator (with 25.07%) as do FIS (with 
25.50%). ISR appears to favor the global pollination search operator (with 25.08%).  
 
Concerning Table 6, FIS offers the best average test size with 50% (i.e. 4 out of 8 entries) followed by EMCQ 
with 25% (i.e. 2 out of 8), CF with 12.50% (i.e. 1 out of 8 entries), and ISR with 12.50% (i.e. 1 out of 8 entries). 
As for the best test size, FIS obtains 75% (i.e. 6 out of 8 entries). ISR comes in with 62.50% (i.e. 5 out of 8 
entries), CF with 50% (i.e. 4 out of 8 entries), EMCQ and DPSO with 25% (i.e. 2 out of 8 entries), and APSO 
with 12.50% (i.e. 1 out of 8 entries). In this case, PSO and CS perform the poorest for both average and best test 
size. It is interesting to note that although not getting the best average (i.e. best average is obtained by FIS), CF 
has produced the best test size for CA (N; 4, 310).  
 
Statistical analysis of Table 6 (given in Table 13) gives mixed results at 95% and 90% confidence levels. At 
95% confidence level, FIS has statistically better performance as compared to PSTG, CS, and CF (i.e. ignoring 
the contributions of DPSO and APSO). However, the performance of FIS is not statistically better than ISR and 
MC. At 90% confidence level, the statistical analyses are all in favor of the alternate hypothesis with the 
exception of MC. Hence, with 90% confidence level, FIS is better than other strategies with the exception of 
MC (i.e. ignoring the contributions of DPSO and APSO). 
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Referring to pie chart representations in Figure 16(a) to (d) for CA (N; 4, 3k) in Table 6 , we again observe 
similar findings as in all earlier cases for CF. We also note that the preference towards the Jaya search operator 
is 28.27% (i.e. slightly less than 30%). In the three earlier cases, the percentages are all above 30% (with 
37.99%, 37.78%, and 31.31% respectively). EMCQ favors the crossover search operator (with 25.13%) whilst 
ISR favors the global pollination search operator (with 25.04%) and FIS favors the Jaya search operator (with 
25.41%). 
 
In Table 7, the overall performance for average and best test size is scattered amongst meta-heuristic and hyper-
heuristic based strategies. FIS has the best performance as far as best average test size with 66.67% (i.e. 4 out of 
6 entries). DPSO is the runner up with 33.33% (i.e. 2 out of 6 entries).  APSO comes third with 16.67% (i.e. 1 
out of 6 entries). CS, PSTG, EMCQ, CF and ISR perform the poorest. Concerning the best test size, DPSO, ISR 
and FIS share the percentage of 66.67% (i.e. 4 out of 6 entries). EMCQ and CF also share the percentage of 
33.33% (i.e. with 2 out of 6 entries). The rest of the strategies (PSTG, APSO, and CS) are at 16.67% (i.e. 1 out 
of 6 entries). 
 
Statistical analysis of Table 7 (given in Table 14) gives two different indications. At 95% confidence level, the 
statistic is in favor of the null hypothesis indicating that FIS has similar performance with all other strategies 
(i.e. ignoring the contribution of PSTG, APSO and CS). Nonetheless, at 90% confidence level, FIS has 
statistically significant performance as compared to EMCQ, CF, ISR and DPSO (i.e. ignoring the contribution 
of PSTG, APSO and CS). 
 
Pie chart representations in Figure 17(a) to (d) for CA(N; 2, v7), CF again prefers Jaya search operators with 
30.74%. EMCQ also favors the Jaya search operator (with 25.07%) whilst ISR and FIS favor the peer learning 
search operator (with 25.07% and 25.91% respectively). 
 
In Table 8, FIS outperforms all other strategies as far as the average test size is concerned with 66.67% (i.e. 4 
out of 6 entries). The other best average test size entry is shared by CS and DPSO with 16.67% (i.e. 1 out of 6 
entries). Concerning the best test size, FIS also outperforms all other strategies with 66.67% (i.e. 3 out of 6 
entries). DPSO comes in as the runner up with 50% (i.e. 3 out of 6 entries) followed by CF and EMCQ with 
33.33% (i.e. 2 out of 6 entries). Meanwhile, APSO, CS, and EMCQ have the same percentage of 16.67% (i.e. 1 
out of 6 entries). 
 
Statistical analysis of Table 8 (given in Table 15) favors the null hypothesis at 95% confidence level but not at 
90% confidence level. Thus, the performance of FIS is only statistically better than CF, EMCQ, ISR, and DPSO 
at 90% confidence level (i.e. ignoring the contribution of PSTG, APSO and CS).  
 
Concerning pie chart representations in Figure 18(a) to (d) for CA (N; 3, v7) in Table 8, we also confirm that 
Jaya is more preferred as far as CF is concerned with 27.62%. EMCQ favors crossover search operator (with 
25.06%). ISR appears to favor both the Jaya and the peer learning search operators (with 24.99%). FIS favors 
the peer learning search operator (with 25.65%). 
 
In Table 9, DPSO dominates as far as the best average test size is concerned with 50% (i.e. 3 out of 6 entries).  
FIS comes in as the runner up with 33.33% (i.e. 2 out of 6) followed by APSO comes with 16.67% (i.e. 1 out of 
6 entries). Similar pattern can also be seen in the case of best test size. DPSO dominates with 75% (i.e. 5 out of 
6 entries). FIS comes in as the runner up with 33.33% (i.e. 2 out of 6) whilst APSO comes third with 16.67% 
(i.e. 1 out of 6 entries). Putting DPSO, FIS and APSO aside, no other strategies are able to register the best 
average test size as well as the best test size.  
 
Statistical analysis of Table 9 (given in Table 16) gives an indication that the null hypothesis can only be 
rejected at 90% confidence level but not at 95% confidence level. Hence, the performance of FIS is statistically 
better than EMCQ, ISR, DPSO and CF at 90% confidence level. 
  
Referring to pie chart representations in Figure 19(a) to (d), our observations are still in support of our earlier 
findings as far as CF is concerned. Jaya is again more preferred in the case of CF with 26.75%.  EMCQ favors 
the peer learning search operator (with 25.06%) whilst ISR favors the crossover search operator (with 25.06%)). 
Finally, FIS favors the crossover search operator (with 26.07%). 
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6.   Concluding Remark 

In this paper, we have described an experimental study of hyper-heuristic selection and acceptance mechanism 
for combinatorial t-way test suite generation. Additionally, we have proposed a new hyper-heuristic selection 
acceptance mechanism, called FIS, based on the fuzzy inference system and compared with other hyper-
heuristic and meta-heuristic approaches.  
 
In terms of overall performance, hyper-heuristic based strategies appear to be more superior as compared to the 
meta-heuristic counterparts (as evidenced by the given results in Section 5). In fact, in terms of best test suite 
size, hyper-heuristic based strategies often produce good results for most cases. As highlighted in the early 
sections of this paper, a hyper-heuristic can be viewed as a form of hybridization in the sense that more than one 
search operator can work together in synergy. Hyper-heuristics, when properly designed, can potentially 
outperform meta-heuristics owing to three reasons. Firstly, unlike most meta-heuristics, hyper-heuristics are not 
subjected to special tuning. In fact, in our case, we only have to deal with only population size and maximum 
iteration. Secondly, hyper-heuristics allow adaptive decision (and learning) to decide on the best search operator 
at hand. Finally, hyper-heuristics allow a flexible and “plug-and-play” approach of search operators from 
different meta-heuristics allowing for more search diversity of solutions.  
 
Concerning the individual performance, FIS, generally outperforms most other strategies as far as obtaining the 
best average test sizes are concerned. As far as statistical analysis is concerned, FIS has statistically better 
performance than other strategies at 90% confidence level.  However, at 95% confidence level, there is no 
sufficient statistical evidence that suggests the superiority of FIS as compared to other strategies. This finding is 
an indication that most (meta-heuristic) strategies are already capable of reaching the known best results.  
 
To the best of our knowledge, FIS is the first fuzzy based hyper-heuristic heuristic strategy that addresses the 
problem of t-way test suite generation. The main feature of FIS is that it enhances the rules of its predecessor 
ISR allowing multiple degrees of membership. Like ISR, FIS relies on three operators’ measures to decide on 
whether to maintain or change a particular running search operator. Unlike ISR where the decision is strictly 
based on the previous operator measures, the FIS decision is based on the weighted Fuzzy inference rules. The 
net effect is that FIS allows smoother transition between search operators allowing consistent best test suite 
generation (as evidenced by many of the best average test suite sizes). 
 
On a negative note, in terms of average execution time, FIS and its predecessor ISR appears to be slower than 
EMCQ and CF. Unlike EMCQ and CF, both FIS and ISR require extra overheads to undertake the Hamming 
distance measure for the improvement, diversification and intensification operator.     
 
As far as the percentage distribution of search operators is concerned, one glaring observation can be elaborated 
further. With the exception of the CF, the search operator distributions are nearly fair for most hyper-heuristic 
selection and acceptance mechanisms (indicating that the decision by each mechanism is adaptive and dynamic 
in nature). At a glance, apart from CF, FIS appears to favor peer learning search operators. However, a closer 
look reveals that the delta range is too small with the highest value of 26.83% (in Figure 14). Unlike FIS, CF 
demonstrates a clear preference toward the Jaya operator with all cases (reaching 30% in three cases; 37.99% in 
Figure 13, 34.78% in Figure 14 and 30.74% in Figure 17). Our observation indicates that such preferences arise 
owing to the simplicity of the Jaya search operator. As the implementation of its operator is based on simple 
arithmetic differences (as compared to complex arithmetic for crossover, peer learning, and global pollination), 
the Jaya code tends to run faster. CF, unlike EMCQ, ISR, and FIS, gives more reward to the search operator 
than runs faster. For this reason, the Jaya search operator will naturally have more opportunity for selection. For 
other hyper-heuristic selection and acceptance mechanisms, execution time is not the parameter for making 
decision on whether to maintain or change the current search operators. Furthermore, having given too many 
opportunities for the Jaya search operator (even when it is not giving the good quality solution) causes a large 
swing of values (from low to high) for CF in the box plot analysis given in Figure 12. 
 
The time complexity analysis for EMCQ, CF, ISR and FIS can be analyzed by considering the combined 
structures of all the hyper-heuristic algorithms and its four defined operators as described in Section 3. The 
structures for EMCQ and CF as well as ISR and FIS are shown in Figure 20.  Assuming all other operations can 
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be performed in a constant time, the time complexity for EMCQ and CF is O(JxKxL) ≈ O(n3) when J, K, and L 
are approaching large n. In a similar manner, the time complexity for ISR and FIS is O(JxKx(L+M)) ≈ O(n3) 
when J, K, L+M are approaching large n. 
 
 
 
 
 
 
 

 

 

 

 
 

 
Figure 20. General Structures for EMCQ, CF, ISR and FIS 

As our findings have been encouraging, we are planning to benchmark our work further. In fact, we have 
summarized the application of FIS for test redundancy reduction problem as the supplementary material for the 
current paper (refer to [50]). Apart from its application for test redundancy reduction problem, another useful 
avenue is to consider the benchmark of FIS within the HyFlex framework [1] (since the framework captures 
most if not all the state-of-the-art on hyper-heuristic). Ideally, within the HyFlex framework, the performance of 
FIS for general optimization problems can be objectively evaluated.  
 
Currently, we are also interested in adopting FIS for testing cloud and service-oriented architecture (SOA) 
solutions. Given the potentially large interaction of components within an overall integrated solution, a strategy 
such as FIS can be useful to systematically minimize the test data for testing considerations (i.e., based on the 
given interaction strength) and give indication of the developed solution’s quality. 
 
Additionally, we are also looking into adopting Case based Reasoning (CBR) for search operator selection and 
acceptance mechanism. The current fuzzy rules can be our initial starting point. The output of the search 
operators can be clustered accordingly based on some dynamic centroid approach (i.e. using K-means or Fuzzy 
C-Mean clustering algorithm). With this approach, we could also investigate the ensembles of new search 
operators. 
 
Finally, adaptation of FIS for dynamic multi-objective problems with multi-population models could be another 
avenue for future work. In this respect, FIS needs to allow effective information sharing between populations 
and proper adaptation to tackle changes in the functional landscapes. 
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