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Abstract

We analyse the nonlinear behaviour of a third-order class-D amplifier, and demonstrate the

remarkable effectiveness of the recently introduced ripple compensation (RC) technique in reducing

the audio distortion of the device. The amplifier converts an input audio signal to a high-frequency

train of rectangular pulses, whose widths are modulated according to the input signal (pulse-width

modulation) and employs negative feedback. After determining the steady-state operating point

for constant input and calculating its stability, we derive a small-signal model (SSM), which yields

in closed form the transfer function relating (infinitesimal) input and output disturbances. This

SSM shows how the RC technique is able to linearise the small-signal response of the device.

We extend this SSM through a fully nonlinear perturbation calculation of the dynamics of the

amplifier, based on the disparity in time scales between the pulse train and the audio signal. We

obtain the nonlinear response of the amplifier to a general audio signal, avoiding the linearisation

inherent in the SSM; we thereby more precisely quantify the reduction in distortion achieved

through RC. Finally, simulations corroborate our theoretical predictions and illustrate the dramatic

deterioration in performance that occurs when the amplifier is operated in an unstable regime. The

perturbation calculation is rather general, and may be adapted to quantify the way in which other

nonlinear negative-feedback pulse-modulated devices track a time-varying input signal that slowly

modulates the system parameters.
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1. Introduction

Class-D amplifiers are an important technological device and are widely used in mobile elec-

tronic devices, principally because of their exceptional efficiency [1], which helps improve battery

life. They operate by converting an audio signal to a high-frequency train of rectangular pulses

whose widths are modulated in a manner that depends on the audio signal (pulse-width modula-5

tion, PWM) [2]. They thus inherently involve dynamics on two different time scales and so are

particularly amenable to analysis by perturbation methods.

To mitigate the influence of noise, designs for class-D amplifiers generally include some form

of negative feedback, and hence may be modelled mathematically as piecewise-smooth dynamical

systems [3, 4]. However, while theoretical interest in such systems has primarily focused on the10

existence, stability and bifurcations of various steady-state operating points (see, for example, [3,

4, 5, 6, 7]), here we are principally concerned with the regime of most practical interest, which

is the nonlinear response to a relatively slowly varying audio input. Our goal is to understand

the way in which the pulse-modulated system tracks a slowly varying input signal, with particular

focus on the low-frequency components of the amplifier output.15

In recent publications, we have explored the operation of relatively simple first- and second-

order designs of class-D amplifier (with, respectively, one or two integrators in the feedback path) [8,

9, 10, 11, 12] and we have illustrated the ripple compensation (RC) technique in the first-order

case [10], However, in all these cases, the operation of the feedback loop is simple enough that

the entire mathematical model may be reduced to one or two nonlinear scalar difference equations20

for the switching times of the output pulse-train. Here we treat a higher-order design, for which

reduction to such a simple system is no longer possible, and the problem is formulated instead as

a nonlinear system of difference equations with slowly varying forcing. Specifically, here we treat

a more realistic mathematical model, with a third-order compensator in the feedback loop, and a

second-order output filter, so that the state-space model for the amplifier is five-dimensional.25

A key diagnostic of practical interest is the audio distortion that arises due to the nonlinearity

of the switching in the negative feedback loop. Over the years, many techniques have been devised

by engineers to reduce this inherent distortion, and thereby to improve the fidelity of the audio

reproduction. The present paper is dedicated to examining the theoretical basis of the ripple

compensation (RC) technique, which appears to be a particularly effective means of eliminating30
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significant elements of the distortion [13, 14]. Calculation of the audio distortion is achieved by

first considering the dynamics of the amplifier, specifically determining the relationship between

the audio input and the switching times of the output pulse-train, then from these switching times

determining the audio content of the output. Despite the algebraically involved nature of the

problem, we are able to give explicit formulas for the principal components of the audio output of35

the amplifier; these expressions make clear the contribution of the RC technique towards linearising

the output.

In Section 2, we describe the amplifier treated in this paper and the RC technique; we also

formulate the state-space model for the device. In Section 3, we calculate the steady-state (time-

periodic) operating point of the device in response to a constant input, and briefly consider its40

stability in Section 4. This stability calculation informs the choice of parameter values for later

simulations (our goal is not to explore instability and bifurcation, rather to ensure that the device is

operated in a stable regime of practical relevance). In Section 5, we develop a small-signal model

which yields a transfer function relating small disturbances at the input to the consequential

small disturbances at the output. This small-signal model allows us to deduce certain aspects45

of the behaviour of the device in response to a full audio signal, and in particular shows the

linearising effect of RC. The principal results of this paper are contained in Section 6, where we

carry out a large-signal perturbation calculation of the amplifier output, where the perturbation

parameter is proportional to the ratio between typical time scales for the output switching and

the audio signal. We corroborate our theoretical results with corresponding simulations, which50

are presented in Section 7. Besides simulations in the stable regime of practical interest, we

illustrate the calamitous sudden increase in the audio distortion that arises when the parameters

of the device are poorly chosen, so that the steady-state operating point is unstable. Finally, we

close, in Section 8, by summarising our results and emphasising that our analysis — in particular

the asymptotic calculation of Section 6 — may be applied to a wide range of negative-feedback55

pulse-modulated systems.
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Figure 1: Third-order amplifier. The input audio signal is u(t). G represents the transfer function of the output

filter. There is ripple compensation (RC) if k = 1; otherwise, if k = 0, there is no RC. The amplifier output is g(t).

The compensator is denoted by H. The output of the compensator, denoted by m(t), is fed into the positive input

of the comparator, whose negative input receives the sawtooth wave v(t). The output takes the values ±1 according

to the sign of m(t)− v(t).

2. Mathematical formulation

Figure 1 shows the amplifier. The output g(t) is a rectangular wave taking the values ±1

according to

g(t) = sgn(m(t)− v(t)),

where m(t) and v(t) are, respectively, the noninverting and inverting inputs of a comparator. The60

rising edges of g(t) occur at regular intervals, where t = nT and the constant T is the period of

the carrier wave v(t). The falling edges of g(t) occur at times that vary according to the output

m(t) of the compensator, as illustrated in Figure 2. We denote these modulated down-switching

times by An, so that

g(t) =







+1 for nT < t < An,

−1 for An < t < (n+ 1)T.
(1)

The sawtooth carrier wave is given by65

v(t) = −1 + 2(t− nT )/T
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Figure 2: Signals g(t), v(t), m(t) and g(t)+ v(t). The rising switching edges of g(t) occur regularly, at times t = nT ;

the falling switching edges occur at times t = An, where m(An) = v(An). (The signal m(t) is for illustrative

purposes.) The signal g(t) + v(t) is a linear ramp, with falling switching edges at times t = An.

for nT ≤ t < (n+ 1)T (with v(t+ T ) = v(t) for all t), and hence the condition for switching is

m(An) = −1 + 2an, where an = (An − nT )/T . (2)

The low-pass filter G receives as input g(t) + kv(t), where k is either 0 or 1. The choice k = 0

indicates that RC is not applied; we note that in this case the filter input is g(t), which is piecewise

constant, switches up at times t = nT and down at times t = An. Otherwise, the choice k = 1

corresponds to the application of RC; the filter input is now g(t)+ v(t), which is a piecewise linear70

upwards ramp, which switches down at times t = An, as in Figure 2. (Note that G represents

the output filter; its repositioning into the feedback loop, as in Figure 1, may be achieved through

standard block-diagram manipulations — for example, see Figure 5 of [13].)

The motivation for the RC technique is the observation that feedback of the output ripple signal

leads to a nonlinearity in the PWM process: high-frequency carrier components are aliased to the75

audio band, leading to distortion in the output signal of the amplifier [10, 15]. The analysis of [15]

identifies mechanisms for distortion in both amplitude and phase. This distortion can be largely

mitigated by cancelling the unmodulated switching edges at t = nT [14]. Details are described in
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Figure 3: The second-order filter, G.
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Figure 4: The third-order compensator, H.

Section 3 of [13], but the key to the success of RC in reducing output distortion may be illustrated

with the following observations regarding the steady-state T -periodic response of the amplifier to a80

constant input u(t) = u0. When k = 0, the steady-state duty cycle an ≡ a varies according to the

amplifier input u0; for different values of a, the shape of g(t) is thus different, and hence the shape

of the compensator output varies accordingly. Put differently, the ripple depends on the input u0.

By contrast, with RC the shape of g(t) + v(t) is same regardless of the value of u0, except for a

u0-dependent time shift and the addition of a u0-dependent constant to the values of g(t) + v(t).85

Put differently, as we shall make precise below, in Section 3.1, with RC the ripple is in essential

respects independent of u0.

2.1. State-space model

We next present the ordinary differential equations that govern the operation of the device.

We begin by examining the action of the low-pass filter G, shown in Figure 3. We let f(t) =90

(f(t), f ′(t))T , where, as in the remainder of the paper, the superscript T denotes the transpose of
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a vector or matrix, and the prime denotes the time derivative. Then

f ′(t) =M2f(t) +
g(t) + kv(t)

LC
(0, 1)T , (3)

where

M2 =






0 1

−(LC)−1 −(RC)−1




 .

The filter may equivalently be specified in terms of its (Laplace) transfer function

G(s) = 1/(LCs2 + Ls/R+ 1).

Next we turn to the compensator H, which comprises a chain of integrators with feed-forward95

summation and a local resonator feedback loop, shown in Figure 4. We introduce the state vector

m(t) = (m1(t),m2(t),m3(t))
T . Then

m′(t) =M3m(t) + (u(t)− f(t))(1, 0, 0)T , (4)

where

M3 =









0 0 0

1 0 −ω2
1

0 1 0









.

The output of the compensator is

m(t) = c1m1(t) + c2m2(t) + c3m3(t),

for some constants c1, c2, c3. The (Laplace) transfer function of the compensator is100

H(s) =
c1
sT

+
c2

(ω2
1 + s2)T 2

+
c3

(ω2
1 + s2)sT 3

.

We solve the systems (3) and (4) together, by introducing the state-space vector

x(t) = (m1(t),m2(t),m3(t), f(t), f
′(t))T ,

which is governed by

x′(t) = Nx(t) + u(t)e1 +
g(t) + kv(t)

LC
e5, (5)
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where e1 = (1, 0, 0, 0, 0)T , . . . , e5 = (0, 0, 0, 0, 1)T . The matrix N is partitioned as follows:

N =
















M3

−1 0

0 0

0 0

0 0 0

0 0 0
M2
















.

To simplify the analysis here and in later sections, we next diagonalise N . We thus introduce

the diagonal matrix Λ of the eigenvalues of N , which are 0, iω1, −iω1, −µ+iΩ and −µ− iΩ, where105

µ =
1

2RC
, Ω =

√

1

LC
−

1

4R2C2
.

We also introduce a matrix R whose columns are given, respectively, by the corresponding right

eigenvectors of N : w1, . . . , w5. Then

N = RΛR−1. (6)

The rows of R−1 are the left eigenvectors of N : v1, . . . , v5. Of particular utility in our analysis

will be the left zero eigenvector

v1 = (−(LC)−1, 0, 0, (RC)−1, 1). (7)

Correspondingly, w1 = (−LC, 0,−LC/ω2
1, 0, 0)

T .110

To simplify later notation when we integrate (5), we introduce P n(t) and Qn(t), where

P 0(t) = eNte1, and P n+1(t) =

∫ t

0
P n(τ) dτ (8)

for n = 0, 1, . . .;

Q0(t) = eNte5, and Qn+1(t) =

∫ t

0
Qn(τ) dτ

for n = 0, 1, . . .. We find

P n(t) =
tn

n!
e1 + φn(t)e2 + φn+1(t)e3,

where φ−1(t) = cosω1t and

φn+1(t) =

∫ t

0
φn(τ) dτ for n = −1, 0, 1, . . ..
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We may readily integrate (5) over any time interval [t0, t1], to give115

x(t1) = eN(t1−t0)x(t0) +

∫ t1

t0

eN(t1−τ)e1u(τ) dτ +
1

LC

∫ t1

t0

eN(t1−τ)e5(g(τ) + kv(τ)) dτ. (9)

For later purposes, our specific interest is in integrating (5) over the interval [An, An+1] between

successive falling edges of the amplifier output g(t). To evaluate the first integral in (9), we begin

by writing

Iu,n ≡
∫ An+1

An

eN(An+1−τ)e1u(τ) dτ.

Then Taylor expansion of u(τ) about τ = An and repeated use of integration by parts on the

result, together with (8), gives120

Iu,n =
∞∑

k=0

P k+1(An+1 −An)u
(k)(An), (10)

where the superscript denotes the k-th derivative. The second integral in (9) is similarly found

(after just one integration by parts, to deal with v(τ)) to be

Ig,v,n ≡
∫ An+1

An

eN(An+1−τ)e5(g(τ) + kv(τ)) dτ

= 2(1− k)Q1(an+1T ) + (−1− k + 2kan)Q1(An+1 −An) +
2k

T
Q2(An+1 −An).

Assembling these results, we thus arrive at the discrete-time model

x(An+1) = eN(An+1−An)x(An) + Iu,n +
1

LC
Ig,v,n, (11)

together with the switching condition (2), which becomes

γTx(An+1) = −1 + 2an+1, (12)

where125

γT = (c1, c2, c3, 0, 0) .

The system (11), (12) forms the basis for our mathematical analysis of the amplifier. We note

that this system may be reduced to a single (fifth-order, nonlinear) scalar difference equation for

an (cf. [16]). However, while we shall make use of a related reduction later, in Section 6, the bulk

of our analysis concerns the formulation in (11), (12).
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3. Steady-state operation130

We begin our analysis of the mathematical model set out above by examining its steady-state

behaviour in response to a constant input. This is necessary in order for us to choose suitable

parameter values for our simulations, where the steady-state response should be stable; it also

sheds some light on the operation of RC.

We thus suppose that u(t) = u0 and that all signals are T -periodic. In particular all duty135

cycles are equal, with an ≡ a. In such steady-state operation, (11) becomes

(I5 − eNT )x(aT ) = Φ(a, T ), (13)

where I5 is the 5× 5 identity matrix,

Φ(a, T ) = u0P 1(T ) +
1

LC

{

2(1− k)Q1(aT ) + (−1− k + 2ka)Q1(T ) +
2k

T
Q2(T )

}

,

and the switching condition is γTx(aT ) = −1 + 2a. Note that the matrix on the left-hand side of

(13) is singular, and after left-multiplying by v1, given in (7), we obtain the solvability constraint

v1Φ(a, T ) = 0; (14)

this then yields the duty-cycle condition140

a = 1
2(1 + u0), (15)

which expresses the fact that the time-averaged output 〈g(t)〉 = u0.

Once the duty-cycle condition (14) has been imposed, it remains to determine x(aT ), from

which the entire periodic solution may subsequently be obtained using (9). This is accomplished

by replacing one row (for example, the first) of the vector equation (13) with the switching condition

(12); thus we solve145

M̃x(aT ) = Φ̃,

where

M̃ij =







cj for i = 1 and j = 1, 2, 3,

0 for i = 1 and j = 4, 5,

(I5 − eNT )ij for i = 2, 3, 4, 5

and

Φ̃i =







−1 + 2a for i = 1,

Φi(a, T ) for i = 2, 3, 4, 5.
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Explicit formulas for the steady-state solution are too algebraically involved to record here.

A quantity of particular significance in our later stability calculation and in our development

of a model for small disturbances to the steady state is the slope of the compensator output at the150

modulated switching instant; thus we note from (5) that this slope is

m′(aT ) = γTx′(aT ) = γTNx(aT ) + c1u0. (16)

3.1. Relation between steady-state operating points for different inputs (with ripple compensation)

With RC, there is a particularly simple relationship between the steady-state operating points

for different values of the input u0, which we elucidate in this section. The simplicity of this

relationship underpins the effectiveness of RC in reducing the amplifier’s inherent distortion.155

We consider two different T -periodic steady-state solutions, with different values of u0, and

hence different switching times for g(t) + v(t). For each solution, the duty-cycle condition (15) is

satisfied, together with the state-space equation (5) and the switching condition (12). Thus the

two solutions, xa(t) and xb(t), satisfy

x′
a(t) = Nxa(t) + (2a− 1)e1 +

2

LC
(−1 + t/T )e5 for aT ≤ t < aT + T ,

γTxa(aT ) = −1 + 2a
(17)

and160

x′
b(t) = Nxb(t) + (2b− 1)e1 +

2

LC
(−1 + t/T )e5 for bT ≤ t < bT + T ,

γTxb(bT ) = −1 + 2b.
(18)

To demonstrate the relationship between the two solutions, we introduce the T -periodic quantity

∆(t) = xb(t+ (b− a)T )− xa(t),

which satisfies

∆′(t) = N∆(t) + 2(b− a)

(

e1 +
1

LC
e5

)

for aT ≤ t < aT + T ,

γT∆(aT ) = 2(b− a).
(19)

The general solution to the ODE in (19) is

∆(t) = eN(t−aT )∆(aT ) + 2(b− a)

∫ t

aT
eN(t−τ)ǫ dτ, (20)

where

ǫ = e1 +
1

LC
e5.
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From (20), we see that165

N∆(t) = eN(t−aT )N∆(aT ) + 2(b− a)
(

eN(t−aT ) − I5
)

ǫ,

which may be rearranged as

X(t) = eN(t−aT )X(aT ), (21)

where

X(t) = N∆(t) + 2(b− a)ǫ. (22)

Since X(t) is T -periodic, it follows from (21) with t = aT + T that

(

eNT − I5
)

X(aT ) = 0. (23)

Hence X(aT ) = X3w1 for some constant X3. The value of X3 may be determined from (22): we

see that170

v1X(aT ) = v1N∆(aT ) + 2(b− a)v1ǫ = 0,

hence (considering leftmost and rightmost sides of this equation) X3 = 0. Thus X(aT ) = 0, and

from (21) it follows that X(t) ≡ 0, so that, from (22),

∆(t) = (ω2
1 , 0, 1, 0, 0)

T∆3(t) + (0, 0, 0, 2(b− a), 0)T ,

for some ∆3(t). Substitution in (19) shows that ∆(t) is in fact constant. Then from the switching

condition in (19) we see that (c1ω
2
1 + c3)∆3 = 2(b− a), hence

∆ =
2(b− a)

c1ω2
1 + c3

(

ω2
1, 0, 1, c1ω

2
1 + c3, 0

)T
.

In summary, we have shown that, for aT ≤ t < aT + T ,175

xb(t+ (b− a)T ) = xa(t) +∆.

Since the two steady-state solutions differ by the addition of a constant vector, and by time-

shifting, the derivatives of each solution around the modulated switching instant agree: more

specifically,

γTx′
b(bT ) = γTx′

a(aT ).

This fact has significant consequences, as we shall see later, in Section 5, when we show how it

leads to a linearisation of the small-signal model.180
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4. Stability of the steady-state operating point

Our interest is in stable operation of the amplifier, so we provide just a brief discussion of

stability considerations. Following Aizerman and Gantmakher [17] (see also, for example, [3, 7, 18]),

we suppose that the input u(t) = u0 is fixed, and consider the growth or decay of a perturbation

to the steady state over the interval t ∈ [0, T ]. We write185

x(t) = x̄(t) + ∆x(t), a0 = a+∆a,

where x̄(t) is the steady-state solution with duty cycle a. Then, upon linearising in small distur-

bances, we find

∆x(T ) = eN(1−a)T
(

I5 +
Tκ

LC
e5γ

T

)

eNaT

︸ ︷︷ ︸

≡M

∆x(0), (24)

where

κ = (1− 1
2Tγ

T x̄′(aT ))−1, (25)

and the quantity γT x̄′(aT ) may be obtained from (16). The stability of the steady-state operating

point is thus determined by the eigenvalues of the matrix M [3]. Note that the sole difference190

between the RC and no-RC versions of M lies in the value of κ.

The eigenvalues µ of M satisfy

det(M− µI) = 0. (26)

We may derive an alternative equation for these eigenvalues (cf. [7, 19, 20]), which may be more

useful in some cases, by use of Sylvester’s Determinant Theorem [21], which states that det(In −

AB) = det(Ip −BA), where A is any n× p matrix and B is any p× n matrix, and In and Ip are,195

respectively, n×n and p× p identity matrices. We suppose, as is readily verified, that none of the

eigenvalues of exp(NT ) are also eigenvalues of M. Then

det(M− µI) = det(eNT − µI +αβT ) = det(eNT − µI) det(I + (eNT − µI)−1αβT ),

where

α =
Tκ

LC
eN(1−a)Te5, βT = γT eNaT .

Hence the eigenvalues µ of M satisfy

det(I + (eNT − µI)−1αβT ) = 0 (27)
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and so, by Sylvester’s Determinant Theorem, they also satisfy the equation200

1 +
Tκ

LC
γT eNaT (eNT − µI)−1eN(1−a)Te5 = 0,

or, equivalently,

1 +
Tκ

LC
γTR diag(eλjT /(eλjT − µ))R−1e5 = 0, (28)

where λj are the eigenvalues of N . We use either (26) or (28) to choose parameter values for

our simulations (see Section 7) so that the steady-state operating point is stable, unless otherwise

stated.

5. Small-signal model205

The stability analysis of Section 4 may be generalised to give a small-signal model that relates

small disturbances at the input to the corresponding small disturbances at the output. We suppose

that some small time-dependent perturbation is superposed on an otherwise steady input, so that

u(t) = u0+∆u(t). We introduce the notation Ān = (n+a)T for the unperturbed switching times,

and write the perturbed switching times as An = Ān + ∆anT . We write x(t) = x̄(t) + ∆x(t)210

accordingly. We linearise in all small quantities.

In what follows, we assume that the n-th switching instant is delayed, so that ∆an > 0. This

is simply to fix the time-ordering of various events; the resulting expressions for the small-signal

model do not rely on this assumption, and apply equally well if that switching instant is instead

advanced, so that ∆an < 0.215

We note that x̄(t) depends on the value of k. By contrast, for the perturbations, regardless of

whether k = 0 or 1, we have the following governing equations: on (Ān, Ān +∆anT ),

∆x′(t) = N∆x(t) + ∆u(t)e1 +
2

LC
e5;

on (Ān +∆anT, Ān+1),

∆x′(t) = N∆x(t) + ∆u(t)e1.

Integration of these differential equations in turn gives

∆x(Ān+1) = eNT

(

∆x(Ān) +
2∆anT

LC
e5

)

+

∫ T

0
eNτ∆u(Ān+1 − τ)e1 dτ. (29)

The linearised switching condition (12) yields220

∆an = 1
2κγ

T∆x(Ān), (30)
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where again κ is given by (25). We note that when k = 0, κ depends on u0, whereas when k = 1,

κ is independent of u0.

Through repeated integration by parts, as in the derivation of (10), it may be established, using

(29) and (30), that

∆x(Ān+1) = N∆x(Ān) +
∞∑

m=0

Pm+1(T )∆u
(m)(Ān), (31)

where225

N = eNT

(

I5 +
Tκ

LC
e5γ

T

)

.

(Note that M = e−NaTN eNaT , where M is defined in (24), hence M and N are similar matrices

and so share the same eigenvalues.)

A recurrence relation for the switching-time perturbation may now be derived by premultiplying

(31) by 1
2κγ

T then using (30). A convenient formulation for the solution may be obtained by

introducing the derivative operator D ≡ d/dt and using the Taylor expansion [22, 23]230

∆x(Ān+1) = eTD∆x(Ān),

to give the formal solution

∆an = 1
2κγ

T
(

eTDI5 −N
)−1

∞∑

m=0

Pm+1(T )∆u
(m)(Ān). (32)

The next step is to characterise the corresponding spectral components of the output pulse-

train. To this end, we let x(t) be such that x(Ān) = ∆an. In view of (32), one particular choice of

x(t) satisfies

x(t) = 1
2κγ

T
(

eTDI5 −N
)−1

∞∑

m=0

Pm+1(T )∆u
(m)(t). (33)

The final step in our derivation of the small-signal model uses x to reconstruct the amplifier235

output. From (1), it follows that the Fourier transform of the full output g(t) is

ĝ(ω) =

∫
∞

−∞

e−iωtg(t) dt =
2

iω

∞∑

n=−∞

(

e−iωnT − e−iωAn

)

,

where the last inequality holds for ω 6= 0. By considering the difference between the Fourier

transform of the output with and without perturbation, we find that the perturbation to the

output has Fourier transform (for ω 6= 0)

∆ĝ(ω) =
2

iω

∞∑

n=−∞

(

e−iωĀn − e−iωAn

)

. (34)
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Linearisation in small perturbations then gives240

e−iωAn = e−iωĀne−iω∆anT ∼ e−iωĀn(1− iω∆anT ).

(In the time domain, this linearisation is tantamount to replacing the narrow rectangular pulses

in ∆g(t) by Dirac δ-functions.) Thus (34) becomes

∆ĝ(ω) = 2T
∞∑

n=−∞

e−iωĀnx(Ān) = 2
∞∑

n=−∞

e−2πniax̂(ω − 2πn/T ), (35)

where the second equality follows from Poisson resummation [24].

There is no particular restriction on the bandwidth of the input perturbation signal for (35) to

be valid. However, further mathematical progress is substantially eased if we make the physically245

reasonable assumption that the input perturbation ∆u(t) contains only audio frequencies, so that

∆u(t) (and hence also x(t)) is band-limited, with ∆û(ω) = x̂(ω) = 0 for |ω| ≥ π/T ; then, from

(33) and (35),

∆ĝ(ω) = κγT
(

eiωT I5 −N
)−1

∞∑

m=0

Pm+1(T )(iω)
m∆û(ω)

for |ω| < π/T . To simplify the sum in this expression, we let

σ(T ; iω) =
∞∑

m=0

Pm+1(T )(iω)
m,

then note that in consequence250

dσ(T ; iω)

dT
− iωσ(T ; iω) = P 0(T ), σ(0; iω) = 0.

Solving this ODE, we thus have

σ(T ; iω) = σ1e1 + σ2e2 + σ3e3,

where

σ1 =
eiωT − 1

iω
,

σ2 =
iω sinω1T − iω1 sinωT + ω1(cosω1T − cosωT )

ω1(ω2 − ω2
1)

,

σ3 =
ω sinω1T − ω1 sinωT

ωω1(ω2 − ω2
1)

+ i
ω2
1 cosωT − ω2 cosω1T + ω2 − ω2

1

ωω2
1(ω

2 − ω2
1)

.

This, finally, yields the (input–output) transfer function, from ∆û(ω) to ∆ĝ(ω), which is

κγT
(

eiωT I5 −N
)−1

σ(T ; iω), (36)
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for “audio frequencies” (those less than π/T in magnitude).

Without RC, this transfer function depends on u0, through the value of κ (both explicitly in255

(36) and implicitly through N ) and so the small-signal model predicts an inherently nonlinear

response for the amplifier. This is undesirable, since such nonlinearity leads to unwanted total

harmonic distortion (THD) and intermodulation distortion (IMD) [12, 25].

With RC, the transfer function is independent of u0, so we expect it to provide an accurate

characterisation of the input–output relation even for inputs that are not small perturbations to260

some constant input. This is a striking result, because it predicts an essentially linear behaviour

for the amplifier. More specifically, for an audio input u(t), the small-signal model predicts an

output with audio-frequency Fourier components given by

ĝa(ω) = κγT
(

eiωT I5 −N
)−1

σ(T ; iω)û(ω).

In fact, as we shall demonstrate in the next section, the full audio output is not quite linearly related

to the input: harmonics are generated, but from terms neglected in the small-signal linearisation265

(cf. [10]). An example of such a term is ((u′)2)′, which involves a product of input derivatives; the

contribution of such terms is, however, small [10].

We next turn to a full calculation of the output that is not constrained by the linearisation

inherent in the small-signal model.

6. Fully nonlinear model270

Our final calculation gives the nonlinear audio output in response to a general audio input.

This calculation tracks the slowly changing operating point of the amplifier in response to its

input, in sufficient detail to allow us to find the principal contributions to the output distortion.

Of necessity, it avoids the traditional quasi-steady engineering approximation, that the input to the

amplifier is assumed constant over any switching cycle. We follow the structure of the calculation275

described in [8, 9, 10, 11, 12], although here the details are considerably more algebraically involved

than in any of those previous cases. We emphasise that our approach may be readily adapted to

other pulse-modulated feedback systems [4] with slowly varying input parameters.

We apply a perturbation method based on the small parameter

ǫ = ωT ≪ 1,

17



where ω is a typical audio frequency. We introduce a correspondingly scaled time280

τ = ωt = ǫt/T.

Thus variations to the audio input occur on a time scale τ = O(1), while the switching time scale

has τ = O(ǫ). We introduce

U(τ) = u(t),

so that u(m)(t) = (ǫ/T )mU (m)(τ). Our interest is in determining how solutions to the system (11),

(12) track the slow parametric variation afforded by the input audio signal.

We first determine the way in which the switching times depend on the audio input, then285

calculate the corresponding audio output. To this end, we introduce functions a and X such that

a(ǫn) = an, X (ǫn) = x(An) = x((n+ a(ǫn))T ).

Writing the difference equation (11) and switching condition (12) in this notation, we find that

each equation involves a(ǫn) or a(ǫ(n+ 1)). Clearly these equations are expected to hold only for

integer values of n. However, as a mathematical device to enable a solution to be obtained, we seek

to impose each equation for all real values of n (since if we are able to do so then the equations290

certainly hold when restricted to integer n). Thus we set τ = ǫn and solve for all τ the following:

X (τ + ǫ) = eNdτX (τ) +Θ(τ), γT
X (τ) = −1 + 2a(τ), (37)

where

Θ(τ) =
∞∑

m=0

ǫm

Tm
Pm+1(dτ )U

(m)(τ + ǫa(τ)) +
2(1− k)Q1(a(τ + ǫ)T )

LC

−
(1 + k − 2ka(τ))Q1(dτ )

LC
+

2k

TLC
Q2(dτ )

and where

dτ = (1 + a(τ + ǫ)− a(τ))T.

The functions a and X are then expanded in powers of ǫ, and coefficients of successive powers of

ǫ equated in (37).295

Given the algebraic complexity of the perturbation problem, it is useful to reduce the problem

from the six scalar equations represented in (37) to a single scalar equation, for a(τ) (cf. [16]). To

do so, we introduce

V(τ) = e−a(τ)NT
X (τ). (38)
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Then the first of (37) becomes

V(τ + ǫ) = eNT
V(τ) + e−a(τ+ǫ)NTΘ(τ),

so that300

(

eǫDI5 − eNT
)

V(τ) = e−a(τ+ǫ)NTΘ(τ), (39)

where throughout this section D denotes d/dτ .

Then, using (6), (39) may be written as

R
(

eǫDI5 − eΛT
)

R−1
V(τ) = Re−a(τ+ǫ)ΛTR−1Θ(τ),

so that

V(τ) = R
(

eǫDI5 − eΛT
)−1 {

e−a(τ+ǫ)ΛTR−1Θ(τ)
}

. (40)

Using (38) and (40), we see that the switching condition in (37) becomes

γT ea(τ)NTR
(

eǫDI5 − eΛT
)−1 (

e−a(τ+ǫ)ΛTR−1Θ(τ)
)

= −1 + 2a(τ), (41)

which is the promised single scalar equation for a(τ).305

Several of the terms in this equation may readily be simplified, by introducing the Bernoulli

numbers Bn and the Bernoulli–Apostol functions βn [26], which satisfy the following generating

functions (for γ 6= 1):

z

ez − 1
=

∞∑

n=0

Bn

n!
zn,

z

γez − 1
=

∞∑

n=1

βn(γ)

n!
zn.

Thus

D ≡
(

eǫDI5 − eΛT
)−1

= diag(ζ1, ζ(iω1), ζ(−iω1), ζ(−µ+ iΩ), ζ(−µ− iΩ)),

where310

ζ1 =
1

ǫD

∞∑

n=0

Bn

n!
(ǫD)n, ζ(z) = e−zT

∞∑

n=0

βn+1(e
−zT )

(n+ 1)!
(ǫD)n,

and the equation for a(τ) simplifies from (41) to

γTRea(τ)ΛTD
{

e−a(τ+ǫ)ΛTR−1Θ(τ)
}

= −1 + 2a(τ). (42)

From the Fourier transform of (1), it may be deduced [8, 9, 10, 11] that the audio contribution

to the output (i.e., the contribution involving frequencies less than π/T ) is

ga(t) = −1 + 2
∞∑

n=0

(−ǫ)n

(n+ 1)!

dnan+1(τ)

dτn
, (43)
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and so, in principle, the required calculation is now clear: we expand a(τ) in powers of ǫ, as

a(τ) = a0(τ) + ǫa1(τ) +O(ǫ2), (44)

then solve (42) at successive powers of ǫ to find in turn the an(τ), finally substituting these315

expressions in (43) to determine the output. In practice, of course, the details are extremely

algebraically cumbersome. The next section describes this calculation at the first two orders in ǫ;

these provide the principal contributions to the audio output.

6.1. Calculation of the output to O(ǫ)

From (43), we see that the output takes the form320

ga(t) = −1 + 2a0(τ) + ǫg1 +O(ǫ2), (45)

where

g1 = 2a1(τ)− 2a0(τ)a
′
0(τ). (46)

In solving (42) for a0(τ) and a1(τ), we need the following expansions:

ea(τ)ΛT = ea0(τ)ΛT + ǫa1(τ)e
a0(τ)ΛTΛT +O(ǫ2),

e−a(τ+ǫ)ΛT = e−a0(τ)ΛT − ǫ(a1(τ) + a′0(τ))e
−a0(τ)ΛTΛT +O(ǫ2).

We also expand
(

eǫDI5 − eΛT
)−1

=
1

ǫD
Υ−1 +Υ0 +O(ǫ),

where Υ−1 = diag(1, 0, 0, 0, 0) and

Υ0 = diag(−1/2, (1− eiω1T )−1, (1− e−iω1T )−1, (1− e(−µ+iΩ)T )−1, (1− e(−µ−iΩ)T )−1).

Writing Θ(τ) = Θ0(τ) + ǫΘ1(τ) +O(ǫ2), we find that325

Θ0(τ) = P 1(T )U(τ) +
2(1− k)Q1(a0(τ)T )

LC
−

(1 + k − 2ka0(τ))Q1(T )

LC
+

2k

TLC
Q2(T )

and

Θ1(τ) =
1

T
P 2(T )U

′(τ) + P 1(T )a0(τ)U
′(τ) + TP 0(T )a

′
0(τ)U(τ)

+
2 (kQ1(T ) + (1− k)TQ0(a0(τ)T )) (a1(τ) + a′0(τ))

LC
−

(1 + k − 2ka0(τ))TQ0(T )a
′
0(τ)

LC
.
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The leading terms in (42) are those at O(ǫ−1), which give

γTRea0(τ)ΛTD−1
{

Υ−1e
−a0(τ)ΛTR−1Θ0(τ)

}

= 0. (47)

This equation may be considerably simplified by noting that Υ−1e
−a0(τ)ΛT = Υ−1 and, further,

that

Υ−1e
−a0(τ)ΛTR−1 = R, (48)

where R is a 5× 5 matrix whose first row is v1 and whose remaining elements are all zero. Thus330

we may satisfy (47) by imposing the condition

v1Θ0(τ) = 0. (49)

It is readily established that

v1P n(t) = −
tn

n!LC
, v1Qn(t) = −

tn

n!
,

and hence, from (49),

a0(τ) =
1
2(1 + U(τ)), (50)

which is the analogue of the duty-cycle condition (15).

The next terms to consider in (42) are those at O(1). After benefiting from the considerable335

simplification that follows from using (48) and imposing (49), we find

γTRea0(τ)ΛT
(

Υ0e
−a0(τ)ΛTR−1Θ0(τ) + D−1RΘ1(τ)

)

= −1 + 2a0(τ).

Then, since exp(±a0(τ)ΛT ) and Υ0 are all diagonal matrices, we see that

ea0(τ)ΛTΥ0e
−a0(τ)ΛT = Υ0;

furthermore, ea0(τ)ΛTR = R. Thus, by making use of these results and (48), we have

γTR
(

Υ0R
−1Θ0(τ) + D−1RΘ1(τ)

)

= −1 + 2a0(τ),

which we may solve by taking

γTRRΘ1(τ) = U ′(τ)− γTRΥ0R
−1Θ′

0(τ), (51)

where we have used (50) to eliminate a0(τ).340
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Now RΘ1(τ) = (θ1, 0, 0, 0, 0)
T , where

θ1 = v1Θ1(τ) =
T

LC

(

g1 −
1

2
(1− k)U(τ)U ′(τ)

)

,

where g1 is defined in (46). Furthermore, elementary matrix algebra gives

γTRRΘ1(τ) = θ1γ
Tw1 = −

LC

ω2
1

(c1ω
2
1 + c3)θ1.

The right-hand side of (51) may be expressed more concretely by noting that

Θ′
0(τ) = P 1(T )U

′(τ) +
(1− k)T

LC
Q0(a0(τ)T )U

′(τ) +
k

LC
Q1(T )U

′(τ).

If we now define

pn(t) = γTRΥ0R
−1P n(t), qn(t) = γTRΥ0R

−1Qn(t),

then g1 is given by345

g1 =
(1− k)U(τ)U ′(τ)

2
−
ω2
1 (1− ψ(τ))U ′(τ)

(c1ω2
1 + c3)T

, (52)

where

ψ(τ) = p1(T ) +
(1− k)T

LC
q0(

1
2(1 + U(τ))T ) +

k

LC
q1(T ).

This expression for g1 enables us to determine the most significant components of the audio dis-

tortion.

We note that without RC (i.e., for k = 0) the expression for g1 is nonlinear in U , and hence

the output contains harmonic distortion at O(ǫ). We also see that with RC (k = 1) g1 becomes350

the much simpler expression

g1 = −
ω2
1 (1− p1(T )− q1(T )/(LC))

(c1ω2
1 + c3)T

U ′(τ),

which involves only terms that are linear in U (the first nonlinear terms, involving quantities such

as ((U ′)2)′, which involve three derivatives, will arise first at O(ǫ3) in the output, cf. [10]).

Thus we have determined explicitly (at least, to O(ǫ)) the way in which the nonlinear be-

haviour of the amplifier tracks the slowly varying audio input, and in particular the resulting355

low-frequency components of the output. While the leading-order tracking result, from (45) and

(50), that ga ∼ U , is well known and is easily understandable from the duty-cycle balance in

(15), a comprehensive calculation of the type above is necessary to obtain a complete perturbative

calculation of corrections.
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R = 8Ω c1 = 1.3318× 105/s

C = 0.5169µF c2 = 1.3763× 1010/s2

L = 10µH c3 = −1.0747× 1014/s3

T = 1/384000s ω1 = 1.3195× 105rad/s

Table 1: Parameter values used in simulations, unless otherwise specified.

Frequency (kHz) Analytical Numerical

2 5.247× 10−5 5.258× 10−5

3 2.23× 10−6 1.52× 10−6

4 1.25× 10−5 1.38× 10−5

Table 2: Absolute value of the Fourier components at various harmonics of the input 1kHz sine wave: analytical

results from (45) and (52), and numerical results from simulation.

Our results confirm the conclusions of the small-signal model that RC (almost) completely360

linearises the output.

Although the perturbation calculation described in this section can, in principle, be taken

to higher order in ǫ, in practice the algebra required for this fifth-order system rapidly becomes

unmanageable, even using computer algebra. Fortunately, the dominant contributions to the

distortion seem to be captured by the terms to O(ǫ), for reasonable parameter values.365

7. Results

For our first set of simulations, we take the parameter values in Table 1. These give stable

steady-state operation, according to the criteria in Section 4. We carry out simulation of the

amplifier in Matlab Simulink and compare results with the small-signal transfer function in (36)

and with analytical predictions of the audio output from (45) and (52).370

In the absence of RC (k = 0), we examine a sine wave input

u(t) = u∗ sin(2πft), (53)
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Figure 5: Spectrum of the PWM pulse train p(t) without ripple compensation: analytical results from (45) and (52),

and numerical results from simulation.
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Figure 6: Spectrum of the PWM pulse train p(t) with ripple compensation.
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with u∗ = 0.8 and f = 1kHz. For the analytical result in (45), we keep terms at O(1) and O(ǫ); the

output Fourier component at the fundamental frequency is then predicted to be −0.01356− 0.4i,

while simulation gives −0.0166 − 0.3988i. The absolute values of the Fourier components for the

second, third and fourth harmonics are given in Table 2; further results are summarised in Figure 5.375

Given the small amplitude of harmonics and the small number of terms kept in the perturbation

analysis, these results represent very good agreement between theoretical and numerical results.

We note that in a practical implementation any harmonic below about −140dB will disappear

beneath the noise floor, and will not be observable in measurement.

In the presence of RC, we may compare simulation results both with the perturbation calcu-380

lation above, and also with the predictions of the small-signal model. Taking terms at O(1) and

O(ǫ), (45) predicts that the output contains only the fundamental. Its prediction of the amplitude

of the output fundamental agrees exactly with predictions of the small-signal model, when the

latter is appropriately truncated. When u(t) is as in (53), with u∗ = 0.8 and f = 1kHz, the output

Fourier component at the fundamental frequency is analytically −0.0135− 0.3987i, and from sim-385

ulation −0.0166− 0.3988i. Further results are summarised in Figure 6; we note that all harmonics

beyond the fundamental are beneath the practical noise floor of −140dB. With f instead 2kHz,

the corresponding results are −0.0263− 0.3949i and −0.0327− 0.3952i. At lower amplitude, with

u∗ = 0.5 (and f = 1kHz), the results are −0.0084 − 0.2492i and −0.0104 − 0.2492i. Again the

agreement between theoretical prediction and simulation is very good. The largest harmonic in390

the output is measured to be less than 10−5, which confirms the effectiveness of RC in eliminating

higher harmonics from the output.

7.1. Effects of instability

The bifurcation structure of a negative-feedback pulse-modulated system such as described in

this paper can be extremely intricate [5, 6] in response to a sinusoidal reference. However, the395

practical mode of operation for the present device aims to avoid instability; thus it is sufficient

to use an approximation to the stability boundary, as we now describe. From either (26) or (28)

we may determine whether the steady-state operating point in response to a constant input u0 is

stable or unstable. We find (either with or without RC) that the stability boundary depends only

very weakly on the value of u0. Correspondingly, we find that the steady-state stability threshold400

gives a very good indication of the stability of operation in response to an audio sine-wave input
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Figure 7: Path of the eigenvalues of M in the complex plane as c1 is varied from 105/s to 4.5 × 105/s, all other

parameter values being as in Table 1 and with k = 0. Arrows indicate the direction for increasing values of c1.

(i.e., one that varies slowly compared with the time scale of the switching). The behaviour of the

amplifier is markedly different in the “stable” and “unstable” cases, and in practice the threshold

between the cases is quite sharp.

For expository purposes, we use c1 as our bifurcation parameter, holding all other parameters405

fixed at their values as in Table 1. The paths of the eigenvalues of the matrix M are shown

in Figure 7 as c1 is varied from 105/s to 4.5 × 105/s, for a constant input u0 = 0, with k = 0.

In fact the eigenvalues vary little with the choice of u0 or k. We find that the steady-state

operating point is stable for c1 < c1c, where c1c varies between 2.206 × 105/s and 2.208 × 105/s

as u0 varies in the interval [−1, 1]. For practical purposes, it is thus a reasonable approximation410

to consider that there is a single point at which the bifurcation from stability to instability takes

place (although a more detailed analysis would undoubtedly reveal a rich, finer-grained bifurcation

structure [5, 6]). Instability of the steady-state operating point arises through a pair of complex

conjugate eigenvalues of M leaving the unit circle, as in Figure 7. Beyond the bifurcation point,

there are corresponding oscillations in the duty cycle, which grow until an reaches 0 or 1, at which415

point the duty cycle saturates, and we observe one or more switching periods in which no switching

in fact takes place (one or more pulses are “skipped” [3, 11, 27]). This saturation of the duty cycle

tends to occur most readily when |u(t)| is greatest. The oscillations in an and its saturation at 0 or
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Figure 8: Line T shows log10 THD as a function of c1, all other parameters being as in Table 1. Lines 2, 3, 4,

respectively, give log10 of the amplitudes of the second, third and fourth harmonics in the output. The input is

u(t) = 0.8 sin(2πft), with f = 1kHz.

1 lead to a sudden calamitous jump in the amplitude of harmonics in the output, and consequent

sudden steep rise in the total harmonic distortion (THD); see Figure 8. The THD of a signal may420

be defined as follows:

for f(t) =
∞∑

−∞

fne
niωt, THD =

√

|f2|2 + |f3|2 + · · ·

|f1|
.

As is evident in Figure 8, there appears to be some uncertainty in our measurements of the

harmonic amplitudes and the THD beyond the onset of instability, in contrast to our crisp results

up to that point. The reason is that, prior to the onset of instability there are just two frequencies in

the system, one associated with the audio sine wave and the other associated with the switching.425

Both frequencies are at our disposal; we choose these two frequencies to be commensurate and

ensure that the time interval of simulation is an integer multiple of both the switching period T

and the sine-wave period 1/f . However, beyond the bifurcation point a third frequency is present

in the simulations, relating to the oscillations in the duty cycle about the (now unstable) steady-

state response. This third frequency arises dynamically in the system and is not a parameter430

at our disposal. Hence our simulations in general do not contain an integer number of periods
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of this oscillation. Consequently, there is spectral leakage [28] (absent before the instability) and

our measurements of various harmonic components are correspondingly contaminated. However,

beyond the bifurcation point the THD performance of the amplifier is so poor that a precise

measurement of the THD is unnecessary: post-instability the amplifier is all but useless for high-435

fidelity reproduction.

Of course our exploration of the high-dimensional parameter space of this amplifier is extremely

limited: it is entirely possible that by choosing different parameter values and/or varying different

parameters we might find a supercritical bifurcation leading to oscillations that saturate at small

amplitude beyond the point of instability. In this case, any rise in THD is likely to be far less440

dramatic than that observed here.

7.2. Comparison with open-loop design, and experimental results

It is instructive to compare the foregoing results with those from an open-loop design. The

latter involves just the carrier-wave generator and comparator from Figure 1, with the audio signal

at the positive comparator input and the carrier wave at the negative input. The full output445

spectrum for the open-loop case is well known [29, 30, 31]: the distortion components in the audio

spectrum are due entirely to sidebands of the PWM switching frequency, and are negligible, being

smaller than the smallest numerical value that can be represented by Matlab’s floating point 64-

bit format. However, despite its extremely low theoretical level of audio distortion, the open-loop

design is less advantageous in practice than a closed-loop design, such as examined here, because450

the latter is considerably better at rejecting unwanted perturbations caused by disturbances to the

power supply or other non-idealities of the physical device. Experimental results for a closed-loop

class-D amplifier designed by making use of the proposed approach show (see Figure 13 of [32])

that the measured total harmonic distortion (THD) at 1W is equal to 0.3% for the open-loop

amplifier and decreases to 0.003% when the feedback loop is closed. Experimental results for a455

digitally controlled class-D amplifier also based on the proposed approach show [13] that a THD

of 0.0028% is achieved at an output power of 1W. More detailed experimental results [33] show

how the proposed approach results in a flat frequency response, a low output impedance across

the audio band and very low inter-modulation distortion.
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8. Conclusions460

We have analysed the nonlinear response of a fifth-order pulse-modulated negative-feedback

system to a slowly varying input. For the application at hand, we have demonstrated quantitatively

the effectiveness of the ripple compensation technique in reducing audio distortion that arises

from switching in the negative feedback loop. Our approach complements the usual focus on

instability and bifurcation of piecewise-smooth systems [3]; our interest is in the accuracy with465

which the system tracks its input, which provides a challenging perturbation problem in its own

right. We choose system parameters deliberately to be of physical relevance, avoiding instability.

Our principal results have been a small-signal model, which linearises about a steady-state point

of operation, and a nonlinear perturbation calculation that avoids such a linearisation. While the

former is a standard piece of the engineer’s toolkit, the latter, much more powerful, calculation is470

not.

We emphasise that the techniques described here, particularly the fully nonlinear calculation

presented in a quite general formulation in Section 6, are applicable to a wide variety of other

nonlinear pulse-modulated systems [4].
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