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34 Abstract

35 Walnuts are classified as an important allergenic ingredient that can cause severe

36 reactions in sensitized individuals. To prevent unintended exposure to products

37 containing walnut, food manufacturers have the responsibility to declare its presence

38 in packaged foods. Immunochemical methods are widely used to detect walnut

39 proteins. However, available immunoassays rely on the use of antibodies raised in

40 animals. In this work, an affinity probe for walnut proteins has been isolated from the

41 Tomlinson I library, and further engineered in Pichia pastoris to produce the in vivo

42 Juglans regia Biotinylated Soluble Fragment-single chain andbiotinylated and

43 multimeric multimeric antibody (JrBSF-scFv). The multimeric scFv has been used to

44 develop a direct enzyme-linked immunosorbent assay (ELISA), allowing detection of

45 walnut in a food matrix with a limit of detection (LOD) of 1616 mg kg-1. This is the

46 first recombinant antibody available for detection of walnut proteins. The assay is

47 specific, only cross-reacting to some extent (2.25 %) to pecan, thus being useful as a

48 screening tool for detection of walnut in raw or baked food matrices. Multimerization

49 of the scFv with different avidin derivates could be of interest to improve sensitivity

50 of the assay.

51

52 Keywords

53 Phage display; Pichia pastoris; In vivo biotinylation; mMultimeric scFv; ELISA;
54 walnut detection; recombinant antibodies; food allergens; food analysis; food
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56 1. Introduction

57 Walnuts are amongst the most widely consumed of all commercially grown tree nuts

58 in the world. Member of Juglandaceae family and seeds of Juglans regia L., walnuts

59 are a highly nutritious food. The regular consumption of walnuts has been associated

60 with decreased risk of cardiovascular disease, coronary heart disease and type II

61 diabetes, while lessening aged related symptoms (Kris-Etherton, 2014; Rock et al.,

62 2017). Accordingly, they are included as ingredient in many foodstuffs such as bakery

63 products to enhance their nutrition value (Hayes et al., 2015; Mao et al., 2014; Wang

64 et al., 2014). However, food-induced allergies are an emergent problem of public

65 health. Among food allergens, walnut is classified as an important allergenic

66 ingredient and frequent cause of adverse food reactions in allergic patients. Even

67 small amounts of walnut can cause severe reactions in sensitized individuals, being a

68 real problem of allergen management (Clark and Ewan, 2003). Food processing has

69 the potential to alter walnut immunoreactivity due to modifications of specific

70 epitopes in the walnut allergens. Nevertheless, boiling and roasting treatments do not

71 affect the antigenicity of walnut proteins, while a slight decrease has been described

72 after frying in vegetable oil at 191 ºC for 1 minute (Su et al., 2004). Only harsh

73 conditions of pressure and temperature, like autoclaving at 2.8 atm (37 psi), 138 ºC

74 for 15 or 30 minutes, lead to the fragmentation of proteins accompanied by a

75 reduction of the IgE binding (Cabanillas and Novak, 2017).

76 The walnut, within the group of tree nuts, is a product set by the European Union that

77 causes allergy or intolerance. To protect consumers, and in accordance with

78 Regulation 1169/2011, it is mandatory to indicate this ingredient when it is used in the

79 manufacture or preparation of a food and still present in the finished product, even if

80 in an altered form (The European Parliament and the Council of the European Union,
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81 2011). Therefore, food manufactures have the responsibility to declare the presence of

82 walnut on packaged foods even when trace residues may be present from the use of

83 shared equipment or the adventitious contamination of ingredients (Niemann et al.,

84 2009; Van Hengel, 2007).

85 There are several methods available for the detection of walnut allergens in food

86 products. However, immunochemical assays such as enzyme-linked immunosorbent

87 assay (ELISA) are by far the most widely used to detect and quantify walnut allergens

88 or proteins, due to their direct assessment of the allergen or marker protein, low set-up

89 cost, moderate running time and no special requirements for expertise knowledge

90 (Costa et al., 2014). One of the drawbacks of available immunoassays for walnut is

91 that they rely on the use of polyclonal or monoclonal antibodies raised in animals,

92 while current trends in animal welfare (European Union, 2010) encourage avoiding

93 the use of live animals when possible.

94 The phage display technology allows production of recombinant antibodies of defined

95 specificity and constant amino acid sequence without animal immunization. This

96 method uses libraries of recombinant bacteriophages that expose functional antibody

97 binding sites in their surface, like the single-chain variable fragments (scFv). Isolation

98 of phage-antibody fragments of the desired specificity is achieved by an iterative

99 biopanning procedure with the immobilized antigen (Hoogenboom et al., 1998). The

100 use of prokaryotic expression systems for production of antibody fragments can result

101 in unstable proteins, leading to low scFv yields (Arbabi-ghahroudi et al., 2005; Miller

102 et al., 2005). In this sense, the use of Pichia pastoris as alternative to Escherichia.

103 coli, provides appropriate post-translational modifications and is highly productive

104 (Cregg et al., 2000).
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105 In this work we describe the selection of a walnut-specific scFv from the synthetic

106 Tomlinson I library, followed by the production and in vivo biotinylation of the scFv

107 in Pichia pastoris. After tetramerization of the biotinylated probe with ExtrAvidin-

108 peroxidase, a direct ELISA has been developed for detection of walnut protein in

109 experimental food mixtures.

110

111 2. Material and methods

112 2.1. Materials and chemicals

113 The human scFv library Tomlinson I, M13 K07 helper phage and Escherichia coli

114 TG1 strain (K12Δ (lac-proAB) supE thi hsdD5/F’ traD36 proA+B laclq lacZΔM15)

115 were obtained from Source BioScience (Nottingham, UK). The Tomlinson I library is

116 constructed in the ampicillin resistant phagemid vector pIT2 (HIS myc tag) with a

117 size of 1.47 x108. This repertory is based on a single human VH framework (V3-

118 23/D47 and JH4b), paired with a single Vk (O12/O2/DPK9 and JK1). The repertory

119 has been designed to contain short complementarity-determining region 3 (CDR3)

120 CDR3 of the heavy chains while maintaining good antigen binding properties, and has

121 been displayed as a fusion with the terminal phage gene III protein.

122 Walnuts, other tree nuts, heterologous products, and commercial food products were

123 acquired from local retailers and delicatessen stores in Madrid (Spain).

124 HRPHorseadish peroxidase/anti-M13 monoclonal mouse antibody was purchased

125 from GE Healthcare (Little Chalfont, UKUnited Kingdom). Phosphate-buffered

126 saline (PBS) composition is 0.01 M phosphate buffer, 0.0027 M potassium chloride

127 and 0.137 M sodium chloride, pH 7.4. Milk phosphate-buffered saline (MPBS)

128 contains 1 % skimmed milk powder in PBS. Tris-buffered saline (TBS) composition

129 is 0.05 M Tris-Cl and 150 mM NaCl, pH 7.6. TBST is TBS containing 0.05 % Tween
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130 20. The protein extraction buffer consisted of 0.035 M phosphate solution containing

131 1 M NaCl, pH 7.5. Tryptone, yeast extract and European Bacteriological agar were

132 purchased from Laboratorios Conda (Madrid, Spain). 2xTY broth is 16 g L-1 tryptone,

133 10 g L-1 yeast extract and 5 g L-1 NaCl. TYE agar is 15 g L-1 bacto-agar, 10 g L-1

134 tryptone, 5 g L-1 yeast extract and 8 g L-1 NaCl.

135 Low salt Luria-Bertani (LB) agar is 10 g L-1 tryptone, 5 g L-1 yeast extract, 5 g L-1

136 NaCl, 15 g L-1 agar, pH 7.5. Buffered Glycerol-complex Medium (BMGY) is 10 g L-1

137 yeast extract, 20 g L-1 peptone, 100 mL of 100 mM potassium phosphate, pH 6.0, 100

138 mL 1.34 % Yeast Nitrogen Base (YNB), 2 mL of 4 × 10−5 % biotin and 100 mL 1 %

139 glycerol. Buffered Methanol-complex Medium (BMMY) is BMGY but adding 100

140 ml 0.5 % methanol instead of glycerol. Yeast Extract Peptone Dextrose Medium

141 (YPD) is 10 g L-1 yeast extract, 20 g L-1 peptone, 20 g L-1 dextrose and 20 g L-1 agar.

142 Yeast Extract Peptone Dextrose Medium with Sorbitol (YPDS) is YPD with 1 M

143 sorbitol.

144 Selection antibiotic Zeocin was purchased from Invitrogen (Carlsbad, CA, ,

145 USAUnited States), and Blasticidin from InvivoGen (Toulouse, France).

146 E. coli XL1-Blue Chemically Competent Cells (Agilent Technologies, Santa Clara,

147 CA, USA) were employed for the propagation of plasmids, and P. pastoris X-33

148 strain (Invitrogen) was used for scFv and biotin ligase (BirA) enzyme expression. P.

149 pastoris expression vectors pPICZαB and pPIC6αA were purchased from Invitrogen. 

150 Restriction enzymes PstI, NotI, XbaI and SacI, calf intestinal alkaline phosphatase, T4

151 DNA ligase, and GoTaq DNA Flexi Polymerase were purchased from Promega

152 (Madison, WI, USA). Plasmid purification kit (QIAGEN Plasmid Midi Kit), PCR

153 product purification kit (QIAquick PCR Purification Kit) and gel extraction kit

154 (QIAquick Gel Extraction Kit) were purchased from Qiagen (Hilden, Germany).
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155 HiTrap Protein L Column was purchased from GE Healthcare. Methanol was

156 purchased from Fisher Scientific (Loughborough, UK). All other reagents were

157 purchased from Sigma-Aldrich (St. Louis, MO, USA).

158

159 2.2. Preparation of protein extracts

160 All food samples (5 g) were ground using an IKA A11 analytical mill (IKA®,

161 Staufen, Germany), and stored in screw-capped vials at - 20 ˚ C. The sample (200 mg)

162 was mixed with 1200 μL of protein extraction buffer, and the mixture was shaken for

163 10 min at room temperature in a vertical rotator (HulaMixer Sample Mixer,

164 Invitrogen) to extract soluble proteins. The slurry was centrifuged at 10,000 g for 10

165 min at 4˚ C, and the supernatant was filtered through a 0.45 mm syringe filter

166 (Sartorius, Göttingen Gottingen, Germany). Bicinchoninic acid (BCA) assay (Thermo

167 Fisher Scientific Inc., IL, USA) was employed to determine protein concentration.

168 Protein extracts were stored at - 20 ˚ C until further use.

169

170 2.3. Selection of scFv against walnut by phage display

171 Preparation of the Tomlinson I phage display library for biopanning procedure was

172 performed as described in the manufacturer’s protocol. Following amplification of the

173 library and poly-ethylene glycol (PEG)/NaCl phage precipitation, phages were

174 tittered, and kept at 4 ºC for short term storage or at – 80 ºC in 15 % glycerol for

175 longer term storage.

176 Polystyrene paddles and magnetic beads were alternately used for target

177 immobilization to avoid the isolation of unspecific phages which would produce

178 false-positive results. For the first and third rounds of selection, polystyrene paddles

179 (Nunc, Denmark) with a surface area of 5.2 cm2 were coated with 1 mL of 100 μg 
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180 mL-1 walnut extract (positive screening) or pecan nut extract (negative screening) in

181 PBS, and incubated overnight at 4 ˚C. Then, paddles were washed three times with

182 PBS and blocked with 3 % bovine serum albumin (BSA) at 37 ˚C for 1 h.

183 For the second round of selection, Dynabeads M-280 Tosylactivated (Invitrogen)

184 were used to bind the target proteins following manufacturer's instructions. Briefly,

185 5 mg of Dynabeads were coated with 100 μg of walnut proteins (positive panning) in 

186 0.1 M Na-phosphate buffer, pH 7.4, to a final volume of 150 μL and then, 100 μL of 

187 3 M ammonium sulphate in Na-phosphate buffer was added. Coupling procedure was

188 performed on a vertical rotator at 37 ˚C overnight. Next day, Dynabeads were blocked

189 with 1 mL of 0.5 % BSA in PBS for 1 h at 37 ˚C with rotation. The same procedure

190 was performed with the Dynabeads used for negative panning, but employing a pecan

191 nut protein extract as the ligand.

192 Three rounds of biopanning were performed for selection of walnut-specific phage-

193 scFv, as previously described (Madrid et al., 2017) with the following modifications:

194 approximately 1012 phage particles from Tomlinson I library were resuspended in 2

195 mL of 3 % BSA in PBS and added to the pecan nut-coated polystyrene paddle. The

196 mixture was incubated at 25 ˚C for 60 min on a rotator to capture phage-scFv

197 recognizing pecan nut (negative panning). The supernatant containing unbound phage

198 particles was added to the walnut coated paddle (positive panning) and incubated at

199 25 ˚C for 60 min with rotation, and for further 60 min without rotation. After positive

200 panning, unbound phages were removed by washing 10 times with PBS, and phages

201 specifically bound to walnut proteins were eluted by adding 500 μL of trypsin 

202 solution (1 g L-1 trypsin in PBS) for 10 min at room temperature with rotation. A total

203 of 250 μL of the eluted phages was used to infect 1.75 mL of a TG1 cell culture at an 

204 OD600 of 0.4, and incubated for 30 min at 37 ˚C in a water bath. Infected cells were
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205 spread on a TYE agar plate containing 100 μg mL-1 ampicillin and 10 g L-1 glucose,

206 and grown overnight at 37 ˚ C. Titre of eluted phage was also determined. Following

207 overnight incubation, E. coli colonies were scraped into 2 mL of 2xTY containing

208 15 % glycerol and stored at -80 ˚ C (labelled as first round stock). To amplify the

209 phages for the second round of selection, 50 μL of recovered bacteria from the first 

210 panning experiment were inoculated into 50 mL of 2xTY containing 100 μg mL-1

211 ampicillin and 10 g L-1 glucose, and incubated at 37 ˚ C until reaching an OD600 of

212 0.4. Then, 10 mL of the culture was infected with 5 × 1010 particles of helper phage,

213 and incubated at 37 º C for 30 min. Bacterial cells were pelleted and resuspended in

214 100 mL 2xTY containing 100 μg mL-1 ampicillin, 50 μg mL-1 kanamycin and 0.1 %

215 glucose, and incubated overnight at 30 º C. Next day, phage particles from the

216 supernatant were PEG/NaCl precipitated, and resuspended in 1 mL of PBS, and

217 tittered before being used for the second round of selection. A second round of

218 selection was performed like the first one, but employing 2.5 mg of Dynabeads

219 instead of polystyrene paddles, and increasing the number of washes to 20. The third

220 round of selection was carried out exactly like the first one.

221

222 2.4. Indirect Phage Enzyme-Linked Immunosorbent Assay -(ELISA)

223 Polyclonal phage- ELISA was used to assess enrichment of the phage display library

224 with walnut binding phages after each round of selection, while monoclonal phage

225 ELISA was used for analysis of individual clones.

226 Flat-bottom polystyrene microtiter plates (F96 MaxiSorp Nunc immuno plates, Nunc,

227 Denmark) were coated with the appropriate dilutions of the protein extracts assayed

228 (walnut, heterologous species or experimental mixtures) in PBS for 16 h at 4 º C.

229 Then, the plates were washed 3 times and blocked with 200 μL of MPBS for 1 h at 
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230 37 ˚C. After washing 3 times, 1 μL of precipitated phages (containing approximately 

231 1012 phage particles) was added to each well, diluted in 100 μL of MPBS, and plates 

232 were incubated for 1 h at room temperature. After washing 10 times, plates were

233 incubated at room temperature for 1 h with 150 μL of HRP/anti-M13 monoclonal 

234 mouse antibody diluted 1:5000 in MPBS. Finally, plates were washed 5 times, and

235 100 μL of tetramethylbenzidine substrate solution  was added to each well, and plates 

236 were incubated with shaking in the dark. Colour development was performed for 10

237 min at room temperature before addition of 50 μL 1 M sulphuric acid to stop reaction. 

238 OD450 was measured with an iEMS Reader MF (Labsystems, Helsinki, Finland). All

239 washing steps were performed with PBS. All experiments were performed in

240 triplicate.

241 Monoclonal walnut phage ELISA was used to assess the ability of single clones to

242 recognize walnut proteins. With that purpose, 95 individual colonies from the second

243 and third rounds of selection were randomly picked and inoculated in separate wells

244 of cell culture microplates (Nunc, Denmark) containing 200 μL 2xTY with 100 μg 

245 mL- 1 ampicillin and 10 g L-1 glucose. Plates were grown for about 2 h at 37 ˚C with

246 shaking (250 rpm). One hundred microlitres from each well was transferred to a

247 second microplate, and 25 μL 2xTY, with 100 μg mL-1 ampicillin and 10 g L-1

248 glucose containing 109 particles of helper phage were added to each well. After 1 h

249 incubation at 37 ˚C, the plates were centrifuged at 1800 g for 10 min at 4 ˚C.

250 Supernatants were discarded, and bacterial pellets were resuspended in 200 μL 2xTY 

251 containing 100 μg mL-1 ampicillin, 50 μg mL-1 kanamycin and 1 g L-1 glucose, and

252 incubated overnight at 30 ˚C. Next day, plates were centrifuged at 1800 g for 10 min,

253 and 50 μL of the phage supernatants diluted in 50 μL MPBS were employed in 

254 monoclonal phage ELISA as described above, instead of precipitated phage particles.
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255

256 2.5. Sequence analysis

257 Polymerase Chain Reaction (PCR) amplification of walnut-recognizing clones was

258 carried out from single colonies to check for the presence of full length VH and Vk

259 inserts using My Taq Mix 2x (Bioline Reagents Limited, London, UK) and primers

260 LMB3 and pHENseq (Table 1). The following PCR program was used: 95 ˚C for 9

261 min, then, 95 ˚C for 30 s, 62 ˚C for 30 s, 72 ˚C for 30 s for 30 cycles, and final

262 extension at 72 ˚C for 7 min. PCR products were examined by electrophoresis on

263 1 % agarose gel.

264 Sequencing of phagemid DNA from the clones that presented a complete VH + Vk

265 fragment was performed as previously described (de la Cruz et al., 2015).

266 Nucleotide sequences were compared using European Molecular Biology Open

267 Software Suite (Emboss software), and then analysed with Ig BLAST to determine

268 framework and complementary determining regions (CDR) of the VH and Vk chains.

269 Amino acid sequences were deduced from the nucleotide sequences by Expasy

270 website (www.expasy.org).

271

272 2.6. Vectors construction

273 Vector pMJA186 was derived from pPICZαB with the following modifications: the 

274 nucleotide sequence encoding the walnut-specific scFv (JR35) was amplified from the

275 corresponding phagemid pIT2 using a high fidelity DNA polymerase with primers

276 MJA254 and MJA253 (Table 1). The purified PCR product was digested with PstI

277 and NotI and cloned between the PstI and NotI sites in the pPICZαB plasmid. 

278 Moreover, sequence encoding the biotin-accepting domain (BAD) was obtained by

279 enforcing hybridization of primers MJA257 and MJA258. Hybridized BAD
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280 nucleotide sequence was then digested with NotI and XbaI, and ligated into the NotI

281 and XbaI sites of the vector. Correct orientation of the insert (scFv + BAD) was

282 assessed by DNA sequencing with primers MJA254 and MJA259 at the Genomics

283 unit of Universidad Complutense de Madrid.

284 Vector pMJA180 (de la Cruz et al., 2016) contains the nucleotide sequence codifying

285 Bir A enzyme (GenBank accession no. P06709) ligated between EcoRI and SacII sites

286 of pPIC6αA plasmid. 

287

288 2.7. Transformation of E. coli

289 Competent E. coli XL1-Blue cells were transformed according to manufacturer’s

290 protocol. Once transformed, cells were spread on prewarmed low salt Luria-Bertani

291 agar plates containing the selective antibiotic (25 μg mL−1 Zeocin for plasmid

292 pMJA186, and 100 μg mL−1 Blasticidin for plasmid pMJA180). Plates were incubated

293 overnight at 37 ˚C.

294

295 2.8. Transformation of P. pastoris

296 To direct the scFv + BAD and the BirA enzyme into the yeast secretory pathway, the

297 codifying sequences were inserted in frame with the methanol inducible 5’-AOX1

298 promoter, the α-factor secretion signal and the AOX1 transcription terminator. 

299 The Sac I linearized pMJA186 expression vector was precipitated by ethanol and

300 transformed into P. pastoris X-33 with a BioRad MicroPulser electroporation

301 apparatus (Bio-Rad, Hemel Hempsted, UK) using the following parameters: 2,5 V, 24

302 μF, 400 ohm. Transformed cells were selected on YPDS agar supplemented with 100 

303 μg mL-1 Zeocin for 72 h at 30 ˚C. Ninety-five individual clones were screened for

304 scFv production by inoculation in 200 μL YPD medium with 100 μg mL-1 Zeocin and
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305 overnight growth at 30 ˚C with shaking, followed by overnight growth in 1 mL

306 BMGY medium with 100 μg mL-1 Zeocin at 30 ˚C in 24-well Costar plates (Cultek,

307 Spain). After centrifugation of the plates, the cells were resuspended in BMMY

308 medium to induce scFv expression, and methanol (1 %) was replenished every 12 h

309 for 72 h. Finally, plates were centrifuged (1800 g, 10 min, 4 ˚C) and the supernatant

310 was analysed by dot-blotting in search for clones expressing and secreting the scFv, as

311 previously described (de la Cruz et al., 2016).

312 Following dot-blotting analysis, a single clone was selected based on the intensity of

313 the signals obtained. The selected clone was transformed with the second P. pastoris

314 expression vector, pMJA180, and transformed cells were grown on YPDS agar plates

315 containing 100 μg mL−1 Zeocin and 500 μg mL−1 Blasticidin for 72 h at 30 ˚C.

316 Isolated colonies were picked from the selective agar plate and induced with methanol

317 following the microscale induction described above. Supernatants were analysed by

318 dot-blotting to check for the presence of biotinylated scFv using ExtrAvidin-

319 Peroxidase (Sigma-Aldrich, SKU E2886) (1:5000 v/v) in 1% BSA for detection, and

320 the membrane was developed with the chemiluminescent substrate Clarity Western

321 ECL (Bio-Rad).

322 A single clone was selected again, based on signal intensity obtained in the dot-

323 blotting analysis, and called JrBSF (Juglans regia Biotinylated Soluble Fragment).

324 The insertion of both plasmids in the genomic DNA of the selected clone was

325 assessed by PCR with the primer pairs MJA254/MJA259 (for scFv-BAD) and

326 MJA255/MJA256 (for BirA).

327

328 2.9. Biotinylated scFv production and purification
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329 The clone JrBSF was grown overnight at 30 ˚C in 10 mL of YPD with 100 μg mL−1

330 Zeocin and 500 μg mL−1 Blasticidin. Then, 1 mL of this culture was inoculated in 600

331 mL BMGY containing 100 μg mL−1 Zeocin and 500 μg mL−1 Blasticidin, and

332 incubated for 18 h at 30 ˚C with shaking. After centrifugation at 4000 g for 15 min at

333 4 ˚C, cells were induced for 72 h in 600 mL BMMY, with methanol being replenished

334 every 12 h. The culture was then centrifuged at 4000 g for 20 min at 4 ˚C to remove

335 yeast cells.

336 The supernatant containing biotinylated scFv was filtered through a 0.4 μm membrane 

337 filter (Millipore, Darmstadt, Germany) and loaded onto a 1 × 1 mL HiTrap protein L

338 column (GE Healthcare Life Sciences) attached to an ÄKTA purifier FPLC system

339 (GE Healthcare, Sweden). Three hundred millilitres of supernatant were loaded onto

340 the PBS equilibrated column, and the biotinylated scFv eluted with 0.1 M glycine-

341 HCl (pH 2.7) as previously described (de la Cruz et al., 2016). Recovered fractions

342 were pooled and dialyzed against PBS buffer employing Amicon Ultra-15 Centrifugal

343 Filter Units (Millipore) with a pore sizen MWCO of 10 kDa. Protein concentration

344 was measured in a Nanodrop (Thermo Scientific, Waltham, MA, USA), adjusted to 2

345 mg mL−1 of total protein, and stored in 100 μL aliquots at −80 ˚C until further use.

346

347 2.10. Multimerization of biotinylated scFv

348 ExtrAvidin- peroxidase (Sigma-Aldrich) was used as a core a molecule for

349 multimerization of biotinylated scFv, following the NIH Tetramer Core Facility

350 guidelines (http://tetramer.yerkes.emory.edu/support/protocols#10). Briefly, 0.5 μL 

351 ExtrAvidin-HRP solution (2.5 mg mL-1) was added every 10 min up to a total of 10

352 times to an aliquot of  100 μL (200 μg) of biotinylated scFv. The reaction was carried 

353 out at room temperature in the dark, and with continuous but gentle rotation in a
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354 sample mixer (HulaMixer Sample Mixer, Life Technologies). Multimerized scFv

355 tubes were kept in the dark at 4 ˚C until further use.

356

357 2.11. ScFv multimerization assessment

358 Peptide mass fingerprinting and analytical ultracentrifugation methods were used for

359 multimerization assessment. Multimerized scFvs were concentrated using an Amicon

360 Ultra 50 kDa filtration unit (Merck Millipore, Darmstadt, Germany) and analysed by

361 sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 12 % in

362 non-reducing conditions. The gel was stained with Coomassie Brilliant Blue R-250,

363 and the bands of interest were cut out with a scalpel and immersed in a solution of 5%

364 (v/v) acetic acid. Peptide mass fingerprinting was performed in a 4800 Plus MALDI

365 TOF/TOF Analyzer mass spectrometer (AB SCIEX, MA, USA), at the Proteomics

366 Unit, Universidad Complutense de Madrid (Spain).

367 Interpretation of the mass spectra data into protein identities was performed with the

368 Mascot search engine software (http://www.matrixscience.com) (Matrix Science Ltd.,

369 London, UK) using the SwissProt database. Search parameters employed were:

370 trypsin enzymatic cleavage, one possible missed cleavage allowed; peptide mass

371 tolerance of ± 80 ppm; fragment mass tolerance of ± 0.3 Da; peptides were assumed

372 to be monoisotopic; carbamidomethyl fixed modification; and methionine oxidation

373 variable modification.

374 Ultracentrifugation analyses of the multimerized scFv were carried out at Instituto de

375 Química-Física Rocasolano, CSIC, Madrid (Spain) as previously described (de la

376 Cruz et al., 2016).

377

378 2.12. Preparation of binary mixtures
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379 To evaluate the sensitivity of the assay, binary mixtures of raw walnut in wheat flour

380 (105 to 100 mg kg-1) were prepared using a food processor (Thermomix, Vorwerk,

381 Germany) as follows: Concentration of 105 mg kg-1 was prepared by adding 10 g of

382 ground walnuts to 90 g of wheat flour. Then, 10 g of the former mixture was added to

383 90 g of wheat flour to obtain 104 mg kg-1. Concentrations of 103 mg kg-1 and 100 mg

384 kg-1 were made in a similar way with the previous mixtures. Additional mixtures of 5

385 x 104, 2.5 x 104, 5 x103, and 500 mg kg-1 were prepared by mixing 25 g of wheat flour

386 with 25 g of the mixtures containing 105, 5 x 104, 104 and 103 mg kg-1 respectively.

387 To determine the effect of heat treatment on scFv’s ability to identify walnut protein,

388 30 g of ground walnut were processed in an oven at 160 ˚C for 13 min. Heat treated

389 ground walnut samples were mixed in wheat flour as described above for raw walnut

390 mixtures. Protein extracts from binary mixtures were prepared following the

391 procedure described in Section 2.2.

392

393 2.13. Direct ELISA with multimerized scFv

394 The protein extracts from walnut/wheat flour binary mixtures and commercial food

395 products were diluted 1:100 in PBS to coat the wells of microtiter plates for 16 h at 4

396 ºC. Next day, the plates were washed three times with TBS and blocked with 200 μL 

397 3 % BSA in TBS for 1 h at 37 ˚C. After washing 3 times, 100 μL of multimerized 

398 scFv stock (2 mg mL-1) diluted 1:500 (v/v) in TBST with 1 % BSA, was added to

399 each well, and plates were incubated for 2 h at room temperature with shaking in the

400 dark. After washing 10 times with TBS, 100 μL of tetramethylbenzidine substrate 

401 solution was added to each well and the plates were incubated at room temperature

402 with shaking for 10 min. Fifty microliters of 1 M sulphuric acid was added to stop

403 reaction and OD450 was measured with an iEMS Reader MF. All experiments were
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404 performed in triplicate. To check for non-specific reactions, different wells were

405 coated with walnut protein extract and incubated with 2 μg mL−1 of monomeric scFv

406 (without ExtrAvidin) or with 0.125 μg mL−1 of ExtrAvidin-HRP (without scFv). A

407 calibration curve of different concentrations of walnut in wheat flour (106–100 mg

408 kg−1) was included in each plate. The concentration-response curves obtained by

409 plotting the absorbance values vs. the log of walnut protein concentration, was fitted

410 to the four-parameter logistic equation using Origin 8.0 software (OriginLab

411 Crop.,USA).

412

413 2.14. Assay validation

414 The specificity of the assay was assessed by challenging the isolated phage-scFv

415 clones to protein extracts obtained from different animal and plant species (Table 2)

416 that had been previously diluted 1:200 in PBS. Each sample was analysed in

417 triplicate. The results obtained by analysis of food samples with multimeric-scFv

418 ELISA were compared to those obtained by a walnut-specific real time PCR method

419 (López-Calleja et al., 2015). The limit of detection (LOD) was calculated following

420 the guidelines of the International Union of Pure and Applied Chemistry (IUPAC)

421 (Thompson et al., 2002). The LOD for the binary mixtures of wheat flour matrix

422 spiked with walnut was also determined, but employing wells coated with wheat flour

423 as blank.

424 Data were analysed for statistical significance by one-way ANOVA and the Fisher's

425 least significant difference (LSD) test (p < 0.05) using Statgraphics Centurion 15.2.14

426 (XV) (Statpoint Technologies, Inc., Warranton, VA).

427

428 3. Results and discussion
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429 3.1. Enrichment of the Tomlinson I library in walnut-specific phage-scFv clones

430 Phage display technology is a powerful tool for the isolation of recombinant antibody

431 fragments. Using this technology and the Tomlinson I library, target specific phage-

432 scFv clones were enriched through the “biopanning” process. In this work, walnut-

433 specific clones were isolated through three rounds of selection or biopanning using as

434 a target a protein extract from shelled and peeled crude walnut. The walnut skin or

435 seedpod was removed because it contains tannins, polyphenols that bind and

436 precipitate proteins, and can hinder the process of binding walnut proteins with the

437 phage-scFv repertoire (Sze-Tao and Sathe, 2000). Enrichment in walnut recognizing

438 phage-scFv occurred along the rounds of panning. However, the increase of the ratio

439 between the input number of phage particles (1012 pfu mL-1) and the phage particles

440 recovered at the end in each round was lower than expected. The number of phage

441 particles recovered after first biopanning was 7 x 105 pfu mL-1, being of 1.75 x 106 pfu

442 mL-1 after the second round, and 106 pfu mL-1after the third round of panning.

443 Compared to the guidelines described for phage display technology (Lee et al., 2007)

444 and our previous experience (de la Cruz et al., 2015, 2013), the increase between

445 rounds should be 100 times. With an input of 5 x 1012 phages, approximately 105- 107

446 bacterial colonies were expected after the first and second rounds of selection. In the

447 third round the titre should rise to 107-109. Nevertheless, between the first and second

448 rounds of selection eluted phages raised only 2.5 times, and between second and third

449 rounds of panning the titre did not increase further. These results could indicate that

450 methodology of negative biopanning with a closely related but non-target protein

451 (pecan extracts) eliminates a part of the walnut reactive phages, selecting exclusively

452 the most specific phage-scFv.
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453 To confirm this hypothesis, a polyclonal phage -ELISA was performed with phage

454 pools collected from the three rounds of selection. The results showed that the highest

455 absorbance values for walnut proteins corresponded to the second and third rounds,

456 and very low cross-reactivity was found to wells coated with bovine serum albumin

457 (BSA), pecan and peanut (Madrid et al., 2017). Thus, according to these results, the

458 second round of panning allowed selection of the phage population that specifically

459 recognised walnut, and additional rounds of selection were not necessary.

460

461 3.2. Screening of individual phage-scFv clones by monoclonal phage ELISA

462 Monoclonal phage ELISA was performed to isolate and identify the scFvs that

463 recognised walnut protein. Ninety five E. coli TG1 colonies from each the second and

464 third rounds of panning were picked to be analysed. A total of 8 out of 95 clones (8.4

465 %) from the second round and 3 out of 95 clones (3 %) from the third round were

466 considered as positive clones using the criteria of binding to walnut extract and not

467 peanut extract, used as negative control, with a walnut/peanut ratio > 5 (absorbance

468 values against walnut/absorbance against negative control). Precipitated phage-scFv

469 from those 11 selected clones were also analysed in monoclonal ELISA, and only 6

470 clones were selected for further analysis, based on the stability of the results.

471

472 3.3. PCR and sequence analysis of the positive clones

473 The six positive clones selected from the previous step were amplified by PCR with

474 primers LMB3 and pHEN, and PCR products were analysed in agarose gel to estimate

475 the proportion of clones containing the complete VH–VL insert (approximately

476 935 bp). Only one clone (JR35) analysed showed a band with the expected size, and 

477 thus was selected for additional characterization. Plasmid DNA sequencing was



21

478 performed to determinate the immunoglobulin framework, linker and complementary

479 determining regions (CDRs) of the VH and VL chains of the scFv, and the amino acid

480 sequence was deduced from nucleotide sequence through Expasy web (Madrid et al.,

481 2017).

482

483 3.4. Co-transformation of into P. pastoris with constructed vectors

484 Pichia pastoris is a widely used expression system that improves the production of

485 recombinant and heterologous proteins either intracellularly or extracellularly, thanks

486 to the simplicity of techniques needed for the molecular genetic manipulation of this

487 yeast and the capability of performing many eukaryotic post-translational

488 modifications (Cereghino and Cregg, 2000). Expression of any foreign gene in P.

489 pastoris requires the insertion of the gene into a vector, transformation of P.

490 pastoris genome with the expression vector and examination of potential

491 transformants for expression of the foreign gene product. Many vectors for

492 transformation of P. pastoris and their DNA sequences are available

493 (http://www.invitrogen.com). In this work, the biotin-accepting domain (BAD)

494 sequence was inserted at the C-terminus of the scFv into the vector of expression

495 pPICZαB, resulting in plasmid pMJA186 (Figure 1) to create a potential biotinylation 

496 site in the scFv sequence of the JR35 clone. In addition to BAD sequence, the scFv

497 expressed by the P. pastoris clones contained a c-myc epitope (EQKLISEEDL) and a

498 poly histidine tail that allow its purification and detection. The production of the

499 soluble specific scFv fragments by 95 transformed clones of P. pastoris was

500 confirmed by dot-blotting of the supernatants after methanol induction. This dot-blot

501 screening step is very useful to assure selection of successfully transformed clones

502 that express the protein of interest (Neophytou and Alcocer, 2017). One of the highest



22

503 expresser clones (named pMJA186-G2) was randomly selected to prepare competent

504 cells to proceed with the second transformation with pMJA180 vector, that codifies

505 for the biotin ligase (BirA) enzyme. In order to improve transformation, the dominant

506 antibiotic makers available for P. pastoris were used: Sh ble gene from

507 Streptoalloteichus hindustanus (Zeocin resistance) (Drocourt et al., 1990) and the

508 blasticidin S-deaminase gene from Aspergillus terreus (blasticidin resistance)(Kimura

509 et al., 1994). Blasticidin concentration was increased up to 500 μg mL-1 to ensure the

510 selection of cotransformed clones. DNA from the co-transformed clone named JrBSF

511 was analysed to demonstrate the presence or absence of the scFv and BirA sequences.

512 PCR with primers MJA254 and MJA259 confirmed that the clone JrBSF contained a

513 780 kb fragment consisting of the scFv linked to BAD nucleotide sequence (Figure

514 2A, lane 3) codified by plasmid pMJA186. Moreover, PCR with primers MJA255 and

515 MJA256 demonstrated the presence of a band of about 975 kb, corresponding to BirA

516 nucleotide sequence (Figure 2B, lane 3) codified by plasmid pMJA180, confirming

517 the co-transformation with the two vectors in clone JrBSF. On the contrary,

518 pMJA186-G2 clone only produced the 780 kb band, corresponding to the pMJA186

519 vector (Figure 2A, lane 2), but the band for BirA nucleotide sequence was absent

520 (Figure 2B, line 2).

521

522 3.5. Expression of biotinylated scFv by co-transformed JrBSF clone

523 Many conditions could influence heterologous protein production in P. pastoris.

524 Expression of foreign genes inside the methanol pathway (AOX1) is repressed by

525 glucose, glycerol and ethanol, but strongly induced by methanol, increasing

526 concentration of the soluble protein in the culture medium with cell density (Cregg et

527 al., 2000; Demain and Vaishnav, 2009).
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528 To optimize production of biotinylated scFv, the JrBSF clone was grown in buffered

529 media (BMGY and BMMY) as induction medium pH values of 6.5-8.0 have been

530 found the most appropriate for scFv production (Shi et al., 2003). The BirA enzyme,

531 also produced by JrBSF clone, would catalyse the strong binding of a biotin molecule

532 to the acceptor peptide attached to the scFv, resulting in a straightforward production

533 of in vivo biotinylated scFv. Production of the expected walnut-specific biotinylated

534 scFv in the culture supernatants of JrBSF clone was assessed by dot-blotting analysis

535 (Figure 3). The polyvinylidene difluoride (PVDF) membrane was coated with culture

536 supernatants from pMJA186-G2 and JrBSF clones before and after methanol

537 induction. When the membrane was revealed with anti-c-myc antibody (Figure 3A),

538 scFv was detected in supernatant from both methanol induced cultures. Nevertheless,

539 the membrane containing the same supernatants but developed with ExtrAvidin-

540 Peroxidase (Figure 3B) demonstrated that only the P. pastoris co-transformed clone

541 (JrBSF) was capable to produce biotinylated scFv. These results confirm that this

542 unique clone (JrBSF) was effective in the co-expression of both foreign genes and

543 production of functional BirA enzyme. In contrast with in vitro biotinylation methods

544 (Li and Sousa, 2012) that require the previous production and purification of enzyme,

545 in this work the biotinylation was performed in vivo. This in vivo biotinylation

546 technology can be applied for protein purification, analysis of protein localization,

547 and protein-protein interaction mainly in eukaryotic yeast cells (de la Cruz et al.,

548 2016; Neophytou and Alcocer, 2017).

549 One of the advantages of the use of P. pastoris for production of foreign proteins is

550 that the secreted heterologous protein comprises the vast majority of the total protein

551 in the medium (Cregg et al., 2000).
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552 An affinity chromatography column (HiTrap protein L) was used to purify the

553 biotinylated scFv from the JrBSF culture supernatant. This column consists of an

554 agarose matrix linked to protein L, which presents affinity towards the variable region

555 of the kappa light chain of immunoglobulins and immunoglobulin fragments (Lee et

556 al., 2007; Ma and O’Kennedy, 2015). The purification process rendered 6 mL of

557 biotinylated scFv (2 mg mL-1) that were distributed in 100 μL aliquots of and kept 

558 frozen at -80 ºC.

559

560 3.6. Production and characterization of multimeric scFv

561 Avidin is a tetrameric protein which binds one biotin molecule per subunit with a very

562 high affinity (Kd = 4 x 10-14 M). Due to this property, avidin and streptavidin have

563 been widely used to produce tetramers of various biotinylated ligands, including

564 antibody fragments (Kipriyanov et al., 1995). Because recombinant antibodies

565 isolated from naïve libraries lack affinity maturation undergone by antibodies raised

566 in animals, tetramerization of biotinylated scFv has been used to increase affinity for

567 the antigen, thus improving avidity and signalling in enzyme-linked immunosorbent

568 assays (Cloutier et al., 2000).

569 The walnut-specific biotinylated scFv antibodies were transformed in multivalent

570 scFv by means of ExtrAvidin-HRP to be used in ELISA. To demonstrate

571 multimerization of the scFv, a sodium dodecyl sulfate polyacrylamide gel

572 electrophoresis (SDS-PAGE) SDS-PAGE in non-reducing conditions of monomeric

573 and multimeric scFv was carried out (Figure 4). Electrophoretic analysis of

574 multimeric scFv showed a band with a molecular weight of about 220 kDa that was

575 not present in the monomeric scFv, and might correspond with the expected size of

576 the tetramers (≈ 230 kDa). To confirm this hypothesis, the band was excised and 
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577 trypsinized to be identified by matrix-assisted laser desorption/ionization tandem

578 mass spectrometry (MALDI-TOF/TOF). Comparison to protein database showed that

579 the band contained a mixture of peptides identified as peroxidase from Armoracia

580 rusticana, Ig heavy chain from Homo sapiens and a human Ig light chain variable

581 region that shared the same CDR2 than the JrBSF scFv (Table 3). This result is

582 consistent with the presence of a JrBSF tetramerized scFv. In addition, when the mass

583 spectrometry (MS) results were compared to the amino acid sequence of the JrBSF,

584 the coverage was 34% (Table 3).

585 Sedimentation velocity experiments were carried out to study the degree of

586 multimerization. Ultracentrifugation analyses showed differences between the

587 sedimentation coefficient (S) of monomeric biotinylated scFv and the scFv

588 tetramerized with ExtrAvidin-HRP (Figure 6). Although Extravidin-HRP is not a

589 homogeneous reagent, it presented a main peak (A) with a S value of 6.33, and an

590 approximate Mw of 107 kDa. The value corresponding to biotinylated monomeric

591 scFv was 2.63 S (Mw 25.1 kDa). The scFv fused to ExtrAvidin-HRP showed a

592 different profile than their isolated components, with the appearance of a new broad

593 peak (B) of 8.3 S and Mwapp 143 kDa, and a second peak (C) of 13.3 S (Mw of 290

594 kDa), consistent with the addition of at least two biotinylated scFv molecules to a

595 single ExtrAvidin-peroxidase core. Even though four molecules of biotin would be

596 able to join with an ExtrAvidin core, our results only supported that most of the

597 ExtrAvidin molecules would join just two biotinylated scFv. The conjugation of

598 peroxidase to avidin would hide biotin binding sites in the avidin molecule,

599 hampering the production of complete tetramers. This fact was also observed by de la

600 Cruz et al., 2016.

601
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602 3.7. Direct ELISA with multimeric scFv

603 The multimerized JrBSF scFv was used to detect walnut protein by a direct ELISA.

604 Analysis of walnut samples from different geographic origins (Spain and California)

605 showed the same absorbance values in the direct ELISA (result not shown).

606 Moreover, the assay was able to detect spiked walnut proteins in a wheat flour matrix

607 in a concentration-dependent manner (Figure 7). The limit of detection (LOD) of raw

608 walnut in the binary mixture after six triplicate experiments, performed in different

609 days, was 1616 mg kg-1. Compared to the indirect phage- ELISA results obtained for

610 the same binary mixture using the JR35 phage-scFv (LOD 6378 mg kg-1), it can be

611 concluded that, as expected, tetramerization of the scFv substantially improved the

612 assay sensitivity (Figure 7). Moreover, the direct ELISA performed with multimeric

613 scFv is faster and requires less handling than phage-scFv ELISA.

614 The effect of heat treatments on the assay ability to detect walnut proteins has been

615 also analysed. Baking (160 ºC / 13 min) was applied to ground walnuts to prepare

616 experimental binary mixtures in a wheat flour matrix. Under these conditions, and

617 performing triplicate experiments in six different days, the LOD for the baked walnut

618 binary mixture was 2466 mg kg-1. According to these results, baking may denature to

619 some extent the epitope recognized by the multimeric scFv in the walnut protein,

620 raising the LOD from 1616 to 2466 mg kg-1 in a food matrix.

621 The close phylogenetic relationships among walnut, pecan and tree nut species,

622 together with the varied number of plants and animal components that can be present

623 in different commercial food products, indicates the need to check the cross reactivity

624 of the ELISA against a wide range of species. Specificity was assessed by analysis of

625 protein extracts from 63 non target species (Table 2), including nine tree nuts, 48

626 different plant species and six animal species. Only pecan nut extract showed
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627 absorbance values different than the blank. When raw pecan extract was analysed, the

628 concentration in ELISA with multimerized scFv was estimated 22541 mg kg-1, (2.25

629 % of raw walnut value, 106 mg kg-1). Cross-reactivity with pecan nut has been

630 frequently reported in ELISA kits and published methods for detection of walnut.

631 Pecan nut belongs to the same botanic family (Juglandaceae) and presents allergenic

632 proteins like albumins with 92 % of sequence similarity with walnut. Cross-reactivity

633 with tree nuts (pistachio, hazelnut, Brazil nut, chestnut, pine nut) and other plant

634 species (quinoa, sesame, buckwheat and soybean) are also referred to be frequent

635 (Costa et al., 2014; Niemann et al., 2009; Wang et al., 2014). The cross-reactivity of

636 2.25 % to pecan observed with the multimeric JrBSF scFv makes this ELISA not

637 specific enough for detection of walnut in pecan-containing products. However, this

638 ELISA is highly specific for walnut regarding all the rest of food matrices analysed.

639 Applicability of the direct ELISA using multimerized scFv was assessed through

640 analysis of 30 food products (Table 4) that declared or may contain walnut in their

641 composition. Ten of the analysed products declared walnut as ingredient, ten declared

642 to contain tree nuts different than walnut or traces, and ten did not declare to contain

643 tree nuts or traces. The results obtained by analysis of these food samples with

644 multimeric-scFv ELISA were compared to those obtained by a walnut-specific real

645 time PCR method (López-Calleja et al., 2015). Walnut was detected in 7 out of 10

646 processed foods that included walnut as ingredient in the label. The three samples (a

647 chocolate, a bread stick with nuts and soy, and a yogurt) that showed negative results

648 in ELISA, had amplifiable DNA (Positive amplification control with Cp values lower

649 than 16). However, while the chocolate and the bread stick were also negative by real-

650 time PCR for walnut, DNA from the yogurt sample was amplified with the walnut-

651 specific PCR. Lack of detection of walnut protein and DNA in the chocolate and
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652 bread samples might be due to a fraudulent substitution by other nuts or incorrect

653 labelling, as real-time PCR is consistent with ELISA results. However, the absence of

654 a positive ELISA result in the yogurt sample, that declared to contain 0.1 % walnuts

655 (1000 mg kg-1), can be explained by the LOD of the ELISA, that is higher (1616 mg

656 kg-1) than the walnut content declared. Regarding the ten samples that declared tree

657 nuts different than walnut, or traces of tree nuts, walnut was detected in three

658 breakfast cereal samples with ELISA, but only two of these samples resulted positive

659 in walnut-PCR. The three positive samples declared pecan nut, but not walnut, so they

660 were also analysed by pecan-specific real time PCR (López-Calleja et al., 2015).

661 Pecan DNA was detected in all of them. According to the results obtained, two of the

662 samples were incorrectly labelled, as they contained undeclared walnut, but the third

663 sample only contained pecan nut as stated in the label. The positive result obtained for

664 these samples can be explained by their high pecan content (2 % pecan, 4 % pecan +

665 Brazil nut, and 16 % almond + hazelnut + Brazil nut + pecan). Even though cross-

666 reactivity of the walnut-ELISA was only 2.25 % with pecan, the presence of walnut

667 and pecan in two of the samples, and a high amount of pecan in the third one, explains

668 the result obtained, and should be considered for analysis of commercial products

669 containing pecan as ingredient.

670

671 Conclusion

672 In summary, an affinity probe for walnut proteins has been isolated from the

673 Tomlinson I library, and engineered in Pichia pastoris to produce the in vivo

674 biotinylated and multimeric JrBSF-scFv, allowing detection of walnut in a food

675 matrix with a LOD of 1616 mg kg-1. For the first time, recombinant antibody

676 technology that does not rely on animal immunization has been successfully used for
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677 production of a specific probe for detection of allergenic walnuts in food products.The

678 present work describes for the first time the isolation of recombinant antibody

679 fragments specific for walnut and its multimerization with an ExtrAvidin-HRP core,

680 demonstrating that this procedure can be used to develop immunoassays for food

681 allergens detection based on homogeneous probes that do not rely on animal

682 immunization. The LOD of the walnut assay develop is higher than that of other

683 reported immunoassays (Doi et al., 2008; Niemann et al., 2009; Yang et al., 2014).

684 However, the multimeric JrBSF scFv is specific, only cross-reacting to some extent

685 (2.25 %) to pecan, thus being useful as a screening tool for detection of walnut in food

686 matrices either raw or baked. Multimerization of the scFv with different avidin

687 derivates could be of interest to improve sensitivity of the assay.

688
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832 Figure captions
833
834 Figure 1. pMJA186 vector containing scFv JR35, c-myc epitope and BAP nucleotide

835 sequences constructed in pPICZαB plasmid (Zeo
r
, integrative plasmid carrying the secretion

836 signal sequence from the S. cerevisiae α factor prepro-peptide and functional sites for the

837 integration at the 5’AOX1 locus of P. pastoris X-33).

838 Figure 2. Electrophoretic analysis of the polymerase chain reaction (PCR) PCR products

839 obtained from different P. pastoris clones using primers: MJA254/MJA259 (A), and

840 MJA255/MJA256 (B). Lane 1: non-transformed P.pastoris; lane 2: pMJA186-G2 clone; lane

841 3: JrBSF clone. NC= PCR negative control, M=molecular weight marker BioMarker™ Low

842 50-1000bp.

843 Figure 3. Dot-blotting analysis of culture supernatants from the different P. pastoris clones

844 revealed with mouse monoclonal anti-c-myc-antibody (A) or ExtrAvidin-peroxidase (B),

845 induced or non-induced with methanol. NC: negative control, P.pastoris X-33 non-

846 transformed clone; PC: positive control, biotinylated scFv targeting almond protein;

847 pMJA186: P.pastoris clone transformed with pMJA186 plasmid; JrBSF: P.pastoris clone co-

848 transformed with pMJA186 and pMJA180 plasmids; Broth: only culture media.

849 Figure 4. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) SDS-

850 PAGE electrophoresis in non-reducing conditions of monomeric and multimeric scFv. Lane

851 1: ExtrAvidin-peroxidase (Mw ≈ 112 kDa); lane 2: scFv (Mw ≈ 30 kDa); lane 3: multimeric

852 scFv (Mw ≈ 220 kDa). Highlighted band was excised and analysed by matrix-assisted laser

853 desorption/ionization tandem mass spectrometry (MALDI-TOF/TOF).MALDI-TOF/TOF.
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854 Figure 5. Amino acid sequence of the JrBSF scFv deduced from the nucleotide sequence by

855 Expasy Web site. Positions of the complementary determining regions for the variable

856 domains of heavy (H-CDR 1-3) and light (L-CDR 1-3) chains are indicated. The amino acid

857 sequences found in matrix-assisted laser desorption/ionization tandem mass spectrometry

858 (MALDI-TOF/TOF)MALDI-TOF/TOF analysis are underlined.

859 Figure 6. Ultracentrifugation analysis of the multimeric-scFv, monomeric scFv and

860 ExtrAvidin-Peroxidase with sedimentation coefficients in PBS at 20 ºC. An amplified portion

861 of the figure is shown indicating a peak of ExtrAvidin-peroxidase (A), a first peak of

862 multimeric scFv (B), and second peak of multimeric scFv (C).

863 Figure 7. Standard curves of the multimeric-scFv (■, ●) and the phage-scFv (▲) enzyme-

864 linked immunosorbent assays (ELISAs) ELISAs performed with protein extracts obtained

865 from raw (■, ▲) and heat treated (●) ground walnut samples in wheat flour binary mixtures.

866 The curves show the average values and the standard deviations corresponding to triplicate

867 experiments performed in six different days.

868



Tables

Table 1. List of primers employed in this work.

Primer Sequence (5’


3’)

LMB3 CAG GAA ACA GCT ATG AC

pHEN seq CTA TGC GGC CCC ATT CA

MJA253 CAGATCCTCTTCTGAGATGAGTTTTTGTTC

MJA254 AATTAACTGCAGCCGAGGTGCAGCTGTTGGAGT

MJA255 ATATTATGAATTCATGAAGGATAACACCGTGCCACTGA

MJA256 ATAATATCCGCGGTTATTTTTCTGCACTACGCAGGGATATTTC

MJA259 CACCTTCGTGCCATTCGATTTTCT

MJA257
AATTGCGGCCGCGGGTCTGAACGACATCTTCGAGGCTCAGAAAATCGAATGGCACG

AAGGTGCTCTAGAAATT

MJA258
AATTTCTAGAGCACCTTCGTGCCATTCGATTTTCTGAGCCTCGAAGATGTCGTTCAG

ACCCGCGGCCGCAATT



Table 2. List of heterologous species analysed in the Indirect phage enzyme-linked
immunosorbent assay (ELISA)ELISA.

Species

Nuts

Almond (Prunus dulcis)

brazil nut (Bertholletia excelsa)

cashew nut (Anacardium occidentale)

hazelnut (Corylus avellana)

macadamia (Macadamia integrifolia)

peanut (Arachis hypogaea)

pecan nut (Carya illinoinensis)

pine nut (Pinus pinea)

pistachio (Pistacia vera)

Vegetal Species

anise (Pimpinella anisum) flaxseed (Linum usitatissimum) pineapple (Ananas comosus)

apple (Malus domestica) garlic (Allium sativum) plum (Prunus domestica)

apricot (Prunus armeniaca) kiwifruit (Actinidia deliciosa) pomegranate (Punica granatum)

asparagus (Asparagus officinalis) lentil (Lens culinaris) poppy seed (Papaver rhoeas)

aubergine (Solanum melongena) lupine (Lupinus albus) pumpkin seed (Cucurbita maxima)

banana (Musa acuminata) maize (Zea mays) quinoa (Chenopodium quinoa)

barley (Hordeum vulgare) mandarin orange (Citrus reticulata) rice (Oryza sativa)

blackberry (Rubus ulmifolius) melon (Cucumis melo) rye (Secale cereale)

brown sugar (Saccharum officinarum ) oats (Avena sativa) sesame (Sesamum indicum)

carrot (Daucus carota) olive (Olea europaea) soya (Glicine max)

cherry (Prunus avium) onion (Allium cepa) sunflower seed (Helianthus annuus)

chia (Salvia hispánica) orange (Citrus sinensis) tiger nut (Cyperus esculentus)

chickpea (Cicer arietinum) paprika (Capsicum annuum) tomato (Solanum lycopersicum)

cinnamon (Cinnamomum verum) pea (Pisum sativum) vanilla (Vanilla planifolia)

cocoa (Theobroma cacao) peach (Prunus persica) wheat (Triticum aestivum)

common bean (Phaseolus vulgaris) pear (Pyrus communis) zucchini (Cucurbita pepo)

Animal Species

cattle (Bos taurus) fish (Salmo salar) poultry (Gallus gallus domesticus)

egg (Gallus gallus domesticus) milk (Bos taurus) swine (Sus scrofa domestica)



Table 3. Peptides identified by matrix-assisted laser desorption/ionization tandem mass
spectrometry (MALDI-TOF/TOF)MALDI-TOF/TOF Spectrometry.

Protein Accession Sequence Total Ion Peptide sequences

identification number coverage score scores

Peroxidase
C1A

(Armoracia
P00433 21 %

rusticana)

Ig heavy chain

V-III región 23 P01764 29 % (Homo
sapiens)

Ig light chain

variable region AAR91610 14 %
(Homo sapiens)

pMJA186-scFv
34 %

43
47

290

92

76

87 64

133 133

103
312

163

R.DTIVNELR.S

R.DAFGNANSAR.G

R.TEKDAFGNANSAR.G

R.MGNITPLTGTQGQIR.L

K.NTLYLQMNSLR.A

K.LLIYNASSLQSGVPSR.F

K.LLIYNASSLQSGVPSR.F

R.EAEAAAEVQLLESGGGLVQPGGSLR.L



Table 4. Determination of the presence of walnut in various commercial processed food
products using walnut multimeric-scFv enzyme-linked immunosorbent assay (ELISA)ELISA
and real-time polymerase chain reaction (PCR)PCR.

Label
Number of

Multimeric scFv ITS
Product samplesstatement ELISA a real-time PCR a

analysed

biscuit 2 + (2) + (2)

Walnut
nut bar 2 + (2) + (2)

breakfast cereals 1 + (1) + (1)
declared as

chocolate 1 - (1) - (1)
ingredient

bread 3 + (2)/- (1) + (2)/- (1)
yogurt 1 - (1) + (1)

Contains other
biscuit 2 - (2) - (2)

nut bar 2 - (2) - (2)
tree nuts or breakfast cereals 4 + (3)/- (1) + (2)/-(2) b

traces thereof chocolate 2 - (2) - (2)
biscuit 3 - (3) - (3)
nut bar 1 - (1) - (1)

Not declaring breakfast cereals 1 - (1) - (1)
to contain nuts chocolate 1 - (1) - (1)
or traces sauce 1 - (1) - (1)

beverage 2 - (2) - (2)
ice cream 1 - (1) - (1)

a A plus (+) indicates absorbance values above the LOD (1616 mg kg-1 for ELISA) or the presence of
amplification after 35 cycles (real-time PCR), corresponding to walnut concentration lower than
10 mg kg-1.

b The two positive samples and one of the negative samples for walnut PCR were also positive
for pecan PCR. Pecan nut, but not walnut, was stated as ingredient in the labels.

Formatted: (Asian) Japanese (Japan), (Other)

English (United Kingdom), Superscript

Formatted: (Asian) Japanese (Japan), (Other)

English (United Kingdom)
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Figure captions

Figure captions

Figure 1. pMJA186 vector containing scFv JR35, c-myc epitope and BAP nucleotide sequences

constructed in pPICZαB plasmid (Zeor, integrative plasmid carrying the secretion signal

sequence from the S. cerevisiae α factor prepro-peptide and functional sites for the integration at

the 5’AOX1 locus of P. pastoris X-33).

Figure 2. Electrophoretic analysis of the polymerase chain reaction (PCR) PCR products

obtained from different P. pastoris clones using primers: MJA254/MJA259 (A), and

MJA255/MJA256 (B). Lane 1: non-transformed P.pastoris; lane 2: pMJA186-G2 clone; lane 3:

JrBSF clone. NC= PCR negative control, M=molecular weight marker BioMarker™ Low 50-

1000bp.

Figure 3. Dot-blotting analysis of culture supernatants from the different P. pastoris clones

revealed with mouse monoclonal anti-c-myc-antibody (A) or ExtrAvidin-peroxidase (B),

induced or non-induced with methanol. NC: negative control, P.pastoris X-33 non-

transformed clone; PC: positive control, biotinylated scFv targeting almond protein; pMJA186:

P.pastoris clone transformed with pMJA186 plasmid; JrBSF: P.pastoris clone co-transformed

with pMJA186 and pMJA180 plasmids; Broth: only culture media.

Figure 4. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) SDS-

PAGE electrophoresis in non-reducing conditions of monomeric and multimeric scFv. Lane 1:

ExtrAvidin-peroxidase (Mw ≈ 112 kDa); lane 2: scFv (Mw ≈ 30 kDa); lane 3: multimeric scFv 

(Mw ≈ 220 kDa). Highlighted band was excised and analysed by matrix-assisted laser

desorption/ionization tandem mass spectrometry (MALDI-TOF/TOF).MALDI-TOF/TOF.



Figure 5. Amino acid sequence of the JrBSF scFv deduced from the nucleotide sequence by

Expasy Web site. Positions of the complementary determining regions for the variable

domains of heavy (H-CDR 1-3) and light (L-CDR 1-3) chains are indicated. The amino acid

sequences found in matrix-assisted laser desorption/ionization tandem mass spectrometry

(MALDI-TOF/TOF)MALDI-TOF/TOF analysis are underlined.

Figure 6. Ultracentrifugation analysis of the multimeric-scFv, monomeric scFv and ExtrAvidin-

Peroxidase with sedimentation coefficients in PBS at 20 ºC. An amplified portion of the figure

is shown indicating a peak of ExtrAvidin-peroxidase (A), a first peak of multimeric scFv (B),

and second peak of multimeric scFv (C).

Figure 7. Standard curves of the multimeric-scFv (■, ●) and the phage-scFv (▲) enzyme-linked

immunosorbent assays (ELISAs) ELISAs performed with protein extracts obtained from raw

(■, ▲) and heat treated (●) ground walnut samples in wheat flour binary mixtures. The curves

show the average values and the standard deviations corresponding to triplicate experiments

performed in six different days.



*Highlights

Highlights

- WA walnut specific phage-scFv has beenwas isolated by phage display from the Formatted: English (United Kingdom)

Tomlinson I library

- In vivo biotinylated scFv (JrBSF-scFv) has been produced in Pichia pastoris Formatted: English (United Kingdom)

- BThe biotinylated scFv was multimerized with ExtrAvidin-Peroxidase and used

in ELISA

- LOD of direct ELISA for walnut with the multimerized JrBSF-scFv was 1616

mg kg-1

- This is the first recombinant antibody available for walnut detection


