
Journal of Open Source Software (JOSS): design and
first-year review

Arfon M. Smith∗1, Kyle E. Niemeyer2, Daniel S. Katz3, Lorena A. Barba4,
George Githinji5, Melissa Gymrek6, Kathryn D. Huff7, Christopher R. Madan8,
Abigail Cabunoc Mayes9, Kevin M. Moerman10, Pjotr Prins11, Karthik Ram12,

Ariel Rokem13, Tracy K. Teal14, Roman Valls Guimera15, and
Jacob T. Vanderplas13

1Data Science Mission Office, Space Telescope Science Institute, Baltimore, MD, USA
2School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis,

OR, USA
3National Center for Supercomputing Applications & Department of Computer Science & Department of

Electrical and Computer Engineering & School of Information Sciences, University of Illinois at
Urbana–Champaign, Urbana, IL, USA

4Department of Mechanical & Aerospace Engineering, George Washington University, Washington, DC,
USA

5KEMRI–Wellcome Trust Research Programme, Kilifi, Kenya
6Departments of Medicine & Computer Science and Engineering, University of California, San Diego, CA,

USA
7Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at

Urbana–Champaign, Urbana, IL, USA
8School of Psychology, University of Nottingham, Nottingham, United Kingdom

9Mozilla Foundation, Toronto, Ontario, Canada
10MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA & Trinity Centre for

Bioengineering, Trinity College, The University of Dublin, Dublin, Ireland
11University of Tennessee Health Science Center, Memphis, TN, USA & University Medical Centre

Utrecht, Utrecht, The Netherlands
12Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, USA

13eScience Institute, University of Washington, Seattle, WA, USA
14Data Carpentry, Davis, CA, USA

15University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Australia

January 2018

Abstract1

This article describes the motivation, design, and progress of the Journal of Open Source2

Software (JOSS). JOSS is a free and open-access journal that publishes articles describing3

research software. It has the dual goals of improving the quality of the software submitted4

∗Corresponding author, arfon@stsci.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/148791122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:arfon@stsci.edu

and providing a mechanism for research software developers to receive credit. While designed5

to work within the current merit system of science, JOSS addresses the dearth of rewards6

for key contributions to science made in the form of software. JOSS publishes articles that7

encapsulate scholarship contained in the software itself, and its rigorous peer review targets8

the software components: functionality, documentation, tests, continuous integration, and the9

license. A JOSS article contains an abstract describing the purpose and functionality of the10

software, references, and a link to the software archive. The article is the entry point of a11

JOSS submission, which encompasses the full set of software artifacts. Submission and review12

proceed in the open, on GitHub. Editors, reviewers, and authors work collaboratively and13

openly. Unlike other journals, JOSS does not reject articles requiring major revision; while14

not yet accepted, articles remain visible and under review until the authors make adequate15

changes (or withdraw, if unable to meet requirements). Once an article is accepted, JOSS16

gives it a digital object identifier (DOI), deposits its metadata in Crossref, and the article17

can begin collecting citations on indexers like Google Scholar and other services. Authors18

retain copyright of their JOSS article, releasing it under a Creative Commons Attribution 4.019

International License. In its first year, starting in May 2016, JOSS published 111 articles, with20

more than 40 additional articles currently under review. JOSS is a sponsored project of the21

nonprofit organization NumFOCUS and is an affiliate of the Open Source Initiative (OSI).22

1 Introduction23

Modern scientific research produces many outputs beyond traditional articles and books. Among24

these, research software is critically important for a broad spectrum of fields. Current practices25

for publishing and citation do not, however, acknowledge software as a first-class research output.26

This deficiency means that researchers who develop software face critical career barriers. The27

Journal of Open Source Software (JOSS) was founded in May 2016 to offer a solution within the28

existing publishing mechanisms of science. It is a developer-friendly, free and open-access, peer-29

reviewed journal for research software packages. By its first anniversary, JOSS had published more30

than a hundred articles. This article discusses the motivation for creating a new software journal,31

delineates the editorial and review process, and summarizes the journal’s first year of operation via32

submission statistics. We expect this article to be of interest to three core audiences: (1) researchers33

who develop software and could submit their work to JOSS , (2) those in the community with an34

interest in advancing scholarly communications who may appreciate the technical details of the35

JOSS journal framework, and (3) those interested in possibilities for citing software in their own36

research publications.37

The sixteen authors of this article are the members of the JOSS Editorial Board at the end of38

its first year (May 2017). Arfon Smith is the founding editor-in-chief, and the founding editors are39

Lorena A. Barba, Kathryn Huff, Daniel Katz, Christopher Madan, Abigail Cabunoc Mayes, Kevin40

Moerman, Kyle Niemeyer, Karthik Ram, Tracy Teal, and Jake Vanderplas. Five new editors joined41

in the first year to handle areas not well covered by the original editors, and to help manage the42

large and growing number of submissions. They are George Githinji, Melissa Gymrek, Pjotr Prins,43

Ariel Rokem, and Roman Valls Guimera. (Since then, we have added three more editors: Jason44

Clark, Lindsey Heagy, and Thomas Leeper.)45

The JOSS editors are firm supporters of open-source software for research, with extensive knowl-46

edge of the practices and ethics of open source. This knowledge is reflected in the JOSS submission47

system, peer-review process, and infrastructure. The journal offers a familiar environment for de-48

velopers and authors to interact with reviewers and editors, leading to a citable published work:49

2

a software article. The article describes the software at a high level, and the software itself in-50

cludes both source code and associated artifacts such as tests, documentation, and examples. With51

a Crossref digital object identifier (DOI), the article is able to collect citations, empowering the52

developers/authors to gain career credit for their work. JOSS thus fills a pressing need for compu-53

tational researchers to advance professionally, while promoting higher quality software for science.54

JOSS also supports the broader open-science movement by encouraging researchers to share their55

software openly and follow best practices in its development.56

2 Background and motivation57

A 2014 study of UK Russell Group Universities [1] reports that ∼90% of academics surveyed said58

they use software in their research, while more than 70% said their research would be impractical59

without it. About half of these UK academics said they develop their own software while in60

the course of doing research. Similarly, a 2017 survey of members of the US National Postdoctoral61

Association found that 95% used research software, and 63% said their research would be impractical62

without it [2].63

Despite being a critical part of modern research, software lacks support across the scholarly64

ecosystem for its publication, acknowledgement, and citation [3]. Academic publishing has not65

changed substantially since its inception. Science, engineering, and many other academic fields66

still view research articles as the key indicator of research productivity, with research grants being67

another important indicator. Yet, the research article is inadequate to fully describe modern, data-68

intensive, computational research. JOSS focuses on research software and its place in the scholarly69

publishing ecosystem.70

2.1 Why publish software?71

Most academic fields still rely on a one-dimensional credit model where academic articles and their72

associated citations are the dominant factor in the success of a researcher’s career. Software creators,73

in order to increase the likelihood of receiving career credit for their work, often choose to publish74

“software articles” that act as placeholder publications pointing to their software. At the same time,75

recent years have seen a push for sharing open research software [4–9].76

Beyond career-credit arguments for software creators, publishing research software enriches the77

scholarly record. Buckheit and Donoho paraphrased Jon Claerbout, a pioneer of reproducible78

research, as saying: “An article about a computational result is advertising, not scholarship. The79

actual scholarship is the full software environment, code and data, that produced the result.” [10].80

The argument that articles about computational science are not satisfactory descriptions of the81

work, needing to be supplemented by code and data, is more than twenty years old! Yet, despite82

the significance of software in modern research, documenting its use and including it in the scholarly83

ecosystem presents numerous challenges.84

2.2 Challenges of publishing software85

The conventional publishing mechanism of science is the research article, and a researcher’s career86

progression hinges on collecting citations for published works. Unfortunately, software citation [11]87

is in its infancy (as is data citation [12, 13]). Publishing the software itself and receiving citation88

credit for it may be a better long-term solution, but this is still impractical. Even when software89

3

(and data) are published so that they can be cited, we do not have a standard culture of peer review90

for them. This leads many developers today to publish software articles.91

The developer’s next dilemma is where to publish, given the research content, novelty, length92

and other features of a software article. Since 2012, Neil Chue Hong has maintained a growing list of93

journals that accept software articles [14]. He includes both generalist journals, accepting software94

articles from a variety of fields, and domain-specific journals, accepting both research and software95

articles in a given field. For many journals, particularly the domain-specific ones, a software article96

must include novel results to justify publication.97

From the developer’s point of view, writing a software article can involve a great deal of extra98

work. Good software includes documentation for both users and developers that is sufficient to99

make it understandable. A software article may contain much of the same content, merely in a100

different format, and developers may not find value in rewriting their documentation in a manner101

less useful to their users and collaborators. These issues may lead developers to shun the idea of102

software articles and prefer to publish the software itself. Yet, software citation is not common103

and the mostly one-dimensional credit model of academia (based on article citations) means that104

publishing software often does not “count” for career progression [3, 11].105

3 The Journal of Open Source Software106

To tackle the challenges mentioned above, the Journal of Open Source Software (JOSS) launched107

in May 2016 [15] with the goal of drastically reducing the overhead of publishing software articles.108

JOSS offers developers a venue to publish their complete research software wrapped in relatively109

short high-level articles, thus enabling citation credit for their work. In this section we describe110

the goals and principles, infrastructure, and business model of JOSS , and compare it with other111

software journals.112

3.1 Goals and principles113

JOSS articles are deliberately short and only include an abstract describing the high-level func-114

tionality of the software, a list of the authors of the software (with their affiliations), a list of key115

references, and a link to the software archive and software repository. Articles are not allowed to116

include other content often found in software articles, such as descriptions of the API (application117

programming interface) and novel research results obtained using the software. The software API118

should already be described in the software documentation, and domain research results do not119

belong in JOSS—these should be published in a domain journal. Unlike most journals, which ease120

discoverability of new research and findings, JOSS serves primarily as a mechanism for software121

developers/authors to improve and publish their research software. Thus, software discovery is a122

secondary feature.123

The JOSS design and implementation are based on the following principles:124

• Other than their short length, JOSS articles are conventional articles in every other sense: the125

journal has an ISSN, articles receive Crossref DOIs with high-quality submission metadata,126

and articles are appropriately archived.127

• Because software articles are “advertising” and simply pointers to the actual scholarship (the128

software), short abstract-length submissions are sufficient for these “advertisements.”129

4

• Software is a core product of research and therefore the software itself should be archived130

appropriately when submitted to and reviewed in JOSS .131

• Code review, documentation, and contributing guidelines are important for open-source soft-132

ware and should be part of any review. In JOSS , they are the focus of peer review. (While133

a range of other journals publish software, with various peer-review processes, the focus of134

the review is usually the submitted article and reviewers might not even look at the code.)135

The JOSS review process itself, described in §4, was based on the on-boarding checklist for136

projects joining the rOpenSci collaboration [16].137

Acceptable JOSS submissions also need to meet the following criteria:138

• The software must be open source by the Open Source Initiative (OSI) definition (open-139

source.org).140

• The software must have a research application.141

• The submitter should be a major contributor to the software they are submitting.142

• The software should be a significant new contribution to the available open-source software143

that either enables some new research challenge(s) to be addressed or makes addressing re-144

search challenges significantly better (e.g., faster, easier, simpler).145

• The software should be feature-complete, i.e., it cannot be a partial solution.146

3.2 How JOSS works147

JOSS is designed as a small collection of open-source tools that leverage existing infrastructure148

such as GitHub, Zenodo, and Figshare. A goal when building the journal was to minimize the149

development of new tools where possible.150

The JOSS web application and submission tool151

The JOSS web application and submission tool is hosted at http://joss.theoj.org. It is a simple152

Ruby on Rails web application [17] that lists accepted articles, provides the article submission153

form (see Figure 1), and hosts journal documentation such as author submission guidelines. This154

application also automatically creates the review issue on GitHub once a submission has been155

pre-reviewed by an editor and accepted to start peer review in JOSS .156

Open peer review on GitHub157

JOSS conducts reviews on the joss-reviews GitHub repository [18]. Review of a submission158

begins bywith the opening of a new GitHub issue, where the editor-in-chief assigns an editor, the159

editor assigns a reviewer, and interactions between authors, reviewer(s), and editor proceed in the160

open. Figure 2 shows an example of a recent review for the (accepted) hdbscan package [19]. The161

actual review includes the code, software functionality/performance claims, test suite (if present),162

documentation, and any other material associated with the software.163

5

https://opensource.org
https://opensource.org
https://opensource.org
http://joss.theoj.org

Figure 1: The JOSS submission page. A minimal amount of information is required for new
submissions.

Whedon and the Whedon-API164

Many of the tasks associated with JOSS reviews and editorial management are automated. A165

core RubyGem library named Whedon [20] handles common tasks associated with managing the166

submitted manuscript, such as compiling the article (from its Markdown source) and creating167

Crossref metadata. An automated bot, Whedon-API [21], handles other parts of the review process168

(such as assigning editors and reviewers based on editor input) and leverages the Whedon RubyGem169

library. For example, to assign the editor for a submission, one may type the following command in170

a comment box within the GitHub issue: @whedon assign @danielskatz as editor. Similarly,171

to assign a reviewer, one enters: @whedon assign @zhaozhang as reviewer (where the reviewer172

and editor GitHub handles identify them). The next section describes the review process in more173

detail.174

6

Figure 2: The hdbscan GitHub review issue.

3.3 Business model and content licensing175

JOSS is designed to run at minimal cost with volunteer labor from editors and reviewers. The176

following fixed costs are currently incurred:177

• Crossref membership: $275. This is a yearly fixed cost for the JOSS parent entity—Open178

Journals—so that article DOIs can be registered with Crossref.179

• Crossref article DOIs: $1. This is a fixed cost per article.180

• JOSS web application hosting (currently with Heroku): $19 per month181

Assuming a publication rate of 100 articles per year results in a core operating cost of ∼$6 per
article. With 200 articles per year—which seems possible for the second year—the cost drops to

7

∼$3.50 per article:

($275 + ($1× 100) + ($19× 12))/100 = $6.03 (1)
($275 + ($1× 200) + ($19× 12))/200 = $3.51 . (2)

Submitting authors retain copyright of JOSS articles and accepted articles are published un-182

der a Creative Commons Attribution 4.0 International License [22]. Any code snippets included183

in JOSS articles are subject to the MIT license [23] regardless of the license of the submitted184

software package under review, which itself must be licensed under an OSI-approved license (see185

opensource.org/licenses/alphabetical for a complete list).186

3.4 Comparison with other software journals187

A good number of journals now accept, review, and publish software articles [14], which we188

group into two categories. The first category of journals include those similar to JOSS , which189

do not focus on a specific domain and only consider submissions of software/software articles: the190

Journal of Open Research Software (JORS, openresearchsoftware.metajnl.com), SoftwareX (jour-191

nals.elsevier.com/softwarex/), and now JOSS . Both JORS [24] and SoftwareX [25] now review192

both the article text and the software. In JOSS , the review process focuses mainly on the software193

and associated material (e.g., documentation) and less on the article text, which is intended to be194

a brief description of the software. The role and form of peer review also varies across journals.195

In SoftwareX and JORS, the goal of the review is both to decide if the article is acceptable for196

publication and to improve it iteratively through a non-public, editor-mediated interaction between197

the authors and the anonymous reviewers. In contrast, JOSS has the goal of accepting most arti-198

cles after improving them as needed, with the reviewers and authors communicating directly and199

publicly through GitHub issues.200

The second category includes domain-specific journals that either accept software articles as a201

special submission type or exclusively consider software articles targeted at the domain. For ex-202

ample, Collected Algorithms (CALGO, acm.org/calgo) is a long-running venue for reviewing and203

sharing mathematical algorithms associated with articles published in Transactions on Mathemat-204

ical Software and other ACM journals. However, CALGO authors must transfer copyright to205

ACM and software is not available under an open-source license—this contrasts with JOSS , where206

authors retain copyright and software must be shared under an open-source license. Computer207

Physics Communications (journals.elsevier.com/computer-physics-communications) and Geoscien-208

tific Model Development (geoscientific-model-development.net) publish full-length articles describ-209

ing application software in computational physics and geoscience, respectively, where review pri-210

marily focuses on the article. Chue Hong maintains a list of journals in both categories [14].211

4 Peer review in JOSS212

In this section, we illustrate the JOSS submission and review process using a representative example,213

document the review criteria provided to authors and reviewers, and explain a fast-track option for214

already-reviewed rOpenSci contributions.215

8

https://opensource.org/licenses/alphabetical
http://openresearchsoftware.metajnl.com
https://www.journals.elsevier.com/softwarex/
https://www.journals.elsevier.com/softwarex/
https://www.journals.elsevier.com/softwarex/
http://www.acm.org/calgo/
https://www.journals.elsevier.com/computer-physics-communications
https://www.geoscientific-model-development.net/

4.1 The JOSS process216

Figure 3 shows a typical JOSS submission and review process, described here in more detail using217

the hdbscan package [19] as an example:218

1. Leland McInnes submitted the hdbscan software and article to JOSS on 26 February 2017 us-219

ing the web application and submission tool. The article is a Markdown file named paper.md,220

visibly located in the software repository (here, and in many cases, placed together with aux-221

iliary files in a paper directory).222

2. Following a routine check by a JOSS administrator, a “pre-review” issue was created in the223

joss-reviews GitHub repository [26]. In this pre-review issue, an editor (Daniel S. Katz) was224

assigned, who then identified and assigned a suitable reviewer (Zhao Zhang). Editors generally225

identify one or more reviewers from a pool of volunteers based on provided programming226

language and/or domain expertise.1227

The editor then asked the automated bot Whedon to create the main submission review issue228

via the command @whedon start review magic-word=bananas. (“magic-word=bananas” is229

a safeguard against accidentally creating a review issue prematurely.)230

3. The reviewer then conducted the submission review [27] (see Figure 2) by working through231

a checklist of review items, as described in §4.2. The author, reviewer, and editor discussed232

any questions that arose during the review, and once the reviewer completed their checks,233

they notified the submitting author and editor. Compared with traditional journals, JOSS234

offers the unique feature of holding a discussion—in the open within a GitHub issue—between235

the reviewer(s), author(s), and editor. Like a true conversation, discussion can go back and236

forth in minutes or seconds, with all parties contributing at will. This contrasts with tradi-237

tional journal reviews, where the process is merely an exchange between the reviewer(s) and238

author(s), via the editor, which can take months for each communication, and in practice is239

limited to one or two, perhaps three in some cases, exchanges due to that delay [28].240

Note that JOSS reviews are subject to a code of conduct [29], adopted from the Contributor241

Covenant Code of Conduct [30]. Both authors and reviewers must confirm that they have242

read and will adhere to this Code of Conduct, during submission and with their review,243

respectively.244

4. After the review was complete, the editor asked the submitting author to make a perma-245

nent archive of the software (including any changes made during review) with a service such246

as Zenodo or Figshare, and to post a link to the archive in the review thread. This link,247

in the form of a DOI, was associated with the submission via the command @whedon set248

10.5281/zenodo.401403 as archive.249

5. The editor-in-chief used the Whedon RubyGem library on his local machine to produce the250

compiled PDF, update the JOSS website, deposit Crossref metadata, and issue a DOI for the251

submission (10.21105/joss.00205).252

6. Finally, the editor-in-chief updated the review issue with the JOSS article DOI and closed253

the review. The submission was then accepted into the journal.254

1Potential reviewers can volunteer via http://joss.theoj.org/reviewer-signup.html

9

https://doi.org/10.21105/joss.00205
http://joss.theoj.org/reviewer-signup.html

Authors can also first submit a pre-submission inquiry via an issue in the main JOSS reposi-255

tory [17] if they have questions regarding the suitability of their software for publication, or for any256

other questions.257

Make software available in repository
with OSI-approved license ! :

https://opensource.org/licenses

Author short Markdown
paper: paper.md "

Submit to JOSS by filling
out short form #

Editor assigns ≥1 reviewers,
who review submission $

Reviewer(s) raise comments and
issues following guidelines % :

http://joss.theoj.org/
about#reviewer_guidelines

Authors fix issues &

Paper published &
receives JOSS DOI ⚡

JOSS 10.21105/joss.#####

JOSS Under review

JOSS Submitted

Editor accepts paper,
authors archive software ✔

Figure 3: The JOSS submission and review flow including the various status badges that can be
embedded on third-party settings such as GitHub README documentation [31].

4.2 JOSS review criteria258

As previously mentioned, the JOSS review is primarily concerned with the material in the software259

repository, focusing on the software and documentation. We do not ask authors to use their software260

in a research study or include research results in their article beyond as examples; submissions261

focused on results rather than software should be submitted to research journals. The specific262

items in the reviewer checklist are:263

• Conflict of interest264

10

– As the reviewer I confirm that I have read the JOSS conflict of interest policy and that265

there are no conflicts of interest for me to review this work.266

• Code of Conduct267

– I confirm that I read and will adhere to the JOSS code of conduct.268

• General checks269

– Repository: Is the source code for this software available at the repository URL?270

– License: Does the repository contain a plain-text LICENSE file with the contents of an271

OSI-approved software license?272

– Version: Does the release version given match the GitHub release?273

– Authorship: Has the submitting author made major contributions to the software?274

• Functionality275

– Installation: Does installation proceed as outlined in the documentation?276

– Functionality: Have the functional claims of the software been confirmed?277

– Performance: Have any performance claims of the software been confirmed?278

• Documentation279

– A statement of need: Do the authors clearly state what problems the software is280

designed to solve and who the target audience is?281

– Installation instructions: Is there a clearly-stated list of dependencies? Ideally these282

should be handled with an automated package management solution.283

– Example usage: Do the authors include examples of how to use the software (ideally284

to solve real-world analysis problems)?285

– Functionality documentation: Is the core functionality of the software documented286

to a satisfactory level (e.g., API method documentation)?287

– Automated tests: Are there automated tests or manual steps described so that the288

function of the software can be verified?289

– Community guidelines: Are there clear guidelines for third parties wishing to 1)290

contribute to the software, 2) report issues or problems with the software, and 3) seek291

support?292

• Software paper293

– Authors: Does the paper.md file include a list of authors with their affiliations?294

– A statement of need: Do the authors clearly state what problems the software is295

designed to solve and who the target audience is?296

– References: Do all archival references that should have a DOI list one (e.g., papers,297

datasets, software)?298

11

https://github.com/openjournals/joss/blob/master/COI.md
http://joss.theoj.org/about#code_of_conduct

4.3 Fast track for reviewed rOpenSci contributions299

For submissions of software that has already been reviewed under rOpenSci’s rigorous onboarding300

guidelines [32, 33], JOSS does not perform further review. The editor-in-chief is alerted with a301

note “This submission has been accepted to rOpenSci. The review thread can be found at [LINK302

TO ONBOARDING ISSUE],” allowing such submissions to be fast-tracked to acceptance.303

5 A review of the first year304

By the end of May 2017, JOSS published 111 articles since its inception in May 2016, and had an305

additional 41 articles under consideration. Figure 4 shows the monthly and cumulative publication306

rates; on average, we published 8.5 articles per month, with some (nonstatistical) growth over time.307

Figure 5 shows the numbers of days taken for processing and review of the 111 published articles308

(i.e., time between submission and publication), including finding a topic editor and reviewer(s).309

Since the journal’s inception in May 2016, articles spent on average 45.5 days between submission310

and publication (median 32 days, interquartile range 52.3 days) The shortest review took a single311

day, for Application Skeleton [35], while the longest review took 190 days, for walkr [36]. In312

the former case, the rapid turnaround can be attributed to the relatively minor revisions needed313

(in addition to quick editor, reviewer, and author actions and responses). In contrast, the latter314

case took much longer due to delays in selecting an editor and finding an appropriate reviewer, and315

a multimonth delay between selecting a reviewer and receiving reviews. In other cases with long316

review periods, some delays in responding to requests for updates may be attributed to reviewers317

(or editors) missing GitHub notifications from the review issue comments. We have already taken318

steps to improve the ability of authors, reviewers, and editors to keep track of their submissions,319

including a prompt to new reviewers to unsubscribe from the main joss-reviews repository [18]320

(to reduce unnecessary notifications) and a weekly digest email for JOSS editors to keep track of321

their submissions. In the future we may collect the email addresses of reviewers so we can extend322

this functionality to them.323

Figure 6 shows the frequency of programming languages appearing in JOSS articles. Python324

appears the most with over half of published software articles (54), while R is used in nearly one-325

third of articles (29). We believe the popularity of Python and R in JOSS submissions is the326

result of (1) the adoption of these languages (and open-source practices) in scientific computing327

communities and (2) our relationship with the rOpenSci project.328

Each article considered by JOSS undergoes review by one or more reviewers. The set of 111329

published articles have been reviewed by 93 unique reviewers. The majority of articles received330

a review by one reviewer (average of 1.11 ± 0.34), with a maximum of three reviewers. Based on331

available data in the review issues, on average, editors reached out to 1.85±1.40 potential reviewers332

(at most 8 in one case) via mentions in the GitHub review issue. This does not include external333

communication, e.g., via email or Twitter. Overall, JOSS editors contacted 1.65 potential reviewers334

for each actual review (based on means).335

Interestingly, the current reviewer list contains only 52 entries, as of this writing [37]. Consid-336

ering the unique reviewer count of 93, we clearly have reached beyond those that volunteered to337

review a priori. Benefits of using GitHub’s issue infrastructure and our open reviews include: 1)338

the ability to tag multiple people, via their GitHub handles, to invite them as potential reviewers;339

2) the discoverability of the work so that people may volunteer to review without being formally340

contacted; 3) the ability to get additional, unprompted feedback and comments; and 4) the ability341

12

M
ay

 2
01

6

Ju
n

20
16

Ju
l 2

01
6

Au
g

20
16

Se
p

20
16

Oc
t 2

01
6

No
v

20
16

De
c

20
16

Ja
n

20
17

Fe
b

20
17

M
ar

 2
01

7

Ap
r 2

01
7

M
ay

 2
01

7

0

2

4

6

8

10

12

14

16

M
on

th
ly

 n
um

be
r o

f p
ub

lis
he

d
ar

tic
le

s

8

5 5
6

7

9

5

12

9

11 11

7

16

(a) Numbers of articles published per month.

M
ay

 2
01

6

Ju
n

20
16

Ju
l 2

01
6

Au
g

20
16

Se
p

20
16

Oc
t 2

01
6

No
v

20
16

De
c

20
16

Ja
n

20
17

Fe
b

20
17

M
ar

 2
01

7

Ap
r 2

01
7

M
ay

 2
01

7

0

20

40

60

80

100

Cu
m

ul
at

iv
e

su
m

 o
f p

ub
lis

he
d

ar
tic

le
s

8
13

18
24

31
40

45

57
66

77

88
95

111

(b) Cumulative sum of numbers of articles published per month.

Figure 4: Statistics of articles published in JOSS since its inception in May 2016 through May
2017. Data, plotting script, and figure files are available [34].

13

M
ay

 2
01

6

Ju
n

20
16

Ju
l 2

01
6

Au
g

20
16

Se
p

20
16

Oc
t 2

01
6

No
v

20
16

De
c

20
16

Ja
n

20
17

Fe
b

20
17

M
ar

 2
01

7

Ap
r 2

01
7

M
ay

 2
01

7

Submission date

0

25

50

75

100

125

150

175

Da
ys

 b
et

we
en

 su
bm

iss
io

n
an

d
pu

bl
ica

tio
n

Figure 5: Days between submission and publication dates of the 111 articles JOSS has published,
between May 2016–May 2017. Data, plotting script, and figure file are available [34].

Py
th

on R C

C+
+

Ja
va

Ja
va

sc
rip

t

M
at

la
b Go Ju

lia Pe
rl

La
Te

X

Sc
al

a

PH
P

Fo
rtr

an

Ru
by

Go
lo

Sc
he

m
e

Programming languages

0

10

20

30

40

50

Nu
m

be
r o

f s
of

tw
ar

e
pa

ck
ag

es

54

29

5 5 4 4 3 3 2 2 1 1 1 1 1 1 1

Figure 6: Frequency of programming languages from the software packages described by the 111
articles JOSS published in its first year. Total sums to greater than 111, because some packages
are multi-language. Data, plotting script, and figure file are available [34].

14

to find reviewers by openly advertising, e.g., on social media. Furthermore, GitHub is a well-known,342

commonly used platform where many (if not most) potential authors and reviewers already have343

accounts.344

Figure 7 shows the numbers of articles managed by each of the JOSS editors. Editor-in-chief345

Arfon Smith stewarded the majority of articles published in the first year. This was somewhat346

unavoidable in the first three months after launch, as Smith served as the de facto sole editor for all347

submissions, with other members of the editorial board assisting. This strategy was not sustainable348

and, over time, we adopted the pre-review/review procedure to hand off articles to editors. Also,349

authors can now select during submission the appropriate editor based on article topic.350
Ar

fo
n

Sm
ith

Pj
ot

r P
rin

s

Ch
ris

to
ph

er
 M

ad
an

Lo
re

na
 B

ar
ba

Ab
ig

ai
l C

ab
un

oc
 M

ay
es

Da
ni

el
 K

at
z

Ar
ie

l R
ok

em

Ge
or

ge
 G

ith
in

ji

Ky
le

 N
ie

m
ey

er

Ka
rth

ik
 R

am

Ka
th

ry
n

Hu
ff

M
el

iss
a

Gy
m

re
k

Ke
vi

n
M

oe
rm

an

Ja
ke

 V
an

de
rp

la
s

Editor

0

10

20

30

40

50

60

Nu
m

be
r o

f p
ap

er
s e

di
te

d

63

8 6 5 5 4 4 4 3 3 2 2 2 1

Figure 7: Numbers of articles handled by each of the JOSS editors. Data, plotting script, and
figure file are available [34].

Lastly, we analyzed the affiliations of the 286 authors associated with articles published in the351

first year. Figure 8 shows the number of authors per country; we represented authors with multiple352

affiliations in different countries using their first affiliation. Authors with no affiliation, or where353

we could not identify the country, are shown as “unknown.” From the articles published in the354

first year, approximately 48% of authors live in the United States and approximately 40% live in355

Europe (including Switzerland). The remaining 12% come from the rest of the world, most notably356

Australia (6.6%) and Canada (2.1%). Moving forward, we hope to receive submissions from authors357

in more countries that even better represent who develops research software around the world; one358

strategy to achieve this involves continuing to expand our editorial board.359

In its first year, JOSS also developed formal relationships with two US-based nonprofit or-360

ganizations. In March 2017, JOSS became a community affiliate of the Open Source Initiative361

(opensource.org), the steward of the open-source definition, which promotes open-source software362

and educates about appropriate software licenses. And, in April 2017, JOSS became a fiscally363

sponsored project of NumFOCUS (numfocus.org), a 501(c)(3) charity that supports and promotes364

15

https://opensource.org
https://www.numfocus.org

US
A UK

Ge
rm

an
y

Au
st

ra
lia

Fi
nl

an
d

Fr
an

ce
Ne

th
er

la
nd

s
Ca

na
da

Sw
itz

er
la

nd
un

kn
ow

n
No

rw
ay

Sp
ai

n
De

nm
ar

k
Gr

ee
ce

Au
st

ria
Br

az
il

Ch
ile

M
ex

ico
Be

lg
iu

m
Ta

iw
an

Po
rtu

ga
l

Po
la

nd

Country

0

20

40

60

80

100

120

140

Nu
m

be
r o

f a
ut

ho
rs

 fr
om

 c
ou

nt
ry

136

36

23 19
13 12 8 6 5 4 4 3 3 3 2 2 2 1 1 1 1 1

Figure 8: Numbers of authors from a particular country. Data, plotting script, and figure file are
available [34].

“world-class, innovative, open source scientific computing.” Being associated with these two promi-365

nent community organizations increases the trust of the community in our efforts. Furthermore, as366

a NumFOCUS project, JOSS will be able to raise funding to sustain its activities and grow.367

6 The second year for JOSS368

Our focus for the second year will be on continuing to provide a high-quality experience for sub-369

mitting authors and reviewers, and making the best use of the editorial board. In our first year, we370

progressed from a model where the editor-in-chief handled most central functions to one with more371

distributed roles for the editors, particularly that of ensuring that reviews are useful and timely.372

Editors can now select and self-assign to submissions they want to manage, while the editor-in-chief373

only assigns the remaining submissions. As JOSS grows, the process of distributing functions across374

the editorial board will continue to evolve—and more editors may be needed.375

In the second year, we plan to complete a number of high-priority improvements to the JOSS376

toolchain. Specifically, we plan on automating the final steps for accepting an article. For ex-377

ample, generating Crossref metadata and compiling the article are both currently handled by the378

editor-in-chief on his local machine using the Whedon RubyGem library. In the future, we would379

like authors and reviewers to be able to ask the Whedon-API bot to compile the paper for them,380

and other editors should be able to ask the bot to complete the submission of Crossref metadata on381

their behalf. Other improvements are constantly under discussion on the JOSS GitHub repository382

(github.com/openjournals/joss/issues). In fact, anyone is able to report bugs and suggest enhance-383

ments to the experience. And, since the JOSS tools are open source, we welcome contributions in384

16

https://github.com/openjournals/joss/issues

the form of bug-fixes or enhancements via the usual pull-request protocols.385

Beyond roles and responsibilities for the editors, and improvements to the JOSS tools and386

infrastructure, we will take on the more tricky questions about publishing software, such as how to387

handle new software versions. Unlike traditional research articles that remain static once published,388

software usually changes over time, at least for maintenance and to avoid software rot/collapse389

(where software stops working because of changes in the environment, such as dependencies on390

libraries or operating system). Furthermore, because all potential uses of the software are not391

known at the start of a project, the need or opportunity arises to add features, improve performance,392

improve accuracy, etc. After making one or more changes, software developers frequently update393

the software with a new version number. Over time, the culmination of these changes may result in394

a major update to the software, and with many new contributors a new version might correspond395

to a new set of authors if the software is published. However, this process may not translate clearly396

to JOSS . The editorial board will accept a new JOSS article published with each major version or397

even a minor version if the changes seem significant enough to the editor and reviewer(s), but we398

do not yet know if this will satisfy the needs of both developers and users (corresponding to JOSS399

authors and readers, respectively).400

The discussion about new software versions also generally applies to software forks, where soft-401

ware is copied and, after some divergent development, a new software package emerges. Similar402

to how we handle new software versions, the JOSS editorial board will consider publication of an403

article describing a forked version of software if it includes substantial changes from a previously404

published version. Authorship questions may be more challenging when dealing with forks com-405

pared with new versions, since forks can retain varying amounts of code from the original projects.406

However, while a version control history generally makes it easy to suggest people who should be407

authors, deciding on authorship can be difficult and subjective, and is therefore ultimately project-408

dependent. We prefer to leave authorship decisions to the projects, with discussion taking place as409

needed with reviewers and editors.410

7 Conclusions411

Software today encapsulates—and generates—important research knowledge, yet it has not entered412

the science publication ecosystem in a practical way. This situation is costly for science, through the413

lack of career progression for valuable personnel: research software developers. We founded JOSS414

in response to the acute need for an answer to this predicament. JOSS is a venue for authors who415

wish to receive constructive peer feedback, publish, and collect citations for their research software.416

By encouraging researchers to develop their software following best practices, and then share and417

publish it openly, JOSS supports the broader open-science movement. The number of submissions418

confirms the keen demand for this publishing mechanism: more than 100 accepted articles in the419

first year and more than 40 others under review. By the end of 2017, JOSS has published nearly420

200 articles. Community members have also responded positively when asked to review submissions421

in an open and non-traditional format, contributing useful reviews of the submitted software.422

However, we are still overcoming initial hurdles to achieve our goals. JOSS is currently not fully423

indexed by Google Scholar, despite the fact that JOSS articles include adequate metadata and that424

we made an explicit request for inclusion in March 2017 (see GitHub issue #130). Also, we may425

need to invest more effort into raising awareness of good practices for citing JOSS articles. That426

said, we have some preliminary citation statistics: according to Google Scholar, corner.py [38] and427

Armadillo [39] have been cited the most at 116 and 79 times, respectively. Crossref’s Cited-by428

17

https://github.com/openjournals/joss/issues/130

service—which relies on publishers depositing reference information—reports 45 and 28 citations for429

the same articles [40]. While most other articles have received no citations to-date, a few have been430

cited between one and five times. We have had at least two “repeat” submissions, i.e., submissions of431

a new version with major changes from a prior version. Clementi et al. [41] published PyGBe-LSPR,432

a new version that added substantially new features over the original PyGBe of Cooper et al. [42].433

Similarly, the software published by Sandersen and Curtin [43] extended on (and cited) their earlier434

article [44].435

The journal cemented its position in the first year of operation, building trust within the com-436

munity of open-source research-software developers and growing in name recognition. It also earned437

weighty affiliations with OSI and NumFOCUS, the latter bringing the opportunity to raise funding438

for sustained operations. Although publishing costs are low at $3–6 per article, JOSS does need439

funding, with the editor-in-chief having borne the expenses personally to pull off the journal launch.440

Incorporating a small article charge (waived upon request) may be a route to allow authors to con-441

tribute to JOSS in the future, but we have not yet decided on this change. Under the NumFOCUS442

nonprofit umbrella, JOSS is now eligible to seek grants for sustaining its future, engaging in new443

efforts like outreach, and improving its infrastructure and tooling.444

Outreach to other communities still unaware of JOSS is certainly part of our growth strategy.445

Awareness of the journal so far has mostly spread through word-of-mouth and social networking [45,446

46], plus a couple of news articles [47, 48]. As of August 2017, JOSS is also listed in the Directory447

of Open Access Journals (DOAJ) (doaj.org/toc/2475-9066). We plan to present JOSS at relevant448

domain conferences, like we did at the 2017 SIAM Conference on Computational Science & Engi-449

neering [49] and the 16th Annual Scientific Computing with Python Conference (SciPy 2017). We450

are also interested in partnering with other domain journals that focus on (traditional) research451

articles. In such partnerships, traditional peer review of the research would be paired with peer452

review of the software, with JOSS taking responsibility for the latter.453

Finally, the infrastructure and tooling of JOSS have unexpected added values: while developed454

to support and streamline the JOSS publication process, these open-source tools generalize to455

a lightweight journal-management system. The JOSS web application and submission tool, the456

Whedon RubyGem library, and the Whedon-API bot could be easily forked to create overlay journals457

for other content types (data sets, posters, figures, etc.). The original artifacts could be archived on458

other services such as Figshare, Zenodo, Dryad, arXiv, or engrXiv/AgriXiv/LawArXiv/PsyArXiv/459

SocArXiv/bioRxiv. This presents manifold opportunities to expand the ways we assign career460

credit to the digital artifacts of research. JOSS was born to answer the needs of research software461

developers to thrive in the current merit traditions of science, but we may have come upon a462

generalizable formula for digital science.463

Acknowledgements464

This work was supported in part by the Alfred P. Sloan Foundation. Work by K. E. Niemeyer465

was supported in part by the National Science Foundation (No. ACI-1535065). Work by P. Prins466

was supported by the National Institute of Health (R01 GM123489, 2017–2022). Work by K. Ram467

was supported in part by The Leona M. and Harry B. Helmsley Charitable Trust (No. 2016PG-468

BRI004). Work by A. Rokem was supported by the Gordon & Betty Moore Foundation and469

the Alfred P. Sloan Foundation, and by grants from the Bill & Melinda Gates Foundation, the470

National Science Foundation (No. 1550224), and the National Institute of Mental Health (No.471

1R25MH112480).472

18

https://doaj.org/toc/2475-9066

References473

[1] S. Hettrick, M. Antonioletti, L. Carr, N. Chue Hong, S. Crouch, D. De Roure, I. Emsley,474

C. Goble, A. Hay, D. Inupakutika, M. Jackson, A. Nenadic, T. Parkinson, M. I. Parsons, A.475

Pawlik, G. Peru, A. Proeme, J. Robinson, and S. Sufi. UK Research Software Survey 2014476

[dataset]. University of Edinburgh on behalf of Software Sustainability Institute. 2015. doi:477

10.7488/ds/253.478

[2] U. Nangia and D. S. Katz. “Track 1 Paper: Surveying the U.S. National Postdoctoral As-479

sociation Regarding Software Use and Training in Research”. In: Workshop on Sustainable480

Software for Science: Practice and Experiences (WSSSPE 5.1). (Manchester, UK, Sept. 6,481

2017). 2017. doi: 10.6084/m9.figshare.5328442.482

[3] K. E. Niemeyer, A. M. Smith, and D. S. Katz. “The challenge and promise of software citation483

for credit, identification, discovery, and reuse”. In: Journal of Data and Information Quality484

7.4 (2016), p. 16. doi: 10.1145/2968452.485

[4] N. Barnes. “Publish your computer code: it is good enough”. In: Nature 467 (Oct. 2010),486

p. 753. doi: 10.1038/467753a.487

[5] P. Vandewalle. “Code Sharing Is Associated with Research Impact in Image Processing”. In:488

Comput. Sci. Eng. 14.4 (June 2012), pp. 42–47. doi: 10.1109/MCSE.2012.63.489

[6] A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz. “Shining Light490

into Black Boxes”. In: Science 336.6078 (Apr. 2012), pp. 159–160. doi: 10.1126/science.491

1218263.492

[7] D. C. Ince, L. Hatton, and J. Graham-Cumming. “The case for open computer programs”. In:493

Nature 482.7386 (Feb. 2012), pp. 485–488. doi: 10.1038/nature10836.494

[8] Nature Methods Editorial Board. “Software with impact”. In: Nature Methods 11.3 (Mar.495

2014), pp. 211–211. doi: 10.1038/nmeth.2880.496

[9] P. Prins, J. de Ligt, A. Tarasov, R. C. Jansen, E. Cuppen, and P. E. Bourne. “Toward497

effective software solutions for big biology”. In: Nat Biotech 33.7 (2015), pp. 686–687. doi:498

10.1038/nbt.3240.499

[10] J. B. Buckheit and D. L. Donoho. “WaveLab and Reproducible Research”. In: Wavelets and500

Statistics. Ed. by A. Antoniadis and G. Oppenheim. New York, NY: Springer New York, 1995,501

pp. 55–81. isbn: 978-1-4612-2544-7. doi: 10.1007/978-1-4612-2544-7_5.502

[11] A. M. Smith, D. S. Katz, K. E. Niemeyer, and FORCE11 Software Citation Working Group.503

“Software citation principles”. In: PeerJ Computer Science 2 (Sept. 2016), e86. doi: 10.7717/504

peerj-cs.86.505

[12] FORCE11 Data Citation Synthesis Group. Joint Declaration of Data Citation Principles.506

Ed. by M. Martone. 2014. url: https://www.force11.org/group/joint-declaration-507

data-citation-principles-final (visited on 06/21/2016).508

[13] J. Starr, E. Castro, M. Crosas, M. Dumontier, R. R. Downs, R. Duerr, L. L. Haak, M.509

Haendel, I. Herman, S. Hodson, J. Hourclé, J. E. Kratz, J. Lin, L. H. Nielsen, A. Nurnberger,510

S. Proell, A. Rauber, S. Sacchi, A. Smith, M. Taylor, and T. Clark. “Achieving human and511

machine accessibility of cited data in scholarly publications”. In: PeerJ Computer Science 1512

(May 2015), e1. doi: 10.7717/peerj-cs.1.513

19

https://doi.org/10.7488/ds/253
https://doi.org/10.6084/m9.figshare.5328442
https://doi.org/10.1145/2968452
https://doi.org/10.1038/467753a
https://doi.org/10.1109/MCSE.2012.63
https://doi.org/10.1126/science.1218263
https://doi.org/10.1126/science.1218263
https://doi.org/10.1126/science.1218263
https://doi.org/10.1038/nature10836
https://doi.org/10.1038/nmeth.2880
https://doi.org/10.1038/nbt.3240
https://doi.org/10.1007/978-1-4612-2544-7_5
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://www.force11.org/group/joint-declaration-data-citation-principles-final
https://doi.org/10.7717/peerj-cs.1

[14] N. Chue Hong. In which journals should I publish my software? Software Sustainability In-514

stitute. url: https://www.software.ac.uk/which-journals-should-i-publish-my-515

software (visited on 06/21/2016).516

[15] A. M. Smith. Announcing The Journal of Open Source Software. 2016. url: http://web.517

archive.org/web/20170415195544/http://www.arfon.org/announcing-the-journal-518

of-open-source-software (visited on 06/21/2016).519

[16] C. Boettiger, S. Chamberlain, E. Hart, and K. Ram. “Building Software, Building Community:520

Lessons from the rOpenSci Project”. In: Journal of Open Research Software 3.1 (2015), e8.521

doi: 10.5334/jors.bu.522

[17] JOSS web application. 2016. url: https://github.com/openjournals/joss (visited on523

06/21/2016).524

[18] JOSS reviews. 2016. url: https://github.com/openjournals/joss-reviews (visited on525

06/21/2016).526

[19] L. McInnes, J. Healy, and S. Astels. “hdbscan: Hierarchical density based clustering”. In: The527

Journal of Open Source Software 2.11 (Mar. 2017). doi: 10.21105/joss.00205.528

[20] A. M. Smith. Whedon. 2016. url: https://github.com/openjournals/whedon (visited on529

06/21/2016).530

[21] A. M. Smith. Whedon API. 2016. url: https://github.com/openjournals/whedon-api531

(visited on 06/21/2016).532

[22] Creative Commons. Creative Commons Attribution 4.0 International. Version 4.0. url:533

https://creativecommons.org/licenses/by/4.0/legalcode (visited on 06/21/2016).534

[23] Open Source Initiative. MIT License. url: https://opensource.org/licenses/MIT (visited535

on 06/21/2016).536

[24] Journal of Open Research Software. Editorial Policies: Peer Review Process. url: https:537

/ / openresearchsoftware . metajnl . com / about / editorialPolicies/ (visited on538

07/02/2017).539

[25] Elsevier. Original Software Publications. url: https : / / www . elsevier . com / authors /540

author - services / research - elements / software - articles / original - software -541

publications (visited on 07/02/2017).542

[26] hdbscan JOSS pre-review. 2016. url: https://github.com/openjournals/joss-reviews/543

issues/191 (visited on 06/21/2016).544

[27] hdbscan JOSS review. 2016. url: https://github.com/openjournals/joss- reviews/545

issues/205 (visited on 06/21/2016).546

[28] J. P. Tennant, J. M. Dugan, D. Graziotin, D. C. Jacques, F. Waldner, D. Mietchen, Y.547

Elkhatib, L. B. Collister, C. K. Pikas, T. Crick, P. Masuzzo, A. Caravaggi, D. R. Berg, K. E.548

Niemeyer, T. Ross-Hellauer, S. Mannheimer, L. Rigling, D. S. Katz, B. Greshake, J. Pacheco-549

Mendoza, N. Fatima, M. Poblet, M. Isaakidis, D. E. Irawan, S. Renaut, C. R. Madan, L.550

Matthias, J. N. Kjær, D. P. O’Donnell, C. Neylon, S. Kearns, M. Selvaraju, and J. Colomb.551

“A multi-disciplinary perspective on emergent and future innovations in peer review [version 3;552

referees: 2 approved]”. In: F1000Research 6 (2017), p. 1151. doi: 10.12688/f1000research.553

12037.3.554

20

https://www.software.ac.uk/which-journals-should-i-publish-my-software
https://www.software.ac.uk/which-journals-should-i-publish-my-software
https://www.software.ac.uk/which-journals-should-i-publish-my-software
http://web.archive.org/web/20170415195544/http://www.arfon.org/announcing-the-journal-of-open-source-software
http://web.archive.org/web/20170415195544/http://www.arfon.org/announcing-the-journal-of-open-source-software
http://web.archive.org/web/20170415195544/http://www.arfon.org/announcing-the-journal-of-open-source-software
http://web.archive.org/web/20170415195544/http://www.arfon.org/announcing-the-journal-of-open-source-software
http://web.archive.org/web/20170415195544/http://www.arfon.org/announcing-the-journal-of-open-source-software
https://doi.org/10.5334/jors.bu
https://github.com/openjournals/joss
https://github.com/openjournals/joss-reviews
https://doi.org/10.21105/joss.00205
https://github.com/openjournals/whedon
https://github.com/openjournals/whedon-api
https://creativecommons.org/licenses/by/4.0/legalcode
https://opensource.org/licenses/MIT
https://openresearchsoftware.metajnl.com/about/editorialPolicies/
https://openresearchsoftware.metajnl.com/about/editorialPolicies/
https://openresearchsoftware.metajnl.com/about/editorialPolicies/
https://www.elsevier.com/authors/author-services/research-elements/software-articles/original-software-publications
https://www.elsevier.com/authors/author-services/research-elements/software-articles/original-software-publications
https://www.elsevier.com/authors/author-services/research-elements/software-articles/original-software-publications
https://www.elsevier.com/authors/author-services/research-elements/software-articles/original-software-publications
https://www.elsevier.com/authors/author-services/research-elements/software-articles/original-software-publications
https://github.com/openjournals/joss-reviews/issues/191
https://github.com/openjournals/joss-reviews/issues/191
https://github.com/openjournals/joss-reviews/issues/191
https://github.com/openjournals/joss-reviews/issues/205
https://github.com/openjournals/joss-reviews/issues/205
https://github.com/openjournals/joss-reviews/issues/205
https://doi.org/10.12688/f1000research.12037.3
https://doi.org/10.12688/f1000research.12037.3
https://doi.org/10.12688/f1000research.12037.3

[29] JOSS Code of Conduct. Git commit dc5f7ebe609e1fe900488efa1012cc27966ca129. 2017.555

url: https://github.com/openjournals/joss/blob/master/CODE_OF_CONDUCT.md556

(visited on 06/21/2016).557

[30] C. A. Ehmke. Contributor Covenant Code of Conduct. Version 1.4. 2016. url: http://558

contributor-covenant.org/version/1/4/ (visited on 06/21/2016).559

[31] K. E. Niemeyer. JOSS publication flowchart. Figshare. June 2017. doi: 10 . 6084 / m9 .560

figshare.5147773.v1.561

[32] K. Ram, N. Ross, and S. Chamberlain. “A model for peer review and onboarding research562

software”. In: Proceedings of the Fourth Workshop on Sustainable Software for Science: Prac-563

tice and Experiences (WSSSPE4). (Manchester, UK, Sept. 14, 2016). Ed. by G. Allen, J.564

Carver, S.-C. T. Choi, T. Crick, M. R. Crusoe, S. Gesing, R. Haines, M. Heroux, L. J.565

Hwang, D. S. Katz, K. E. Niemeyer, M. Parashar, and C. C. Venters. CEUR Workshop Pro-566

ceedings 1686. urn:nbn:de:0074-1686-8. Aachen, 2016. url: http://ceur- ws.org/Vol-567

1686/WSSSPE4_paper_13.pdf.568

[33] K. Ram, S. Chamberlain, N. Ross, and M. Salmon. rOpenSci Onboarding. https://github.569

com/ropensci/onboarding. Commit 328434b5e37898e1e321e40f1f13e4bbe78f3d09. 2017.570

[34] K. E. Niemeyer. JOSS first-year publication data and figures. Figshare. June 2017. doi: 10.571

6084/m9.figshare.5147722.v1.572

[35] Z. Zhang, D. S. Katz, A. Merzky, M. Turilli, S. Jha, and Y. Nand. “Application Skeleton:573

Generating Synthetic Applications for Infrastructure Research”. In: The Journal of Open574

Source Software 1.1 (May 2016). doi: 10.21105/joss.00017.575

[36] A. Y. Z. Yao and D. Kane. “walkr: MCMC Sampling from Non-Negative Convex Polytopes”.576

In: The Journal of Open Source Software 2.11 (Mar. 2017). doi: 10.21105/joss.00061.577

[37] reviewers.csv. Git commit 2006d1e05ad83c07d6f1bf14787e211167883a6d. 2017. url:578

https://github.com/openjournals/joss/blob/master/docs/reviewers.csv (visited on579

06/01/2017).580

[38] D. Foreman-Mackey. “corner.py: Scatterplot matrices in Python”. In: The Journal of Open581

Source Software 1.2 (June 2016), p. 24. doi: 10.21105/joss.00024.582

[39] C. Sanderson and R. Curtin. “Armadillo: a template-based C++ library for linear algebra”.583

In: The Journal of Open Source Software 1.2 (June 2016), p. 26. doi: 10.21105/joss.00026.584

[40] JOSS Cited-by report. 2017. url: https://data.crossref.org/depositorreport?pubid=585

J299881 (visited on 12/15/2017).586

[41] N. C. Clementi, G. Forsyth, C. D. Cooper, and L. A. Barba. “PyGBe-LSPR: Python and587

GPU Boundary-integral solver for electrostatics”. In: The Journal of Open Source Software588

2.19 (Nov. 2017), p. 306. doi: 10.21105/joss.00306. url: https://doi.org/10.21105/589

joss.00306.590

[42] C. D. Cooper, N. C. Clementi, G. Forsyth, and L. A. Barba. “PyGBe: Python, GPUs and591

Boundary elements for biomolecular electrostatics”. In: The Journal of Open Source Software592

1.4 (Aug. 2016), p. 43. doi: 10.21105/joss.00043. url: https://doi.org/10.21105/593

joss.00043.594

21

https://github.com/openjournals/joss/blob/master/CODE_OF_CONDUCT.md
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/
http://contributor-covenant.org/version/1/4/
https://doi.org/10.6084/m9.figshare.5147773.v1
https://doi.org/10.6084/m9.figshare.5147773.v1
https://doi.org/10.6084/m9.figshare.5147773.v1
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_13.pdf
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_13.pdf
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_13.pdf
https://github.com/ropensci/onboarding
https://github.com/ropensci/onboarding
https://github.com/ropensci/onboarding
https://doi.org/10.6084/m9.figshare.5147722.v1
https://doi.org/10.6084/m9.figshare.5147722.v1
https://doi.org/10.6084/m9.figshare.5147722.v1
https://doi.org/10.21105/joss.00017
https://doi.org/10.21105/joss.00061
https://github.com/openjournals/joss/blob/master/docs/reviewers.csv
https://doi.org/10.21105/joss.00024
https://doi.org/10.21105/joss.00026
https://data.crossref.org/depositorreport?pubid=J299881
https://data.crossref.org/depositorreport?pubid=J299881
https://data.crossref.org/depositorreport?pubid=J299881
https://doi.org/10.21105/joss.00306
https://doi.org/10.21105/joss.00306
https://doi.org/10.21105/joss.00306
https://doi.org/10.21105/joss.00306
https://doi.org/10.21105/joss.00043
https://doi.org/10.21105/joss.00043
https://doi.org/10.21105/joss.00043
https://doi.org/10.21105/joss.00043

[43] C. Sanderson and R. Curtin. “gmm_diag and gmm_full: C++ classes for multi-threaded595

Gaussian mixture models and Expectation-Maximisation”. In: The Journal of Open Source596

Software 2.18 (Oct. 2017). doi: 10.21105/joss.00365. url: https://doi.org/10.21105/597

joss.00365.598

[44] C. Sanderson and R. Curtin. “Armadillo: a template-based C++ library for linear algebra”.599

In: The Journal of Open Source Software 1.2 (June 2016), p. 26. doi: 10.21105/joss.00026.600

url: https://doi.org/10.21105/joss.00026.601

[45] J. K. Tauber. pyuca Published in The Journal of Open Source Software. url: https://602

jktauber.com/2016/05/19/pyuca-published-journal-open-source-software/ (visited603

on 12/15/2017).604

[46] C. T. Brown. Publishing Open Source Research Software in JOSS - an experience report.605

Sept. 2016. url: http://ivory.idyll.org/blog/2016- publishing- oss- research-606

software.html (visited on 12/15/2017).607

[47] J. Perkel. “TechBlog: JOSS gives computational scientists their academic due”. In: Naturejobs608

Blog (Apr. 2017). url: http://blogs.nature.com/naturejobs/2017/04/04/joss-gives-609

computational-scientists-their-academic-due/.610

[48] M. Moore. “Journal of Open Source Software helps researchers write and publish papers on611

software”. In: SD Times (May 2017). url: http://sdtimes.com/journal-open-source-612

software-helps-researchers-write-publish-papers-software/.613

[49] A. M. Smith, L. A. Barba, G. Githinji, M. Gymrek, K. Huff, D. S. Katz, C. Madan, A. C.614

Mayes, K. M. Moerman, K. E. Niemeyer, P. Prins, K. Ram, A. Rokem, T. Teal, and J.615

Vanderplas. The Journal of Open Source Software. Poster presented at SIAM Computational616

Science & Engineering 2017 (CSE17), Atlanta, GA, USA. 27 February–3 March 2017. Feb.617

2017. doi: 10.6084/m9.figshare.4688911.618

22

https://doi.org/10.21105/joss.00365
https://doi.org/10.21105/joss.00365
https://doi.org/10.21105/joss.00365
https://doi.org/10.21105/joss.00365
https://doi.org/10.21105/joss.00026
https://doi.org/10.21105/joss.00026
https://jktauber.com/2016/05/19/pyuca-published-journal-open-source-software/
https://jktauber.com/2016/05/19/pyuca-published-journal-open-source-software/
https://jktauber.com/2016/05/19/pyuca-published-journal-open-source-software/
http://ivory.idyll.org/blog/2016-publishing-oss-research-software.html
http://ivory.idyll.org/blog/2016-publishing-oss-research-software.html
http://ivory.idyll.org/blog/2016-publishing-oss-research-software.html
http://blogs.nature.com/naturejobs/2017/04/04/joss-gives-computational-scientists-their-academic-due/
http://blogs.nature.com/naturejobs/2017/04/04/joss-gives-computational-scientists-their-academic-due/
http://blogs.nature.com/naturejobs/2017/04/04/joss-gives-computational-scientists-their-academic-due/
http://sdtimes.com/journal-open-source-software-helps-researchers-write-publish-papers-software/
http://sdtimes.com/journal-open-source-software-helps-researchers-write-publish-papers-software/
http://sdtimes.com/journal-open-source-software-helps-researchers-write-publish-papers-software/
https://doi.org/10.6084/m9.figshare.4688911

	Introduction
	Background and motivation
	Why publish software?
	Challenges of publishing software

	The Journal of Open Source Software
	Goals and principles
	How JOSS works
	Business model and content licensing
	Comparison with other software journals

	Peer review in JOSS
	The JOSS process
	JOSS review criteria
	Fast track for reviewed rOpenSci contributions

	A review of the first year
	The second year for JOSS
	Conclusions

