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Abstract

In this article we show that the motive of an affine quadric {q = 1} determines the
respective quadratic form.
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1 Introduction

The algebraic theory of quadratic forms over arbitrary fields was created by E.Witt in the
1930-ies. It was greatly extended in the 60-ies by A.Pfister and then by J.Milnor, J.-
Kr.Arason, M.Knebusch and others. Aside from the classical algebraic methods, various
cohomological tools and specialization arguments entered the game. For a while the subject
was centered around Milnor’s conjecture and the forms which were attracting the main atten-
tion were Pfister forms, since the respective projective quadrics are norm-varieties for pure
symbols in Milnor’s K-theory mod 2. One should note here the contribution by A.Merkurjev,
A.Suslin and M.Rost. Simultaneously, unramified cohomology was successfully applied by
B.Kahn, M.Rost, R.Sujatha and O.Izhboldin. In the works of M.Rost, motives entered the
subject with the discovery of the Rost motive and the proof of such foundational results as
the Nilpotence Theorem - see [9, 10]. The Pfister case was developed further by V.Voevodsky
in the context of triangulated category of motives in [16] and investigated in more details in
[8]. Finally, the case of an arbitrary quadric was systematically addressed from the motivic
point of view in the works of the second author, and of N.Karpenko and A.Merkurjev. This
approach is based on studying geometric and motivic properties of various projective homo-
geneous varieties associated to a quadric, and it permitted to settle many open problems left
from the algebraic theory. For an overview see [13] and [2] (and also [14]). Note however that
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in these works only the motives of projective quadrics were studied, while the affine case was
largely ignored.

The story made a new turn when F.Morel showed that the Grothendieck-Witt ring of
quadratic forms over k can be identified with the (0)[0]-stable homotopy group of spheres
in the algebro-geometric (motivic) homotopic world [7, Theorem 6.2.1]. This reignited the
interest in quadratic forms due to the prominent role these objects play in A1-homotopy
theory and, in particular, due to understanding that their properties should be related to
that of the classical (topological) stable homotopy groups of spheres.

From a homotopic point of view, an affine quadric is more attractive than the projective
one. Over an algebraically closed field, such an affine quadric has only two cells, like a
sphere. Moreover over C the complex points of an affine quadric have the homotopy type of
a topological sphere, and the same holds for the real points over R. Over a general field, one
may consider affine quadrics to be “non-split” spheres. It appears that their motives behave
much better than those of projective quadrics. While the motive of a projective quadric does
not determine the quadric itself, the motive of an affine quadric determines the respective
form. In this article we will show that the motives of two affine quadrics {q = 1} and {p = 1}
are isomorphic if and only if p ∼= q. Thus, we obtain that the restriction of the functor
Smk → H(k)→ SH(k)→ DM(k) to affine quadrics does not glue objects.

We provide two alternative proofs of this result. One uses the standard motivic techniques
developed for projective quadrics (and projective homogeneous varieties, in general). The
second one uses the novel ”generalised geometric fixed point functors” introduced by the first
author in [1]. We hope that this will provide a good illustration of the methods of [1]. In
particular, the reader should see how these methods interact with the classical techniques.
Both versions use the Theorem of Izhboldin on motives of odd-dimensional projective quadrics
[3].

2 The Main Theorem

Everywhere below k will be a field of characteristic different from 2. For a quadratic form q
over k we will denote by Aq the affine quadric {q = 1}. For a smooth variety X over k, we
denote by M(X) its image in the triangulated categories of motives DM(k) or DM(k;Z/2)
of V.Voevodsky (constructed in [15]; we drop ”minus” from the notations).

Theorem 2.1 Let p and q be quadratic forms over k, and Aq and Ap be the respective affine
quadrics. Then the following conditions are equivalent:

(1) p ∼= q;

(2) M(Aq) ∼= M(Ap) in DM(k);

(3) M(Aq) ∼= M(Ap) in DM(k;Z/2).

Proof: It is obvious that (1)⇒ (2)⇒ (3). To prove that (3)⇒ (1) we will need the following
result.
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For quadratic forms q and p over k, denote by Q (respectively P ) the projective quadric
given by q (respectively, p), and by Q′ (respectively P ′) the projective quadric given by
q ⊥ 〈−1〉 (respectively, p ⊥ 〈−1〉).

Proposition 2.2 Suppose that M(Aq) ∼= M(Ap) in DM(k;Z/2). Then M(Q) ∼= M(P ) and
M(Q′) ∼= M(P ′) (in the same category).

We will prove this proposition by emplyoing the criterion of motivic equivalence of
quadratic forms. To state it, recall that if q is a (non-degenerate) quadratic form over a
field k, then q ∼= nH ⊥ qan, where qan is anisotropic. Moreover, n and (the isomorphism
class of) qan are determined uniquely [6]. The number n is called the Witt index of q over
k and we denote it by iW (q). The criterion of motivic equivalence now states that for non-
degenerate quadratic forms p, q we have M(Q) ∼= M(P ) if and only if dim(p) = dim(q) and
iW (p|E) = iW (q|E) for all field extensions E/k - [11, Proposition 5.1] or [13, Theorem 4.18]
(see also [4]). Thus Proposition 2.2 is equivalent to the following result:

Proposition 2.3 Suppose that M(Aq) ∼= M(Ap) in DM(k;Z/2). Then dim(p) = dim(q),
dim(p′) = dim(q′), and for all field extensions E/k we have iW (p|E) = iW (q|E) and iW (p′|E) =
iW (q′|E).

We give here a direct proof using motivic methods developed for projective quadrics. We
still introduce some new objects: the splitting tower and shells for an affine quadric. These
are our main tools.
Proof: Since Aq is an open subvariety of Q′ with closed (regular) complement Q, we have a
distinguished Gysin triangle

M(Q′)→M(Q)(1)[2]→M(Aq)[1]→M(Q′)[1]

in DM(k), and similarly for p. Notice, that the group HomDM(k;Z/2)(M(Q)(1)[2],M(P ′)[1]) is

zero, since, for smooth X, Hb,a
M(X) = 0, for b > 2a (see e.g. [15, Corollary 4.2.6]). Similarly,

there are no hom’s from M(P )(1)[2] to M(Q′)[1]. This shows that our (mutually inverse)
isomorphisms

M(Aq)
f

--
M(Ap)

g
mm

can be extended to morphisms Φ : Q→ P and Ψ : P→ Q of distinguished triangles:

M(Q′) //

ϕ′
��

M(Q)(1)[2] //

ϕ
��

M(Aq)[1] //

f [1]
��

M(Q′)[1]

ϕ′[1]
��

M(P ′) //

ψ′
��

M(P )(1)[2] //

ψ
��

M(Ap)[1] //

g[1]
��

M(P ′)[1]

ψ′[1]
��

M(Q′) //M(Q)(1)[2] //M(Aq)[1] //M(Q′)[1].

Let A := Ψ ◦ Φ, B := Φ ◦ Ψ. Respectively, α := ψ ◦ ϕ, β := ϕ ◦ ψ, α′ := ψ′ ◦ ϕ′, and
β′ := ϕ′ ◦ψ′. When restricted to algebraic closure, α, β, α′ and β′ are endomorphisms of split
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motives of finite rank with Z/2-coefficients. The respective endomorphism rings are finite,
and so, some power of every element is an idempotent. We clearly may choose this power
to be common for all four elements in question (just multiply the individual powers). Then
it follows from the Rost Nilpotence Theorem for quadrics - [10] (see also [11, Lemma 3.10])
that there is N ∈ N such that αN , βN , (α′)N , (β′)N are idempotents - see [13, Corollary 3.2].
Changing Ψ to A◦2N−1 ◦Ψ (and keeping Φ), we may assume that N = 1, i.e. that α, β, α′,
β′ are idempotents. Finally, changing Ψ to A ◦Ψ ◦B and Φ to B ◦Φ ◦A, we may assume
that, in addition, Ψ ◦B = Ψ = A ◦Ψ and Φ ◦A = Φ = B ◦Φ.

Denoting as (Q,A) the image of the projector A and as (Q,A) its kernel (and similarly
for p), we see that Φ is zero on (Q,A), while Ψ is zero on (P,B). At the same time, we get
isomorphisms

(Q,A)
Φ−→ (P,B) and (P,B)

Ψ−→ (Q,A).

This gives (mutually inverse) isomorphisms:

(M(Q′), α′)
ϕ′

--
(M(P ′), β′)

ψ′
mm and (M(Q)(1)[2], α)

ϕ
..
(M(P )(1)[2], β)

ψ
nn .

On the other hand, the affine components of (Q,A) and (P,B) are zero (since g and

f are mutually inverse). This provides isomorphisms (M(Q′), α′)
∼=−→ (M(Q)(1)[2], α) and

(M(P ′), β′)
∼=−→ (M(P )(1)[2], β).

Recall that over k the motive of a projective quadric R of dimension m (corresponding to a
form r) splits into a direct sum ⊕06i6d(Z/2(i)[2i]⊕Z/2(m−i)[2m−2i]) of Tate motives (here
d = [m/2]). Let us denote the respective Tate motives as Ti and T i. For a field extension
E/k the Tate motives Ti and T i split from M(R) if and only if iW (rE) > i. We say that i
and j belong to the same shell if the conditions iW (rE) > i and iW (rE) > j are equivalent
(for all E/k). The latter condition is equivalent to the fact that there are rational maps

Ri
++e _ Z
Rjkk e_Z ,

where Rl is the Grassmannian of l-dimensional projective subspaces on R. By the Theorem of
Springer (see [6, VII,Theorem 2.3]) this is equivalent to the fact that the varieties Ri|k(Rj) and
Rj |k(Ri) have zero-cycles of degree one. And due to [11, Theorem 2.3.4] we can reformulate
it as: the motives M(XRi) and M(XRj ) of the Chech simplicial schemes are isomorphic (such
an isomorphism is then unique). Recall, that if V and W are smooth varieties such that
Wk(V ) has a zero cycle of degree 1, then there is a natural map M(XV )→M(XW ) (a unique

such non-zero map in DM(k;Z/2), it becomes an isomorphism of Tate-motives over k) - see,
for example, [11, Theorem 2.3.6]. Since we always have rational maps Ri Rjoo_ _ _ , for i < j,

we get a chain of morphisms:

M(XR0)←M(XR1)←M(XR2)←M(XR3)← . . . .

And shells are just maximal connected pieces consisting of isomorphisms in this chain of
morphisms.
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It follows from the work of M.Knebusch [5] that the notion of shells is equivalent to that of
a splitting pattern j(r) of the form r which is defined as an increasing sequence {j0, j1, . . . , jh}
of all possible Witt indices of rE over all possible field extensions E/k. Then i and l belong
to the same shell if and only if jt 6 i, l < jt+1, for some t.

Lemma 2.4 For any 0 6 i 6 [dim(Q′)/2] we have

either:

M(XQ′i)

and

M(XQi)

or:

M(XQ′i)

and

M(XQi)

.

M(XP ′i ) M(XPi) M(XP ′i ) M(XPi)

Proof: Denote (M(Q′), α′) ∼= (M(P ′), β′) as N ′. Then, for any i such that T i belongs to the
decomposition of N ′

k
, the conditions that T i splits from M(Q′)E and M(P ′)E are equivalent,

for every E/k. This means that the conditions iW (q′E) > i and iW (p′E) > i are equivalent as
well, and so M(XQ′i)

∼= M(XP ′i ). Analogously, denoting (M(Q)(1)[2], α) ∼= (M(P )(1)[2], β)

as N , we see that, for any i such that T i belongs to the decomposition of Nk, the conditions
iW (qE) > i and iW (pE) > i are equivalent, for all E/k, and so, M(XQi)

∼= M(XPi).
If, on the other hand, T i is not contained in N ′

k
, then it is contained in (M(Q′), α′)k. But

(M(Q′), α′) is identified with (M(Q)(1)[2], α). This implies that the conditions iW (q′E) > i
and iW (qE) > i are equivalent, for every E/k. In other words, M(XQ′i)

∼= M(XQi). Analo-
gously, we also have: M(XP ′i )

∼= M(XPi). �

Since q is a subform of codimension one in q′, for any i, we have implications:

iW (qE) > i+ 1 ⇒ iW (q′E) > i+ 1 ⇒ iW (qE) > i ⇒ iW (q′E) > i.

In particular, in analogy with the classical splitting tower of Knebusch - see [5], it makes sense
to speak about the common splitting tower for Q and Q′ where the splitting fields for Q and
Q′ are intertwined. More precisely, we may introduce the partial order on finitely generated
extensions over k, by saying that K/k < L/k iff K/k can be embedded into some purely
transcendental extension of L/k. We say that K/k ∼ L/k if K/k > L/k and L/k > K/k.
The above implications give us the chain of rational maps

Q′0 Q0
oo_ _ _ Q′1

oo_ _ _ Q1
oo_ _ _ . . .oo_ _ _ .

And quadratic Grassmannians are rational as soon as they posses a rational point. This gives
the chain of fields (where we drop the ground field from the notations):

k(Q′0) < k(Q0) < k(Q′1) < k(Q1) < k(Q′2) < k(Q2) < . . . .

By substituting the field extensions by equivalent ones, we can change ”inequalities” to
embeddings of fields, thus creating a genuine tower. We will call such tower the splitting
tower of Aq, or just an affine splitting tower. In a different language, we have an ordered
chain of motives of Chech simplicial schemes:

M(XQ′0)←M(XQ0)←M(XQ′1)←M(XQ1)← . . . .
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Let us call a maximal connected piece consisting of isomorphisms in this chain - an ”affine
shell” of the pair (Q′, Q) (or, in other words, an ”affine shell of Aq”). And since the distance
between the anisotropic parts of q′ and q is always one, for any extension L/k, it follows from
[13, Corollary 4.9] (or [12, Corollary 3]) that i1(q′L)−i1(qL) = dim((q′L)an)−dim((qL)an) = ±1
(here i1(r) = j1(r)−j0(r) is the 1-st higher Witt index). That means that every positive ”affine
shell” of (Q′, Q) ends with the same quadric with which it starts.

We need to show that, over any field E/k, the Witt indices of q′E and p′E (respectively, qE
and pE) coincide. In other words, that the boundary between the 0-th and the 1-st ”affine
shells” for the pair (Q′, Q) is the same as that for the pair (P ′, P ). Assume our field to be E.
There are 2 cases: either the 0-th affine shell ends with Q′ and the 1-st one starts with Q (we
call this a Q′−Q-boundary), or the other way around (the Q−Q′-boundary). In the Q′−Q-
case, for the first element i = j0(q) of the 1-st affine shell, we have M(XQ′i)

∼= T 6∼= M(XQi).

Hence, T i belongs to N ′
k

and Nk, and so M(XQ′i) = M(XP ′i ) and M(XQi) = M(XPi). So,
M(XP ′i )

∼= T 6∼= M(XPi), and thus, the boundary between the 0-th and 1-st shell for the pair
(P ′, P ) is in the same place. Consider now the case of a Q − Q′-boundary. Then the 1-st
affine shell of (Q′, Q) starts and ends with Q′. Then for the last element i = j1(q′)− 1 of the
1-st shell, M(XQ′i) 6

∼= M(XQi). Hence, T i belongs to N ′
k

and Nk, and so, M(XQ′i)
∼= M(XP ′i )

and M(XQi)
∼= M(XPi). In particular, the boundary between the 1-st and 2-nd shell of

(Q′, Q) is also a boundary between some affine shells for (P ′, P ). Passing to the appropriate
splitting field of (P ′, P ) and using the fact that the fields k(Qi) and k(Pi) are equivalent, we
may assume that the respective affine shell of (P ′, P ) is the 1-st one. Since the 1-st shells
for (Q′, Q) and (P ′, P ) end in the same place and M(XQ′i)

∼= M(XP ′i ), by [13, Corollary 4.9],
they should start in the same place as well. Consequently, our original Q − Q′-boundary is
also a boundary (between some shells) for (P ′, P ). Repeating this argument with the pair
(P ′, P ), we obtain that the boundaries between the 0-th and 1-st shells for (Q′, Q) and (P ′, P )
coincide. In other words, iW (q′E) = iW (p′E) and iW (qE) = iW (pE).

Proposition is proven. �

Return to the proof of the Theorem. From Proposition 2.2 we know that M(Q′) ∼= M(P ′),
while M(Q) ∼= M(P ). Let us show that this implies that q ∼= p. Notice that either Q,
or Q′ is odd-dimensional. By changing q to q′ and q′ to q ⊥ H (and similar for p, p′),
if necessary, we can assume that dim(q) is odd (and q′ = q ⊥ 〈±1〉, p′ = p ⊥ 〈±1〉).
Indeed by the Witt cancellation theorem, if p ⊥ H ∼= q ⊥ H then p ∼= q. Then, by the
Theorem of Izhboldin - [3, Theorem 2.5], there exists λ ∈ k∗ such that p ∼= λ · q. In
addition to this we have an isomorphism M(Q′) ∼= M(P ′). In particular, the quadratic
forms q′ = q ⊥ 〈±1〉 and λ · p′ = q ⊥ 〈±λ〉 are split simultaneously. Let kh be the last field
in the splitting tower of Knebusch for q′. Then over kh the form q′ is split, and hence, so
is 〈〈λ〉〉 = ±(q′ − λp′). Since the algebraic closure of k in kh is k(

√
det±(q′)), it follows that

either λ = 1 or λ = det±(q′) ∈ k∗/(k∗)2. And swapping p, p′ with q, q′, we get that either
λ = 1 or λ = det±(p′) ∈ k∗/(k∗)2. Since det±(q′) · det±(p′) = λ, we obtain that λ = 1, and
so, q ∼= p. This proves the implication (3)⇒ (1) and the Theorem. �
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3 Alternative Proof of Proposition 2.3

We recall the “generalised geometric fixed point functors” introduced in [1]. Let DQMgm(k,Z/2)
denote the thick tensor triangulated subcategory of DM(k;Z/2) generated by M(X)(i) for
X a smooth projective quadric over k and i ∈ Z. Let us note right away that M(Aq) ∈
DQMgm(k,Z/2); this is an immediate consequence of the Gysin triangle [1, Lemma 28].

We write Tate(Z/2) for the subcategory of DM(k;Z/2) consisting of pure Tate motives,
i.e. sums of objects of the form Z/2(i)[2i] with i ∈ Z. This category is equivalent to the
category of finite-dimensional graded Z/2-vector spaces. We denote the homotopy category of
bounded chain complexes in Tate(Z/2) by Kb(Tate(Z/2)); this is equivalent to the category
of finite-dimensional bi-graded Z/2-vector spaces.

The following is one of the main results of [1]:

Theorem 3.1 There exists an essentially unique tensor triangulated functor

Φk : DQMgm(k,Z/2)→ Kb(Tate(Z/2))

such that:

1. If X is an anisotropic projective quadric (i.e. X does not have a rational point), then
Φk(M(X)) = 0.

2. We have Φk(Z/2(i)) = Z/2(i).

Remarks:

1. If E/k is a field extension, we obtain by composition a functor DQMgm(k,Z/2) →
DQMgm(E,Z/2)

ΦE

−−→ Kb(Tate(Z/2)). We abusively also denote it by

ΦE : DQMgm(k,Z/2)→ Kb(Tate(Z/2)).

2. In order to use this result effectively, the following lemma of Rost is useful: if q = H ⊥ q̃,
then [9, Proposition 1] (or [1, Lemma 28])

M(Q) ∼= Z/2⊕M(Q̃)(1)[2]⊕ Z/2(n)[2n], where n = dim(Q). (∗)

As a warmup exercise, let us re-prove the easy half of the criterion for motivic equivalence:

Proposition 3.2 Let P,Q be smooth projective quadrics such that M(P ) ∼= M(Q) ∈ DQMgm(k,Z/2).
Then dim(P ) = dim(Q) and iW (P |E) = iW (Q|E) for all field extensions E/k.

Proof: If P has a rational point over a field extension E, then (∗) together with Theorem
3.1 implies that dim(P ) is the maximal weight occurring in ΦE(M(P )) (in other words the
bigraded Z/2-vector space ΦE(M(P )) is isomorphic to a sum of one-dimensional spaces of
the form Z/2(i)[j], and dim(P ) is the maximal i that occurs). This always happens over an
algebraic closure E = k̄, so that M(P ) ∼= M(Q) implies dim(P ) = dim(Q).
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For the Witt index we argue similarly. Let p = rH ⊥ p̃ with p̃ anisotropic, so that
iW (P ) = r. Repeated application of (∗) shows that1

M(P ) ∼= ⊕ri=0(Z/2(i)[2i]⊕ Z/2(dim(P )− i)[2 dim(P )− 2i])⊕M(P̃ )(r)[2r]

Consequently Φk(M(P )) has rank 2r, by Theorem 3.1. Thus M(P ) determines iW (P ), as
was to be shown. By base change to a field extension E/k, M(P ) also determines iW (P |E).
This concludes the proof. �

In the above proof, we have seen that the bi-graded vector space Φk(M(P )) can have
large dimension, and we had to work to extract the numbers that we wanted. If instead
of a projective quadric we consider an affine quadric, then the vector spaces Φk(M(Ap))
become much smaller - they have either dimension 2 or 0. In fact, if instead we consider
the reduced motive, then Φk(M̃(Ap)) always has dimension 1: this is expected if M̃(Ap) is
supposed to “behave like a sphere”, i.e. be invertible, and the main result of [1] is that not
only is the dimension always 1, but that also this condition is sufficient (and necessary) for
invertibility. Consequently if Aq is an affine quadric, then for every field extension E/k we
have ΦE(M̃(Aq)) = Z/2[iE ](jE), and we get two numerical invariants of q (namely iE and
jE). The strategy of the alternative proof of our main result is to show that these invariants
are closely related to the Witt indices of q|E and q′|E .
Alternative proof of Proposition 2.3: Recall that we are given quadratic forms p and q such
that M(Ap) ∼= M(Aq), and we need to show that dim(p) = dim(q), dim(p′) = dim(q′), and
for all field extensions E/k we have iW (p|E) = iW (q|E) and iW (p′|E) = iW (q′|E).

In the proof we will want to write p = nH ⊥ pan, for an anisotropic form pan, which we
will then treat on a similar footing to p. This requires us to allow the degenerate cases p = 0,
where Ap = P = P ′ = ∅ and p = aX2, where Ap = P ′ = Spec(k[x]/(x2 − a)) and P = ∅. We
consider both of these forms as anisotropic. Note that it is still the case that Φk(M(P )) = 0
in these degenerate cases, and this is the main property we require of anisotropic forms.

Let us first note that M(Aq) determines the reduced motive M̃(Aq). Indeed we have
HomDM(k;Z/2)(M(Aq),Z/2) = CH0(Aq)/2 [15, Corollary 4.2.5], and the fibre of a2 non-zero

morphism M(Aq) → Z/2 is M̃(Aq). If all such morphisms are zero, then Aq = ∅ and
M̃(Aq) = Z/2[−1] is also determined.

The following observation will be used many times: if q ∼= q̃ ⊥ H, then it follows from (∗)
- see [1, Lemma 34] that

M̃(Aq) ∼= M̃(Aq̃)(1)[2]. (1)

Let us first show that M̃(Aq) determines dim(Q) and dim(Q′). For this we base change
to an algebraic closure k̄. Then either q ∼= nH or q ∼= nH ⊥ 〈1〉. In the former case we
have Φk̄(M̃(Aq)) = Φk̄(M̃(∅))(n)[2n] = Z/2(n)[2n − 1], whereas in the latter case we have

Φk̄(M̃(Aq)) = Φk̄(M̃({x2 = 1}))(n)[2n] = Z/2(n)[2n]. None of these graded one-dimensional

1Note that if p = aX2 is a one-dimensional quadratic form (with a 6= 0) then P ⊂ P0 = P(k1) = ∗ is the
closed projective subvariety given by {aX2 = 0}, which is empty. In particular M(P ) = 0.

2There is more than one non-zero morphism if and only if q ∼= X2, in which case M(Aq) = M({X2 = 1}) =
M(∗

∐
∗).
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vector spaces are isomorphic, so dim(Q) can be read off from Φk̄(M̃(Aq)). Of course dim(Q)
determines dim(Q′).

Next we show that M̃(Aq) determines iW (q) and iW (q′). For this we start with the exact
triangle

M(Aq)→M(Q′)→M(Q)(1)[2]→M(Aq)[1],

from which we deduce the exact triangle

M̃(Aq)→ M̃(Q′)→M(Q)(1)[2]→ M̃(Aq)[1]. (2)

Write q = nH ⊥ qa with qa anisotropic. Then q′ = nH + q′a (but q′a need not be anisotropic).
It follows from triangle (2) and equation (1) that we have an exact triangle

Φk(M̃(Aq))→ Φk(M̃(Q′a))(n)[2n]→ Φk(M(Qa))(n+ 1)[2n+ 2]→ Φk(M̃(Aq))[1].

Since Qa is anisotropic, we have Φk(M(Qa)) = 0, and so Φk(M̃(Aq)) ∼= Φk(M̃(Q′a))(n)[2n].
There are two cases.

I. q′a is also anisotropic. Then Φk(M(Q′a)) = 0 as well, so

Φk(M̃(Aq)) = Z/2(n)[2n− 1].

II. q′a is isotropic, so q′a = H ⊥ qb. Then qb is anisotropic (indeed qa ⊥ 〈−1〉 = q′a
∼= qb ⊥

〈1〉 ⊥ 〈−1〉, so qa ∼= qb ⊥ 〈1〉 by Witt cancellation; and a subform of an anisotropic
form is anisotropic). By (∗),

Φk(M̃(Aq)) = Φk(M̃(Q′a))(n)[2n] = Z/2(n+ dim(Q′a))[2n+ 2 dim(Q′a)].

Thus either (i) Φk(M̃(Aq)) = Z/2(n)[2n + 1] or (ii) Φk(M̃(Aq)) = Z/2(m)[2m]. Note
that (i) and (ii) are different: for no value of n,m do we have Z/2(n)[2n+ 1] ∼= Z/2(m)[2m].
Situation (i) corresponds to case (I), and situation (ii) corresponds to case (II). In case (I) we
know that iW (q) = n = iW (q′). In case (II) we read off the number m = iW (q) + dim(Q′a).
But we also know the number dim(Q) = 2iW (q) + dim(Qa) = 2iW (q) + dim(Q′a) − 1, by
the first part. From this we can solve for iW (q) (namely iW (q) = dim(Q)−m+ 1). Finally
iW (q′) = iW (q) + 1 in this case. �

Acknowledgements: We are grateful to the Referee for useful remarks which improved the expo-

sition.

References

[1] T.Bachmann, On the Invertibility of Motives of Affine Quadrics, Doc. Math., 22 (2017),
363-395.

[2] R.Elman, N.Karpenko, A.Merkurjev, The Algebraic and Geometric Theory of Quadratic
Forms, AMS Colloquium Publications, 56, 2008, 435pp.

9



[3] O.T.Izhboldin, Motivic equivalence of quadratic forms, Doc. Math. 3 (1998), 341-351.

[4] N.Karpenko, Criteria of motivic equivalence for quadratic forms and central simple al-
gebras., Math. Ann. 317 (2000), no. 3, 585-611.

[5] M.Knebusch, Generic splitting of quadratic forms, II., Proc. London Math. Soc. 34
(1977), 1-31.

[6] T.Y.Lam, Algebraic theory of quadratic forms., Massachusetts, Benjamin 1973.

[7] F.Morel, On the motivic π0 of the sphere spectrum, in Axiomatic, enriched and motivic
homotopy theory, Springer 2004, 219-260.

[8] D. Orlov, A. Vishik, V. Voevodsky, An exact sequence for KM
∗ /2 with applications to

quadratic forms, Annals of Math., 165 (2007) No.1, 1–13.

[9] M.Rost, Some new results on the Chow groups of quadrics, Preprint, Regensburg, 1990.
www.math.uni-bielefeld.de/∼rost/chowqudr.html

[10] M.Rost, The motive of a Pfister form., Preprint, 1998
www.math.uni-bielefeld.de/∼rost/motive.html

[11] A.Vishik, Integral Motives of Quadrics, MPIM-preprint, 1998 (13), 1-82.
www.mpim-bonn.mpg.de/node/263

[12] A.Vishik, Direct summands in the motives of quadrics., Preprint, 1999, 1-13.
www.maths.nottingham.ac.uk/personal/av/papers.html

[13] A.Vishik, Motives of quadrics with applications to the theory of quadratic forms, in
the Proceedings of the Summer School Geometric Methods in the Algebraic Theory
of Quadratic Forms, Lens 2000 (ed. J.-P.Tignol), Lect. Notes in Math., 1835 (2004),
25-101.

[14] A.Vishik, Excellent connections in the motives of quadrics, Ann. Scient. Éc. Norm. Sup.
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