
 
 

 

 

Investigation into Balancing of High-
Speed Flexible Shafts by 

Compensating Balancing Sleeves 
 
 
 
 

James Grahame Knowles 
 
 

 
 
 

A thesis submitted in fulfilment of the 
requirements of the University of 

Lincoln for the degree of Doctor of 
Philosophy 

 
 
 
 
 
 
 

2017 
 

 

 

 

 



 

i 

 

 

ABSTRACT 
 
 
Engineers have been designing machines with long, flexible shafts and 

dealing with consequential vibration problems, caused by shaft imbalance 

since the beginning of the industrial revolution in the mid 1800’s. Modern 

machines still employ balancing techniques based on the Influence 

Coefficient or Modal Balancing methodologies, that were introduced in the 

1930’s and 1950’s, respectively. 

 

The research presented in this thesis explores fundamental deficiencies of 

current trim balancing techniques and investigates novel methods of flexible 

attachment to provide a component of lateral compliance. Further, a new 

balancing methodology is established which utilizes trim balance induced 

bending moments to reduce shaft deflection by the application of 

compensating balancing sleeves. This methodology aims to create encastre 

simulation by closely matching the said balancing moments to the fixing 

moments of an equivalent, encastre mounted shaft. It is therefore 

significantly different to traditional methods which aim to counter-balance 

points of residual eccentricity by applying trim balance correction, usually at 

pre-set points, along a shaft.  

 

Potential benefits of this methodology are initially determined by analysis of 

a high-speed, simply supported, plain flexible shaft, with uniform eccentricity 

which shows that near elimination of the 1st lateral critical speed, (LCS) is 

possible, thereby allowing safe operation with much reduced LCS margins. 

  

Further study of concentrated, residual imbalances provides several new 

insights into the behaviour of the balancing sleeve concept:  1) a series of 

concentrated imbalances can be regarded simply as an equivalent level of 

uniform eccentricity, and balance sleeve compensation is equally applicable 

to a generalised unbalanced distribution consisting of any number of 
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concentrated imbalances, 2) compensation depends on the sum of the 

applied balancing sleeve moments and can therefore be achieved using a 

single balancing sleeve (thereby simulating a single encastre shaft), 3) 

compensation of the 2nd critical speed, and to a lesser extent higher orders, 

is possible by use of two balancing sleeves, positioned at shaft ends, 4) the 

concept facilitates on-site commissioning of trim balance which requires a 

means of adjustment at only one end of the shaft, thereby reducing 

commissioning time, 5) the Reaction Ratio, RR (simply supported/ encastre) 

is independent of residual eccentricity, so that the implied benefits resulting 

from the ratio (possible reductions in the equivalent level of eccentricity) are 

additional to any balancing procedures undertaken prior to encastre 

simulation. The analysis shows that equivalent reductions of the order of 

1/25th are possible.  

 

Experimental measurements from a scaled model of a typical drive coupling 

employed on an industrial gas turbine package, loaded asymmetrically with 

a concentrated point of imbalance, support this analysis and confirms the 

operating mechanism of balancing sleeve compensation and also it’s 

potential to vastly reduce shaft deflections/ reaction loads. 
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Chapter 1 

 

1.1 Introduction 

 

The investigation presented in this thesis was initiated by the need for 

controlling shaft vibration issues encountered in Gas Turbine (GT) driven 

Mechanical Drive Packages for the Oil and Gas market. Such units are 

usually required to pump liquid or gas, for utility purposes, over 100’s of 

kilometres and must be able to operate over a wide speed range in order to 

provide the necessary performance flexibility to maintain a high overall 

operating efficiency.  

 

However, it has been observed that in some instances it has been extremely 

difficult, and often impossible to dynamically balance the GT shafts across 

the required operating speed range because the phase vector of the bearing 

load was changing with respect to operating speed. Specifically, drive trains 

could be readily balanced at relatively low operating speeds, but with a new 

angular position of the load vector it was incorrectly balanced at higher 

operating frequencies, or vice versa.  

 

In some cases the vector change is seen to approach 180°, indicating that 

the drive train would have traversed a critical speed, between the low and 

high speed operating points. However, dynamic analysis showed this not to 

be the case. 

 

It is notable that such problems appear more acute on packages where the 

drive coupling, between the driver and driven units, was longer than 

standard, or had torque spacers incorporated as part of the assembly. In 

both cases the shaft flexibility is increased and this led to a hypothesis that 

shaft deflection could be an alternative cause of angular change of the 

vector.  In turn, this has led to the proposition of an improved balancing 

mechanism, the compensated balancing sleeve [120,121,122,123,124], 
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with the potential to substantially reduce reaction loads applied to the driver 

and driven bearings. 

 

The aim of this thesis is to investigate the fundamental causes of the 

balancing problems associated with high-speed flexible shafts and to 

assess the practical application of the proposed new balancing sleeve. 

 

 

1.2 Background 

 

The general evolutionary path of most dynamic machines is one of making 

components/ sub-assemblies bigger, more complex and operating at ever 

greater speeds in order to increase their production output and/ or obtain 

greater efficiency.  Nevertheless, a substantial limiting factor in this 

development is often an accompanying increase in vibration, creating 

increased noise, output quality variation and instability in production 

machines, or problems with other important functions such as speed control, 

steering, braking etc. in vehicles – together with higher stresses, more 

frequent breakdowns and in some cases catastrophic failure.  

 

1.2.1 Historical Perspective 

 

The history of analysing and balancing shafts is now quite protracted, with 

the first serious study performed by Rankine [3] in 1869, who analysed an 

unloaded shaft resting freely in narrow bearings positioned at each end, 

thereby being analogous to a simply supported beam. The term ‘whirling’ 

was used to describe the circular motion of the central axis of the shaft, 

viewed in any lateral plane, when subjected to bending by centrifugal forces 

acting on the shaft during rotation and he equated these forces to the 

restraining stiffness forces of an equivalent beam, to obtain an equation for 

the critical speed. Beyond this speed the centrifugal forces exceeded the 

restraining forces and it was reasoned that shaft failure would result. 
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However, by not being aware that phase rotation of the mass centroid 

occurs about the geometric centre of the shaft, during transition through a 

critical speed, see Figure 1.1, [85], it was erroneously concluded at the time 

that operating beyond this speed was impossible.  

 

Nevertheless, following this study a steam turbines was developed that 

could operate above the 1st critical speed, by De Laval in 1883 and by 

Parsons in 1884, [5], and hence some empirical engineering knowledge 

about self-balancing mechanisms existed whereby at super-critical speeds 

the “shaft again runs true”. In 1895, an analysis of an undamped rotor by 

Foppl [103] showed that the heavy side, or heavy spot, of an unbalanced 

disc migrates outwards when rotation is below the critical speed and that it 

migrates inwards, thus lessening the imbalance, when operated above the 

critical speed. Moreover, Dunkerley [1] in 1894 published experimental 

results of the critical speeds of numerous slender shafts, loaded with a 

variety of differently positioned pulley wheels, as was in common use in the 

cotton mills at the time, which further supported the above theories.  
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Figure 1.1, [85], Phase Rotation of Mass Centroid 
 
To resolve the conflict between Rankine’s theory and experimental 

observation, the Royal Society of London commissioned Jeffcott to further 

research the subject. The study [2] reported results from the analysis of a 

slender, massless shaft with a centrally mounted single disc and included 

external damping, as shown in Figure 1.2, [2a]. It confirmed the previous 

predictions given by Foppl [103] in which supercritical operation was 

considered stable and also showed that due to damping, the angular 

position of the heavy spot rotates continuously during transition of the critical 

speed. The report also asserted that since all rotors contain some 

imbalance eccentricity, due to imperfect machining and/ or material density 

non-uniformity, then a source of forced excitation must always exist, at a 

frequency equal to the speed of rotation. This fundamentally differentiates 

the dynamics of a rotating system from a structural beam, which may have 

the same natural frequency as a shaft’s critical speed, but will only vibrate 

when an external excitation force is applied. The resulting paper by Jeffcott 

[2] is now regarded as seminal for an understanding of single degree of 
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freedom rotor/shafts, i.e. a single spring/ mass dynamic system, which are 

often now termed as Jeffcott or in some instances Laval/ Foppl rotors.  

 

Figure 1.2, [2a], Jeffcott Rotor 
 
As development of supercritical rotors in steam turbines continued, resulting 

in yet higher operating speeds, manufacturers sometimes experienced 

severe vibration problems.  These were originally blamed on rotor 

imbalance, but correction difficulties led to some to consider the possibility 

that internal damping forces, acting tangentially to aid precession, might be 

inducing a form of self-exciting instability. It was reasoned that gravity 

effects could induce alternating internal bending moments/stresses, which 

in turn, if of sufficient magnitude could produce internal friction within the 

crystalline structure of a shaft (as per the hysteresis loop) which is 

commonly seen in outputs from tensile test machines, the area of which 

represents the energy loss known as hysteretic damping. Newkirk [8] and 

Kimball [7] first recognised that these forces could cause an unstable 

whirling motion during supercritical operation. Their work led to further 

research, by Stodola [5] et al, (1927), into other sources of frictional forces 

that may impart similar effects, such as oil whip within bearings, general 

peripheral rubbing against seals or stator casings and also localised rubs, 

which can cause local hot spots resulting in deformation of say discs and/ 

or shaft bending. Hot spot instability subsequently became known as the 

Newkirk Effect.  
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Campbell [6], (1924), investigated vibrations resulting currently from 

General Electric, GE, steam turbines and developed a method for plotting 

critical speeds and lines of synchronous excitations against operating 

speed, with their intersections highlighting points of whirling resonance—

now widely known as Campbell Diagrams. During this period of rapid 

analytical development many accompanying bench tests were performed to 

measure the internal friction characteristic of various materials. Kimball, 

Lovell et al, [7] employed cantilever shafts with over-hung masses 

suspended from shaft end bearings, so that vertical gravity forces induced 

sinusoidal, once per revolution, bending stresses as the shaft rotated. The 

results showed that the hanging mass was always deflected to one side by 

a tangential damping force and its angular displacement was independent 

of the shafts rotational speed, but proportional to its vertical deflection. From 

bending stress/ strain relationships, the authors were able to relate the 

damping energy/ work done per cycle and hence a material/ damping loss 

factor to the angular off-set.  

 

In 1933 Smith [14] analysed a rotor system with internal viscous damping 

and proved that without any external damping the system became unstable 

at the 1st critical speed. This point is called the instability threshold as the 

internal viscous damping had a stabilising effect up to this point, i.e. at 

subcritical speeds. Further, the presented formulae predicted that the 

threshold spin speed varied with the ratio of the internal to external damping. 

Other researchers [10-12] later confirmed these conclusions by differing 

methods and also showed that by including external damping the threshold 

of instability can be increased beyond the critical speed. By analysing the 

system using rotational coordinates and assuming isotropic supports, i.e. 

orthogonal coordinates fixed to the shaft, so that shaft forces/ moments 

seen from this perspective are independent of rotational speed and only the 

stationary environment is seen to rotate, reduces the mathematical 

complexity and simplifies the solution. This concept enhanced the 

understanding of forward and backward whirl, where a rotor spins about its 
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geometric centre due to the machine’s driving torque, but also rotates, 

positively or negatively, about its bearing centres, (usually offset from the 

geometric centre by shaft deflection), to produce a whirl velocity. It was 

shown that the tangential direction of the internal damping force is 

proportional to the difference in these speeds and changes direction at the 

critical speed when they are equal. Instability results at supercritical speeds 

when the tangential force due to internal damping exceeds the equivalent 

external damping force.  

 

It was also recognised that one of the main causes of internal damping came 

from interface friction within rotor joints due to flexing as cyclic bending 

occurred. Special test rotors were made to investigate shrink fits, in 

particular, as these were commonly used in turbine and compressor design. 

Robertson [13] et al concluded that axial fits should be short and as tight as 

possible, without exceeding the yield strength of the material and that if a 

long fit was required, it should be relieved in its centre to reduce the contact 

area. He also asserted that any friction which tends to limit a shaft’s 

deflection will add to internal damping, e.g. as occurs between the teeth of 

gear couplings or the flexible laminations within disc couplings. But note 

must be made of the fact that different mechanisms cause different damping 

effects; for instance, mechanical rub produces a ‘stick-slip’ motion resulting 

in Coulomb damping, whereas hydrodynamic forces produce the classical 

viscous damping [58].  

 

1.2.2 Balancing Machines 

 

Separately to this fundamental research, manufacturers and engineers 

developed various methods of reducing the residual imbalance in rotating 

components and assemblies by attempting to correct the centre of mass 

eccentricity. In the late 1800’s and early 1900’s this was largely by trial and 

error, by placing a rotor horizontally on knife edges, using the ‘roll-off’ 

method. Mass was either added, or removed, in appropriate places, until 
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there was no tendency for the rotor to rock backwards or forwards or for an 

induced force to produce a cyclic rolling motion. This important work was 

performed by skilled fitters, but it could take 3 to 4 weeks, using a step by 

step approach, to balance a large steam turbine rotor assembly. 

Consequently, balancing machines were being developed to provide more 

accuracy and to speed up the process. Carl Schenck [21] commissioned 

such a machine in 1908 and later concluded a worldwide licensing 

agreement, in 1915, for a much improved, pendulum mounted machine, 

patented by Franz Lawaczeck, publication number, US1457629A.   

 

The 1940’s began to see electronic systems/sensors incorporated into 

balancing machine designs to measure both the magnitude and vector 

position of centrifugal forces imposed by unbalance, usually in two planes 

of the shaft axis. Special purpose machines were designed to meet the 

varying requirements of different industries [48,62], for example machine 

tool spindles required a very high degree of balance – equivalent 

eccentricity, e, of less than 0.000002 in, whereas motor car wheels only 

require an eccentricity, e, of less than 0.01 in. The designs either required 

the mounting of the test rotor in flexible/ soft or rigid/ hard bearing pedestals, 

so that the balancing speed of the rotor had a 4 to 5 times separation margin 

with the natural frequency of the supporting structure; this minimised 

response changes due to speed and ensured proportionality between the 

measured rotor response and its imbalance. For soft bearing designs, the 

test speed is usually well above the pedestal natural frequency, therefore 

stiffness and damping forces are small compared with the excitation and 

inertia forces and can be neglected so that shaft unbalance is directly 

proportional to pedestal displacement. In the case of hard bearing 

machines, the test speed is well below the pedestal natural frequency, so 

that damping and inertia forces are neglected and shaft unbalance is directly 

proportional to the pedestal reaction force. The choice of pedestal design 

and its test running speed was therefore often, by practical necessity, 

determined by the size/ mass of the rotor.  Measurements were generally 
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made using electro-mechanical, moving coil transducers fitted to the 

bearing pedestals. Two types of systems were commonly used to measure 

or indicate the phase angle of the unbalance vector; either a stroboscopic 

light, triggered by the sinusoidal transducer outputs was used to light up the 

high point on a series of index numbers fastened on to the circumference of 

the rotor shaft, or the wattmeter method. In this case the output from a sine/ 

cosine wave generator, (2 electrical pick-up brushes at right angles, 

contacting a shaft mounted, circular resistance element), is fed into one side 

of a wattmeter and the vibration transducer output is fed into the other. Since 

a wattmeter only produces an output deflection when the two input coils 

have signals of the same frequency, both the unbalance magnitude and 

phase angle can be determined mathematically from the two outputs 

corresponding first to the sine and second the cosine generated inputs. 

 

The 1950’s saw balancing times and costs further reduced by the integration 

of metal removal accessories to high volume balancing machines, so that 

mass correction could be made during the measuring procedure, without 

the need to transfer the rotor to a separate machine.  

 

1.2.3 Balancing Standards 

 

However, even after undergoing a good balancing procedure, a perfect 

balance could never be achieved and the necessity to determine an 

appropriate level of balance quality, dependant on the type of application, 

became apparent and led to the introduction of several international 

standards whose aims was not only to produce a set of balance grades/ 

levels that would be economically functional, but also to standardise on 

terminology, measuring procedures and units of measurements etc. in order 

to minimise disputes between operators and venders.  

 

A commonly employed standard is The International Organisation for 

Standardisation, ISO 1940/1, Balancing Quality Requirements of Rigid 
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Rotors [17,18], which reflects usage principally in metric systems and has 

been adopted by British, German and American National Standards; it 

categorises rotors, based on world wide experience, according to their type, 

mass, and maximum service speed, into a quality grade, G. Its 

corresponding number relates to the allowable level of vibration, mm/sec, 

measured on the bearing housing at the service speed and is the product 

of specific unbalance, (unbalance, g,mm/ rotor mass, kg) and the maximum 

angular velocity, rad/sec. Consequently, G is related to permissible residual 

unbalance measured in g.mm and allowable mass centre displacement, i.e. 

eccentricity, measured in microns, µm. This standard is based primarily on 

single components—for assemblies, it requires that the unbalances of 

component parts shall be added vectorially, taking account of expected 

unbalances resulting from assembly inaccuracies whilst also noting that 

further assembling positions may be different. ISO 5406-1980, The 

Mechanical Balancing of Flexible Rotors [22], classified flexible rotors into 

groups according to their balance requirements, established assessment 

methods for final unbalance and provided guidance on the establishment of 

balance grades. Rotors are classified to indicate which can be balanced by 

normal, modified rigid balancing techniques or which require some method 

of high-speed balancing. The standard is not an acceptance specification, 

but an aid to avoiding gross deficiencies, exaggerated or unattainable 

requirements.  

 

The American Gear Manufacturers Association, AGMA 515 and 9000, 

Flexible Couplings – Potential Unbalance Classification [16], reflects usage 

principally in inch systems and is based on similar principles to ISO, but its 

method relates directly to flexible coupling assemblies. It specifies the 

unbalance in terms of a Balance Class Number, according to operating 

speed and coupling weight, representing the maximum displacement of the 

principal inertia axis, at specified balance planes, in micro-inches, µ-in.  
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More specifically, for the petroleum, chemical and gas industries, the 

American Petroleum Institute, API, which is of particular importance for the 

application sector of this thesis, has issued a number of design standards 

and recommended practices [15,19,20], which specify methods/ vibration 

limits for lateral dynamic analysis and very detailed balancing methods for 

couplings. These apply both to components and assemblies, with 

repeatability checks and specify unbalance limits, in inch and metric units, 

dependent on the proportionate mass at a balance plane and its maximum 

operating speed.  

 

As an acknowledgement of the importance and difficulty of obtaining/ 

maintaining conditions of good balance, standards were also introduced that 

specify means of evaluating shaft and casing vibration, for monitoring, 

warning and shutting down machines, before serious damage occurred. ISO 

7919-4 2nd Edition 2009-10-01 Mechanical Vibration – Evaluation of 

machine vibration by measurements on rotating shafts: Part 4 Gas turbines 

sets with fluid-film bearings [23] and ISO 10816-4 2nd Edition 2009-10-01 

Mechanical Vibration – Evaluation of machine vibration by measurements 

on non-rotating shafts : Part 4 Gas turbines sets with fluid-film bearings [24], 

are two such examples. 

 

1.2.4 Balancing Methods 

 

Concurrent to the introduction of balancing standards were advancements 

in dynamic analysis and balancing methodology. All balancing techniques 

rely on making mass corrections in various axial positions along a shaft, but 

since it is unlikely that addition or reduction of mass can take place directly 

in the same plane as the inherent unbalance, special balancing planes are 

usually employed for this purpose, but their position is dependent on the 

rotor type. Rotors are generally classified for balancing purposes as being 

either rigid or flexible. Since all rotors are known to be flexible if operated at 

a high enough speed, the rigid definition determines that no significant 
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bending deformation must occur and that shafts rotate about their centre 

lines, which shall remain straight, although bearing pedestals may deflect. 

This generally limits the maximum operating speed to be less than 75% of 

its lowest flexural critical speed [32]. Rigid types are by far the easiest to 

balance since, even if mounted on flexible pedestals, there are no more than 

two modes of vibration/ critical speeds. Translator/bounce, where both ends 

of the rotor appear to go up and down together in a circular or elliptical orbit, 

resulting from a unidirectional, imbalance distribution, and a conical/ tilt 

mode, where motion of  the ends are in anti-phase, resulting from an 

unbalance moment—caused by non-directional uniformity of the unbalance 

force vectors or gyroscopic effects. Hence, only two balancing planes are 

required to accomplish a state of good balance when operating near either 

of the critical speeds and these are generally positioned close to the 

pedestals for maximum effect.  

 

Due to the greater difficulty of balancing flexible rotors they have generated 

much more research and produced two primary categorisations of methods 

for balancing them; known as the influence coefficient method and modal 

balancing.  

 

The influence coefficient method was proposed by Thearle [50] in 1934, 

primarily for large electrical alternators weighing over 100 tons, and hence 

far too big for balancing machines. The technique considers single and two 

plane balancing of rotors at a given speed by individually placing trial 

weights at either end of the machine and measuring the response at each 

end relative to the prior response due solely to the rotor’s residual 

unbalance. Assuming a linear system, vector algebra is used to determine 

vector operators or influence coefficients that are considered fundamental 

characteristics of the machine, from the measured change in vibration 

amplitude and phase angle due to the additional trial weights. These are 

then used to calculate the required magnitude and angular position of the 

correcting masses needed to balance the rotor. The complexity of the 
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method is increased when applied to multi-mass rotors, which typically 

require N trial runs for N balance planes—where response measurement is 

needed at each of the balance planes.  More recently the use of matrix 

analysis and specialised computer programmes to determine the influence 

coefficients/ final trim balance corrections [48] are used. For instance, 

Goodman [55] in 1964 developed a weighted least squares calculation 

procedure to optimise the test data from multiple speeds and measuring 

locations. However, the use of trial weights does not accommodate other 

possible causes of unbalance, such as moment unbalance, caused by 

skewed discs, or shaft bow – caused by internal stresses induced during 

manufacture; hence it is possible that a good balance condition only applies 

at speeds close to the test speed and the shaft is unbalanced at other 

speeds. 

 

The second method, modal balancing, is based on a detailed mathematical 

model of the system from which a relationship between the shaft 

displacement and the forcing function, for each of the critical speeds within 

the operating range of interest can be estimated. For analysis purposes two 

models have generally been employed: one where the rotor is considered 

as a series of point masses and the second where the shaft is treated as a 

continuous elastic body. The latter method, pioneered by Bishop [26], 

Gladwell [25,29] and Parkinson [32,33] developed a general unbalance 

distribution in terms of modal unbalance eccentricities. Using classical 

vibration theory and assuming simple supports, the critical speeds 

correspond to flexural natural frequencies of equivalent non-rotating beams 

with distinct deflexion shapes corresponding to particular modes of 

vibration—a simple bow for the 1st mode and a horizontal ‘S’ for the 2nd etc. 

Consequently, the components of each vibration mode are dependent on 

the particular parameters relating to that mode and the concept of 

orthogonality applies so that the differential equations of motion are 

independent of any cross-coupled forces or moments that may be present 

in other planes. It was claimed [32,48] that the unbalance distribution along 
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a shaft is not confined to any one axial plane, but that a modal unbalance 

distribution does lie in such a plane, which may vary from mode to mode. 

Hence, eccentricity is represented as a shaft distribution that includes 

parameter coefficients dependent on the mode/ natural frequency index 

number, 1st, 2nd 3rd etc. and presented as a mathematical series formulation 

that is integrated over the shaft length to establish the resultant unbalance 

for the mode.  

 

With increasing computing power, the modelling of rotors as a series of 

elements/ point masses, gained prominence, allowing detailed analysis of 

much greater complexity, but producing systems with very large numbers of 

natural frequencies/ degrees of freedom, DOF’s. Numerical solutions for this 

type of modelling are generally obtained by finite element analysis, (FEA), 

and such programs are today capable of solving extremely large matrix 

equations containing many thousands of elements. With the availability of 

such tools the desire for greater accuracy ensued and modifications to the 

method of modal balancing were reported. Kellenberger’s [52] 1972 

contribution studied the N modal planes of balancing proposed by Bishop 

et al, and also an N+2 method, which balanced the rigid body modes first, 

followed by the N flexible modes. The paper reported that the second 

method produced a greater degree of balancing accuracy. Racic and 

Hidalgo [45] in their 2007 review of practical balancing concluded that “there 

is no better or worse balancing method, only the more or less economical”.  

 

Nevertheless, in many cases the balancing process can be costly and time 

consuming, requiring several start-ups of the machine etc., which prompted 

researchers to investigate methods of balancing without trial weights [99]. It 

was reasoned that trial runs could be numerically simulated providing that 

the modelling of the rotor system is sufficiently accurate. An initial 

methodology, without damping, was proposed by Hundal and Harker [53] 

and later refined using more generalised analysis by Morton [31] and others, 

in the mid 1980’s, to include damping, that also made allowance for different 
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bearing characteristics from the vibration data obtained during normal 

operation runs.  

 

Due to readily available computing power and sensors, high speed/ 

response machine control software was frequently being installed on 

machines to protect bearings. This required the use of bearing proximity 

probes which were typically installed in bearing casings to measure shaft 

radial displacement, at any two coplanar positions, phased 90º apart, 

together with a shaft position sensor, (key phaser), which allowed the shaft 

orbit, within the bearing clearance to be monitored. Software then provided 

initial warnings and then if necessary initiated unit shut downs if the 

percentage of bearing clearance was considered dangerously low. This new 

facility also helps during site commissioning, by enabling production of 

frequency response curves, bode diagrams and polar plots to be made, 

during run-up and down tests. Hence, checks on actual critical speeds, 

damping ratios and bearing loads can be made so as to feed direct 

measurements to balancing processes. 

 

Some researchers [44] made use of this additional data and incorporated 

complex algebra into their analysis and subsequent balancing programmes 

to present the x and y vector information as single modal parameter 

components, of eccentricity, unbalance mass/ centrifugal force, shaft 

deflection and bearing reaction load, etc. This real data allowed calibration 

of FEA models and provided increased analytical accuracy. As a result there 

followed several publications [34,41,43,51,54] of time saving 

methodologies, to enable balancing, for example, with a single trial weight 

test, or a single vibration transducer, or balancing without any trial runs at 

all.  Further, Garvey [28] et al proposed utilising knowledge of the expected 

machine characteristics to introduce cost functions, based on the probability 

distribution of certain parameter variability or uncertainty, such as support 

stiffness. The authors reported, for example, elastomer supports whose 

characteristics change with temperature and age; and also noted that some 
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vibration, say at bearing pedestals, might be more tolerable than other 

synchronous vibration, at positions where stator/ rotor clearances are very 

low. By analysing the cost functions applicable to the machine in question, 

the authors were able to combine them to produce a weighted sum factor, 

which is then used to determine the required unbalance correction by 

minimising the worst possible cost.  

 

The design of modern gas turbines requires faster, lighter engines utilising 

the very latest manufacturing techniques to produce longer, thinner and 

more flexible shafts. This has led to an increasing number of machines 

required to operate super critically and has spawned the requirement for 

economic procedures of obtaining good balance at these speeds. A 

practical procedure, suggested by Hylton [30] in 2008, demonstrated that 

by sharing the required balance correction between 3 balance planes, a 

good compromised state of balance can be achieved using only low speed 

balancing, which enabled machine operation at both sub- and super-critical 

speeds. The analysis of an assumed sinusoidal unbalance distribution and 

shaft deflection concluded that for a first balancing run, half of the resulting 

balance correction should be made at a central balance plane, with the 

remaining correction shared between the shaft end planes. A second 

balancing run is then made and the resulting balance correction shared 

solely by the end planes. The shaft is then considered balanced.  This 

procedure proved successful on a number of engines used in the aerospace 

industry [30]. FEA analysis of other unbalance/ shaft geometric distributions 

produced other shape functions, which required a slightly different position 

for the 3rd balancing plane, but the same procedure remains applicable.  

 

A good overview of well known balancing methods, including case histories 

of difficult balancing problems, is provided by Feese [67] and Grazier, 2004. 
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1.2.5 Lateral Critical Speed Margins 

 

The above balancing procedures came about due to industry’s ability to 

dynamically analyse very complex rotor shafts, usually by the use of FEA 

software; initially 2 dimensional, (2D), then 2.5D and now 3D. However, the 

use of such tools requires a greater level of engineering expertise than is 

traditionally available, i.e. rotor dynamic specialists. Hence, it remains 

common practice for lateral analysis to be simplified by being confined to 

individual driver and driven machines, as opposed to modelling the full drive 

train; since the flexible coupling between them is assumed to have ‘moment 

release’ and to act as a lateral hinge. However, this simplification makes 

assessing the critical speeds less accurate and therefore requires large 

margins between the maximum operating speed and the lateral critical 

speed, (LCS), for safe operation; typically 150%, as required by most API’s 

[15,19,20]. This requirement is particularly problematic for 

manufacturers/users of high speed couplings (as highlighted by Corcoran 

[27] in 2003), since although the critical speed of a coupling is calculated as 

an individual item, based solely upon its bending stiffness, in reality its true 

value also depends on the neighbouring stiffness’s of the driver and driven 

units. It is suggested that the 150% margin is only suitable where such 

stiffness’s are extremely high, and a two times or higher margin should 

generally be used in the absence of a full train FEA analysis.  

 

1.2.6 Gyroscopic Action  

 

The importance of gyroscopic action on large discs and its contribution to 

critical speeds was well known and the general problem of free vibration of 

a single rotor on a light shaft had been considered by Timoshenko [61],  

Stodola [5], Green [56]. It was shown that gyroscopic action produced 

moments were proportional to the rate of change of the angle of tilt, known 

as the precession velocity, and acted orthogonally at 90º to the lateral 

displacement of the shaft, thereby resulting in moments that made positive 
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and negative contributions to the bending of the shaft, in the horizontal and 

vertical planes. This made the natural frequencies dependent on rotor 

speed and whirl direction, which in turn split the critical speed into two 

components and doubled their number, per bending mode shape. Forward 

Whirl, (FW) – which rotated in the same direction as the shaft rotation, 

resulted from the shaft stiffening moment and therefore increased the critical 

speed, while Backward Whirl, (BW), resulted from the lowering stiffening 

moment and produced a reduced critical speed. Figure 1.3, [85], illustrates 

the difference between these two whirling motions; it can be seen that in the 

case of FW whirl, the orbit of the heavy spot/ mass centroid is circular and 

that BW whirl produces an elliptical orbit—see Swanson [85] et al, and 

Sinou [72] et al, for detailed treatments. 

 

 

 

Figure 1.3, [85], FW and BW Whirl directions 
 
 

Hence, gyroscopic moments are imparted when a disc’s axis of rotation is 

made to change direction, and these can be positive or negative, depending 

on a machine’s operating environment. With regard to balancing problems, 

since their action is to raise the speed at which a critical response occurs, 
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i.e. when shaft rotation coincides with a natural frequency having FW whirl, 

then knowledge of their contribution means the safe operating margins can 

often be increased.  

 

Several studies made use of differing analytical techniques to solve the 

added complexity of gyroscopic action. Aleyaasin [82] et al made use of 

advanced computer capability to manipulate large matrix equations, a 

transfer matrix approach, as used in control theory, in which a series of 

flexible, distributed elements, connected together by rigid discs, forming 

lumped elements, were used to create a matrix model of a rotor. Laplace 

transforms are then applied to the differential equations of motion and the 

resulting damped natural frequencies solved by applying computer search/ 

optimisation algorithms, to establish a minimum value of the complex roots, 

thereby determining the natural frequencies.  Whalley [84] et al reported, 

however, that the large number of natural frequencies derived from models 

of distributed parameters did not align with measured results, as practically 

they tend to vibrate at a single, dominant damped natural frequency. The 

authors therefore proposed that since the changes in deflection, slope, etc. 

are generally small when subjected to a load disturbance, the application of 

perturbation techniques, as used in wave mechanics, should provide results 

that were closer to reality. Laplace transformations were employed to 

determine a matrix output-parameter function, consisting of circular and 

hyperbolic terms and in-order to reduce the calculation overhead they were 

represented by a truncated power series.  

 

An alternative technique is reported by Dutt [71] et al, who applied 

Lagrange’s mechanics to obtain generalised equations of energy, and by 

equating the virtual work within the system to zero determined the equations 

of motion. This method was applied to a simple asymmetrically-placed disc 

on a flexible shaft, mounted on elastic supports with viscous damping, to 

determine the unbalanced response. The results confirmed that only the FW 

whirl natural frequencies were excited and also that the gyroscopic effects 
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caused the rotational speed, at which the unbalance peak response 

occurred, to increase. 

 

1.2.7 Instability Problems  

 

During the 1960’s progress was made on the much more difficult analysis 

of general vibration, which included free and non-synchronous vibrations, 

and was applied to multi-disc systems, by Black [40] and other researchers. 

This was applicable to instability problems, which although less common, 

appeared in some self-exciting conditions, often associated with 

hydrodynamic action within bearings or seals. The general analysis 

produced four natural frequencies per whirling mode, in the orthogonal 

frame of reference – vertical and horizontal, both with FW and BW whirls, 

with only the synchronous modes being excited by unbalance. However, 

whilst most of the other natural frequencies might be excited by a sudden 

disturbing force, the majority are subjected to positive/ conservative re-

storing forces and as a result perturbations decay back to a reference state 

and are deemed to be stable. The remaining unstable natural frequencies 

have negative/ non-conservative tangential forces that result from non-

symmetric parameter matrices in the equations of motion, such as stiffness 

and damping. It is theoretically possible to excite all such cases by the 

external application of non-synchronous, alternating forces, or for self-

excitation to occur if certain cross coupling conditions arise, such as 

between lateral, torsional and gravitational forces and/ or hydrodynamic 

fluid forces within bearings or between rotor and stator blades, seals etc. 

The analysis determines states of possible instability and equations 

governing their thresholds. Nelson [38] reported a good physical 

understanding of rotor dynamics and conditions affecting instability and 

claimed that the quality of rotor dynamic prediction depends as much on 

engineering insight as on the efficacy of the particular software used.  
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1.2.8 Rotating Coordinates  

 

Classically, simple systems are analysed using a stationary or inertial 

coordinate frame of reference, which follows naturally from Newton’s laws 

of motion relating accelerations to forces. However, for systems employing 

asymmetric rotors, where the lateral stiffness of the shaft varies from one 

angular plane to another, it is often very difficult to directly solve the 

fundamental equations of motion since the asymmetry causes the 

mathematical coefficients of the differential equations to be sinusoids 

instead of constants. In such circumstances, it is often found to be beneficial 

to employ a rotating coordinate system, i.e. one which is fixed to the shaft. 

Then, when viewed from this reference frame the sinusoidal nature of the 

coefficients disappears, since the rotating forces appear stationary, allowing 

the equations of motion to be more readily solved. However, such analysis 

fixes all points on a given cross section of the shaft relative to the rotating 

coordinates and is akin to defining their position in polar coordinates of 

length,  r  and angle, t. , (angular velocity x time), which give rise to radial 

and transverse accelerations of the form: 

 

2

2

2

.r
dt

rd
       and      ..2

dt

dr
, respectively.  

 

The latter term is the Coriolis Acceleration acting tangentially at right angles 

to the radial acceleration, i.e. the former term of which 2.r  produces a 

proportional force, (when multiplied by its mass), that opposes the spring 

force, inherent in the bending of the shaft and is subsequently known as, 

spin softening or centripetal softening. Such terms appear in the equations 

of motion to create natural frequencies, but since they are only produced in 

the rotating frame, the results from their inclusion have given rise to much 

debate, especially since spin softening can theoretically produce very low 

values of natural frequencies, often within the operating speed range of a 

machine. This phenomenon eloquently described in “Dynamics of Rotating 
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Machines”, by Friswell [59] et al in 2010, where they concluded the following 

points: 

 

 a stationary observer would view the shaft motion differently to a 

rotating observer 

 it must be possible to make parameter transformations from the 

stationary frame to the rotating frame and vice-versa 

 transformations doubles the number of frequencies creating pseudo-

natural frequencies that are not real natural frequencies in the normal 

sense 

 an excitable response in the stationary frame only occurs at pseudo-

natural frequencies that are derived by adding the shaft speed to a 

FW whirl natural frequency or, by subtracting the shaft speed from a 

BW whirl natural frequency. 

 

 

Other researchers have also cast some doubt on the spin softening 

phenomenon; Genta [37] and Silvagni, compared 1-D, 1 ½-D and 3-D FEA 

codes to investigate the effect on a rotating ring and a twin-spooled turbine 

rotor, without finding any evidence of a strong centrifugal softening effect on 

the critical speeds within the operating speed range of their models. A study 

by Chattoraj [78] et al, of a very flexible over-hung rotor, using rotating 

coordinates, produced a ½ critical speed response and an instability at 2.5 

times critical. It is known that rotating coordinate analysis, although not 

generally excited by unbalance, does provide natural frequencies that can 

lead to instability under some conditions—such as cross coupling between 

lateral and torsional modes, Muszynska, 1984 [107]. It was therefore 

considered that the deflection at the end of the over-hung disc in the 

Chattoraj model could be large enough so that the internal damping effects 

contributed to the excitement of the ½ critical speed.  
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1.2.9 Complex Vibration Analysis  

 

The benefits of 3-D FEA over a simpler analysis with fewer dimensions, is 

that as well as allowing warping of cross sections, as above, it also allows 

the actual rotor to be modelled including complicated geometry, flanges, 

fasteners etc. This encompasses shafts with non-circular cross sections and 

allows investigation of defects such as the formation of cracks. Nandi [39] 

and Neogy showed the benefits of such analysis using two examples; first 

analysing a uniform, simply supported shaft, with varying slenderness ratios 

and second, a tapered, cantilevered shaft with an edge crack. Of note is that 

the first example showed the convergence of FW and BW whirls, as the 

shaft diameter/ length ratio decreased, intuitively as a consequence of the 

reduction in the gyroscope moments acting on the individual discs that 

comprised the shaft. It is noted that divergence only became appreciable, 

(greater than 2%), as the ratio exceeded 0.3. This is also seen in example 

contributions reported elsewhere [59,115].  

 

Additional interest that has spawned research study is the possible 

excitation of BW whirling modes, as proposed by Greenhill [96], after an 

FEA analysis of a large generator with fluid-film bearings predicted such a 

possibility. Their analysis of an off-centre, Jeffcott rotor, mounted on 

asymmetric supports, with damping, gave a lateral response to synchronous 

unbalance, at the BW whirling, conical/ tilting critical speed. This did not 

occur when supports were symmetric, i.e. had the same horizontal and 

vertical stiffness’s. The difference being that unbalance produces a circular 

orbit when the supports are symmetric, coinciding with a FW mode and an 

elliptical orbit, coinciding with a BW mode, when they are asymmetric. It is 

apparent that it is necessary, for the orbit produced by unbalance, to match 

the orbit of the mode shape in order for the system to be dynamically 

excited.  The fluid-film bearings used by the generator were significantly 

asymmetric and their experimental results showed signs of BW whirl 

excitation of a critical speed, but definite confirmation wasn’t forthcoming 
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because the critical speed was just beyond the operating speed range. 

However, it was shown that external damping also reduces the peak 

amplitude of BW mode resonance, so that even though fluid-film bearings 

can be highly asymmetric, they also tend to over-damp this mode.   

 

A similar effect is reported by Werner [73], who analysed the dynamics of 

elliptical shaft journals operating in fluid film sleeve bearings of electric 

motors. The varying displacement of the shaft on the oil film within the 

bearings represents a forced excitation with an elliptical orbit, which for a 

higher order mode with low damping is shown to excite a BW whirl mode. 

 

Nevertheless, the use of 3-D FEA can still be problematic when presented 

with some practical, highly complex dynamic systems, as reported by 

Weimeng [70], for instance, who studied an asymmetric rotor supported on 

anisotropic bearings. Problems arise because the orthogonal stiffness/ 

damping forces of the rotor and bearing produce periodic coefficients, when 

viewed either in the inertia frame or the rotating frame, respectively, and the 

transformation of the governing equations between the two frames are too 

complex for accurate solution. Weimeng’s proposed solution is to apply 

ANSYS, 3-D FEA in the rotating frame to the rotor, thereby fixing its 

coefficients and making that part of the solution possible and then 

determining the resulting time dependent, stiffness/ damping bearing 

matrices, as viewed from the rotor coordinates from a separate power series 

analysis, truncated for expediency, using the solving procedures available 

in MATLAB software. This is ongoing and further work is required to reduce 

the complexity. 

 

Other specialised formulations have been made to FEA programs that 

assume discs are rigid and therefore treatable as lumped masses in order 

to allow for disc flexibility. Greenhill [74] et al use an axisymmetric harmonic 

finite element to analyse a disc as a series of annular rings, and for non-

symmetric loading and deflection a Fourier series was used, which by use 
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of superposition, the total response was given by the sum of each harmonic 

contribution. The study showed that disc flexibility can produce some 

significant reduction in natural frequencies, even in some cases at the 

synchronous crossing points of critical speeds, but these were generally of 

the higher orders.  In 2013 Varun Kumar [87] provided a good generic over-

view of the command capabilities available in ANSYS, FEA, but again, due 

to the complexities of this type of analysis the importance of first establishing 

the “soundness of the basic model”, is stressed. 

 

The general fundamentals of rotor vibration from basic concepts to self-

exciting instability and the effects of cross-coupling, are well documented 

by Adams [89], in his book: Rotating Machinery Vibration – from analysis to 

trouble shooting, 2001. A more detailed study of instability, showing the 

effect of lateral and torsional cross-coupling, was reported by Gosiewski [97] 

in his 2008 paper. As with earlier studies, the analysis was simplified by 

considering a rigid disc mounted centrally on a massless flexible shaft, i.e. 

a Jeffcott rotor, but complicated by the introduction of torsional and gravity 

forces. As previously stated, rotating coordinates are generally used in 

stability analysis since they make constant the time dependent, cross 

coupling coefficients, to allow solution to the differential equations of motion 

and they produce the extra free natural frequencies, some of which lead to 

instability. Plotting these on a Campbell diagram produces several 

intersections between neighbouring natural frequencies and unstable 

speeds can occur in the vicinity of these intersections. However, not all of 

these intersections produce unstable behaviour of free vibrations. To 

distinguish them Gosiewski separately analysed the lateral and torsional 

vibrations applying cross-coupled, self-excitation feedback from the 

opposing mode as per standard control theory [104], to assess the likelihood 

of instability. He showed that for practical levels of unbalance, his model 

only produced significant instability at approximately 2.5 times the 1st critical 

speed. 
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Many instability problems are a result of non-linear mechanisms and their 

effect is described by Genta [35] who reports that the concept of a critical 

speed has been defined with reference to linear systems and it is not 

possible to define critical speeds in the case of non-linear rotors. However, 

a more general definition, which is often used for these systems, refers to 

the spin speed at which strong vibrations are encountered, but this is 

somewhat arbitrary as the amplitude of vibration is dependent on, among 

other things, the strength of excitation. Thus, the existence of a critical 

speed is not absolute - unlike the case for linear systems where the critical 

speeds are a characteristic of the system and are independent from any 

excitation.  

 

One example that imparts significant nonlinearity is that of a breathing 

crack, which opens and closes periodically, due to say the force of gravity 

acting on a heavy rotor. Wu and Meagher [77] analysed a cracked, two disc, 

extended Jeffcott rotor and studied the vibrational differences between a 

cracked and an asymmetric shaft, to make problem identification easier. 

Sawicki and Kulesza [94] investigated the stability of a cracked rotor 

subjected to parametric excitation, i.e. excitation generated by the changing 

lateral stiffness of a breathing crack. As in the case of Wu and Meagher’s 

contribution, the gravity force was assumed to be much greater than the 

unbalance force, thus ensuring flexing of the crack, and the crack stiffness 

was approximated by a cosine steering function.  Their analysis produced 

stability maps which showed that the areas of instability reduced as the 

depth of crack increased, within reasonable limits, because of an increase 

in hysteretic damping within the crack. 

 

Zhang [69] et al, 2014, used a non-linear FEA model to study the loss of 

stiffness in spline joints, which are often employed in the drive trains of large 

machines. They showed that for such assemblies, both lateral and torsional 

stiffness is lowered as a function of spline clearance compared with an 

integral model, and that they can be unstable at low loads, becoming stable 



 

27 

 

as the load increases. In their parametric model of a low pressure turbine 

rotor, the Young’s modulus, for the joint material, was set to 70% of normal, 

to allow for this reduction and springs were also built on the main centring 

surface to simulate contact stiffness. The overall effect was to reduce the 

1st and 4th critical speeds by up to 4% with little change for the 2nd and 3rd 

critical. 

 

Further mechanisms containing non-linearity have been investigated, such 

as stiffness loss of bolted joints, Wang [81] et al, 2014; destabilizing effects 

within annular gas seals, Childs [68] and Vance [108], 1997; intermittent 

rotor/ stator annular rub, Zilli [80] et al, 2014; rub impact caused by oil 

rupture within squeeze film damper bearings, Shiau [79] et al, 2014, and the 

added effect of torsion to rotor/ stator contact, Edwards [75] et al, 1999. 

Differential heating radially across a bearing journal, particularly those 

subjected to large bending moments as in the case of over-hung rotors, has 

been studied by De Jongh [63,83] and Morton, 1996-98, and show that if of 

sufficient magnitude, shaft bending can occur, i.e. a thermal bow, 

particularly at the outboard bearing, thereby increasing the rotor imbalance. 

Supplementary studies by Marin [65], looked at the hysteretic behaviour of 

such rotors – the difference between run-up and run-down vibrational 

amplitudes versus speed.  Nevertheless, such studies have been primarily 

of academic interest only and the vibrational problems caused by any of 

these effects have ultimately been overcome by improvements in 

component or system design, such as increasing the number of bolt 

fasteners at flange interfaces, the introduction of swirl brakes or pocket 

dampers within seals, or applying a heat shield to prevent thermal bow, etc.  

 

A highly non-linear system of recent interest is one in which the driving force 

is influenced by the system’s response, as in the case of a direct current 

d.c. electric motor, where the motor torque is a function of its speed. These 

“non-ideal” sources of supply energy can produce speed jumps 

characterised by an inability to realise certain speeds, typically near the 
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resonance frequency of a shared dynamic mechanism, such as the main 

system’s foundation. Termed Sommerfeld effects, they result when an 

increase in supply energy that would normally develop an increase in speed, 

is instead absorbed by the vibration of the shared mechanism. If sufficient 

power is available to accelerate across the resonance, then a jump 

phenomenon can occur, or, depending on the level of system damping, 

either the system will fail or be stuck in resonance. Samantary [92] 2009 

also reported these effects by modelling a simple Jeffcott rotor, driven by a 

d.c. electric motor to determine stability threshold speeds. 

 

Another mechanism of general interest to researchers is the severe 

vibration that can result from the misalignment of coupling shafts between 

the driver and driven units of a transmission assembly. In order to 

investigate this phenomenon it is necessary to be able to accurately model 

the inherent stiffness and damping properties that exists generally within 

couplings. Tadeo [86] et al, endeavoured to do this by comparing FEA 

predictions of four coupling models, ranging from a simple massless, rigid 

rod, to a fully dynamic system with stiffness and damping in both angular 

and lateral directions, against the measured frequency response obtained 

from an instrumented, test rig, comprising two representative drive shafts 

connected by a commonly used, commercial coupling. They concluded that 

while the fully dynamic model produced the best representation, the most 

important parameters were its rotational/ angular stiffness and damping. 

 

Further studies of coupling shafts, by Prabhakar [4] et al, investigated the 

start-up and run down characteristics of models with frictionless joints and 

also with stiffness and damping characteristics. The transient response for 

different angular accelerations were analysed using a finite element model, 

with both parallel and angular misalignment, in the time domain, to give 

vibration data as the operating speed passed through the critical speed.  

Signal processing was applied using a continuous wavelet transformation 

to obtain time scale information. The results produced sub-harmonic 
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resonant peaks when the coupling was misaligned, corresponding to one-

half, one-third and one-fourth of the critical speed, which were not evident 

without misalignment. Although of small amplitude when compared with 

most problems of unbalance, it was suggested that this type of analysis 

could be of use when trying to detect coupling misalignment, at the early 

stages of machine operation before reaching steady state. 

 

 The effects caused by residual shaft bow or bent shafts, can produce 

interesting cases of apparent self-balancing and phase jumps, as well as 

balancing difficulties. These are usually caused when the angle between 

the residual bow vector and that of initial unbalance, is approaching 180º, 

with magnitudes such that at low speeds the resultant vector of imbalance 

is governed mainly by the shaft bow and at higher speeds by the unbalance. 

An intermediate speed usually exists whereby the two can cancel each 

other out, resulting in near zero shaft deflection and reaction load. Such 

cases have been studied by Nicholas [46] et al. and later by Rao [90].  

 

1.2.10 Estimating Residual Imbalance  

 

Knowledge that rotor imbalance can be derived directly from the measured 

vibrations taken from a machine’s bearing pedestals, providing that an 

analytical model of sufficient accuracy is available, has recently prompted a 

further area of study. Research has been conducted into various 

methodologies, together with the required level of model efficiency, needed 

for the accurate evaluation of rotor imbalance. Lees [42] et al showed that 

useful estimates for imbalance may be derived from a good numerical 

model of a rotor that required only an approximate model of the bearings 

and its supporting structure. The modal parameters of the rotor model were 

determined either experimentally, with the rotor suspended by slings, or 

computationally via FEA. The supporting structure mass and stiffness 

matrices were determined from pedestal vibration measurements of 

displacement and frequency. The system model was found to be suitable 
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as long as the bearing oil film stiffness was greater than, or in the limit equal 

to, that of the supports, which is applicable to most turbo-machinery 

installations. Further studies followed, which were based on the whole 

frequency range of pedestal vibration, taken solely during machine run-

down. However, the study assumed that the number of modes were equal 

to the number of bearings, leading to some inaccuracies in cases where 

large flexible foundations had many modes of natural frequencies. Lees 

[113,49] et al overcame this problem by splitting the frequency range of the 

foundation model into sections, thereby producing different mass and 

stiffness parameters for each frequency mode. The robustness of this 

methodology was checked by performing a sensitivity analysis, by 

introducing perturbation errors into the rotor and bearing models and 

determining the resulting change in the calculated imbalance. The 

conclusions were that the enhance model gave generally good results which 

were particularly robust in terms of its phase estimation. Whereas previous 

studies assumed the rotor bearings to have linear characteristics, Sergio 

[36] analysed an aircraft engine rotor, running on squeeze film damper 

bearings that were highly non-linear. This added complication was solved 

using a “Receptive Harmonic Balance Method”, i.e. one in which the 

equations of motion are expressed in the frequency domain, relating 

displacements to corresponding excitation forces and determined through 

Fourier analysis of their time histories, using a process of iteration.  

 

1.2.11 Fault Diagnosis  

 

Together with the ever increasing performance and reliability demands 

placed on today’s rotating machinery, the need for reliable control 

monitoring and fault diagnosis capability has increased. Moreover, since 

occurrences of mass unbalance, bowed and cracked shafts are among the 

most common of rotor dynamic faults, procedures for identifying and 

correcting such faults have received much attention. Consequently, over a 

period of time, these processes have moved away from human 
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interpretation of changes in parameters, such as noise, vibration and 

temperature, to fully computerised monitoring and control, often remotely 

over great distances. To be successful these methods rely on a detailed 

mathematical model-based diagnostic programme to predict a system’s 

normal dynamic behaviour such that monitored changes in characteristic 

parameters can be analysed to determine the cause and the possible 

severity of a fault. Edwards [47] et al, produced a good, state of the art, 

review on the subject of fault diagnosis of rotating machinery, in 1998. 

Madden [76] et al introduced uncertainty in the form of additive noise and 

plant perturbations and established bounds to differentiate between the 

mathematical model and data received from the actual system. This system 

of model validation, coupled with model reconciliation – a method of model 

correction, provided a robust technique that better enabled the identification 

of damaged dynamics.  

 

1.2.12 Active Balancing  

  

In addition to work into control monitoring and fault diagnosis, a large 

amount of complementary research has been carried out into real-time 

balance correction techniques. Zhou [98] and Shi produced a good review 

in their 2001 paper, “active balancing and vibration control: a survey”. 

Acknowledging that active control systems are more complicated and costly 

to install, it is claimed that this is usually offset by increases in flexibility to 

adjust for a range of vibration modes, which might be encountered during 

operation, especially in very high speed application.  Typically, there are two 

major control techniques that make use of auxiliary actuators to reduce 

vibration; 1) a Direct Active Vibration Control, (DAVC), which applies a 

lateral load to the shaft from an external force actuator, such as a magnetic 

bearing and 2) a shaft mounted, mass redistribution actuator, which re-

positions one or more trim balance masses to align the mass centroid of the 

shaft with its axis of rotation. Both are used in conjunction with feedback 
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sensors and system modelling software, as part of an integrated vibration 

control system. 

 

As reported by Zhou [98] and Shi the first control technique, DAVC, can be 

achieved using many variants of actuator, including electromagnetic, 

hydraulic, piezoelectric etc. but the most common is the active magnetic 

bearing. The latter produces controlled levitation and hence reduces friction 

and mechanical wear, but also has the high speed response necessary to 

deliver a fast-changing lateral force, capable of suppressing both 

synchronous and transient vibrations. However, Burrows [114] et al reported 

that their limitation is the maximum force available in a given design 

envelope, since typically the load capacity of a magnetic bearing is only one-

tenth of that of an equivalent sized hydraulic bearing. Moreover, for support 

and layout design purposes, the bearings are usually positioned at, or close 

to, shaft ends, but for balancing correction purposes they are more effective 

at a third or half span positions, hence some installations utilise multiple 

bearings to accommodate both functions, but at the detriment of increased 

complexity and cost. Further, Burrows [114] et al, considered the total 

system integration of controllable bearings/ actuators, vibration feedback 

sensors, on-line adaptive controllers and control algorithms etc., necessary 

to achieve good performance, together with re-configuration requirements 

in the case of faults. Mushi [88,91] et al, furthered this work with analysis 

and test of active magnetic bearings, used to control rotor-dynamic 

instability, often seen in turbo-compressor sets resulting from aerodynamic, 

cross-coupling stiffness, effects. However, both studies concluded that the 

evolution of smart systems, of self-adapting vibration control, represents a 

work in progress and that further development is still necessary. 

 

An example of the second control methodology used in active balancing 

employs a mass redistribution actuator for use on large shaft lines and was 

investigated by Alauze [100] et al. A combination of balance correction 

masses were positioned by an actuator assembly, consisting of two electric 
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stepper motors, running in a circular, pinioned track and each driving a 

“satellite mass”, so that the magnitude and angular position of the resultant 

vector sum of combined balance correction, could be adjusted remotely, in 

real time. Control software was used to continually monitor the shaft 

vibration and determine the required movement of the satellite masses to 

achieve the required balance correction. Results, from large scale, single 

actuator testing, showed vibratory amplitudes to be reduced by 60% and 

overall control was reported to be excellent. In addition, this type of actuator 

is smaller and uses less power owing to the relatively small moveable 

masses, than DAVC magnetic bearing variants which act to control the 

entire rotor mass.  

 

A similar technique, as reported by Horst [95] and Wolfel, utilises the high 

stiffness and fast dynamic response characteristics of surface bonded 

piezoceramic actuator patches. These are generally attached to the outside 

diameter of a rotor shaft in two orthogonal sets of diametrically opposite 

pairs that are energised out of phase with one another, so that as one is 

applying tension whilst the other is applying compression. Hence, the 

actuator assembly has the capability of creating two, orthogonal bending 

moments, at each actuator locality, so that multiple assemblies can be 

controlled to oppose any shaft bending resulting from residual imbalance, 

or other dynamic forces. They investigated suppression of lateral bending 

vibrations of an elastic shaft by such means and developed mathematical 

models for actuator implementation with theoretical simulations which 

demonstrated the potential of achieving good active vibration control and 

produced test rig validation of frequency response to noise excitation, but 

noted that further work is still required. Sloetjes [64] and De Boer’s 

considered stability problems resulting from shaft mounted piezoceramic 

sheets working in conjunction with rotor and stator mounted feedback strain 

sensors. They produced several different algorithms to add/ modify control 

functions such as: low-pass noise filtering; position, derivative and integral 

sensor feedback, etc., to cope with various stability scenarios. In addition to 
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studying piezoelectric actuators for control purposes, their work also 

analysed the possibilities of extracting electric power from such devices to 

function as an internal power source, to produce a self-energising system. 

Electrical generation results from periodic straining that occurs when a 

flexible rotor bends under its own weight during rotation. The general 

conclusions were that, to date, the proven effectiveness of piezoceramics 

for both, vibration control and power generation, justified further research to 

produce practical devices.  

 

As an alternative to actuator control systems, self-balancing methods can 

be employed for rotors that operate at supercritical speeds. Concentric multi 

mass devices are clamped onto the rotor and make use of the fact that when 

the geometric centre of a shaft is displaced away from its axis of rotation, 

due to rotor imbalance, then centrifugal forces acting radially out from this 

axis, on the concentric balancing masses, tend to move them radially away 

from the geometric centre. At subcritical speeds, the shaft centroid, i.e. the 

heavy spot, lies beyond the geometric centre, further away from the axis of 

rotation, so that this movement adds to and increases the shaft residual 

imbalance. However, at supercritical speeds, due to the phase rotation of 

the mass centroid approaching 180º, the movement of the balancing 

masses away from the geometric centre is in the opposite direction to the 

mass centroid, so that overall imbalance is reduced. An Automatic Ball 

Balancer [93,101,102], (ABB), for example, is a device consisting of a series 

of balls that are free to travel around a bearing race, attached to the shaft 

at predetermined balancing planes. During supercritical operation 

centrifugal forces on the balls produce rotation which automatically re-

positions them such that the principal axis of inertia is moved closer to the 

rotational axis and hence reduces shaft vibration. Because imbalance does 

not need to be determined beforehand, ABB’s are ideally suited to 

applications where the level or position of imbalance varies during 

operation, e.g. optical disc drives, machine tools and washing machines 
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[112]. The later works on the same principle, but employs an annular mass 

of fluid, as opposed to balls, to achieve balance correction. 

 

1.2.13 Vibration Absorbers  

 

A further method of reducing machine vibration is by the application of 

vibration absorbers. Devices such as the Lanchester Torsional Damper 

[106] and the Stockbridge Damper [105] have been in use and subjected to 

much in-depth analysis since the 1920’s. In essence, if the main system of 

a vibrating structure is modelled as a single spring/ mass system with just 

one degree of freedom, (DOF), producing one natural frequency, then by 

the introduction of an auxiliary spring/ mass system, so as to produce a two 

DOF system; the first natural frequency of the host system, is replaced by 

two new natural frequencies, one above and one below the first, as shown 

in Figure 1.4, [105]. Therefore, it is possible to avoid a resonant condition 

by ensuring that the two new natural frequencies are sufficiently separated 

from a source excitation frequency. Hence, if the vibration of the host 

system is caused by resonance, this can be suppressed by tuning the 

second, “vibration absorber” system to reduced or completely neutralise it, 

providing the dynamic characteristics and frequency of excitation are known 

with sufficient accuracy and are not subjected to drift. However, there are 

still two natural frequencies that can be excited if they coincide with the 

operating frequency of the machine. In order to overcome this problem, 

damping is usually added to the design of the absorber [109]. Also, deviation 

from the tuned condition, i.e. mis-tuning of some vibration absorbers or 

neutralisers can lead to an actual increase in the host system vibration. To 

avoid this possibility, smart or adaptively tunable, vibration absorbers have 

been developed – as reported in Bonello’s [116] review of design principles, 

concepts and physical implementation. Nevertheless, this technique of 

vibration attenuation is usually applied to machine housings or foundations 

and is not suitable for correcting source excitations, such as rotor 

imbalance. 
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Figure 1.4, [105], Model of a Vibration Absorber and its Frequency 
Response 
 

 

1.3 Problem statement 

Siemens Industrial Turbomachinery have several Mechanical Drive 

contracts that have consistently, over a long period of time, been extremely 

difficult to dynamically balance across the required operating speed range. 

This in turn leads to unacceptably high vibration at the bearings and 

subsequent engine shut down. Generally, this problem has been associated 

with long coupling shafts operating at high speed. It should be noted that for 

a given length, the coupling design is often a compromise between the 

coupling lateral flexibility, (i.e. maintaining a suitable lateral critical speed 

margin), its maximum diameter, (in order to limit the heat generated by 

“churning” effects) and the need to meet dynamic ½ weight requirements of 

the driven unit. The consequence can be that from a balancing point of view, 

the coupling is more flexible than would be preferred.   

 

A typical example of the balancing problems, often seen at site, is shown in 

Figure 1.5, an actual polar plot of bearing displacement, taken during site 

commissioning, whereby it is seen that the displacement, (a measure of 
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reaction load), varies angularly through 85 degree as the speed increases 

from 7200 rpm to 8940 rpm.  

 

Trim balancing is given at predetermined balancing planes along a shaft so 

as to produce local changes in mass, positive or negative, in order to correct 

residual unbalance. But, since a trim balance adjustment can only be 

applied at a fixed angular position, the imbalance can only corrected for one 

particular “compromised” speed and not across the whole operating speed 

range.  

 

 

Figure 1.5, Polar Plot showing a typical balancing problem often 

encountered with high-speed flexible coupling shafts 

 

 

An alternative theory of the cause of this bearing reaction load vector 

change, to the usual cause of the operating speed passing through a lateral 
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critical speed, is demonstrated in Figure 1.6, and its analysis led to a 

proposed solution and ultimately to a new balancing methodology. 

 

 

Figure 1.6, Schematic of PT and Coupling Residual Unbalance Vectors 

 

It was noted that if the coupling shaft, between the engine power turbine 

shaft, PT shaft, and the driven unit is sufficiently flexible then, as the 

operating speed increases, the magnitude of its unbalance vector can 

increase significantly due to its deflection such that it would tend to become 

dominant with respect to the neighbouring PT shaft unbalance vector. Then, 

the phase angle of the resultant vector, i.e. the bearing reaction load, would 

appear to change with speed. 

 

This is shown by the schematic representation in Figure 1.6, where U1 is 

the PT residual unbalance vector and U2 is the coupling residual unbalance 

vector. Vector U is the resultant of U1 and U2. It can be observed that if U2 
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were to increase in magnitude by a greater amount than that expected due 

only to rotational speed, (that is, due to flexing of the coupling shaft), then 

the resultant phase angle change with speed can be significant. A worked 

example of this is given in chapter 2, section 2.6. 

 

 
1.4 Aims of this Research 

 

Section 1.2 confirmed that the problems of machine balance and their 

subsequent methods of balance reduction stem back more than a century. 

However, there remain significant problems with techniques currently being 

used. The main techniques for balancing flexible rotors, i.e. Influence 

Coefficient and Modal Balancing were introduced in the 1930’s and 1950’s 

respectively. Since then improvements in overall balancing methodology 

have been largely the result of two distinct changes; 1) a reduction in the 

residual eccentricity of the rotating assembly, by advances in machining 

capability, (providing tighter tolerances on geometric features, such as 

roundness and straightness etc.), plus better control of material properties, 

(density, expansion/ contraction, creep etc.) and 2) greater analytical 

capability, due to the vast improvement in computing power, thereby 

allowing shafts to be analysed to greater depth, into evermore complex 

elemental sections.  Nevertheless, the basic balancing techniques, although 

now producing more accurate results, often in greater detail and in shorter/ 

less costly time spans, have remained largely unchanged. They still aim to 

counter-balance residual eccentricity by making, often multiple, corrections 

of trim balance, at various locations along the length of the shaft.  

 

Despite advancements, costly problems remain for industry, as highlighted 

in the previous section, thus warranting further investigation. It is the aim of 

this research to assess the fundamental deficiencies of current methods of 

applying trim balance correction and subsequently to investigate the 

application of an improvement, which emanated from this assessment, by 
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way of a novel methodology of balance sleeve compensation 

[120,121,122,123,124], as shown schematically in Figure 1.7.   

 

 
 
Figure 1.7 Schematic of a Compensating Balancing Sleeve 
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1.5 Main contributions 

 

The following chapters are deemed to offer the most revealing new 

insights into improving current methods of balancing high-speed, flexible 

shafts.  

 

Chapter 2: this chapter investigated deficiencies of current methods of trim 

balance correction and the cause of imbalance vector change, seen at some 

problem industrial sites with very flexible couplings. This investigation led to 

the invention of a novel method of applying trim balance and further analysis 

of a specialised case of uniform eccentricity determined the fundamental 

mechanics of balance sleeve compensation. 

 

Chapter 4: this chapter expands the analysis to a generalised case of any 

number of concentrated imbalances and determined that conversion to an 

equivalent encastre shaft depends on the equalisation of the sum of the 

balancing moments to the sum of the encastre fixing moments. This 

realisation ultimately leads to simulation being achieved by a single 

balancing sleeve at one end only, and subsequently to the ability to 

additionally eliminate/nullify the 2nd critical speed. 

 

Chapter 5: this chapter introduces a shear force reaction ratio, RR, which 

shows that the proposed methodology has the effect of further reducing the 

equivalent level of eccentricity achieved by prior balancing procedures, by 

as much as 25x and determines its application to most practical shafting. It 

further demonstrates its suitability to higher critical speeds by definition of a 

Simulation Ratio, SR, which determines the shaft stiffening effect and the 

reaction load reduction benefits to be gained from applying compensation 

to shaft ends only. 

 

Chapter 8: presents laboratory test results of a scaled industrial turbine 

coupling shaft which supports the analysis determined in the previous 
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chapters and confirms the fundamental requirements of the new balancing 

methodology, i.e. that shaft balance is improved by increasing the level of 

encastre simulation.  
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Chapter 2 

 

2.1 Causes of Residual Imbalance 

 

Residual imbalance and the centrifugal forces emanating from it during 

rotation occurs when the centroid of mass of an elemental section of a shaft 

is offset from its axis of rotation. This can occur in a variety of ways, as given 

below, but it should be noted that it can never be completely eliminated. 

 

a) Geometric profile errors resulting from imperfect machining. These are 

affected by the manufacturing capability to meet the primary machinery 

tolerances of roundness, straightness, concentricity, squareness etc. which 

can produce oval or bent shafts, or hollow shafts with uneven wall thickness.  

 

b) Material faults, such as non-homogeneous material, with density 

variations or inclusions. Also, uneven heat treatment can cause bending of 

shafts under differing environmental loading conditions. 

 

c) Interface joint errors are known to be a frequent cause of eccentric 

operation or “shafts not running true”. These can result from machining 

errors, as above, but also from movement under load with temperature 

changes, i.e. spigot and clamping faces, sliding or rocking on high spots. 

Also, it is known for spigot clearances to be opened up by centrifugal forces, 

thus enabling radial movement to occur. Another, frequent problem seen 

with joints is a result of dirt entrapment, preventing proper seating of mating 

faces. 

 

d) Gearing problems are often the cause of inconsistent movement of shaft 

centres, with load variation or due to machining errors. For example, many 

shafts are centralised by forces acting at the point of contact of one or more 

meshing gears, which in turn is a function of factors such as: transmitted 

torque, lateral loading and mating friction. 
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e) Surface damage can cause displacement of mass, improper seating of 

joints or, in exceptional cases, bending of shafts. 

 

The effects of these issues can be minimised by good design and 

manufacturing control so that residual imbalance is kept to a minimum.  

Nevertheless, perfect balance is never possible and for high-speed shafts, 

component and assembly balance procedures are always necessary.  

 

Trim balance corrections are normally made to high-speed shafts in two 

stages. First, on low speed balance machines where mass is usually 

removed by localised grinding of the outer diameter of a number of 

balancing bands - specifically incorporated at intermediate positions along 

the shaft length. Secondly, during site commissioning, operating at high 

speed, using feedback from the bearing sensors to determine the angular 

position and magnitude of added masses, which are usually mounted into 

pre-machined, trim balancing tapped holes, at flange interfaces. In both 

cases the effect is equivalent to moving the local centroid of mass to 

produce a reduced component of eccentricity. 

 

2.2 Trim Balancing Errors and Principle of Improvement 

 

The effectiveness of current methods of trim balancing, with regard to 

flexible shafts, is considered as follows. Figure 2.1 shows a typical, 

schematic section of a plain flexible shaft, with two elemental sections, one 

containing a portion of shaft residual eccentricity, e, and the other 

containing a portion of shaft balancing eccentricity eb, produced by the 

addition of a trim balance mass, affixed to its outer diameter, (not shown).  

For balancing purposes eb is 180º out of phase with e. 
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Figure 2.1, Section of a plain flexible shaft 
 
 

Considering the centrifugal forces, (CF), acting on both sections of mass, 

δM, where ω is the angular velocity and r is the local shaft deflection. 

 

The shaft imbalance force is :       ).(. 2 erMCFshaft    

 

and the balance correcting force is:     ).(. 2

bbbal erMCF   . 

 

As illustrated in Fig. 2.1, it is apparent from the flexing of the shaft that e is 

greater than eb and as a consequence the shaft is underbalanced. The 

bracketed terms represent the radius of the imbalance centroids, being 

positive for the shaft and negative for the portion of balance correction, due 

to its position being 180º out of phase. Hence, at higher rotational speeds 

the shaft deflection increases, causing the trim balance term to reduce, and 

the shaft imbalance term to increase.  

 

It can therefore be seen that while trim balance corrections made on the 

shaft itself, (by adding or removing mass), would be satisfactory for rigid 

shafts, or those where the shaft deflection is very small, they are less 

effective for shafts with a high degree of flexibility. Hence, it can be seen 

that flexing of the shaft is detrimental to the efficiency of the trim balance 

mechanism, so in this respect, siting the trim balance on the shaft at a point 
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of minimum shaft deflection would be beneficial. However, even when 

positioned at the shaft ends, it is far from ideal and it is worth considering 

other mechanisms of providing trim balance correction. 

 

Chapter 1, section 1.3, described how one possible mechanism that could 

cause imbalance vector change would be implemented when the rotating 

shaft or component has in-built compliance, thereby leading to amplification 

of its imbalance forces as speed increases. If this occurs adjacent to a 

neighbouring residual imbalance, that doesn’t have this amplification 

feature, then by addition of the two vectors the resultant imbalance reaction 

imposed on the bearings can suffer from very large angular changes, 

sometimes approaching 180°. The cause of this can be very counter-

intuitive and lead to misinterpretation, such as the operating speed having 

passed through a drive train critical, since it is commonly known that under 

such circumstances the response vector lags the excitation vector by 90° 

and that damping forces within the bearings continue to produce vector 

rotation up to 180° as the speed extends well beyond the critical. This in 

turn can lead to very costly and time consuming investigations, since in the 

Oil and Gas market for instance, API design rules demand very large lateral 

critical speed margins specifically to obviate this condition. 

 
 

 
 
Figure 2.2, Large disc on a flexible shaft 
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However, if imbalance amplification is the cause of the problem, then a 

possible solution lies in an improved method of trim balance. 

 
 
To show the impact of shaft flexibility, Figure 2.2 shows a heavy disc, 

mounted centrally on a light, flexible shaft, with mounting flanges positioned 

at the shaft ends, which are used for trim balancing. It is assumed that the 

support bearings, not shown, have very high radial stiffness, but have very 

low angular stiffness, such that the shaft can be deemed to be simply 

supported. This arrangement is commonly used for analytical purposes and 

is known as a Jeffcott rotor.  It is chosen here as it simplifies the 

mathematics, but still demonstrates a typical drive train problem of obtaining 

a suitable balance at both low and high speed. At low speed the shaft is 

essentially straight and imbalance, i.e. centrifugal force, CF, acting on the 

disc as a result of its eccentricity, disce , is corrected by adding balance 

weights at the balance flanges, 180° out of phase, thereby creating 

eccentricity at the flanges, bale , so that the vector sum of the CF at the 2 

flanges is equal and opposite to the CF at the disc. Hence, the net reaction 

load transferred to the bearings is nominally zero.  

 

Hence for balance:    discbal CFCF .2                               (2.1) 

 

giving, for low speed:      discdiscbalbal eMeM .....2 22                         (2.2) 

and              disc

bal

disc
bal e

M

M
e .

.2
                               (2.3) 

where     discM  = Mass of Disc   and    balM   = Mass of Balance Flange                                

 
 

However, at higher speed the CF acting on the disc increases due to speed, 

thereby creating some bending of the shaft, which adds to the disc 

eccentricity to further increase disc CF, giving:  
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).(. 2 reMCF discdiscdisc    

 

At the balancing flanges there is negligible shaft deflection so that the only 

increase in flange CF is due to the speed increase. Therefore, the balance 

criteria given in (2.1) is no longer met and a balancing error occurs that is 

proportional to the disc deflection, r, 

 

i.e. the shaft imbalance force, applied to the bearings, =  rM disc .. 2 . 

 

Consequently it is not possible to fully balance the shaft for operation at both 

low and high speed. The normal solution is to minimise the disc eccentricity 

by making balance corrections at the disc, thereby minimising the shaft 

deflection, r, but in many drive shafts of more uniform cross section, as in 

coupling shafts, for instance, this is not always practical and the result is 

generally a balancing compromise over the operating speed range. 

 

To correct the balancing error, it is required that the trim balance weights 

should also have a system of compliance to replicate the CF amplification 

seen by the disc.  

 

It is noted that this is a very simplified analysis based the balancing criteria 

of minimising the reaction loading applied to the bearings, resulting from the 

source of the balancing problem given in chapter 1, section 1.3. But, in other 

instances, particularly for bladed shaft applications, the balancing objective 

can be to reduce shaft deflection/ blade tip clearance, thereby reducing 

component wear and improving overall running efficiency.   
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Figure 2.3, Mounting flange with in-built compliance 
 

 

A simple schematic model of such a system is shown in Figure 2.3, where 

a balance ring is flexibly attached to the shaft, allowing radial movement 

only, by either a compliant collar or a number of radial springs. The CF 

imposed on the balance ring at higher speeds is then resisted by the net 

spring compression force and results in a radial deflection, y.  Then to 

maintain balance, from (2.1), it is required that: 

 

          ).(.).(..2 22 reMyeM discdiscbalbal    

 

and subtracting (2.2) gives:   rMyM discbal ...2                                 (2.4) 

 

Since no damping exists in this model, the individual CF’s can be equated 

directly to their stiffness forces, giving: 
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ySCF balbal .        and       rSCF shaftdisc .      

 

and substituting in (2.1) gives:     rSyS shaftbal ...2   

 

Substituting for r  in (2.4) then gives:         
disc

bal
shaftbal

M

M
SS .

             (2.5) 

 

As a practicality check:     
2

_

2

_ critshaft

disc

shaft

bal

bal
critbal

M

S

M

S
 

 

 

where:    critbal_   =   critical speed of the balance ring, rad/sec       

 

and         critshaft_   =   critical speed of the shaft, rad/sec.    

 

Therefore, this very simplified model identifies that by using normal trim 

balancing methods, a condition of balance cannot be readily maintained 

across a wide operating speed range. But it also suggests a potential 

balancing principle, i.e. that by giving the trim balance weights a degree of 

compliance an improved shaft balance can be obtained, over a given speed 

range, even for a realistic drive train with multiple eccentricities and section 

geometry.  

 

It is notable from the above analysis that balS  is a constant of practical 

magnitude since its critical speed is not less than that of the shaft, and 

should therefore allow safe operation of this mechanism, without introducing 

lower order critical speeds. 

 

This principle of adding trim balance compliance can clearly be 

accomplished by a number of different detail designs, but one method of 

providing a spring system, with low hysteresis that maintains the good 

design practices required for high speed shafting, i.e. of low half weight, 



 

51 

 

rugged construction, with concentric, tight fitting joints, thereby preventing 

additional balancing problems, can be achieved by the proposed balance 

sleeve design, as shown schematically, in Figure 2.4.  

 

 

 

 

Figure 2.4, Schematic of a Compensated Balancing Sleeve 

 

Here, a light weight, compensated balancing sleeve is firmly attached at one 

end of the shaft end mounting flange, with a relatively heavy balancing ring 

integrally formed by machining or forging etc., at its free end. The sleeve 

therefore acts as a cantilever when subjected to dynamic forces that are 

predominantly concentrated on the greater mass of the balancing ring. The 

attachment of a trim balance mass, 180° out of phase with the shaft 

eccentricity, into one of a series of circumferential holes, machined in the 

balance ring, as shown, then produces a correcting centrifugal force, upon 

shaft rotation, which acts to bend the sleeve in the opposite direction to the 

bending of the shaft. Hence, the centrifugal force developed by the trim 

mass is amplified by the bending of the sleeve. 
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This design not only produces a more efficient correcting trim balance force, 

but it also imparts a correcting moment to the shaft with a tendency to 

reduce its bending. This is shown to be very significant when analysed 

theoretically. 

 

 

2.3 Theoretical Analysis of Balance Sleeve Compensation 

 

An analytical/numerical method initially considers a simply supported, long, 

plain shaft, of circular cross section - thereby making gyroscopic moments 

negligible - operating under steady state, rotating conditions, such that both 

radial and angular accelerations and associated forces/ moments are zero. 

This assumption is made to provide a first-order simplification and is widely 

considered applicable [59] to long, thin shafts, with low slenderness ratios, 

typically < 0.12 (as employed in the site equivalent models given later). 

Shaft deflections due to shear effects are regarded as being “second 

degree” in magnitude, and are not considered here.  In addition, this 

preliminary study is limited to a shaft having uniform eccentricity along its 

length. 

 

Figure 2.5 shows a plain rotating shaft, simply supported at both ends with 

total mass, Ms, overall length, , uniform eccentricity, e and deflection, r at 

length, x. Integrally attached to each end is a compensating balancing 

sleeve comprising a flexible arm with negligible mass, length, L, spring 

stiffness, K and deflection, Y, together with an equivalent lumped trim 

balancing mass, m, positioned with eccentricity, c, at its extreme end. The 

eccentricity of the lumped mass is positioned to be 180° out of phase with 

the shaft eccentricity such that rotation of the shaft produces centrifugal 

forces to act on masses Ms and m, thereby causing corresponding 

deflections r and Y, in opposing directions.  

 

Considering forces on the compensating balance sleeve 
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ymKY 2             (2.6) 

 

And from inspection of Figure 2.2, for small angles of slope: 
 

0)(  x
dx

dr
LcYy

                
(2.7) 

 

 

Figure 2.5 Schematic of simply supported rotating shaft with uniform 

eccentricity. 

 

giving, 

 

             
2

0

2 )(





mK

c
dx

dr
Lm

Y
x
















                                             (2.8) 

 

The moment imposed on shaft is:       B
dx

dr
AM

x











0

0

               (2.9)         

 

 

where,  
2

22





mK

KLm
A




         (2.10),              

2

2





mK

cLKm
B




                           
(2.11)
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From ‘Bending of Beams’ theory, the dynamic loading imposed on the shaft 

is found from (2.9), (noting that 0)( x
dx

dr
A   is constant with respect to x), 

giving: 

Dynamic Loading    =    0
2

0

2


dx

Md

                    
 

        
Considering forces on the shaft.  
 

The CF acting on an elemental section δx is:     )(2 erx
M

CF s  
  

 
 

 

Hence, dynamic loading, at length x is:
               

)(2 er
M

x

CF s  
   

 
 

 
Considering the Combined Assembly 
 

Total Dynamic Loading   =    0)(2  er
M s 
     

 

However, from beam theory, the dynamic loading =  
4

4

dx

rd
EI ,  

 

therefore:                          0)(2

4

4

 er
M

dx

rd
EI s 

                         
(2.12) 

 

This can be solved by use of Laplace Transforms, where r  = Laplace of r, 
and s is the Laplace Operator: 
 

0)(  xo rr
             

(2.13),                  
0

1













xdx

dr
r

           

(2.14)

 

 

 0

2

2

2













x
dx

rd
r

       

(2.15),                  
0

3

3

3













x
dx

rd
r

                      

(2.16)      

 
Hence from (2.12):   

e
s

M
r

M
rsrrsrsrsEI ss 22

321

2

0

34 )( 


  

At    x = 0:      0r  = 0      
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and putting:               
EI

M
b s



2
4 


                          
(2.17) 

 

then:          31

2

2

4
44 )( rrssr

s

eb
bsr 

                      
(2.18) 

 

BM  at  x = 0:     2

0

2

2

0 EIr
dx

rd
EIM

x











      

        

 

Therefore from (2.9) and (2.15):          
EI

BAr
r


 1

2

              
(2.19) 

 

Substituting in (2.18) gives:    

   
31

21

4
44 )( rrs

EI

B

EI

Ar
s

s

eb
bsr 










 

 

 

letting:
       EI

BAr
A


 1

1

           
(2.20),                    32 rA 

               
(2.21) 

 

gives:          44

2

44

2

1

44

1

44

4

).( bs

A

bs

sr

bs

sA

bss

eb
r











                (2.21a) 

 
Each term can be expanded, as given in Appendix A, using Partial Fractions 
to give: 

 

         bs

N

bs

M

bs

Q

bs

sP

s

e
r
















2222
                          

 

 where:       

 

2
1

22 b

AeP 
                  

(2.22),           2
2

1 22
1

b

A
rQ 

        
(2.23) 

 

3
21

2
1

4444 b

A
b

r

b

AeM 
                                                   

(2.24) 

 

 3
21

2
1

4444 b

A
b

r

b

AeN                                                         (2.25)              

 
These terms are now in Standard Laplace form that can be inversed to give:  
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bxbx eNeMbx
b

Q
bxPer ˆˆsincos  

               
(2.26)

 
where ê  =  Euler’s No. 

 
 
Applying the following End Conditions:  
 

at  x =  :   r = 0  and  BM = 0M  and noting,   
EI

BM

dx

rd


2

2

     gives:    

 

 bb eNeMb
b

Q
bPe ˆˆsincos0  

               (2.26a) 

 
 

 bb eNeMb
b

Q
bP

EIb

Mo
ˆˆsincos

2
 

                (2.26b)
 

 
 

(2.26a) – (2.26b) gives:     bP
EIb

Moe
b

b

Q
cos

22
sin

2


                
(2.27) 

 
 

Adding the above:    
 bb eNeM

EIb

Me
ˆˆ

22 2

0  

                                       
(2.28) 

 
The exponential terms can be expressed as hyperbolic functions such that: 
 

     bHbGeNeM bb sinhcoshˆˆ 

                              (2.29) 
 

where:  NMG        (2.30)       and     NMH                    (2.31)                    

 
Substituting in Equation (2.28) gives:       
 

   

 bHbG
EIb

Me
sinhcosh

22 2

0 
                                         

(2.32) 

 
and putting (2.27) & (2.29) into (2.26) gives: 
 

bx
b

bP
EIb

Me

bxPer sin
sin

cos
22cos

2

0





   

 

                        bxHbxG sinhcosh                                     (2.33) 
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This equation is solvable except for 1r , which a constituent part of the other 

unknown parameters; and gives the shaft displacement for given values of 

shaft eccentricity, speed and Balancing Sleeve properties, etc. 

 

It is notable that when  00 M  the equation reduces to a classical form for 

the deflection of a plain rotating shaft with uniform eccentricity [62]. 

 

1r  is determined by differentiating (2.33) and putting,  x = 0 , to give: 

 

bH
b

bP
EIb

Me

br
dx

dr


























sin

cos
22 2

0

1

                                            (2.34) 

 
 

 
Substituting (2.24) and (2.25) in (2.30) and (2.31) gives: 
 

2
1

22 b

AeG 
           

(2.35)       and       3
21

22 b

A
b

r
H 

         
(2.36) 

 
Now, substituting for G in (2.32):    
 
 





b

b
b

Ae
EIb

Me

H
sinh

cosh
2222

2
1

2

0







 


                                   

(2.37) 

 
 

and substituting (2.37) in (2.34), gives: 
 
       

























b

bP
EIb

Me

br
sin

cos
22 2

0

1

 
























b

b
b

Ae
EIb

Me

b
sinh

cosh)
22

(
22

2
1

2

0

 

 
 

Using P from (2.22) and 1A  from (2.20) gives: 
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b

b
b

EI

BAr
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br
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2222

2

1

2

0

1















 




 

 





b

b
b

EI

BAr

e
EIb

Me

b
sinh

cosh
2222

2

1
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Let:                       bEI
A

2

1
3                                                                (2.38) 

 
 

Substituting for Mo from (2.9) gives: 
 

 




b

bBArAebBArA
eb

r
sin

cos)(
2

)(
2

1313

1




 

 

 




b

bBrAebBArA
eb

sinh

cosh)(
2

)(
2

1313 

  

 
Collating r1 terms and simplifying gives: 
 
 

 




bA

bBAebBA
eb

r
sin

cos
22

4

33

1





   

 




bA

bBAebBA
eb

sinh

cosh
22

4

33 

         (2.39) 

 

Where:    








b

bAAAA

b

bAAAA
A

sinh

cosh

sin

cos
1 3333

4







                                     
(2.40) 

 
From beam theory, the vertical shear force within the beam caused by 

bending is given by: 

3

3

dx

rd
EISFv            
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Finally, the total reaction force applied to the supports equals internal shear 

force + external spring force applied by the Compensating Balance Sleeve, 

giving:  

 

 

KYEIr  3Re                                               (2.41) 

 

and from (2.36) and (2.21):     31
3 2)

2
( b

b
r

Hr                                           (2.42)      

 
 

Equations (2.33) and (2.41) summarise the key expressions for comparing 

performance of a traditionally balanced shaft to that of one which is under 

some degree of balance sleeve compensation.  The system is now fully 

determined and numerical analysis is possible. 

 

2.4 Critical Speed Elimination 

From (2.33), it is evident that the shaft displacement, r, becomes infinite 

when 0sin b , i.e. when b ,  2 , 3   etc. and it is this condition that 

determines the “Classical” critical speeds of the shaft without any Balance 

Sleeve Compensation.  

 

From (2.17), the 1st Critical Speed:  
s

crit
M

EI.
)( 2 




                              (2.43)           

 

The only way to avoid this theoretical ‘infinity’ is to make the numerator of 

the 3rd term also equal to zero, at b , such that by subst. (2.22), (2.20) 

and (2.9) into the numerator and equating to zero, gives: 

 

            0
...22...22 22


IEb

Moe

IEb

Moe
        

 

and                    eEIbMo ..2                                                         (2.44) 
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Therefore, by adjusting the Balancing Sleeve parameters so that the 

Balancing Moment,  eEIbMo ..2     at the speed equivalent to, b , 

makes the 3rd term an indeterminate, 
0

0
 and hence the effect of the 1st 

critical speed is eliminated.  

 

 

2.5 Analytical Results 

The theory described above identifies and solves all the mathematical 

‘unknowns’ such that further investigation into balancing compensation can 

be carried out by numerical calculations. To this end, a Mathcad program 

has been compiled to analyse a simply supported, equivalent model, of the 

main drive coupling shaft, used on a sub-15MW, Siemens Gas Turbine, 

Compressor Set, using site equivalent parameter values, given in Table 2.1, 

below. 

 
 
 
 

 
 
 
 
 
 
 

 
            

* unless  otherwise stated 

 
Table 2.1. Parameter Values used in Numerical Example 
 
 
 
 
Figures 2.6-2.9 graphically show results from the numerical calculations 

derived from equations giving reaction load, (2.41), and midpoint deflection, 

Equivalent Site Parameter Values 
 

sM = 38.312 kg   = 1.707 m 

m  =  0.899 kg E = 207.1ˣ10^9 N/m^2 

e = 0.00017 m I = 1.468ˣ10^-5 m^4 

c = 0.003624 m 
K = 3.4ˣ10^6 N/m * 
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(2.33), (with x = 
2


), for a range of balance compensation conditions. In all 

cases the trim balance weights are set to give low speed balance. 

 

 
Figure 2.6(a). Reaction Load vs. Speed without Balance Sleeve 
Compensation 

 
 
 

Specifically, Figures 2.6(a) and 2.6(b) show shaft end reaction load and 

midpoint deflection, plotted against speed, for normal balance conditions, 

i.e. without any balance sleeve compensation, modelled as zero sleeve 

length and extremely high stiffness. Sleeve length, L = 0 and sleeve 

stiffness, K = 3.4×1016 N/m.  
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Figure 2.6(b). Mid point Deflection vs. Speed without Balance Sleeve 
Compensation 
 
 
 

Figures 2.7(a) and 2.7(b) show reaction load and midpoint deflection, for 

very good lateral compensation, providing amplified trim balance correction 

of the reaction load only. The midpoint deflection is unaffected since the 

sleeve length is still zero – as per the schematic shown in Figure 2.3. Sleeve 

length, L = 0 and sleeve stiffness, K = 1.47×106 N/m. 

 
 

 
Figure 2.7(a). Reaction Load vs. Speed with Lateral Compensation only 
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Figure 2.7(b). Mid point Deflection vs. Speed with Lateral Compensation 
only 
 

 

 

 
Figure 2.8(a). Reaction Load vs. Speed with Maximum Balance Sleeve 
Compensation 
 
Figures 2.8(a) and 2.8(b) show reaction load and midpoint deflection, for 

maximum obtainable balance compensation, where the sleeve length is set 
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with extreme precision in order to investigate critical speed elimination. 

Sleeve length, L = 0.20604728m and sleeve stiffness, K = 3.4×106 N/m.  

 

 
Figure 2.8(b). Mid Point Deflection vs. Speed with Maximum Balance 
Sleeve Compensation 
 
 
 
 

Figures 2.9(a) and 2.9(b) show reaction load and midpoint deflection for a 

suggested practical level of balance compensation, providing significant 

reduction in Reaction Load, to exceed operational needs, without exceeding 

½ mass requirements of the mating drive shaft. Note: in this instance the 

trim does not over correct the imbalance and risk the possibility of “flip over” 

of the shaft, such that its imbalance could switch to an in-phase condition 

with the trim balance weights.  Sleeve length, L = 0.13m and sleeve 

stiffness, K = 3.4×106 N/m. 
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Figure 2.9(a). Reaction Load vs. Speed with Practical Balance Sleeve 
Compensation 
 
 
 

 
Figure 2.9(b). Mid Point Deflection vs. Speed with Practical Balance 
Sleeve Compensation 
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Table 2.2, provides a summary of this range of compensation effects, 

showing how Reaction Load and Shaft Deflection can be vastly reduced by 

a system of Balance Compensation without increasing the amount of trim 

balance. 
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 Configuration Comment 

Sleeve: 
Length,(m) 
Stiffness, 
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(m
m

) 

  
  

  
  

 2
.6

 Without 
Balance 
Sleeve 
Compensation 

trim balance 
weights set to 
give low speed 
balance 

 
L = 0 
K = 

3.4×1016 
10,500 11,200 0.75 

  
  

  
  

 2
.7

 Reaction Load 
Compensation 
Only 

trim balance 
weights set to 
give low speed 
balance 

 
 

L = 0 
K = 

1.47×106 

10,500 50 0.75 

2
.8

 

Max 
obtainable 
Balance 
Sleeve 
Compensation 

very precise 
level of 
compensation to 
completely 
nullify the critical 
speed 

 
  

L = 
0.20604728 
K = 3.4×106 

10,500 370 0.1 

2
.9

 

Practical 
Balance 
Sleeve 
Compensation 

conservative 
design of 
balance sleeve 
producing 
satisfactory 
reaction load 
reduction 

 
 

L = 0.13 
K = 3.4×106 10,500 3400 0.35 

 

 

Table 2.2. Summary of Balance Compensation Effects 
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2.6 Site Problem Simulation 

 

Chapter 1, Section 1.3, described a typical balancing problem that is 

observed at some Siemens GT sites employing very flexible coupling shafts. 

An example characteristic is shown in Figure 1.5 - polar plot of bearing 

displacement versus angular displacement, produced a phase angle 

change of 85º between operating speeds of 7200 rpm and 8900 rpm. This 

means that it is possible to apply a trim balance weight at any particular 

angular position, but this only corrects the shaft imbalance at one 

corresponding speed; all other speeds remaining unbalanced to a greater 

or lesser degree depending on their angular offset from this one speed. It is 

therefore extremely difficult to achieve acceptable levels of bearing 

displacement, of say less than 60 microns (under normal running 

conditions) over the full operating speed range of the turbine.  

 

An alternative theory (to a normal case of operating very close to a critical 

speed) for the cause of the vector change is illustrated in Chapter 1, Figure 

1.6, suggesting that the root cause of the problem may be due to a very 

large increase in the imbalance centrifugal force apportioned to the coupling 

shaft deflection. 

 

To corroborate this a theoretical example now assumes that a laterally very 

stiff, neighbouring power turbine (PT) shaft, with a residual unbalance vector 

of 2000 g.mm, (mass times eccentricity), acted at 150º in opposition to a 

coupling shaft, as analysed previously in section 2.5, and detailed in Table 

2.1. The equivalent coupling shaft residual unbalance and its trim balance 

correction, at shaft ends, are both set to 3257 g.mm, thereby creating 

perfect balance at low speed, as shown in Figure 2.10. 

 

Since the PT shaft is very stiff, the bearing reaction load generated by its 

imbalance increases with squared speed (unbalance  ω2) and is not 

subject to the magnification seen by the coupling shaft, due to its flexibility. 
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Hence, at 9500 rpm, the reaction loads are 2000 N, from the PT shaft and 

4588 N, from the coupling shaft, as shown in the polar plot of Figure 2.11, 

which corresponds to the net reaction load, (coupling uniform eccentricity 

and shaft end trim balance), calculated without balance sleeve 

compensation, as in the previous example, and shown graphically in Figure 

2.6(a). Therefore, whilst the coupling shaft residual unbalance is only 63% 

higher than that of the PT shaft, at 9500 rpm, this corresponds to a reaction 

load that is 230% higher, solely due to the greater flexibility of the coupling. 

 

                      

Figure 2.10, Polar Plot of Unbalances at Low Speed 
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 Figure 2.11, Polar Plot of Reaction Loads versus Speed 

 

The resultant of the two reaction loads, applied to the bearing can be seen 

to rotate from 30º to approximately 160º for speeds increasing from 1500 

rpm to 9500 rpm, (shown incrementally in 1000 rpm steps), reaching a 

maximum load of 3039 N.  

 

For a typical bearing stiffness of 26.8  106 N/m, the resultant reaction load 

corresponds to the bearing displacements shown in Figure 2.12, with the 

same vector rotation. It can be seen that the shape and magnitude of this 

polar plot closely resembles the equivalent site example, given in Chapter 

1, Figure 1.5, thereby providing corroboration with the proposed theory. 
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 Figure 2.12, Polar Plot of Bearing Displacement versus Speed, 

 without Balance Sleeve Compensation 

 

When compensation is applied to the coupling shaft, as depicted in Figure 

2.9(a), the resulting bearing displacement is reduced, both in magnitude and 

angular variation, as shown in Figure 2.13. This reduction is well below the 

prescribed 60 microns running limit which would normally initiate a “bearing 

close running” warning. It is therefore considered to be very acceptable and 

this exercise clearly demonstrates the potential of this balancing 

methodology to solve such vibration problems. 
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 Figure 2.13, Polar Plot of Bearing Displacement versus Speed, 

 with Practical Balance Sleeve Compensation 

 

2.7 Estimating Equivalent Shaft Eccentricity 

 

For initial design feasibility studies of actual site balancing problems, it is 

useful to model the problem shaft as an equivalent shaft with uniform 

eccentricity in order to apply the balancing sleeve compensation theory 

previously established in section 2.3. Then, from knowledge of the shaft end 

reaction loads (usually accurately estimated from bearing measurements, 

such as proximity sensors or similar devices) an equivalent level of uniform 

eccentricity can be obtained.   

 

For this purpose the equations given in section 2.3 can be applied by setting 

the impact of the compensating sleeve parameters to zero, since the 

measured reaction loads are obtained from the problem shaft without any 

compensation. Then, by putting A = 0, equation (2.40) reduces to give:  

14 A   and substituting in equation (2.39), with B = 0,  gives the shaft end 

slope as:   
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Also, from (2.9) and (2.20):  0M  and  1A  both equal zero, therefore by 

substitution in (2.37): 
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However, from (2.42),   31
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and (2.45), gives: 
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which reduces to: 
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Therefore, the reaction load from (2.41), with both K and Y equated to 

zero, becomes: 
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                                          (2.48) 

 

The equivalent shaft eccentricity is therefore seen to be directly proportional 

to the shaft end reaction load and is readily calculated from site 

measurements and knowledge of the critical speed – needed to determine 

parameter b. 
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It is fully expected that by simple modelling of the shaft as having uniform 

eccentricity, as illustrated in section 2.6, reasonably accurate conservative 

estimates can be made of its eccentricity with sufficient accuracy for 

feasibility and initial development design and test purposes, in the 

knowledge that, if required, a more detailed finite element analysis (FEA) 

could be carried out if necessary.  

 

 

2.8 Preliminary Conclusions 

 

Consideration of current methods of applying trim balance correction to 

rotating shafts show that their effectiveness reduces with increased shaft 

flexibility. A new method of adding compliance to the mechanism has been 

reported that not only amplifies the magnitude of the balance correcting 

forces, but also applies a deflection reducing moment to the shaft. This 

method of balance sleeve compensation is shown to have the potential to 

vastly reduce the reaction loads applied to the driver and driven unit 

bearings. This can be seen from the results summary, Table 2.2, where the 

reaction load under normal low speed balance has been reduced from 

11,200 N, Figure 2.6(a), to near zero, Figure 2.7(a), at 10,500 rpm. This 

latter condition represents lateral balance compensation only in accordance 

with the schematic shown in Figure 2.3, where the trim balance centrifugal 

force has been amplified, but only acts upon the mounting flange without 

applying a correcting moment to the shaft. Hence, the shaft deflection has 

not been reduced. 

 

A much improved method of providing trim balance compliance is shown 

in Figure 2.4, with the added benefit of applying the balancing moment, 

0M , which also reduces the shaft deflection as shown in Table 2.2, 

Figures 2.8(b) and 2.9(b), giving mid-point shaft deflection reduction from 

0.75 mm to 0.1 mm and 0.35 mm, respectively, at 10,500 rpm.  



 

74 

 

 

The case shown in Figure 2.8, attempts to maximise the balance 

compensation and also investigate possible critical speed elimination, as 

mathematically shown section 2.4 (hence the 8 digit sleeve length, L).  The 

results are therefore very positive with vast reductions in both reaction load 

and mid-point deflection being evident.  Nevertheless, it is notable that this 

is only a theoretical possibility and a more practical condition is shown in 

Figure 2.9. This latter condition is considered good design compromise, as 

it still provides significant reduction in reaction load, to exceed operational 

needs, without excessive balancing sleeve length and/ or deflection.  

 

This is also confirmed by the treatment in section 2.6, of the typical 

balancing problems observed at some problematic GT sites employing 

relatively flexible couplings, and highlighted in chapter 1. An alternative 

proposal for the vibration source, that the angular change of the bearing 

imbalance vector was a result of the coupling unbalance being amplified by 

its deflection, has also been corroborated. Further, the example has shown 

that application of balancing sleeve compensation can reduce the bearing 

deflection to acceptable limits, by reducing the coupling reaction load and 

also, as a consequence, reduce the angular change of the imbalance 

vector. 

 

Section 2.7 showed that the uniform eccentricity of an equivalent shaft, is 

directly proportional to shaft end reaction load and therefore readily 

estimated, hence this analytical model can usefully be employed in design 

and feasibility investigations. 

 

Further investigation of critical speed and the reduction of its impact using 

an analysis of Balance Sleeve Compensation, is now given in chapter 3. 
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Chapter 3 

3.1 Encastre Simulation 

The effect which a compensating balance sleeve has on a simply supported 

shaft can be compared with the mechanics of an encastre shaft, or one 

angularly fixed by long bearings. An encastre shaft constrains the whirling 

motion of a shaft by the application of a fixing moment, Mf, imparted from 

the bearing casing to the shaft ends, of sufficient magnitude to maintain the 

shaft end slopes equal to zero at all operating speeds. A schematic of such 

an arrangement is presented in Figure 3.1. 

 

Figure 3.1. Schematic of encastre rotating shaft with uniform eccentricity 

 

It is well known that the natural frequency for an encastre system is 

approximately 2¼ times that of the equivalent simply supported case [60]. 

It is therefore, reasonable to investigate the possibility of matching the 

balancing moment, Mo, created by the balance sleeve, to the fixing moment, 

Mf , in order to simulate an encastre system.   

 

By applying a similar analytical procedure, as per the simply supported case 

given in chapter 2, to the same shaft configuration, but with encastre ends, 

the following equations are developed: 

 
Centrifugal Force, CF, acting on elemental section δx,   
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).(.. 2 erx
M

CF s  


 

 

Dynamic Loading on the shaft  =   ).(. 2 er
M

x

CF s  
 

    

 

and, Dynamic Loading =  
4

4

.
dx

rd
EI ,       

giving,        ).(.. 2

4

4

er
M

dx

rd
EI s  


,     equation  (2.12),    from chapter 2. 

 
Repeating the Laplace Transformation as shown in chapter 2:  
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(2.16)      

 
Substituting in (2.12):   

e
s

M
r

M
rsrrsrsrsEI ss 22

321

2

0

34 )( 


  

At    x = 0:      0r  = 0,  and  1r   = 0: 

 

          32

22

4 .
)

.
( rsr

EIs

eM

EI

M
sr ss 




                                                  (3.1) 

 
 

From chapter 2: 
EI

M
b s



2
4 


   
(2.17) 

 

then,       32

4
44 )( rsr

s
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bsr        

 
 

and                44

3

44

2
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4

)( bs

r

bs

sr

bss

eb
r








                                        (3.2) 

 
Each term can be expanded using Partial Fractions, see Appendix B, to 

give: 



 

77 

 

 

 

                   
bs

N

bs

M

bs

Q

bs

Ps

s

e
r eeee
















2222

.
                                           (3.3) 

 

 

where:       

 

2
2

22 b

rePe 
  ,    

        2
3

2b

r
Qe 

,       
3

3
2

2

444 b

r

b

reM e 
                  

 

 

                   3
3

2
2

444 b

r

b

reNe                                                       (3.3a) 

 
These terms are now in Standard Laplace forms which can be inverted to 
give: 
 
 

bx

e

bx

e
e

e eNeMbx
b

Q
bxPer ˆ.ˆ.sincos    ,   

where  ê  = exponential value, e. 

 
However, the exponential terms can be expressed as Hyperbolic Functions, 

as given Appendix C, where x represents any angle, i.e. in this case, x = bx  

to give: 

 

 

     bxHbxGbxJbxPer eee sinhcoshsincos                               (3.4) 

 
 

where     
b

Q
J e ,      eee NMG  ,       eee MNH                           (3.4a) 

 

but  r = 0 at x = 0,    ee GPe 0     and     ee PeG                       (3.5) 

 
 

Differentiating  (3.4),   xbHxbGbxbJbxbP
dx

dr
eee coshsinhcos.sin   

 

And   0
dx

dr
 at x = 0,         ebHbJ 0     and     JH e                   (3.6) 

 
Substituting (3.5) & (3.6) in (3.4) gives: 
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)sinh(sincosh)cosh(cos bxbxJbxebxbxPer e                   (3.7) 

 

and    ))cosh(cossinh)sinh(sin( bxbxJbxebxbxPb
dx

dr
e   

 

but at x ,  ))cosh(cossinh)sinh(sin(0  bbJbebbPb
dx

dr
e   

 

                      




bb

bebbP
J e

coshcos

sinh)sinh(sin




                                        (3.8) 

 
 
also r = 0 at x  and substituting (3.8) in (3.7) gives: 

 
 

)sinh.(sin
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sinh)sinh(sin
cosh)cosh(cos0 




 bb

bb

bebbP
bebbPe e

e 





 
 
 











bb

bbbe
bee

bb

bb
bbPe

coshcos

)sinh.(sinsinh
cosh)

coshcos

sinhsin
cosh(cos

22











 
 
 

)cosh).(cosh(cos)sinhsin)cosh((cos 222  beebbbbbbPe   

 
                                                                          )sinh.(sinsinh  bbbe   

 

            




bbbb

bbbebeebb
Pe 222 sinhsin)cosh(cos

)sinh.(sinsinh)cosh).(cosh(cos




  

 
 

      




bbbbbb

bbbbbbbb
ePe 2222

22

sinhsincoshcosh.cos.2cos

sinhsinh.sincoshcoshcosh.coscos
.
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.
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and     




bb

bbbbbbe
Pe

cosh.cos1

sinh.sincoshcosh.coscos1
.

2 


                  (3.9) 

 
 
 

Therefore, for any given values of b,   and e, the following parameters and 
shaft deflection can be determined: 
 
Pe from (3.9),      J from (3.8)      and       r from (3.7). 
 
 
Also, from beam theory, the fixing or constraining moment is given by: 
 

  202

2

.).( rEI
dx

rd
EIMf x    

 

But, (3.3a)    2
2

22 b

rePe  ,    giving:         )
2

.(.2 2

eP
e

EIbMf                (3.10) 

 
Moreover, the shaft end reaction load equals the internal shear force:       
 

3..Re rIE      (3.10a),     where, from (3.3a) and (3.4a):     

Jbr ..2 3

3      (3.10b) 

 
 
At bl = 4.73 radians, the denominator of Pe equals zero, and therefore this 

condition represents the 1st critical speed of the system as r = ∞. Comparing 

this result with the analysis in chapter 2, the critical speed for the encastre 

shaft is 2.27 times greater than that of the simply supported case, which 

agrees with standard theory [60].  

 

Comparison of the balancing and fixing moments can now be made, using 

the same site equivalent parameter values given in Table 2.1, from the 

simply supported case analysed in chapter 2. The results are shown 

graphically in Figure 3.2, where the Balancing Sleeve Length, L = 0.20603 

m, has been optimised to give near elimination of the critical speed. It can 

be seen that the two moments are very close, at all speeds up to the first 

critical, in this case 11,900 rpm, showing the ability of the Balance 

Compensation method to provide very close simulation of an encastre 

mounted shaft. 
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Figure 3.2. Fixing and balancing moment vs speed, with maximum 

compensation 

 

It is also interesting to note that at b , i.e. the Classical Critical Speed 

of the simply supported system, Pe = 0 and the encastre fixing moment 

becomes,  

   

                        eEIbMf ..2                                  (3.11) 

which is identical to equation (2.44), chapter 2, the balancing moment 

required for elimination of the simply supported, 1st critical speed; therefore, 

at this speed,   MfMo  , and complete encastre simulation occurs at the 

intersection point between the two curves shown in Figure 3.2. 
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3.2 Compensated Critical Speeds 

To further investigate encastre simulation and the resulting elimination of 

the simply supported critical speed, it is necessary to extend the analysis 

given in chapter 2.  

 

For a Simply Supported Shaft System with Balancing Sleeve 

Compensation, equation (2.40) states: 
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and at the Classical Critical speed, equivalent to, b , this becomes: 
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The 1st and 3rd terms can be ignored as negligible compared to 2nd term: 
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 Also from (2.39), the slope of the shaft at x=0, is given by 
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 Hence:   Mo
A

be
BrA 

3

1
.2

.
.                                 

Making substitutions    
bEI

A
2

1
3    ,   (2.38)    and    

EI

M
b s



2
4 


         
(2.17) 

 

gives      eEIbMo ..2        and        eEIMo ..

2














                      (3.12) 

 
This has far reaching implications since it shows that Mo is independent of 

the Balance Sleeve parameters: mass, eccentricity, length and stiffness and 

gives a constant value for a given shaft when running at its standard, 

classical critical speed. 

 

Also, since this equation is identical to (2.44), for b , it means that the 

classical critical is always eliminated, regardless of the characteristics of 

Mo.  

 

This is best illustrated graphically, using the parameter values given in Table 

2.1, which shows that ALL levels of positive Balancing Sleeve Moment, Mo, 

plus the Fixing Moment, Mf, coincide at a point of convergence, given by 

equation (3.12), at the speed defined by equation (2.43). See Figure 3.3, 

below – where 3 characteristics of Mo were plotted, using 3 different 

Compensating Sleeve Lengths, L. 
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Figure 3.3. Close-up of point of convergence. 

 
It is noted that the only time the Point of Convergence is avoided is when 

Mo = 0 and then the critical speed reverts to its Classical value.  

 

From the above it is apparent that b ,  2 , 3  only defines the critical 

speeds for simply supported shafts without any externally applied moments, 

i.e. when Mo equals zero. But, for all other arrangements the 1st critical 

speed can be seen to have moved away from the standard theoretical 

speed by a few hundred rpm. This is evident from Figure 3.3, which shows 

Mo tending to infinity, at speeds away from the Point of Convergence, and 

this is as a consequence of the slope 1r  becoming infinite.  

 

Therefore, this condition can be used to determine the new Compensated 

Critical Speed. 
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Considering 1r , (2.39), it should be noted that it resulted from (2.7), which 

assumed that 1r  was very small, which is evidently not the case when 

approaching a critical speed. From Figure 3.4 below, it can be seen that in 

determining equation (2.7) for larger angles, 

 

1.rLcYy     should be       )tan(. 1rLcYy   

i.e. 1r  should be replaced by )tan( 1r .  

 

           
 
Figure 3.4. Close-up of shaft end. 

 
 
However, for angles less than 0.035 rads, (2.0 deg.), the error produced in 

(2.39) from the assumption that 11)tan( rr   , is less than 0.03% and for all 

practical engineering cases, where the stresses and strains are usually kept 

within the elastic limit of the material, this assumption is generally valid. It is 

also valid for the theory regarding the elimination of the “Classical” critical 

speed and the Point of Convergence, of the Balancing Sleeve and Fixing 

Moments, since the large whirl deflections associated with the critical speed 

no longer exist, and hence, the slope 1r is kept small.   

 

At operating speeds close to a critical speed, (2.39), should be: 
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such that at a critical speed the slope becomes vertical and )tan( 1r equals 

infinity and it can be seen that this will occur when 04 A .    

 
From chapter 2: 
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and by substituting the following trigonometric relationships: 
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gives:             )
2

tanh
2

.(tan
...2

14

 bb

IEb

A
A                                      (3.14) 

 

Since at the critical speed 04 A  and it is known that this occurs at a speed 

close to the equivalent of  b , whereby the tanh term tends to 1, the 

compensated critical speed can be defined by the condition where: 
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This quadratic can be solved numerically by first evaluating the classical 

critical speed, 
M

EI
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    from (2.43), and then  
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from    (2.10), to determine the following parameters:  
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providing a very good approximation for the compensated critical speed as: 
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3.3 Elimination/ Nullification of Compensated Critical 

Speeds 

 

Considering, (3.13): 
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and applying the same ½ angle substitutions as to obtain (3.14), gives: 
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Therefore, the compensated critical speed will be eliminated if the 

numerator can be made to equal zero at this speed, so that: 

 

0
2
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And applying the same conditions and assumptions as per (3.14), then the 

tanh term tends to 1, and:  
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Defining:              IEbeD ... 2                                                                         (3.22) 
 
   
and substituting from chapter 2,  
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gives                        
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                                            (3.23) 

ˣ 
 
This relationship (plotted in Figure 3.5), for the typical parameter values 

given in Table 2.1, and with regard to the assumptions used in deriving the 

theory, gives a good approximation for the compensating sleeve design 

requirements to give complete, theoretical, elimination of the compensated 

critical speed. Point 1, represents the L and K values used in the optimised 

compensation case, illustrated in Figure 3.2; and point 2, is a suggested 

minimum sleeve length to prevent possible instability between the sleeve 

critical speed equal to 13,300 rpm at this reduced stiffness, and the shaft 

critical speed of 11,900 rpm. Point 3 represents a mechanism having radial 

stiffness, but no length, as per Figure 2.3, chapter 2, which would allow 

compensation of the reaction load only, since the balancing moment Mo 

would be zero and the shaft deflection would be unaffected.  
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Figure 3.5. Sleeve Length vs Stiffness for elimination of Compensated 
Critical Speed 
 
 

 

3.4 Encastre Points of Conversion 

 

For beams or shafts with loading conditions that produce only small 

deflections, such that the material is operating within the linear elastic 

portion its stress/ strain curve, as is normal engineering practice for ferrous 

alloys, the shaft deflections and slope will be linearly proportional to the 

applied loads and the Theory of Superposition applies. Hence, the individual 

deflections produced by individual loads and moments can be summed to 

give the combined response of all the applied loads and moments [58].  

 

Therefore, it is apparent that an encastre shaft is analytically the same as a 

simply supported shaft with the addition of end fixing moments and since it 

is physically possible mount any shaft in long bearings as opposed to short 

bearings or having a flexible element interface, then it is equally possible to 
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convert any shaft, of any geometric or loading variation, to an encastre form, 

by equating the balancing moment, Mo, to the fixing moment, Mf.  

 

This then is the rational objective of critical speed elimination, i.e. to adjust 

the Balancing Sleeve Moment, Mo, so that it equals the encastre Fixing 

Moment, Mf. Unfortunately, it is not possible to maintain this condition 

throughout the whole of the operating speed range, but it is advantageous 

if it occurs at a speed as close as possible to the Compensated Critical 

Speed, so that near elimination results. 

 

This adjustment process is illustrated in Figure 3.6 and 3.7 below. 

 

Figure 3.6, shows a close up example of the both moments near the critical 

speeds, and it can be seen that there are 3 points of intersection, where Mo 

= Mf, and conversion occurs. 

 

Point 1 occurs at the Compensated Critical Speed, where Mo 

instantaneously passes from minus infinity to plus infinity. This is only a 

theoretical possibility and consequently it is not a practical point of 

conversion. Note, this speed varies only slightly with Compensating Sleeve 

Length, L. 

 

Point 2 occurs at the Classical Critical Speed, which, as defined earlier, is 

fixed speed and doesn’t vary with length L. 

 

Point 3 is the natural intersection of the 2 curves that would occur without 

the interruption of the critical speed points and is highly dependent on the 

magnitude of L. Hence, it is more adjustable and L can be used as a design 

variable – note, it moves to a lower speed with increasing length, L and vice 

versa. 

Figure 3.7, shows how easily point 3 can be adjusted and the effect of a 

small increase in length L, from 0.20m to 0.20603m, where it can be seen 
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that point 3 is now very close to the Compensated Critical Speed, 

intersection point 1 and hence the compensation is very close to the optimal 

maximum level to give complete elimination. 

 
 

 
  

Figure 3.6. Close-up comparison of Mf & Mo for L = 0.20 m 
 

 
 
Figure 3.7. Close-up comparison of Mf & Mo for L = 0.20603 m 
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Exact coincidence would result in complete elimination, which although 

theoretically possible, is not practical due to the infinite sensitivity of the 

transient. It can also be noted, that the closer points 1 and 3 become, then 

the sharper the critical speed spike becomes, thereby minimizing the 

magnifying effect of the critical speed and allowing safe operation much 

closer to its critical speed than would otherwise be possible. 

 

At the practical points of intersection, 2 and 3, where Mo = Mf, numerical 

analysis can be used to show that the shaft deflections and internal shear 

reaction forces are identical, thereby confirming that the points of 

intersection are indeed Points of Conversion where the simply supported 

shaft fully replicates the encastre system, albeit only for the speeds where 

the intersection occurs.    

 

3.5 Practical Possibility of Critical Speed Elimination 

Furthering the analytical investigation carried out in chapter 2, with the site 

equivalent parameter values, given in Table 2.1, the maximum obtainable 

balance compensation condition, Figure 2.6, chapter 2, is investigated. 

 

Figure 3.8, below shows a close up of this condition, in which the reaction 

load has been calculated and plotted against rotational speed in very fine 

steps of only 0.1 rpm. However, it can be seen that the critical speed has 

still not been completely eliminated as a spike still occurs between 11,769.3 

rpm and 11,769.5 rpm, which would go to infinity if the calculated speed 

could be made exactly equal to the compensated critical speed. 

Nevertheless, it can be seen that the act of balance sleeve compensation 

makes the critical speed spike much sharper until at full compensation it 

would be possible to theoretically operate to within 1 rpm of the actual critical 

speed, i.e. it is reasonable to conclude that the critical speed has been 

completely NULLIFIED. Note, actual elimination of the critical speed would 

be practically impossible since the parameter values etc. undoubtedly 

contain irrational numbers such as  . However, while such proximity would 
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not be advocated, it is clearly illustrated that the 50% API recommended 

lateral critical speed margin [15] could be vastly reduced, say to 5 or 10% 

thereby easing one of the many design constraints that apply to the shafts 

of high speed drive trains. 

 

 
 

 
Figure 3.8. Close-up of Fully Compensated Critical Speed 
 

 

3.6 Sensitivity Study 

Table 2.2, chapter 2, provides an indication of the sensitivity of balance 

compensation with respect to sleeve length, where the sleeve stiffness is 

held constant, as required say, during a design exercise. Figures 2.6 and 

2.7 show that the reaction load increases from 370 N, to 3,400 N, for length 

reduction from, L = 0.206 m, to L = 0.130 m, with a constant stiffness, K = 

3.4 x 106 N/m. This compares with an uncompensated reaction load of 

11,200 N. 

 

However, for site balancing purposes, it is envisaged that the sleeve would 

be designed to allow length adjustments to occur in situ, hence the sleeve 

cross section would remain unchanged and the sleeve stiffness would be 
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inversely proportional to the length cubed [58]. Therefore, it is the sensitivity 

under this condition, that would be more useful to a commissioning engineer 

and this arrangement is shown in Figure 3.9, where, eR , is the non-

dimensional reaction load, and L , is the non-dimensional sleeve length, at 

10,500 rpm:  

 

          
loadreactionUncomp

loadreactionactual
Re

__

__
               

lengthdesign

lengthactual
L

_

_
   

 
It is noted that the sensitivity figures are well within the practical limits 

required for design purposes, such that a 5% length change would give a 

very substantial 15 – 20% change in reaction load. Therefore, useful 

compensation should be achievable, without the risk of over-sensitivity, 

causing instability. 

 
 

 
Figure 3.9. Balance Sleeve Sensitivity 
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3.7 Preliminary Conclusions 

 
This chapter confirms the ability to theoretically transform a simply 

supported shaft to an encastre mounted equivalent and thereby facilitate 

the creation of a new balancing methodology for high-speed, flexible shafts. 

It describes the elimination of the classical critical speed and the 

consequential production of a new compensated critical speed, of a slightly 

lower level. Alternatively, it can be regarded simply that balance sleeve 

compensation causes a reduction in critical speed. However, the analysis 

further determines the operating conditions necessary to cause its 

elimination, or since this is only theoretically possible, it’s practical 

nullification. Hence the potential of this system to reduce bearing reaction 

loads and to vastly reduce existing lateral critical speed margins has been 

demonstrated.  
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Chapter 4 

 

4.1 Generalised Analysis of Concentrated Imbalances 

The analysis of balance sleeve compensation outlined in Chapters 2 and 3 

provided theoretical proof of concept and illustrated the potential benefits to 

be gained from a proposed new methodology of balancing high-speed 

flexible shafts. However, the analysis was based, for simplicity, on a 

specialised case of shafts with uniform eccentricity. This work is now 

extended to cover the more generalised case of shafts with concentrated 

imbalance. 

 

4.2 Theoretical Analysis 

As in the analysis of chapters 2 and 3, this investigation considers a simply 

supported, long, plain shaft, of circular cross section - thereby making 

gyroscopic moments negligible - operating under steady state, rotating 

conditions, such that both radial and angular accelerations and associated 

forces/ moments are zero. This assumption is made to provide a first-order 

simplification and is widely considered applicable [59] to long, thin shafts, 

with low slenderness ratios, typically < 0.12 (as employed in the site 

equivalent models given later). Shaft deflections due to shear effects, are 

regarded as being “second degree” in magnitude, and are not considered 

here.  In addition, the preliminary study is limited to single concentrated 

imbalance as it is shown that more complex distributions can be regarded 

as the summation of any number of individual imbalances, provided that the 

shaft deflections remain small and the material is operating within the linear 

portion of its stress/ strain curve (the principle of superposition is then 

applicable).  This also allows algebraic solutions to be obtained from the 

equations of motion, negating the requirement for time-consuming numeric 

solutions from Finite Element Analysis (FEA) to be necessary during early 

design stages. Further, it is claimed that a greater degree of clarity and 

understanding can be gained from such solutions and it is shown that they 
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reveal new insights into the balancing mechanism that would not be 

apparent otherwise.  

 

Figure 1 shows a plain rotating shaft of total mass, sM , and overall length, 

 , simply supported at both ends, with deflection, r, at length, x, and 

concentrated eccentricity, e, between dimensions a and f. Integrally 

attached to each end is a Compensating Balance Sleeve, comprising a 

flexible arm with negligible mass, of lengths, L1 and L2, spring stiffness’s, K1 

and K2 and deflections, Y1 and Y2, together with equivalent lumped, trim 

balancing masses, m1 and m2, positioned with eccentricities, c1 and c2, at 

their extreme ends. The eccentricity of the lumped masses are positioned 

180º out of phase with the shaft eccentricity such that rotation of the shaft 

produces CFs to act on masses sM , m1 and m2, thereby imparting 

corresponding deflections r, Y1 and Y2, in opposing directions.  

 

 
 
 

Figure 4.1, Schematic of simply supported, rotating shaft with concentrated 
eccentricity 
 

 

Concentrated imbalance caused by localised manufacturing or material 

defect, or possibly a point of external damage, can be considered as an 
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equivalent additional mass, Mu, acting at radius, R. This can be likened to a 

trim balance mass, Mu, typically fastened to the outer diameter of the shaft, 

and for the purpose of analysis, is represented by a short zone of length, (f 

– a), with uniform eccentricity, e, and a zone mass, Mp, as shown in Figure 

4.2.  

 
Taking mass moments about the axis of rotation and assuming Mu and r are 

much less than Mp and R, the zone eccentricity approximates to [6]: 

 

   

e @
Mu

M p

.R                        (4.1) 

           
 

Figure 4.2, Schematic of concentrated imbalance zone eccentricity 
 
Considering forces on the Compensating Balance Sleeves: 

Centrifugal Force, at LHS,    1

2

11 .. ymCF                                                     (4.2) 

From inspection of Figure 1, for small angles of slope: 

 

                     01111 )(  x
dx

dr
LcYy

                                               
(4.3) 
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                                                             (4.4)   

  
  

 
The moment imposed on shaft is: 
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(4.5) 

 

where      
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            (4.6)            
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(4.7)

 
 

Similarly for Compensating Balance Sleeve 2, noting that the slope,  lx
dx

dr
)(     

is –ve, gives: 

                    
2
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2

2
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mK
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dx

dr
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Y
lx
















                                                           (4.8)   

 

The moment imposed on shaft is:    
020202 B

dx

dr
AM

lx











                            

(4.9) 

 

where     
2

22

2

2

2

2

2
02





mK

KLm
A


          (4.10)            

2

22

222

2

1
02





mK

KLcm
B




              
(4.11) 

 

 
Figure 4.3, Balancing Sleeve Moments imposed on the shaft  
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The external moment, Mx, imposed on the shaft, at any position x, by the 
balance sleeves, will be a straight line between the end moments60, M01 and 
M02, as shown in Figure 4.3, such that: 

                              x
MM

MMx .0102
01




                                                 (4.12) 

From ‘Bending of Beams’ theory, the dynamic loading imposed on the shaft 

is found from differentiating Mx, (but noting that 0)( x
dx

dr
 and  lx

dx

dr
)(  are 

constant with respect to x), so that: 

Dynamic Loading    =    0
2

2


dx

Mxd
 

 
Considering Forces on the shaft: 
 
At any point, x, along the shaft, the eccentricity can be expressed as, ex, 
where, H, denotes the Heaviside Function. 
 

 )()(. fxHaxHeex   

Then the CF acting on any elemental section δx is: 

)(2

x
s erx

M
CF  


 

Hence, dynamic loading, at length x is: 

)(2

x
s er

M

x

CF
 

    
 

 
Considering the Combined Assembly: 

Total Dynamic Loading  =  0)(2  x
s er

M



   

                                        =    )()(.22 fxHaxHe
M

r
M ss  


          

(4.13)
 

However, from beam theory, the dynamic loading =  
4

4

dx

rd
EI ,  

therefore:       )()(.22

4

4

fxHaxHe
M

r
M

dx

rd
EI ss  


 

 

Applying Laplace Transforms, (where  ê  = exponential value, e), gives:  

)
ˆˆ

.()( 22

321

2

0

34

s

e

s

e
e

M
r

M
rsrrsrsrsEI

fsas

ss



 


 

 

At    x = 0:      0r  = 0,     and using:   
EI

M
b s



2
4 


 
(2.17)    from chapter 2, 
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gives:  321

2444 ..)
ˆˆ

.().( rrsrs
s

e

s

e
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At x = 0, Bending Moment =  

202

2

01

0

0101 ..).(. rIE
dx

rd
IEB

dx

dr
AM x

x
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and by substitution     

3
01101

1

2444 )
.

.
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ˆˆ
.().( r

IE
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e
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e
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Let            
IE

BrA
A

.

. 01101

1


    ,       (4.14)         and       32 rA   ,           (4.15)    

 

Then        
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Expanding using Partial Fractions, as per Uniform Eccentricity Theory gives: 
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Collating denominator similar terms, and putting: 
 

2
1

2b

A
P  ,                                 (4.16)              2

2
1 2

.
2

1
b

A
rQ  ,            (4.17) 

 
 

3
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444 b

A
b

r
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A
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2

1
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A
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A
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Gives:  
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It is convenient to split this equation into terms with and without Heaviside 
functions such that: 

                                            21 RRr                                                          (4.20) 

where      
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Considering 1R  and performing a reverse Laplace Operation gives: 

)(.ˆ.
4

ˆ.
4

)(cos.
2

)()(

1 axHe
e

e
e

axb
e

eR axbaxb 







 

 

)(.ˆ.
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)()( fxHe
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e
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e

e fxbfxb 







   

 

And since generally,  zHzGeNeM zz sinhcoshˆˆ 
 , for any value of z, 

where: 
 

2

e
NMG        and        0 MNH      substituting in  1R  gives: 

)(.)(cosh.
2

)(cos.
2

1 axHaxb
e

axb
e

eR 







  

)(.)(cosh.
2
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                                      (4.21) 

 
 

In order to determine the end conditions at x =  , let 1R  and its 

corresponding differentials be: 

)(.)(cosh.
2

)(cos.
2

1 aHab
e
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eR l 
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                                 (4.23) 
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                            (4.24) 
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                                    (4.25) 

 
NOTE, the 1st part of (4.20), together with its end conditions at x =  , has 
now been determined. 

Now, considering 2R  and performing a reverse Laplace Operation gives: 

bxbx eNeMbx
b

Q
bxPR ˆ.ˆ.sin.cos.2  

                                                  (4.26) 

But,  021  RRr , at x =  , therefore:  

 bb

l eNeMb
b

Q
bPR ˆ.ˆ.sin.cos.0 1  

                                        (4.27) 

 
Also, at x =  , 

 bb

l eNbeMbb
b
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bbPbR

IE

M

dx

rd
ˆ.ˆ.sin.cos.

.

2222

1
02

2

2

 
 

 




bbl eNeMb
b

Q
bP

b

R

IEb

M
ˆ.ˆ.sin.cos.

. 2

1

2

02  
                       (4.28) 

 
Adding and Subtracting (4.27) and (4.28) gives: 
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giving        
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Substituting  (4.30) in  (4.26) gives: 
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As previously shown in chapter 2, (2.30) and (2.31), converting into 
hyperbolic functions gives: 
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   (4.31) 
 
NOTE: This is the general equation for the shaft deflection, at any position 
x and the unknown parameters will be determined as follows. 
 

From (4.18), (4.19) and (4.16):               P
b

A
NMG 

2

1

2
                  (4.32) 

 

 and        3
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22 b

A
b

r
MNH                                                               (4.33) 

 
By re-arranging (4.29) and using the above hyperbolic conversion:     
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Substituting for G from (30) and solving for H gives: 
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From (9) and by differentiating (4.31) at x =  : 
 

02

0202

A

BM

dx

dr

lx














 

 



 

105 

 








 b

b

b

RR
bP

IEb

M

bbPbR

ll

cos.
sin

22
cos.

..2sin.
2

11

2

02

1




















  

 

  bbHbbG coshsinh   
 

Substituting:   zz 22 sin1cos   and substituting G and H from (4.32) 
and (4.34) gives: 
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Substituting:   zz 22 sinh1cosh   and grouping 02M  terms gives: 
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Simplifying by letting:   543213 .. CPCCPCCA   
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where: 
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426 CCC            (4.40),                   5317 CCCC                                (4.41) 
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By differentiating (4.31) and noting that 01 R  at x = 0  
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                      (4.44) 

 
Combining (4.14) and (4.16) and re-arranging gives: 
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Simplifying by letting:   765402321 .... DPDDPDMDDPD          (4.45) 
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                          (4.55) 

Equating (4.43) and (4.55) gives:            98

4

76 .
.

DDP
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and hence:      
846
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                                                                      (4.56) 

 
Therefore, all the unknown parameters P, M02, G and H, required to 

calculate the shaft deflection, for any position x, from equation (4.31), can 

now be determined from (4.56), (4.55), (4.32) and (4.34). 
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To determine the Reaction Loads, from beam theory, the vertical shear 

force within the beam caused by bending is given by:   
3

3

dx

rd
EISFv    

At x = 0, from (4.33) and (4.15),          31
3 2)

2
( b

b
r

Hr                          (4.57) 

and at x =  , by differentiating (4.31)  
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                                                 bHbbGb coshsinh 33                            (4.58)    

which is solvable knowing 

1R   from (4.25). 

Finally, the total reaction force applied to the supports equals internal shear 

force + external spring force applied by the Compensating Balance Sleeve.  

 

At x = 0:                  1131 ...Re YKrIE                                                (4.59) 

and at x =  ,            222 ...Re YKrIE  
                                                    (4.60)      

(note: shear force is –ve at RHS). 

 

The system is now fully determined and numerical analysis is possible by 

inserting the above equations into a suitable analytical computer 

programme. 

 

 

4.3 Eliminating/ Nullifying the Impact of the 1st Critical Speed 

From (4.31): 
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it can be seen that shaft displacement, r, becomes infinite, thereby 

identifying the critical speeds, when 0sin b , i.e. when b ,  2 , 3  

etc., thereby defining the first critical frequency as 
M

EI
crit

.
)( 2 




  .   

To avoid the singularity, the 3rd term numerator can also be made equal to 

zero, at b , by substitution of P, (4.16), A1, (4.14) and M01, (4.5) to give: 
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and, through the application of trigonometric substitution:     
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At,   b ,      kebfba
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By defining a Concentrated Imbalance Coefficient as: 
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                    (4.63) 

 

and substituting into (4.61) gives:       0.
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therefore  

  

M01 +M02 = -e.k.2b2.E.I = -2.k. b2.E.I.e( )                       (4.64) 
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This equation provides the requirements for balance sleeve compensation 

to enable elimination, (more exactly, move to a higher speed), of the 1st 

critical frequency of a simply supported shaft with concentrated imbalance. 

 

In the case of uniform eccentricity, chapter 2, the requirement for “classical” 

critical speed elimination, (corresponding to b ), determined that both 

balancing sleeve moments are 

  

Mo = b2.EI.e.  Comparing with the case for 

concentrated imbalance, the requirement is seen to be a fixed portion of the 

same equation since the Concentrated Imbalance Coefficient, k will be a 

constant for given values of  a and  f, as also shown graphically in Figure 

4.4. 

 

It is also seen that k is an absolute maximum when 0a  and f , giving 

1k , i.e. the condition of uniform eccentricity.  Under such conditions, 

from (4.64): 

MoeEIbMM .2...2 2

0201  , thereby providing a direct correlation 

between the analysis for concentrated imbalance and that for uniform 

eccentricity. 

 

 
 
Figure 4.4, Zone of concentrated imbalance 
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It is notable from (4.64), that for balancing operations, it is only necessary 

to estimate the product of the equivalent eccentricity, e, and the 

concentrated imbalance coefficient, k, (other parameters being known from 

detail design). This can be regarded simply as an equivalent level of uniform 

eccentricity and is therefore linearly proportional to the shaft end reaction 

loads at any given speed. Hence, it is readily determined from either low 

speed balancing data or site vibration information, and detailed knowledge 

of individual magnitudes or axial positions of imbalances is not needed. 

 

4.4 Encastre Simulation 

Double encastre mounting, i.e. fixed at both shaft ends, constrains whirling 

motion of the shaft via the application of fixing moments, Mf1 and Mf2 

imparted from bearing casings to the ends of the shaft, of sufficient 

magnitude to maintain shaft-end slopes equal to zero at all operating 

speeds.  The natural frequency then increases by a factor of ~2¼ times that 

of the equivalent simply supported case [60]. Similarly, single encastre 

mounting only fixes one end of the shaft with the other remaining simply 

supported, but in this case the natural frequency is increased by a factor of 

~1½.  

 

The chapter 3 study of a balance sleeve using uniform eccentricity showed 

that a very good state of balance can be achieved by making the balance 

sleeve moments as close as possible to the fixing moments, for all operating 

speeds, but particularly those close to the critical speed. Points of encastre 

conversion are then produced where exact ‘moment equalisation’ occurs. It 

is concluded in that the process of critical speed elimination of a simply 

supported shaft constitutes a conversion process at this speed, to an 

encastre shaft, with a much higher natural frequency. Although this is only 

theoretically possible due to the critical frequency being irrational, it is 

apparent that the closer the replication of the balancing moments are to the 

fixing moments (the more accurate the encastre approximation), the better 

the resulting state of balance. 
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To confirm that these conditions also apply to the more generalised case of 

a single concentrated imbalance, equivalent double and single encastre 

shafts have been analysed. By applying a similar analytical methodology to 

that used in chapter 3, but with boundary conditions set such that the shaft 

end slope or bending moment is zero, for appropriate encastre or simply 

supported ends, the equation for shaft deflection becomes: 

)sinh.(sin)cosh.(cos1 bxbx
b

Q
bxbxPRr e

ee                   (4.65) 

for both double and single encastre cases, where the suffix e denotes the 

encastre condition, 
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The double- and single-encastre denominators of eP  and eQ , become zero 

and represent the 1st critical speed of the system as r ∞, when 73.4b  

radians and 93.3b  radians, respectively. Comparing these results with 

the simply supported case, the critical speeds are correspondingly 2.27 and 

1.56 times greater.   
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Further analysis gives the corresponding fixing moments as: 

IEPbM ef ...2 2

1   ,         )sin...2cos..2..(. 2

1

2

12  bQbbPbRbRIEM eellf  ,     

for double encastre, and 

IEPbM ef ...2 2

1   ,          02 fM ,   for single encastre mounting                (4.68) 

 

Notably, for a speed corresponding to b , the sum of the fixing moment 

reduces to: 

 IEbkeMM ff ..2.. 2

21  ,    for both cases                                  (4.69)  

which is identical to the moment requirement for elimination of the simply 

supported system, given by (4.64).  Hence, moment equalisation occurs 

producing encastre conversion and the critical speed is theoretically 

eliminated. This is illustrated graphically in Figure 4.5 through use of a case 

study of both sets of moments, (set close to optimum balance 

compensation), using the site equivalent parameter values, shown in Table 

4.1, for a Siemens sub-15MW gas turbine compressor.  Note, for 

comparison purposes, these are slightly modified versions of the 

parameters given in Table 2.1, chapter 2, to take account of the change 

from uniform eccentricity to a single concentrated eccentric zone. It can be 

seen that the characteristic curves intersect at the classical critical speed, 

(11,902 rpm, given by b ) and that only a small moment spike is evident 

in the vicinity. 

 

From beam theory, the encastre shaft end reaction loads are given by: 

31 ..Re ee rIE       where   
2

3 ..2 bQr ee   

and   

ee rIE ..Re 2   ,  (shear force –ve at RHS) 

where         bbQbbbPbRr eele sinhcos..coshsin... 23

1   
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                  * Unless otherwise stated 

 
 

Table 4.1. Parameter values used for numerical studies 
 

 

 

Figure 4.5. Fixing and balancing moments vs speed, with maximum 

compensation. 

Site Equivalent Model Parameter Values 
 

sM = 38.312 kg   = 1.707 m 

1m = 0. 9 kg 2m  = 0. 9 kg 

e = 0.005804 m I = 1.468x10^-5 m^4 

1c  = 0.005656 m 2c  = 0.001592 m 

K1,2 = 3.4ˣ10^6 N/m * 
E = 207 ˣ 10^9 N/m^2 

L1,2 = 0.130 m * a = 0.350  m * 

f = 0.400  m * 
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4.5 Compensated critical speed nullification 

Considering the case of uniform eccentricity analysed in chapter 2, the 

critical frequency is always eliminated by any balancing moment and is 

replaced by a compensated critical frequency.  This is also the case for 

concentrated imbalance loading considered here.  By way of example, 

consider the close up of a number of different balancing moments versus 

speed, shown in Figure 4.6, using parameters given in Table 4.1, whereby:   

a) Series 1 shows  0201 MM   vs. speed, generated using equal sleeve 

lengths and stiffness’, L = 0.130 m and stiffness’, K = 3.4×106 N/m.  

b) Series 2 shows  0201 MM   vs. speed, generated using equal sleeve 

lengths and stiffness’, L = 0.206 m and stiffness’, K = 3.4×106 N/m. 

c) Series 3 shows the moment required for elimination given by (4.64), i.e. 

eEIbk ....2 2  vs. speed. 

d) Series 4 shows the equivalent double encastre moments, 21 ff MM   vs. 

speed. (note: for clarity, the single encastre case, 21 ff MM  vs. speed is 

not included, but actually passes between series’ 2 and 4). 

 

 
 
Figure 4.6, Close-up of a number of balancing moments vs. speed 
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Notably, the point of convergence coincides with the classical critical 

frequency, hence inducing elimination.  However, as evident from the peaks 

of series 1 and 2, a compensated critical frequency is produced that is 

always very close to the classical critical frequency and therefore, as in the 

case of uniform eccentricity, the magnitude of the elimination moment, 

defined in equation (4.64), is very close to the value required for complete 

elimination. Hence, from a practical perspective this value can be used for 

design purposes, with small trim adjustments being made at site during 

commissioning, if required. It is also noted that complete critical speed 

elimination, or transfer to a higher level, is only possible in theory, due to 

the practically un-achievable requirement for exactly satisfying (4.64).  In 

practice therefore, the critical speed will only be nullified. 

 

 

4.6 Practical implications 

From (4.64), it is the sum of the two balancing moments 01M  and 02M  that 

determine the condition for critical speed elimination, and the position/length 

of the concentrated imbalance zone only affects the magnitude of this sum, 

by varying the Concentrated Imbalance Coefficient, k, (4.63).  This can be 

seen by considering two extreme conditions:  

i) using the same parameters as in the previous example, but with sleeve 

compensation at the LHS set to give near elimination of the critical speed, 

and with  sleeve compensation at the RHS set to zero, such that: 

 eIEbkM .....2 2

01         and     002 M , i.e. replicating LHS, single 

encastre shaft.  The reaction loads and compensating moments versus 

speed, are shown in Figure 4.7. 

ii) Similarly, but with compensation reversed to give: 

001 M   and     eIEbkM .....2 2

02  , the reaction loads and 

compensating moments are shown in Figure 4.8, replicating a RHS, single 

encastre shaft. 
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Figure 4.7, Reaction loads and moments with compensation at LHS only 
 
 

Hence, near elimination of the critical speed can be achieved using a single 

compensating balance sleeve fitted at either end.  This provides important 

insight into the characteristics imparted by the compensating sleeve—it 

facilitates increased design flexibility and enables a reduction in the size and 

cost of components.  

 
   Figure 4.8, Reaction loads and moments with compensation at RHS only 
 

From a practical perspective, it may still be beneficial to incorporate two 

balancing sleeves in some instances in order to maintain sensible size and 

masses, but there remain advantages to be gained from requiring only fine 

adjustments to be made at one end, of say, a coupling shaft.  This benefits 

commissioning as access and adjustment time is reduced, especially where 
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applications require a firewall between the prime mover and driven units 

with separate coupling guard assemblies on either side (which would 

normally require removal and subsequent re-assembly).  

 

4.7 Additional Elimination/ Nullification of the 2nd Critical 

Speed 

It is well known that a uniform shaft operating near its 2nd critical speed can 

be analysed simply as two half-length shafts, connected in series, and 

operating independently at their 1st critical speeds [62]. Due to symmetry, 

this is readily confirmed from the earlier assertions that shaft deflection 

becomes (theoretically) infinite when b ,  2 , 3   etc. thereby defining 

the critical speeds. Since the 1st critical speed of the half shaft is defined by 

the condition 1b , and the 2nd of the full shaft by:  22 b , then 

12 .2   , i.e. the node point is positioned in the middle of the shaft.  

However, since it has been shown that the 1st critical speed of the half shaft 

can be theoretically eliminated by a single compensating sleeve then it 

similarly follows that the full shaft 2nd critical speed can be eliminated by 

applying this condition to both half shafts, as shown in Figure 4.9.  

 
Figure 4.9, Diagrammatic representation of  2nd critical speed balancing 
 

Clearly, each half shaft could be balanced using two compensating sleeves, 

if preferred, thereby requiring a 3rd and 4th balancing sleeve either side of 

the full-shaft node point, at the expense of a small increase in the mass at 

this point. These could be readily trim-balanced since the shaft deflection at 
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this point is zero. Therefore, theoretical elimination, i.e. practical nullification 

of the 2nd critical speed, is evidently possible.  

 

For uniform shafts, the analysis can be applied to higher critical speeds due 

to the symmetry of each section of shaft between the nodes. In most 

practical circumstances, however, shafts that are not uniform require more 

complex analysis that is better performed numerically (by FEA for instance).  

Nevertheless, this simple representation highlights the potential of the 

proposed system to improve balance for higher order critical speeds. 

 

4.8 General Imbalance Distribution 

The system has been fully analysed for the case of a single concentrated 

imbalance and by the theory of superposition, the generalised case of any 

imbalance distribution, consisting of a number of concentrated imbalances 

of varying magnitude, position and angular placement along the shaft, is 

possible. This can be achieved by simple vector summation of the individual 

forces and deflections, in the vertical and horizontal planes (under the 

proviso that the shaft deflections remain small and the material is operating 

within the linear portion of its stress/ strain curve).  For example, total 

reaction loads for a sum of, N, imbalances, in any given plane, is given by:  

 

                                          



N

n

ntotal

1

),2,1(),2,1( ReRe                                  (4.70)  

where n is the imbalance index number.   
                   
The same summation can be applied to determine any of the other system 

variables: radial deflection, balance sleeve moment, etc. In addition, 

individual conditions determined for elimination of critical speeds can also 

be summed to give the overall condition for elimination of the total 

imbalance distribution. 
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4.9 Analytical Results: site equivalent model with a single 

offset imbalance 

For comparison with chapters 2 and 3, (specific case studies into shafts with 

uniform eccentricity), similar numerical examples of concentrated 

imbalance loading are now presented, compiled using similar parameter 

values, as per Table 4.1. The concentrated zone of imbalance is arbitrarily 

chosen to provide offset loading by making, a = 0.350 m and f = 0.400 m.   

 

Figures 4.10 and 4.11 graphically show comparative results from the 

numerical calculations, for reaction loads and shaft mid-point deflection. In 

both cases the trim balance masses are set to give low speed balance, 

resulting in differing trim balance eccentricities, 1c  and 2c , due to the offset 

nature of shaft imbalance.  Figures 4.10, (a) and (b) show shaft end reaction 

loads, 1Re  and 2Re , versus speed, for three conditions of balance: firstly, 

without any balance sleeve compensation, i.e. both sleeves modelled as 

zero length and with extremely high stiffness’, K = 3.4×1016  N/m. Then, for 

two compensated cases with sleeves stiffness’, K = 3.4×106 N/m, and a), 

equal length sleeves, L = 0.130 m and b), equal length sleeves, L = 0.206 

m, to give near maximum compensation with double encastre replication.  
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Figure 4.10(a), Reaction load, Re1 vs. speed with & without balance sleeve 

compensation 

 

Figure 4.10(b), Reaction load, Re2 vs. speed with & without balance sleeve 

compensation 
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Similarly, for the same conditions, Figure 4.11 shows the shaft mid-point 

deflection versus speed.  It can be seen from the results that the system of 

balancing sleeve compensation is as equally effective for shafts with 

concentrated imbalance, as per the previous uniform eccentricity cases 

shown in chapter 2. 1Re  and 2Re  reaction loads are shown to have been 

reduced from an un-compensated, 11,130 N and 11,110 N to maximum 

compensated, 570 N and 140 N, respectively and the shaft mid-point 

deflection has been similarly reduced from 0.75 mm to 0.1 mm, at 10,500 

rpm. The evident non-symmetry is a consequence of the offset imbalance 

loading applied to the shaft.  

 

It is notable that the critical speed has reduced slightly as the compensation 

is applied. This is in line with the previous chapter 2 and 3 analysis of 

uniform eccentricity which shows that the classical critical speed is always 

eliminated, but is replaced by a compensated critical speed. 

 

 
 

Figure 4.11, Mid-point deflection vs. speed with & without balance sleeve 
compensation 
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4.10 Preliminary Conclusions 

Chapter 4 extends the special case study – analysis of uniform eccentricity 

given in chapters 2 and 3, - to demonstrate the suitability of the new 

methodology for the generalised condition of shaft loading with a single 

concentrated imbalance. By extension, it is shown that the principle of 

superposition allows for more practical imbalance distributions to be 

analysed by the process of vector addition of any number of individual 

concentrated imbalances, of various magnitude/ position. Further, the 

analysis reveals that a series of concentrated imbalances can be regarded 

simply as an equivalent level of uniform eccentricity, hence the previous 

conclusions developed in chapters 2 and 3 apply equally to this generalised 

case of imbalance loading. 

 

The study shows that the nullification of critical speeds is dependent not on 

individual discrete values of the balancing moments applied by the 

balancing sleeves, but on the sum of those moments; the position or size of 

the imbalance only determining the required magnitude of the sum. Hence, 

nullification can be achieved by the use of a single compensating balance 

sleeve fitted at either end of the shaft, thereby replicating a single encastre 

shaft. Alternatively, it is only necessary to make balance corrections at one 

end, thereby reducing commissioning and site maintenance times.  

 

It is also illustrated that by extending this concept to counter the mode shape 

of the 2nd critical speed, that nullification of this, and to a lesser extent 

higher orders, is possible. 

 

In addition, the system also enables balance corrections to be made at more 

accessible positions, closer to the shaft ends, as opposed to the usual 

inboard positions where higher masses are located; thereby making it useful 

to those industries where maintenance is difficult or even dangerous, as in 

some nuclear installations. This will be further enhanced if, as envisaged, 

future designs will allow for remote adjustment of the balancing moment.   



 

124 

 

Chapter 5 

This chapter introduces a Shear Force Reaction ratio which determines the 

effective reduction in the equivalent level of residual eccentricity in a shaft 

when subjected to maximum balance sleeve compensation. It also 

investigates the possible benefits of applying compensation to higher order 

critical speeds by the definition/ determination of a Simulation Ratio. 

  

5.1  Shaft end Reaction Loads 

Previous analysis presented in chapters 2 and 3, of plain, simply supported 

and encastre mounted shafts with uniform eccentricity, derived the following 

equations for shaft end reaction loads. 

5.1.1  Simply Supported Shafts 

In the case of simply supported shafts, with balance sleeve compensation, 

from chapter 2, equation (2.41), the shaft end reaction force was shown to 

be the sum of internal shear force and the external spring force applied by 

the compensating balance sleeve, giving:  

KYEIrss  3Re_ , where shaft derivatives at 0x  were defined by   
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where the following parameters are defined as: 
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Also, the balancing sleeve moment was defined by: B
dx

dr
AM

x











0

0 .        

(2.9). 

However, for a shaft with zero balance correction, i.e. just a plain shaft with 

uniform eccentricity but without balance sleeves, then  A, 1A ,  B, K, Y  and   

0M  are all zero, so that: 
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hence the shaft end reaction load consists of internal shear only:     
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5.1.2  Encastre Mounted Shafts 

Similarly for the case of encastre mounted shafts the dynamic analysis 

provided in chapter 3 produced the following parameter equations (3.9) and 

(3.8): 
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and from (3.10b), shaft end reaction load,    3Re_ EIren    (3.10a),  

where, Jbr 3

3 .2    

Note, in this case the reaction load consists solely of the shaft’s internal 

shear force. 

By defining         bbT cosh.cos1     and       bbS coshcos   

and making Pe and J substitutions, gives:  
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Figure 5.1, Reaction Load, (shear Force only), versus non-dimensional 
speed 
 
The encastre and simply supported reaction loads, (shear force only since 

there is zero balance correction), versus non-dimensional speeds are 

shown in Figure 5.1, using the same parameter values given in chapter 2, 

Table 2.1. It can be seen, that for the encastre shaft, the reaction load is 

considerably reduced, especially close to the critical speed.  
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5.2  Shear Force Reaction Ratio 

It is apparent that a good indication of the possible benefits of encastre 

simulation can be obtained by considering the ratio of the two reaction loads 

for both mounting conditions; hence, by defining: 

Shear Force Reaction Ratio,  𝑅𝑅 =
𝑆.𝑆.𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒

𝐸𝑛𝑐𝑎𝑠𝑡𝑟𝑒 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒
 

gives,  
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  (5.3) 

 

A graphical representation of (5.3) is given in Figure 5.2, which shows the 

reaction ratio, RR, versus non-dimensional speed, crit / between 0.5 and 

1.0. Notably the ratio increases as the non-dimensional speed approaches 

unity, indicating the positive benefit of shaft balancing by encastre 

simulation, since the methodology of balance sleeve compensation 

becomes more effective at the operating regions where the intensity of shaft 

imbalance is normally most severe. 
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Figure 5.2, Reaction Ratio, RR, versus non-dimensional speed 
 

It is also notable that eccentricity terms cancel so that the Reaction Ratio is 

independent of the level of residual eccentricity present in the shaft. Since 

RR is inversely proportional to reaction load reduction, and also noting that 

reaction load is directly proportional to eccentricity, then it follows that this 

ratio is an indication of the effective, or equivalent level of reduction in shaft 

eccentricity possible under conditions of encastre simulation/maximum 

compensation.  

 

 

5.3  Applicability of the Shear Force Reaction Ratio 

 

5.3.1  Plain Shafts with Concentrated Imbalances 

The reaction ratio, RR, although resulting from the analysis of shafts with 

uniform eccentricity, is also typical of shafts with any number of 

concentrated imbalances, as it was shown in Chapter 3 that such cases can 
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be regarded as an equivalent level of the uniform eccentricity. The following 

section now provides further evidence to support this conclusion. 

Re-arranging the previous simply supported equation, (5.1), for the 

differential term, 3r , for uniform eccentricity, gives:  








 













b

b

b

b
ebunr

sinh.2

cosh1

sin.2

cos1
._ 3

3                                                             (5.4) 

Similarly, for a single concentrated shaft imbalance, the previous analysis 

of chapter 4, produced equation (4.57), which is written as:  
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Also from chapter 4, (4.34), with zero balance correction making 01M , 02M , 

1A , and  P, all equal to zero, gives: 
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From chapter 4, (4.22), for positive )( a   and  )( f : 

 )(cosh)(cosh)(cos)(cos.
2

1 fbabfbab
e

R l       (5.7) 

Considering the hyperbolic terms only and applying trigonometric 

substitution: 

)sinh(.sinh)cosh(.cosh)(cosh)(cosh abbabbfbab           

                                                          )sinh(.sinh)cosh(.cosh fbbfbb    

                                          )cosh()cosh(.cosh fbabb    

                                          )sinh()sinh(.sinh fbabb    
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For operating speeds approaching critical, i.e. 2b ,  bb sinhcosh  , 

and making further trigonometric substitution gives:  

                   )sinh()sinh()cosh()cosh(.cosh fbabfbabb      (5.8) 

Substituting  abfb and expanding gives: 

              sinh.sinhcosh.cosh)cosh( ababfb  

and       ababfb cosh.sinhcosh.sinh)sinh(   

For a concentrated imbalance where )( ba  is relatively small, 0 , 

hence, these terms can be reduced to: 

abfb cosh)cosh(     and     abfb sinh)sinh(   

Substituting in (5.8) then gives: 

 ababababbfbab sinhsinhcoshcosh.cosh)(cosh)(cosh  

 

Hence, 0)(cosh)(cosh  fbab   

and substituting for the hyperbolic terms in (5.7) gives:  

  kefbab
e

R l .)(cos)(cos.
2

1    

since from chapter 4, (4.61a), for  b ,  

  kefbab .)(cos)(cos    

Substituting in (5.6) then gives:       0
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In order to compare the two differential terms, 3r , for the cases of uniform 

eccentricity and concentrated imbalance, Figure 5.3 shows a plot of the 

bracket terms of equations (5.4) and (5.9) and it can be seen that they are 

approximately equal for non-dimensional operating speeds between 0.5 
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and 1.0, (based on chapter 2, Table 2 parameters, with a = 0.35 and b = 

0.40 m, but note, this equality is independent of shaft imbalance terms, a, b 

and eccentricity.  

          

 

Figure 5.3, 3r  Bracket Terms versus non-dimensional speed  

 
Therefore, the bracketed term of (5.9) can be replaced by the bracketed 

term of (5.4), giving:  
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Hence, it is apparent that the case of concentrated imbalance loading can 

be regarded simply as a reduced case of uniform eccentricity. Although only 

providing a first degree of approximation, its value is supported by 

comparing the reaction force of the case with concentrated imbalance 



 

132 

 

against a case of uniform eccentricity with a constant reduction, k, (near 

elimination), as shown in Figure 5.4. Hence, the conclusions and indicative 

value of the reaction ratio, RR, shown in Figure 5.2, obtained from the 

simplified analysis, are also valuable for the more generalised case of any 

number of concentrated shaft imbalances.  

 

 

Figure 5.4, Comparison of concentrated imbalance and k times reduction 
in uniform eccentricity  
 

5.3.2  Shaft Mounted Discs 

To assess the effectiveness of the reaction ratio, RR, as an indicator of the 

benefits to be gained from encastre simulation, for shaft mounted discs, it is 

necessary to investigate the variation in shaft bending stiffness between 

shafts that have either encastre or simply supported, end mountings. 

Applying standard bending theory of beams to the shaft schematics shown 

in Figure 5.5, the equations for the deflection of a beam under a load, W, 

are as follows. 

For simply supported mounting, 
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 y_ss is the beam deflection under the load W,  and the beam length is 

ba  . 

Similarly for encastre mounting, 
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y_en  is the beam deflection under the load W.  

 

 

Figure 5.5, Shaft mounting schematics 
 
In each of the cases the shaft stiffness, K, at load position, a, is given,  

by 
y

W
K  ,                                                                                                     (5.13) 

and the Ratio of Shaft Stiffness, encastre to simply supported,  

ssK

enK
stiffR

_

_
_      becomes:   

eny

ssy
stiffR

_

_
_                                    (5.14) 

as shown plotted against the non-dimensional disc position, /a , in Figure 

5.6. It can be seen that the stiffness ratio varies between a minimum of 4.0 

and 11.11 over the central 80% of the shaft length, i.e. between 10% and 
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90% of its length and notably this is the portion of the shaft where the 

majority of discs are mounted, since bearings, seals and hubs etc. are 

usually positioned at the shaft ends.  

 

Figure 5.6, Shaft stiffness ratio versus non-dimensional disc position  
 
For a single disc mounted on a plain, massless shaft, as in the Jeffcott rotor 

illustration shown in Figure 5.7, the following general equations for 

centrifugal force, CF, and disc displacement, r, are applicable.  

Generally,  ).(.. 2 erMrKCF   ,   giving:   2
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Since the disc mass and its eccentricity are common to both mounting 

arrangements for this comparison, the ratio of centrifugal forces becomes: 

enK
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._

._

_

_
2
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 . 

 

Figure 5.7, Jeffcott Rotor - Disc mounted shaft  
 

 

Figure 5.8, Ratio of centrifugal forces versus non-dimensional speed 
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However,  
ssK
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_

_
_          and for a Jeffcott rotor:    
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By substitution:           
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Then, defining the speed ratio as:  
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enCF

ssCF
cfR                           (5.17) 

and this is shown plotted against non-dimensional speed in Figure 5.8 for 

the two extreme stiffness ratios of 4.0 and 11.11.  

 

Since the CF’s are proportional to their respective shaft end reaction loads, 

the ratio of CF’s is equivalent to, and by comparison with Figure 5.2 

approximately equal to, the shear force reaction ratio, RR. Using 

superposition, the RR is also applicable to any number of discs mounted on 

a shaft. Hence, for practical purposes, all multi-disc shafts – where the discs 

are mounted within the central 80% of shaft length, the conclusions and 

indicative value of the reaction ratio, RR, obtained from the simplified 

uniform eccentricity analysis to derive Figure 5.2, are also applicable to 

many systems that have shaft mounted discs. 

 

5.4  Balancing Sleeve design 

To provide a good encastre simulation and reduction in reaction loads, the 

compensating balancing sleeves must be designed appropriately for the 

elimination/ nullification of the compensated critical speed, as given in 

Chapter 3, which produced the following parametric equations:  

L
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            (3.21a)  
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      (3.23),       where  IEbeD ... 2    (3.22). 

Equation (3.21a) determines that the sleeve eccentricity, c, must be 

proportional to the shaft eccentricity, e. Therefore, by studying equation 

(3.23) for sleeve stiffness, K, it is apparent that since each term is 

proportional to the shaft eccentricity, e, hence, it follows that K is 

independent of e. This means that the sleeve design can be carried out 

without any prior knowledge of the residual imbalance of the shaft, 

(magnitude of eccentricity or position), based solely on the shaft’s physical 

parameters and its critical speed. The designer is then free to decide on the 

required sleeve parameters, limited only by a pre-decided maximum shaft 

eccentricity limit, in order to evaluate the maximum sleeve displacement and 

associated bending stress.  

 

To obtain encastre simulation it is necessary to achieve near moment 

equalisation between the balancing moments and the encastre fixing 

moments. This requires a means of obtaining fine adjustment of the 

balancing sleeve moment which can be readily achieved by either varying 

the magnitude of its balancing mass or its positional length or a combination. 

It is therefore possible to envisage many different detail designs to satisfy a 

specific requirement.  

 

For illustration purposes, the required sleeve length versus stiffness 

resulting from the above equations is shown graphically in Figure 5.9, based 

on Chapter 3 parameter values for uniform eccentricity—Notably 1) 

represents the length and stiffness values used to obtain maximum 

compensation, 2) provides a suggested minimum sleeve length to prevent 

possible interaction between the sleeve and shaft critical speeds, and 3) 

represents a mechanism having radial stiffness but no length, allowing sole 

compensation of the reaction since the balancing moment would be zero 

and the shaft deflection would not be reduced. 
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Figure 5.9, Sleeve Length versus Sleeve Stiffness 
 

 

5.5 Effect of Double Encastre Mounting on Higher Order 

Critical Speeds 

 

The previous account given in Chapter 4 of plain, simply supported and 

encastre mounted shafts loaded with a single concentrated imbalance, 

showed that it is the sum of the balancing moments that determined the 

point of conversion from simply supported shaft to encastre mounted 

replication. Hence, it follows that single ended, encastre replication can be 

achieved by employing only one balancing sleeve, and further, the 2nd mode 

of excitation can be compensated using two end-mounted balancing 

sleeves. It is therefore plausible that an extension of such arrangements 

can have a beneficial impact on higher critical speeds.  

 

The analysis determined that for double encastre mounted shafts the 

deflection was given by: 
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Also, the parameters, eP  and eQ  produce infinite shaft deflections when their 

denominator equates to zero, hence critical speeds are determined when:

0cosh.cos1   bb . 

 

To investigate the impact on higher order critical speeds, a graphical 

solution to the aforementioned equation is given in Figure 5.10, using 

parameter values given in Table 2.1. 

  

 

Figure 5.10, Graphical determination of Critical Values of bl. 
 
Critical values of bl are identified at the zero intercepts and the 

corresponding encastre critical speeds are shown below (Table 5.1). 

 

Empirical examples of the mode shapes for the first four critical speeds are 

shown in Figure 5.11 and it is noted that the zero slope at both ends of the 
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shaft, resulting from encastre mounting, is clearly visible, (note: these are 

based on examples of offset concentrated shaft imbalance analysed 

previously in Chapter 4, without trim balance correction, for speeds close to 

the corresponding critical).  

 

Order bl Critical Speed 

rpm 

1st 4.7005 26,980 

2nd 7.8543 74,390 

3rd 10.9957 145,800 

4th 14.138 241,000 

 
Table 5.1, Encastre Critical Speeds 
 
 

 

Figure 5.11, Examples of Encastre Empirical Mode Shapes 
 
 
This is as a result of the fixing moments, reacting against the bearing 

casings onto the rotating shaft, and it is these fixing moments, replicated by 

the balancing moments during compensation, that raises the bending 
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stiffness of the shaft and thereby increases its critical speeds, above those 

of an equivalent, simply supported shaft.  

 

 

 

5.6  Simulation Ratio 

For comparison purposes, previous analysis of equivalent simply supported 

shafts, chapter 2, section 2.4, based on Table 2.1 parameter values, 

produced the following critical speeds, shown in Table 5.2. 

 

Noting that for a simple spring-mass system, stiffness is proportional to 

natural frequency squared, then by defining: 

Simulation Ratio,   𝑆𝑅 = (
𝐸𝑛𝑐𝑎𝑠𝑡𝑟𝑒 𝐶𝑟𝑖𝑡 𝑆𝑝𝑒𝑒𝑑

𝑆.𝑆.𝐶𝑟𝑖𝑡 𝑆𝑝𝑒𝑒𝑑
)

2
. 

It can be seen that this ratio, as shown in Table 5.3, reduces as the critical 

speed increases, since each additional undulation of the mode shape 

reduces the influence of the fixing moments, i.e. it is only the end 

undulations that are effectively single encastre mounted, whereas the 

remaining undulations are simply supported, since they are not restrained 

by fixing moments.  

 

Order bl Critical Speed 

rpm 

1st π 11,900 

2nd 2π 47,610 

3rd 3π 107,100 

4th 4π 190,400 

 
Table 5.2, Simply Supported Critical Speeds 
 

Therefore, the SR ratio gives an indication of the overall stiffening effect of 

the fixing moments on a full shaft assembly and by analogy the possible 

benefits to be gained by encastre simulation, provided the balancing sleeve 
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moments are optimised to give near elimination of the simply supported 

critical speed. 

 
It is notable that the benefit of encastre simulation also depends on the zone 

of the required operating speed, since to gain maximum effect, the zone 

needs to be close to a simply supported critical speed, but sufficiently away 

from an encastre critical speed. Further, since the simulation ratio is an 

indication of the increased stiffness of an encastre shaft over a simply 

supported shaft, it is noted that there remain potential benefits to be gained 

from similar shafting fitted with discs, as employed in gas turbine and 

compressor units for instance, as opposed to the plain coupling shafts used 

in this analysis, since the added masses would lower the critical speeds in 

both cases without greatly affecting the ratio. This is confirmed by the 

analysis given in section 5.3.2.  

 

Confirmation that the SR ratio represents increased stiffening of an encastre 

shaft is shown in Figures 5.12 and 5.13, where, by multiplying the simply 

supported shaft stiffness by the value of SR, corresponding to the critical 

speed under consideration, the reaction load (only 1st end shown) closely 

approximates that of the equivalent encastre shaft. This correlation is 

illustrated for operating speeds adjacent to the 1st and 3rd critical speeds, 

respectively, based on examples of concentrated shaft imbalance analysed 

previously in Chapter 4, but without any trim balance correction. For 

comparison purposes, Figures 5.12 and 5.13 also include the simply 

supported characteristic of a standard stiffness shaft for the same zero 

balance correction.   
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Order Critical 

Speed Ratio 

Simulation 

Ratio, SR 

1st 2.267 5.139 

2nd 1.563 2.443 

3rd 1.361 1.852 

4th 1.266 1.603 

 
Table 5.3, Simulation Ratio, SR 
 

 

 

Figure 5.12, Increasing simply supported shaft stiffness adjacent to the 1st 
critical speed  
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Figure 5.13, Increasing simply supported shaft stiffness adjacent to the 3rd 
critical speed 
 
Study of the simply supported equations, chapter 4, section 4.3, determined 

that the requirements for elimination of the 1st classical critical speed and by 

substitution of the values of bl corresponding to the higher order critical 

speeds, ( 2b ,  3 , 4  etc.), that the same controlling condition applies 

for these critical speeds, i.e.  

 

IEbkeMM ..2.. 2

0201  , equation (4.64).  

 

Also, when the same values of bl are applied to the sum of the encastre 

fixing moments to represent encastre operation at simply supported critical 

speeds, the requirement is also unchanged, i.e.  

IEbkeMM ff ..2.. 2

21  , equation (4.69).   

 

This identity is the same as that derived for the 1st classical critical speed in 

Chapter 3, and the resulting equalisation of the balancing and fixing 

moments shows that encastre conversion is also present at these higher 
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critical speeds. Therefore, they are always eliminated, but are replaced by 

a compensated critical frequency situated nearby.   

 

 

Figure 5.14, Elimination of the 3rd Classical Critical Speed 
 
Figure 5.14 provides an example of this, showing the point of convergence 

of the sum of the encastre fixing moments and the sum of the simply 

supported balancing sleeve moments, together with the algebraic 

magnitude of these moments at equalisation. The concentrated imbalance 

loading and shaft parameter values are the same as those used in Chapter 

3, but the operating speed range has been extended to cover the 3rd critical 

speed, (107,118 rpm), corresponding to 3b . 

 

The benefits of encastre simulation at this higher critical speed can be 

clearly seen in Figure 5.15, which shows the reduction of the 1st end reaction 

load with maximum balancing sleeve compensation, compared to that 

without any compensation, but with low speed balance correction at shaft 

ends only.  
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Figure 5.15, Reaction Loads vs. Speed adjacent to the 3rd critical speed 
 

Further, to show the possible advantages of an actual encastre shaft - i.e. 

one mounted in long, or multiple, very tight clearance bearings so as to 

maintain zero shaft slopes at the ends, Figure 5.15 also shows the reaction 

load for this case i.e. for the same concentrated shaft imbalance condition 

but without any trim balance correction. It is seen that this arrangement 

could be very advantageous in terms of reaction load reduction, but is often 

compromised by shaft alignment problems and will incur higher costs due 

to increased lengths and complexity of the overall drive train.  

 

It is the lack of trim balance loading that causes a further reduction in 

reaction load compared with that of the maximum compensated case, as in 

Figure 5.15. The compensating balancing sleeves not only replicate the 

encastre fixing moments, but also impart a lateral load on the ends of the 

shaft, equal to the centrifugal forces acting on the eccentric masses at the 

free ends of the sleeves. In the encastre case, the bearing reaction loads 
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that counter-balance their fixing moments are much smaller due to the much 

greater length of the moment arm, i.e. the full length of the shaft compared 

with the much shorter length of the balancing sleeves.   

  

 

Figure 5.16, Equivalent Shaft Eccentricity for operation adjacent to the 1st 
critical speed 
 

The reduction in the SR ratio and its indication of the possible effectiveness 

of encastre simulation at higher critical speeds is shown in Figures 5.16 and 

5.17. Using equivalent shaft eccentricity as a measure of balancing sleeve 

efficiency, Figure 5.16 plots the absolute reaction loads versus operating 

speeds, adjacent to the 1st critical speed, for simply supported cases: first, 

of zero balance correction and second, with maximum compensation, both 

with standard eccentricity, and a third case, of zero balance, but with a much 

reduced eccentricity. This latter case shows that maximum compensation is 

approximately equivalent to reducing standard shaft eccentricity by a 1/25th. 
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Figure 5.17, Equivalent Shaft Eccentricity for operation adjacent to the 3rd 
critical speed 
 

A similar account is shown in Figure 5.17 for operating speeds adjacent to 

the 3rd critical speed. However, in this case the maximum compensation 

can be emulated by reducing the equivalent shaft eccentricity by only a 1/4th 

of the standard. This shows that for the 3rd critical speed the equivalent 

reduction in shaft eccentricity is very much lower than for the 1st critical 

speed and confirms that balancing efficiency is reduced at the higher critical 

speeds when employing only double encastre simulation. This could be 

improved by applying balancing sleeve compensation at the node positions 

of some, or all, of the individual shaft undulations.  

 

5.7 Preliminary Conclusions  

The analysis of balancing sleeve compensation of the higher critical speeds 

confirms that the magnitude of the Simulation Ratio, SR, provides a good 

indication of the shaft stiffening effect and the reaction load reduction 

benefits to be gained from applying compensation at shaft ends only. As 
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expected, this ratio and its associated benefits are reduced as the order of 

the critical speed increases since it is only the end undulations that are 

subjected to single encastre simulation, and remaining undulations act as if 

simply supported. However, notably, the analysis also confirms that 

encastre simulation is still possible at higher critical speeds providing the 

same mathematical requirements, (as for the 1st critical speed) are met, i.e. 

the sum of the balancing moments equals the sum of the encastre fixing 

moments,  IEbkeMMMM ff ..2.. 2

210201  .  

 

It is also noted that due to the very high rotational speeds, even with 

maximum balance sleeve compensation, the reaction loads are an order of 

magnitude higher than when operating near the 1st critical speed. Hence the 

importance of achieving the lowest possible degree of residual imbalance 

for high speed machinery remains paramount. However, design of very high 

speed machinery remains a compromise between cost and layout 

possibilities, for example: 1) by minimising eccentricity, through maintaining 

material stability by close control of density, grain structure and internal 

properties such as creep and hysteresis; together with ultra-high precision 

machining of multi component assemblies or alternatively, by production of 

one piece rotors, 2) by maintaining large, lateral critical speed, LCS, 

margins, i.e. ensuring that the critical speed is well away from the running 

speed; this is usually a conflicting requirement needing rotating components 

to be of both of high lateral stiffness and of low mass. Alternately, LCS 

margins may be increased by the use of additional bearings, at shaft ends 

and/ or mid span, as per actual encastre mounting. However, all these 

possibilities invariably add to the overall complexity of the design layout with 

associated issues. Hence, achieving and maintaining (often during very 

arduous operating conditions) a very low degree of residual unbalance is 

not easy, and consequently installations often suffer from severe vibration 

problems at particular speeds and/ or loading conditions.  
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Therefore, even at the higher critical speeds, with its reduced benefits, the 

possibility of near elimination/ nullification of an adjacent critical speed as 

offered by shaft-end balance compensation, still has the potential to help 

reduce shaft vibrations. And, it is noted that overall shaft balance could be 

improved even further, if required, by applying balancing sleeve 

compensation at node positions along the shaft so as to replicate encastre 

mounting of some, or all, of the intermediate shaft undulations. 

  

The analysis of the shear force reaction ratio, RR, has showed that it can 

be considered independent of the shaft eccentricity, and provides an 

indication of the possible benefits to be gained by encastre simulation for 

any given level of shaft eccentricity. This means that even if a shaft has 

been previously balanced by a maximum practical amount, for example on 

a high speed balancing machine, then this methodology has the effect of 

further reducing the eccentricity by RR (noting that the internal shear 

reaction force is directly proportional to shaft eccentricity), even allowing for 

the fact that the exact value of the ratio applies only at the speed at which 

encastre conversion occurs, i.e. when the balancing sleeve moments 

equate to the encastre fixing moments. Moreover, since the ratio greatly 

increases the closer the operating speed is to the critical speed, then it 

follows that the balancing improvements also increase to counter the usual 

increase in rotor vibration that occurs at these higher speeds – an ideal 

situation. 

 

The example case of maximum compensation of the 1st critical speed, 

shown in Figure 5.16, produced an equivalent reduction in shaft eccentricity 

that was greater than 25x. If utilised it would be extremely advantageous to 

many industrial machines, by imparting improved system performance, if 

allowed to operate with reduced lateral critical speed margins.  

 

The analysis implies that this is also feasible for most designs of high-speed 

flexible shafts. Although the analysis is based on a simple plain shaft with 
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uniform eccentricity, it is shown that the benefits also apply to shafts with 

concentrated imbalances and/or multiple discs that are mounted within the 

central 80% of the shaft length, i.e. most practical shafting. Also, it is shown 

that the characteristic design of the balancing sleeves to achieve maximum 

balance compensation is independent of shaft eccentricity. Therefore, prior 

knowledge of the residual imbalance of the shaft (magnitude of eccentricity 

or position) is not needed and fine adjustment of the balancing sleeve 

moment to give encastre simulation should be possible by a variety of 

detailed designs, capable of achieving near micrometer accuracy, in 

response to feedback data from the bearing sensors (a pre-requisite in most 

large industrial high-speed drive trains).  

 

The significant potential of this novel balancing methodology to provide 

improvements in the balancing of high-speed, flexible shafts, has therefore 

been shown. 
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Chapter 6 

 

6.1 Test Rig Design 

 

The production of a full size test shaft that replicates the drive couplings 

employed by Siemens sub 15MW turbine packages is prohibitively 

expensive, both in terms of capital and commission costs, and 

infrastructure.  However, validation of balance sleeve compensation theory 

and its practical potential can be met using a scaled test rig facility designed 

to have full speed capability.  The speed matching maintains parity between 

site and test critical speeds, and is sized to accommodate a reduced scaled 

model example of a turbine coupling shaft. The test facility is described 

below. 

 

     

 

 

Figure 6.1, Test Rig 
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The drive system is comprised of two Oswald, Type QDi13 2 2, variable 

speed, 0 – 20,000 rpm, 49 kW, electric motors, LHS driving, RHS acting as 

a feedback generator, so that only the accelerating torque and drive train 

losses needed to be powered electrically by the mains supply. The motors 

and its control package is designed and supplied by Control Techniques 

Ltd., as specified in Appendix D1. 

 

The motors are mounted on individual bed plates, via a pair of slide rails, to 

allow lengthwise adjustment of a test shaft, which is centrally mounted 

between the shaft ends, as shown in Figure 6.1. 

 

6.2 Instrumentation 

 

Instrumentation is used to measure the balance condition of the test shaft 

under a known level of shaft imbalance at a variety of steady state speeds—

initially without any trim balance correction and then with a series of 

balancing sleeve compensations. A non-contacting system of measurement 

is used so as to avoid affecting the vibration measurements—laser based 

systems are capable of measuring deflection of high speed rotating 

elements and therefore adequately meet this requirement. Optical 

triangulation is used to determine deflection.   

 

Instrumentation consists of 3x Micro-Epsilon, free standing lasers systems 

(optoNCDT, type ILD 2300-20), as specified in Appendix D2, positioned to 

separately enable deflection measurements of the LHS sleeve, the shaft 

mid-point and the RHS sleeve, as a result of their respective unbalance 

during shaft rotation. 

 

Markers are bonded at the top dead centre (TDC) position on the outside 

diameter of each laser location to provide a consistent key phaser/trigger 

point during each rotation of the shaft. This allowed vector formulation of 

peak—to–peak, deflections and angular offsets between the local heavy 
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spot of section unbalance and the shaft TDC position. Hence, at each test 

speed it is possible to translate local deflections onto the plane of unbalance 

produced by a known level of added shaft unbalance, thereby allowing a 

direct comparisons to be made with theoretical results, for validation 

purposes.   

 

 

6.3  Test Coupling Shaft 

 

With reference to balancing problems seen by some Siemens sub 15MW 

turbine applications and the site equivalent analytical models developed in 

Chapters 2 and 3, the application of Buckingham’s Pi theorem, of non-

dimensional analysis, determined that a suitably scaled test shaft could be 

produced provided parity was maintained between the two critical speeds.  

 

Whilst complying with this requirement, a test shaft was designed in 

conjunction with Bibby Turboflex Transmissions Ltd., details of which are 

given in Table 6.1. A laminated, disc type, flexible element assembly pack, 

from their standard Torsiflex range of couplings is used. This is a 6 bolt 

design of similar construction to couplings typically used for mechanical 

drive contracts and their minimum size, code number TF27, is found to be 

an appropriate match with the size requirements of the spacer tube, as 

specified in Appendix D3. The spacer tube is a plain tubular component 

fitted between the flexible element assembly packs. 

 

For validation purposes it is necessary to apply imbalance masses to the 

spacer tube to replicate a point of concentrated unbalance, as in the 

analysis given in Chapter 4. It is also recognised that any method of 

imbalance attachment must have a minimum effect on the tube’s bending 

stiffness and mass so as to avoid changes to its critical speed. This is 

achieved by the addition of 5 narrow, low profile, dovetail rings, positioned 

at the mid point of 5 zones, of approximately equal length, set out axially 
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along of the spacer tube, together with 2 small balance clamps per ring. 

These are attached to individual dovetails as shown in Figure 6.2, and their 

angular position set to provide a combined resultant concentrated 

unbalance of known magnitude at each zone position, as detailed in 

Appendix D3. 

 

 

 TUBE 
LENGTH, 
  mm 

TUBE 
O/D, 
 mm 

TUBE  
I/D, 
  mm 

TUBE 
MASS, 
   Kg 

CPLG  
½ MASS, 
   Kg 

CRITICAL 
SPEED, 
  RPM 

SITE 
EQUIV. 
MODEL 

 
1707 

 
207 

  
201 

 
38.3 

 
48 

 
11,900 

SCALED 
TEST 
MODEL 

 
922 

 
62 

 
56 

 
4.0 

 
3.6 

 
11,900 

 

Table 6.1, Site Equivalent and Scaled Test Shaft details 

 

Figure 6.3a shows a schematic of the test coupling, with pairs of plain bore 

hubs, element packs and compensating balance sleeves, separated by a 

plain spacer tube, with the dovetail rings and balance clamps as described 

above. In detail the assembly is comprised of a tubular spacer, (62 mm o/d 

x 56 mm i/d x 864 mm long), laminated disc type, flexible elements, (920 

mm between element centres), coupling shaft, (950 mm, Distance Between 

Shaft Ends – DBSE), as per Bibby Drawing Number 10625 sht 1, with 

balance sleeves, as per Bibby Drawing Number 10625-5, mounted at each 

end. Appendix D3 provides further details. 

 

For design purposes the assembly is analysed using the fundamental 

equations determined in chapter 2, (2.43), critical speed and chapter 4, 

(4.31), (4.59) and (4.60), shaft deflections and reaction loads, as a plain 

tube, of the same cross section as the spacer tube and simply supported at 

the ends with a nominal length corresponding to the element pack, centre 

to centre distance. The length is then further modified to provide the same 

critical speed as the test coupling assembly, determined by the 

manufacturer using FEA analysis. The minor length variation is assumed to 
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be due to the physical differences between the test coupling assembly and 

the plain tubular model, i.e. interface joints, fastener masses etc. The 

mathematical model is shown in Figure 6.3b, together with the 5-off 

concentrated loading positions.   

 

 

 

            

Figure 6.2, Detail of Balance Clamp/ Test Weight, attachment to a 

Dovetail Ring 
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Chapter 7 
 
This chapter determines the detail design requirements of a compensating 

balancing sleeve to be used in conjunction with the test coupling shaft of the 

previous chapter, for experimental development and validation testing. 

 

7.1  Compensating Balancing Sleeve Design 
 
Chapter 2 determined the benefit of adding compliance to a trim balance 

mass and that this could be achieved, very effectively, by a simple cantilever 

construction, as shown in Figure 2.4.  This gives the appearance that the 

moment arm was constructed with a full 360 tubular cross section, which 

need not necessarily be the case, but initial sizing calculations quickly 

showed that such a design would have a lateral bending stiffness that was 

far greater than required for the test coupling shaft, as detailed in chapter 6.  

However, it also became evident that a lower stiffness could be achieved by 

machining slots in the tube, so as to produce a number of equally spaced, 

longitudinal spars, between the fixed mounting flange and the compliant 

balancing ring, as shown in Figure 7.1. 

 

                 
 
Figure 7.1, Compensating Balance Sleeve – Multiple Spar Design. 
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With this arrangement the centrifugal force acting on a trim balance mass 

during rotation would produce lateral bending of the spars and cause the 

balancing ring to be displaced vertically downwards, as shown in Figure 7.2.  

Each spar then will bend individually, as per a double encastre beam, since 

its stiffness is relatively small compared with that of the two end plates, and 

unlike in a tube construction there is no shear connection to link the spars 

together, hence the mechanism is similar to that of a 4-bar chain producing 

parallel motion between the balancing ring and the mounting flange. 

 

                
 
Figure 7.2, Balancing Sleeve Spars – double encastre bending mode 
 
Analysis of the bending stiffness of the sleeve assembly therefore first 

requires calculation of the 2nd moment of area, (moment of inertia Icc) of 

each spar angular cross section, about a horizontal axis through its own 

centroid.  This can be accomplished by angular integration, with reference 

to Figure 7.3. 

 

Elemental area A    is given by:       RRA  ..                                 (7.1) 
 

Hence, elemental sector area:  .
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Spar cross sectional area: ).(
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Figure 7.3, Single Spar Cross Sectional Analysis. 
 
 
The 1st moment of area about axis X – X, of the spar cross section, A, is 
given by: 
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Therefore, the centroid height of the spar cross section, above axis X – X, 
is given by: 
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A

M
h 1 ,                                                      (7.4) 

and is readily obtainable from (7.3) and (7.2). 
 
Similarly, the 2nd moment of area about axis X – X, (moment of inertia, Ixx) 
of the spar cross section, A, is given by: 
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Substituting, 
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2cos1
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 ,    and integrating gives: 
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The 2nd moment of area, or moment of inertia, through the centroid can now 
be determined from the parallel axis theorem: 
 

                          
2.hAII ccxx          

 
Hence, the moment of inertia for an individual spar is given by: 
 

                          
2

2 .hAMIcc                                                                 (7.6) 

 
Since each spar will experience the same deflection, the individual bending 

stiffness’ are deemed to act in parallel and the overall stiffness, of the 

complete assembly, will be the summation of all the individual stiffness’.  

Also, beam theory states that for elastic deflection, the stiffness of a beam 

is directly proportional to its moment of inertia, so it follows that the sleeve 
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assembly can be treated as a single beam with unitary bending properties, 

where: 

         



n

i

iccsleeve II
1

_ ,        where n = total number of spars               (7.7) 

 

It is notable that since Isleeve   is a constant, for a given sleeve design, then 

its lateral stiffness   will be a constant for all angular positions of trim balance 

correction applied to the sleeve. 

 

7.2 Double Encastre Beam  

From section 7.1, it is possible to represent the complete sleeve assembly 

schematically as a single beam, with double encastre end restraints, as 

shown in Figure 7.4, where u represents the sleeve deflection, when 

subjected to a lateral load, R, representative of the centrifugal force, CF, 

and M   is the internal fixing moment between the mounting flange and the 

spar, at the LHS and similarly between the balancing ring and the spar, at 

the RHS.  

 

The characteristic equations for a double encastre beam can be determined 

by double integration of the bending moment equation. 

 

                                                       
 
        
Figure 7.4, Schematic of a Double Encastre Beam 
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From beam theory, the bending moment, BM, is equal to: 
 

xRM
dx

yd
IEBM ...

2

2

 ,                                                                   (7.8) 

By integration,        A
xR

xM
dx
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IE 
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where A and B are constants of integration and both are equal to zero, since 

at   0x ,  0y  and  0
dx

dy
, therefore: 

6

.

2

.
..

32 xRxM
yIE  ,                                                                              (7.9) 

The LHS of (7.8) and (7.9) equal M and -EI.u, respectively for x giving: 

 

    
2

.R
M  ,                                                                                                   (7.10) 

and by substitution                   
12

.
..

3R
uIE  ,                                        (7.11) 

 

Combining (7.10) and (7.11) gives          2

..6



EIu
M  ,                               (7.12) 

 

The beam/ sleeve stiffness is then given by      3

.12



EI

u

R
K  ,      (7.13) 

 
The maximum bending stress in any given spar appears at shaft ends 

resulting from the imposed fixing moments, and is given by: 

 

                               fibrey
I

M
f .max_   ,  

where fibrey  is the extreme fibre, seen during bending, i.e. the vertical 

height of the outmost point on the spar cross section above the centroid 

position. 
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Substituting (7.12) gives          fibrey
Eu

f .
..6

max_
2

 ,                         (7.14) 

 
which is independent of the moment inertia, I.   Therefore, the highest value 

of max_f will occur in the spar in which fibrey  is the greatest, i.e. the 4 

spars nearest to the horizontal axis, as shown in Figure 7.5. 

In addition to the vertical bending moments, BM_defl,  imposed on the spars 

due to rotation of the trim balance mass, there will also be independent 

bending moments, BM_bow,   imposed in a radial direction, resulting from 

the centrifugal forces acting on the mass of the spars, thereby giving them 

a tendency to bow outwards.  

 

         
                                                  
 
Figure 7.5, Bending Moments imposed on Spars during rotation  
 

This mode of bending can be represented by a plain shaft with uniform 

eccentricity which is subjected to centrifugal forces during rotation.  As such, 

is identical to the double encastre shaft analysed in chapter 3, so that the 

maximum bending moments and resulting stresses can be determined from 
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the equations, (3.9) and (3.10), given in chapter 3, by setting the shaft 

diameter to give the same 2nd moment of area as the top most spar, Figure 

7.5, and it’s eccentricity equal to the mean radius of the spars in their 

unloaded condition. 

 

Each spar will then be subjected to both vertical and radial bending 

moments, as shown in Figure 7.5, and the maximum imposed bending 

stress will result from the resultant bending moment,  BM_res, of the two 

vectors, BM_defl  and  BM_bow, applied at the corresponding cross section 

moments of inertia, acting at the  resultant angle, 

 

Hence, an optimize detail design of the balancing sleeves is now possible 

to obtain the required sleeve stiffness together with practical machining 

dimensions and suitable operating stresses etc., by simply inserting the 

above equations into a suitable analytical computer program. 

 
 
As a final check, it is noted that the introduction of balancing sleeves adds 

2 extra vibration modes, i.e. Degrees of Freedom, DOF, to the shaft 

assembly and hence possible sources of instability. In order to ensure that 

they are not excited by imbalance it is prudent to design their sleeve critical 

speeds to be well above that of the shaft and this is illustrated by the 

Campbell, Figure 7.6, for the complete test shaft assembly.  
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Figure 7.6, Campbell Diagram of Test Shaft 
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Chapter 8 

 

8.1 Test Requirements 

 

Following the establishment of balance sleeve compensation and its 

associated encastre simulation theory, Chapters 2, 3 and 4, the results 

require practical validation.  An instrumented test rig and scaled coupling 

test shaft has therefore been designed and commissioned, as described in 

Chapter 6.  

 

Experimental trials are conducted in accordance with the following 

procedures. 

  

8.2 Test Procedure 

 

SAFETY PRECAUTIONS APPLICABLE TO ALL TESTS 

  

To prevent failure of the coupling shaft assembly, operation close to the 

critical speed is limited by laser monitoring and manual shutdown if safe 

shaft and sleeve deflections are reached/exceeded.  

 

Safe Limits are set at shaft mid-point and sleeve balance ring deflections 

of 6.0 mm and 0.35 mm, respectively, (corresponding stresses; 65% and 

70% of yield).  

 

Measurements to be taken at steady state operating speeds with step 

changes gradually reduced as deflection readings increase, to maintain 

shaft and sleeve deflections below stated safe limits. Chart 1 is to be used 

as a guide to likely increases in shaft dynamic magnification of deflections 

in the zero balance correction condition, with shaft critical speed proximity. 
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Note, the sleeve critical speed is much higher than that of the shaft, 

therefore its contribution to dynamic magnification during these tests is low.  

 

 

 

 

Chart 1, Typical Change in Shaft Deflection vs. Critical Speed Proximity 

 

 

TP.1,  Test Setup: with the coupling hubs mounted onto the motor shaft 

ends and fastened by tightening Tollok Locking Couplings, assemble the 

Test Coupling between the hubs, Figures 8.1 and 8.2. Align the two motor 

shafts using Rotalign Laser Alignment Equipment to obtain the following 

offset settings, at LHS and RHS hubs, 1 and 2: X1 , Y1 and X2 , Y2 = 0.0 +/- 

0.2 mm. 

 

Axially align 3 off marker strips, (Triggers), to the shaft’s Top Dead Centre 

position, (TDC), Figure 8.3, and bond on the outer diameter of the LHS and 

RHS Sleeve Balancing Rings, and to the coupling shaft mid-point, adjacent 

the 3rd dovetail ring. 
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With reference to Figures 8.1 and 8.2, mount 3 off, laser measuring heads 

on their free standing slideway and align to allow deflection measurements 

at the shaft mid-point and LHS + RHS sleeve balance ring positions, as per 

the manufacturer, Micro-Epsilon’s, Instruction Manual – ref. Chapter 6, 

Appendix D2. 

 

TP.2,  Residual Unbalance Test:  without any imbalance or correction 

masses fitted to the test shaft or balance sleeves; start rig and incrementally 

increase speed from 0 to 8,500 rpm. Fast data collection to be used to obtain 

key phaser position of maximum deflections at various speeds. Plot shaft 

deflection vs. speed.  

 

     

 
 

Figure 8.1, Test Rig 

 

 

TP.3,  Residual Balance Correction: Calculate the positions and sizes of 

shaft residual unbalance and incrementally make corrections, as necessary, 
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by adding or removing metal from the sleeves and the two central balancing 

rings on the shaft, and re-check test TP.2.  

 

Repeat as necessary to achieve repeatable low levels of shaft deflections, 

(less than 0.5 mm), at speeds up to 10,200 rpm. Plot ‘Residual’ shaft 

deflection vs speed.  

 

   

 
 

Figure 8.2, Close-Up of Test Weights & LHS Laser Configuration 

 

 

TP.4,  Shaft Test Weight Unbalance with Zero Correction - without 

Compensation: affix balance clamps to give 67.5 g.mm of imbalance, (2 

clamps fitted to 2nd dovetail ring, 9º from diametric opposite position, 

arranged as per Figure 8.3). Start rig and incrementally increase speed from 

0 to 8,500 rpm. Fast data collection to be used to obtain key phaser position 

of maximum deflection at various speeds. Plot ‘Measured’ shaft and sleeve 

deflection vs. speed.  
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Check results and if deflections are well within stated limits, repeat test at 

up to 10,000 rpm. 

 

 

 

       

 

Figure 8.3, Angular relationship of Test Weights and Trigger (TDC) 

position 

 

 

 

TP.5,  Double Sleeve Compensation Test: repeat step TP.4, with 68 gmm, 

(1.3 gram at 51 mm radius) of balance sleeve compensation, 180 degrees 

out of phase with shaft imbalance centrifugal force, CF, Figure 8.3, at both 

balance sleeves. Plot ‘Measured’ shaft and sleeve deflection vs. speed. 

  

TP.6,  Analyse results and incrementally make further balance adjustments/ 

re-tests as appropriate to achieve maximum obtainable balance 

compensation. 
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TP.7  Single Sleeve Compensation Test, LHS: repeat steps TP.5 and TP.6, 

with 136 gmm, (2.6 gram at 51 mm radius), of balance sleeve 

compensation, 180 degrees out of phase with shaft imbalance, at LHS 

balance sleeve only – zero compensation at RHS sleeve. Plot ‘Measured’ 

shaft and sleeve deflection vs. speed. 

 

TP.8,  Analyse results and incrementally make further balance adjustments/ 

re-tests as appropriate to achieve maximum obtainable balance 

compensation. 

 

TP.9  Single Sleeve Compensation Test, RHS: repeat steps TP.5 and TP.6, 

with 136 gmm, (2.6 gram at 51 mm radius) of balance sleeve compensation, 

180 degrees out of phase with shaft imbalance, at RHS balance sleeve only 

– zero compensation at LHS sleeve. Plot ‘Measured’ shaft and sleeve 

deflection vs. speed. 

 

TP.10,  Analyse results and incrementally make further balance 

adjustments/ re-tests as appropriate to achieve maximum obtainable 

balance compensation. 

 

TP.11  Critical Speed Determination Test: repeat Residual Unbalance Test 

TP.2 with a rapid speed transit of the critical speed to 12000 rpm to establish  

the critical speed of the unbalanced shaft. 

 

 

8.3 Test Results 
 
8.3.1 General Measurement Orientation 

 

As described in Section 1.2.6, for sub-critical rotation of a long, thin, plain 

shaft, mounted on symmetrical supports, as per the test shaft arrangement 

the residual unbalance only acts on the Forward Whirl dynamic mode and 

produces a circular orbit. Moreover, due to low system damping (confirmed 
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by later results) there is very little phase rotation of the heavy spot until shaft 

speeds are very close to the critical speed. Hence, the location of the heavy 

spot is always at the furthest position from the axis of rotation, as shown 

diagrammatically in Figure 8.4.  

   

It can be seen that the laser beam acts horizontally to monitor the nearest 

position of the shaft along this axis such that due to its circular motion, the 

measured output is sinusoidal and the bonded marker/ trigger, as drawn, 

lags the heavy spot by  º. 

 

 

                 
Figure 8.4, Heavy Spot orbit and Trigger position 

 

 

Figure 8.5 shows an example laser plot, obtained during testing of cyclic 

deflection vs. time; each reading, or dot, representing an instantaneous 

position of the shaft, with the vertically aligned dots being produced by the 

protrusion of the bonded marker/ trigger. These plots allowed vector 

formulation of the maximum measured pk – pk, deflections and the angular 

offset,  º, between its position and the laser trigger point/ TDC.  

 

Figure 8.6 shows the relative angular positions of the heavy spot/ maximum 

deflection to the plane of unbalance, defined by the resultant angle of the 

two CFs produced by the test weights. 
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Figure 8.5, Typical Laser Plot 

 

Hence, for each test speed it is possible to transcribe the local deflections 

onto the plane of unbalance to determine the corresponding amplitude 

component, 0 – pk, which can be attributed to unbalance present in this 

plane. Note, this is the resultant of the two test weight imbalances plus the 

component of any remaining residual unbalance. 

 

 

              

Figure 8.6, Component of Deflection in the Plain of Unbalance 
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8.3.2 Test Data from Residual and Test Weight Unbalance, Tests TP.2 

- TP.10 

 

For the purpose of theory validation and assessment of the level of 

compensation obtained during test, sleeve deflections at the maximum test 

speed of 10,000 rpm are used to determine the actual balancing sleeve 

moments applied during the compensation tests. Sleeve deflections at lower 

speeds and for other tests are not used, hence, it is only these readings that 

have been recorded in the following tables.  

 

8.3.2.1, Shaft Residual Unbalance and its Theoretical Equivalence 

 

The levels of shaft mid-point deflections resulting from residual unbalance 

determined by Tests TP.2 and TP.3, and its referred components in the 

Plane of Unbalance are given in Table 8.1. 

 

Speed, kRPM 7.0 7.5 8.0 8.5 9.0 9.2 9.4 

Meas’d Defl’n, pk-

pk, mm 

0.12 0.12 0.14 0.15 0.16 0.17 0.22 

Ang Offset, θ deg 22 22 26 26 26 27 25 

Defl’n in Unbal 

Plane,  

0-pk, mm 

0.009 0.009 0.015 0.016 0.017 0.020 0.022 

 

 

Speed, kRPM 9.6 9.8 9.9 10.0 10.10 10.20 

Meas’d Defl’n, pk-pk, mm 0.20 0.26 0.31 0.38 0.52 0.76 

Ang Offset, θ deg 32 39 40 46 43 39 

Defl’n in Unbal Plane,  

0-pk, mm 

0.032 0.056 0.069 0.102 0.128 0.165 

 

Table 8.1, Residual Unbalance Shaft Deflections for steady state speeds 
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To determine a theoretical representation of the referred component of 

residual unbalance, a Mathcad numerical program of a compensated shaft 

with a single concentrated imbalance is compiled to calculate expected 

balance characteristics from the analytical equations developed in Chapter 

4 and using parameter values given in Table 8.2. These complied with the 

mathematical model of the test shaft given in Chapter 6, but with the shaft 

length increased to   = 970 mm to give a critical speed of 10,750 rpm in 

order to align it with the measured mean value of the two critical speeds 

obtained from Test TP.11, (Forward and Backward Gyroscopic Critical 

Speeds), as shown in Figure 8.12.  

 

Through an iterative process, comparing theoretical and measured shaft 

deflections in the plane of unbalance, a first order approximation of a 

theoretical level of equivalent residual unbalance is assessed to be 50% of 

the test weight unbalance, equal to 33.75 g.mm. Figure 8.7 shows this 

provides a good relative comparison and is therefore subsequently added 

to the test weight unbalance, thereby setting the theoretical level of 

concentrated unbalance to 101.25 g.mm for the theory evaluation tests TP.4 

to TP.10, and the results subsequently shown in Figures 8.9, 8.10 and 8.11.  
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Table 8.2, Parameter values used for numerical studies 
 
 

 
Figure 8.7, Estimation of Equivalent Theoretical Level of Shaft Residual 

Unbalance 

Test Shaft Parameters 

sM
= 4.2287 kg 

  = 0.970 m 

1m = 0. 3864 kg 2m  = 0. 3864 kg 

e = 7.744 ˣ 10^-4 m, Fig 8.7 
e = 2.323 ˣ 10^-3 m, Fig 8.8, 8.9, 
8.10 

I = 2.426 ˣ 10^-7 m^4 

1c  = 0, Fig 8.7 

1c  = 0.0001119 m, Fig 8.8 

1c  = 0.0004441 m, Fig 8.9 

1c  = 0, Fig 8.10 

2c  = 0, Fig 8.7 

2c  = 0.0003526 m, Fig 8.8 

2c  = 0.0002357 m, Fig 8.9 

2c  = 0.0004774 m, Fig 8.10 

K1,2 = 1.136 ˣ 10^6 N/m E = 207 ˣ 10^9 N/m^2 

L1,2 = 0.06148 m a = 0.318  m 

f = 0.328  m  
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8.3.2.2, Results from test TP.4:  Test Weight Unbalance with Zero 

Correction 

 

The levels of shaft mid-point deflections resulting from test TP.4:  Shaft Test 

Weight Unbalance with Zero Correction (without balance compensation), 

are shown in Table 8.3.  

 

 

Speed, kRPM 7.0 7.5 8.0 8.5 9.0 

Meas’d Defl’n, pk-pk, mm 0.11 0.12 0.17 0.22 0.25 

Ang Offset, θ deg 40 41 43 42 41 

Defl’n in Unbal Plane,  

0-pk, mm 

0.025 0.028 0.042 0.052 0.058 

 

 

 

Speed, kRPM 9.2 9.4 9.6 9.8 9.9 10.0 

Meas’d Defl’n, pk-pk, mm 0.27 0.33 0.33 0.45 0.55 0.73 

Ang Offset, θ deg 40 40 49 53 56 54 

Defl’n in Unbal Plane,  

0-pk, mm 

0.06 0.074 0.096 0.143 0.186 0.237 

 

 

Table 8.3, Test Weight Unbalance Shaft Deflections for steady state speeds 

 

8.3.2.3, Results from test TP.5: Test Weight Unbalance with LHS + RHS 

compensation 

 

The levels of shaft mid-point and sleeve deflections, resulting from test 

TP.5:  Shaft Test Weight Unbalance with LHS + RHS Compensation, are 

shown in Table 8.4a and Table 8.4b, respectively.  
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Speed, kRPM 7.0 7.5 8.0 8.5 9.0 

Meas’d Defl’n, pk-pk, mm 0.11 0.12 0.14 0.14 0.14 

Ang Offset, θ deg 18 29 22 17 13 

Defl’n in Unbal Plane,  

0-pk, mm 

0.004 0.016 0.010 0.004 0.0 

 

Speed, kRPM 9.2 9.4 9.6 9.8 10.0 

Meas’d Defl’n, pk-pk, mm 0.16 0.20 0.16 0.23 0.35 

Ang Offset, θ deg 20 18 26 31 37 

Defl’n in Unbal Plane,  

0-pk, mm 

0.009 0.007 0.017 0.035 0.070 

 

 

Table 8.4a Test Weight Unbalance Shaft Deflections with LHS + RHS 

Compensation for steady state speeds 

 

Measurements at 10,000 RPM 

 LHS 

Sleeve 

RHS 

Sleeve 

Meas’d Defl’n, pk-pk, mm 0.24 0.40 

Ang Offset, θ deg -13 -75 

Defl’n in Unbal Plane,  

0-pk, mm 

0.053 0.20 

Moment in Unbal Plane, 

Nm 

3.74 13.97 

 

Table 8.4b Test Weight Unbalance Sleeve Deflections with LHS + RHS 

Compensation for steady state speeds 

 

8.3.2.4, Results from test TP.7: Test Weight Unbalance with mainly LHS 

compensation 
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The levels of shaft mid-point and sleeve deflections resulting from test TP.7:  

Shaft Test Weight Unbalance with mainly LHS Compensation, are shown in 

Table 8.5a and Table 8.5b, respectively.  

 

Speed, kRPM 7.0 8.0 8.5 8.8 

Meas’d Defl’n, pk-pk, mm 0.10 0.12 0.12 0.12 

Ang Offset, θ deg 17 12 8 -5 

Defl’n in Unbal Plane,  

0-pk, mm 

0.00

3 

-0.002 -

0.006 

-

0.019 

 

Speed, kRPM 9.0 9.4 9.8 10.0 

Meas’d Defl’n, pk-pk, mm 0.10 0.12 0.19 0.26 

Ang Offset, θ deg 16 15 21 17 

Defl’n in Unbal Plane,  

0-pk, mm 

0.0022 0.0016 0.012 0.008 

 

Table 8.5a Test Weight Unbalance Shaft Deflections with mainly LHS 

Compensation for steady state speeds 

 

 

8.3.2.5, Results from test TP.9: Test Weight Unbalance with RHS only 

compensation 

 

The levels of shaft mid-point and sleeve deflections resulting from test TP.9:  

Shaft Test Weight Unbalance with RHS Only Compensation, are shown in 

Table 8.6a and Table 8.6b, respectively.  

 

 

 

 

 

 



 

181 

 

Measurements at 10,000 RPM 

 LHS 

Sleeve 

RHS 

Sleeve 

Meas’d Defl’n, pk-pk, mm 0.53 0.28 

Ang Offset, θ deg -81 -83 

Defl’n in Unbal Plane,  

0-pk, mm 

0.26 0.14 

Moment in Unbal Plane, 

Nm 

18.4 9.70 

 

Table 8.5b Test Weight Unbalance Sleeve Deflections with mainly LHS 

Compensation for steady state speeds 

 

 

 

Speed, kRPM 7.0 7.5 8.0 8.5 9.0 

Meas’d Defl’n, pk-pk, mm 0.11 0.12 0.15 0.14 0.11 

Ang Offset, θ deg 30 20 23 21 22 

Defl’n in Unbal Plane,  

0-pk, mm 

0.016 0.007 0.012 0.009 0.008 

 

Speed, kRPM 9.2 9.4 9.6 9.8 10.0 

Meas’d Defl’n, pk-pk, mm 0.13 0.14 0.10 0.13 0.20 

Ang Offset, θ deg 26 25 30 42 45 

Defl’n in Unbal Plane,  

0-pk, mm 

0.014 0.014 0.014 0.031 0.052 

 

 

Table 8.6a Test Weight Unbalance Shaft Deflections with RHS Only 

Compensation for steady state speeds 
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Measurements at 10,000 RPM 

 LHS 

Sleeve 

RHS 

Sleeve 

Meas’d Defl’n, pk-pk, mm 0.031 0.60 

Ang Offset, θ deg 4 -101 

Defl’n in Unbal Plane,  

0-pk, mm 

0.0025 0.27 

Moment in Unbal Plane, 

Nm 

0.18 19.07 

 

Table 8.6b Test Weight Unbalance Sleeve Deflections with RHS Only 

Compensation for steady state speeds 

 

 

8.3.3 Bearing Reaction Loads 

 

Although bearing reaction loads have not been directly measured during 

these tests, assessments of their condition can be made from the results 

given above. Figure 8.8 shows measurements of shaft mid-point 

deflections, pk – pk mm, resulting from tests TP.4 to TP.10: (Test Weight 

Unbalance, with and without balance compensation) in their plane of 

measurement without any vector angle adjustment. Hence, disregarding the 

external effect of the applied balancing sleeve CF on the reaction loads, 

these provide a good approximation of the relative magnitudes of the 

corresponding reaction loads that are seen by the shaft end bearings 

resulting from the shaft’s bending/ internal shear forces. 

 

 

It is also noted that these tests are conducted primarily to validate the 

theoretical analysis of balancing sleeve compensation determined in earlier 

chapters, and as a consequence the level of compensation has not been 

optimised to minimise the reaction loads. Nevertheless, it is evident that 

significant load reductions have occurred and that further reductions would 

be possible by increased levels of compensation.  
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Figure 8.8, Comparison plots of Shaft Deflections, in their plane of 

measurement, with and without Balance Compensation 

 

8.3.4 Test and Theoretical Comparisons 

 

To provide a valid comparison between theoretical shaft deflections and 

their corresponding test results, the theoretical values of the LHS and RHS 

compensating moments, Mo1 and Mo2, are matched to their respective test 

quantities. The test moments are determined from the sleeve deflections, at 

10,000 rpm, (adjudged to be sufficiently close to the critical speed for 

comparison with the required moment for its elimination/ nullification), 

multiplied by the sleeve stiffness and its length.  
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Figure 8.9, Comparison of Theoretical and Test levels of LHS + RHS 

Balance Compensation, CR = 0.654 

 

Figure 8.9 shows the results of test TP.4, Shaft Test Weight Unbalance with 

Zero Correction and test TP.5 - Double Sleeve Compensation, LHS + RHS, 

together with their respective theoretical displacements.  

 

The measured moments and theoretically matched values are as follows: 

Test:            Mo1 = 3.74 Nm,    Mo2 = 13.97 Nm,         Total = 17.71 Nm 

Theory:       Mo1 = 3.72 Nm,    Mo2 = 13.88 Nm  

Compensation Ratio = 0.654, see below. 

  

To assess the level of compensation achieved during the tests, a 

Compensation Ratio is defined as: 

 

Compensation Ratio, 𝐶𝑅 =
test moments,   𝑀𝑜1+ 𝑀𝑜2

max compensation moment 
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where the maximum compensation moment (approximate moment for 

critical speed elimination) is the calculated sum of both moments 

determined by proportionally increasing the moments until near nullification 

is obtained, as shown in Figure 8.10, leading to: 

 

                Mo1 = 6.37 Nm,    Mo2 = 20.73 Nm,         Total = 27.1 Nm. 

 

The total value is theoretically a constant for all the balance compensation 

tests, (as established in Chapter 4), and Figure 8.10 is typical of the 

theoretical levels of shaft deflection for all these tests if subjected to 

maximum compensation.  

 

Figure 8.10, Theoretical LHS + RHS with maximum Balance 

Compensation, CR = 1.0 
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Figure 8.11, Comparison of Theoretical and Test levels of mainly LHS 

Balance Compensation, CR = 1.037 

 

 

Figure 8.11 shows results from test TP.4, Shaft Test Weight Unbalance with 

Zero Correction and test TP.7 - Single Sleeve Compensation, mainly LHS, 

(since some residual unbalance existed in the RHS) together with their 

respective theoretical displacements.  

 

 

The measured moments and theoretically matched values are as follows: 

Test:            Mo1 = 18.4 Nm,    Mo2 = 9.7 Nm,         Total = 28.1 Nm 

Theory:       Mo1 = 18.41 Nm,    Mo2 = 9.74 Nm  

Compensation Ratio = 1.037 

 

 

Figure 8.12 compares the same test results of Figure 8.11 with their 

theoretical equivalents without compensation, first with standard shaft 

eccentricity, (concentrated unbalance = 101.25 g.mm, as per previous 
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calculations) and secondly with only 1/25th of standard eccentricity 

(concentrated unbalance = 4.05 g.mm).  

 

 

 
 

Figure 8.12, Comparison of Test levels of mainly LHS Balance 

Compensation, CR = 1.037, with theoretical cases of Standard Eccentricity 

and 1/25th reduced Eccentricity 
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Figure 8.13, Comparison of Theoretical and Test levels of RHS Only 

Balance Compensation, CR = 0.710 

 

 

 

 

Figure 8.13 shows the results of test TP.4, Shaft Test Weight Unbalance 

with Zero Correction and test TP.9 - Single Sleeve Compensation, RHS 

only, together with their respective theoretical displacements.  

 

 

The measured moments and theoretically matched values are as follows: 

Test:            Mo1 = 0.18,                  Mo2 = 19.07 Nm,         Total = 19.25 

Nm 

Theory:       Mo1 = 0,                   Mo2 = 19.22 Nm  

 

Compensation Ratio = 0.710 
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For clarity, Measured Moments and the Compensation Ratio for each test 

trial are given in Table 8.7. 

 

 
 

 
TEST 

MEASURED MOMENTS 
At 10,000 rpm 

 
COMPENSATION 
RATIO, CR Mo1 Mo2 Total 

TP.2,  Residual 
unbalance only 

0 0 0 0 

TP.4  Residual + Test 
Weight 

0 0 0 0 

TP.5,  as TP.4 with 
LHS + RHS Comp. 

3.74 13.97 17.71 0.654 

TP.7  as TP.4 with 
mainly LHS Comp. 

18.4 9.7    
(resid- 

ual) 

28.1 1.037 

TP.9,  as TP.4 with 
RHS Only Comp. 

0.18 
(resid- 

ual) 

19.07 19.25 0.710 

TP.11,  as TP.2, Fast 
Transit thro’ Critical 
Speed 

0 0 0 0 

 

 
Table 8.7. Test Details and Compensation Ratio  
 

 

Figure 8.14 shows the results of test TP.11 – determination of the critical 

speed. The laser output shows shaft mid-point deflection versus time 

recorded during a rapid transit of the critical speed. It clearly shows two 

critical speeds produced by both positive and negative gyroscopic 

moments, resulting from disc like action of the sleeve balancing rings. These 

are relatively small, agreeing with the assumptions made in the theoretical 

analysis of Section 2.3 and is confirmed by the narrow speed band between 

them, (1st = 10,384 rpm, 2nd = 11,093 rpm).  
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Figure 8.14, Rapid Transit of Critical Speeds 

 

The approximate mean value, 10,750 rpm, is used to determine the shaft 

length of the mathematical model,   = 970 mm, for the theoretical 

calculations, as this is the assumed critical speed with zero gyroscopic 

action. 

 

Figure 8.15 is a close up of Figure 8.14, just either side of the 1st critical 

speed, and shows that the laser trigger point/ TDC position rotates 

approximately 180º through this time period as the shaft speed increases 

from 10,171 rpm, through the 1st critical speed, to 10,691 rpm. Standard 

dynamic theory of rotating shafts [62], shows that the phase angle between 

the unbalance excitation force and the shaft response (position of maximum 

deflection) is always 90º at the critical speed, but that the speed band 

between approximately zero and 180º phase angles varies with damping 

ratio; being theoretically zero for systems without damping. The narrowness 

of the speed band shown in Figure 8.15 therefore confirms that there is very 
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little damping in the test set-up, and consequently the measurement 

orientation shown in Figure 8.4 is fit for purpose. 

 

 

 

Figure 8.15, Trigger Rotation through the 1st Critical Speed 

 

8.4  Preliminary Conclusions 

 

Tests are conducted with the primary aim of checking the practical validity 

of the theory/conclusions resulting from the preceding chapters and are 

therefore not optimised for maximum possible balance compensation in this 
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instance. However, it is possible to draw very strong conclusions from the 

results, namely: 

 

1. Tests including balance sleeve compensation, Figure 8.9, Figure 

8.11 and Figure 8.12, show that the shaft mid-point deflections have 

been reduced from their zero balance condition without 

compensation as speed increases up to the maximum test speed of 

10,000 rpm, (93% of the mean critical, 96% of the 1st forward mode). 

Consequently, it has been demonstrated that balance sleeve 

compensation definitely performs as expected and the condition of 

shaft balance is improved. 

 

2.  The preceding tests show a good correlation between reductions in 

shaft deflection and their corresponding Compensation Ratio, CR, 

such that the closer CR is to 1.0, the less bending of the shaft occurs 

and the better the condition of shaft balance. Figure 8.11 with CR = 

1.037 is particularly significant, having near maximum compensation 

and a very close alignment with predicted theory. Hence, the tests 

strongly support the principle of the new balancing methodology of 

aligning the sum of the sleeve balancing moments to the sum of the 

equivalent encastre fixing moments.  

 
 

3. Figure 8.13, with RHS (only) balance compensation (the small LHS 

compensating moment, due of residual imbalance within the 

balancing ring is of negligible proportions) confirms the conclusions 

of Chapter 4 that compensation/ balance adjustment need only be 

applied at one end of a shaft.  

 

4. Figure 8.12, shows that when compensation is close to maximum, 

CR = 1.037, the balance condition is equivalent to reducing the 

amount of residual unbalance by 1/25th of its original value. This test 

confirms the theoretical analysis given in Chapter 5, reference: Shear 
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Force Reaction Ratio, RR, Figure 5.2 and the equivalent reduction in 

standard eccentricity, shown in Figure 5.16. Chapter 5 also shows 

that the Reaction Ratio, RR, is independent of shaft eccentricity such 

that the benefits of encastre simulation apply to any pre-determined 

level of residual eccentricity.  It is therefore concluded that these 

balancing gains should be possible even on previously balanced 

shafts. Therefore, the potential exists to vastly reduce shaft 

imbalance and hence to safely operate high-speed machinery much 

closer to its lateral critical speed than is currently allowed. 
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Chapter 9 

 

9.1 Conclusions 

 

This research resulted from industrial balancing problems encountered by 

certain turbine/ compressor packages, employing flexible, high-speed 

coupling shafts; which determined the need for an examination into currently 

available balancing techniques, coupled with an investigation into possible 

ways of reducing the consequentially high level of reaction loads imposed 

on shaft bearings.  

 

The work successfully formulated the requirements of a new balancing 

technique with the potential to vastly reduce the reaction loads imparted on 

shaft end bearings, and it has also uncovered several beneficial insights 

into the controlling mechanism of the methodology. 

 

Chapter 2 showed that by applying trim balance correction directly onto 

rotating shafts, as per existing balancing methodologies, that their 

effectiveness reduces with increased shaft speed/ bending deflection. This 

is because the rotational radius of their mass centroid, remains either 

constant, or possibly reduces, depending on its lengthwise position along 

the shaft, whereas the equivalent radius of shaft imbalance increases. 

Hence, a balancing error is created, as a result of the rigidity of the trim 

balance mass.   

 

To counter this problem, chapter 2 further describes a new concept of 

adding compliance to a trim balancing mechanism such that amplification of 

the correcting forces occurs by the use of a pair of compensating balancing 

sleeves. This also has the added benefit of imparting balancing moments 

onto the shaft, acting to reduce its deflection. This effect is investigated by 

dynamic analysis of a simply supported, high-speed, plain, flexible shaft, 



 

195 

 

with uniform eccentricity, which concluded that considerable reductions in 

both reaction loads and shaft deflection are possible.  

 

It is also shown that the balancing moments enable the theoretical 

elimination of the 1st classical, critical speed and chapter 3 shows that 

nullification of a neighbouring compensating critical speed is also possible 

by closely matching the balancing moments to the fixing moments of an 

equivalent encastre mounted shaft. This requirement then forms the 

essence of a new balancing methodology whereby reaction loads and shaft 

deflections are reduced by the process of encastre simulation.  

 

Further insights are revealed by the analysis given in Chapters 4, which 

shows that it is the sum of the balancing moments that produce nullification 

and this can be achieved by the use of a single compensating balance 

sleeve fitted at either end of the shaft, thereby replicating a single encastre 

shaft.  

 

The applicability of the new methodology to the majority of practical shafts, 

with any distribution of concentrated imbalances and/ or multiple discs, 

provided they are mounted within the central 80% of the shaft length, is 

demonstrated in chapter 5.  

 

Further, analysis of the shear force reaction ratio, RR, showed it to be 

independent of the shaft eccentricity, hence the reduction in the equivalent 

shaft eccentricity, made possible by this methodology, is in addition to any 

balance reductions that may have been made prior to encastre simulation; 

for example by, component and/ or assembly balancing procedures. It is 

shown that these reductions are as high as 25x at operations close to the 

1st critical speed, hence, extremely low levels of equivalent eccentricity are 

possible.  

 



 

196 

 

Chapter 5, also shows that the magnitude of a Simulation Ratio, SR, 

provides a good indication of shaft stiffening effects produced by balance 

sleeve compensation and hence, that double encastre simulation, could be 

beneficially applied to shafts operating at higher critical speeds. 

 

The potential balancing improvements and practical insights revealed in 

these chapters are strongly supported by the validating test results reported 

in chapter 8. These confirm that: 

 

1. shaft mid-point deflections and by association, shaft end reaction 

loads can be considerably reduced by applying balancing sleeve 

compensation,  

 

 
2. the Compensation Ratio, CR is a good indicator of shaft balance, 

such that the closer CR is to 1.0, the less bending of the shaft occurs, 

confirming the requirement to closely align the sum of the sleeve 

balancing moments to the sum of the equivalent encastre fixing 

moments, 

 

3. balance compensation/ adjustment can be successfully performed at 

a single shaft end, 

 

4. with compensation close to its maximum (test value CR = 1.037) the 

balance condition is equivalent to reducing the amount of residual 

unbalance by 1/25th of its original value.   

 

 

It is therefore concluded that balancing sleeve compensation has been 

proven to work satisfactorily under laboratory conditions, but further work 

would be required if commercial acceptance is to be obtained, requiring site 

testing of a full sized prototype.  
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It is realised that encastre simulation, by application of balancing sleeve 

moments, could be achieved by a large variety of designs and bending 

mechanisms. Hence, it is possible that different drive train arrangements 

would be better served by a particular balancing sleeve design, some 

examples of which are discussed below.  

 

For external application, high bending stiffness of a large, tubular sleeve 

can be problematic and its reduction by machining of axial slots, to produce 

a number of spars, as per the test shaft, may not be the best method. As an 

alternative, many composite designs are possible, including materials with 

a lower Young’s Modulus, such as plastic, titanium, aluminium etc., 

combined with an inbuilt, heavier material, balancing ring.  

 

A further patented alternative [120] shown in Figure 9.1, makes use of 

laminated, flexible, disc elements, item (95), as commonly used in high 

speed drive coupling applications, (as per the test shaft). These are 

therefore of proven design and are commercially available in several pack 

sizes so that the bending stiffness could be set accordingly by varying the 

number of laminations. The method of element fastening is a standard 

feature of these types of flexible couplings to allow for angular misalignment 

and is therefore an ideal, low cost method of adding an angular stiffness 

component to the balancing sleeve (97). Hence, it is not necessary to 

reduce the bending stiffness of the sleeve as in previous designs for 

external applications.   
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Figure 9.1, Alternative Balancing Sleeve Design for external application 
 

Where space is available, designs for internal applications, preferably with 

external adjustment, would appear to be advantageous, offering zero 

additional windage (drag caused by shaft rotation) and because of the 

reduction in sleeve diameter, lower bending stiffness. One such patent 

pending design [124] is shown in Figure 9.2.  
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Figure 9.2, Alternative Balancing Sleeve Design for internal application 
 

 
In this design external adjustment is achieved via 3 or 4 off screws (81) 

positioned equally around spacer tube (71), which are set to produce an 

offset, E, of the balance ring (85) by forcibly causing partial bending of the 

thin neck (79). The centrifugal force acting on the balance ring eccentricity, 

offset, E, then causes bending of the sleeve (73) as speed increases in the 

normal manner.  

 

This design lends itself nicely to remote operation of low energy, permanent 

magnet stepper motors, as shown in Figure 9.3, and energised by a non-

contacting, inductive supply (not shown). The motors simply take the place 

of the adjusting screws (81) in Figure 9.2 and are locked in place when de-

energised by the holding torque of the permanent magnets. Since many 

modern drive trains are already remotely monitored for bearing vibration and 

balance condition, the possibility of remote balance adjustment would 

appear to be a very desirable addition feature and a next evolutionary step.  
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Figure 9.3, Remotely Operated Balancing Sleeve Design for internal 
application 
 

 
The above Figures are regarded as possible examples for future 

development and are not definitive designs. Also, they are based mainly on 

long, flexible coupling shafts because of their association with lateral 

balancing problems. Therefore, it would appear to be sensible to continue 

the acceptance programme, initially in this direction. However, it is expected 

that, in time, balancing sleeve compensation will prove useful to many types 

of flexible shafting within any machinery that would benefit from being able 

to operate with reduced lateral critical speed margins and from reduced 

shaft bending deflection/ blade tip clearance. As such it should be possible 

to extend a machine’s operating speed range, reduce component wear and 

improve overall operating efficiency. Hence, this should be applicable to a 

wide variety of machines in all sectors of industry and it is envisaged that 

future development will also be extended to any flexible, high-speed, 

component shafts, of such machines. 
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Appendix A 

 
Partial Fractions: Ref. Chapter 2, Section 2.3 
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The Laplace equation for the combined assembly, (2.21a), can be 

expanded, by the use of Partial Fractions, so as to express each term into 

a standard Laplace form as follows: 

 
For the 1st term, let: 
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Similarly for 2nd term, let: 
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Similarly for 3rd term, let: 
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Similarly for 4th term, let: 
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By summing the 4 expanded terms and collating similar common 

denominators, (2.21a) is converted, as below, to standard Laplace form 

and suitable for inversion: 
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Appendix B 

 

Partial Fractions: Ref. Chapter 3, Section 2.2 
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Expanding equation (3.2) using Partial Fractions, as per Appendix A, to 

obtain standard Laplace forms, gives: 
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By summing the 3 expanded terms and collating similar common 

denominators, (3.2) is converted, as below, to standard Laplace formation 

and suitable for inversion: 
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Appendix C 

 

Hyperbolic Functions  
 
 

For any angle x 
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Appendix D 

 
 

D1: MOTOR/ GENERATOR DETAILS 
 

 

CONTROL TECHNIQUES 

 

 

Process Description / Control Philosophy 

The Test Rig specification, in brief, comprises of a common bus system whereby 

only the accelerating torque 

and losses need to be supplied by the mains.The motoring drive will be capable of 

generating the following 

output shaft powers at the desired speeds, and will be capable of generating constant 

torque over the complete 

speed range (i.e. constant torque from 0 - motor base speed). 

Motoring Drive Output shaft capacity 49kW @ 7,320 RPM. ( Base Speed ) 

Loading Drive shaft capacity of 49kW @7,320 RPM ( Base Speed ) 

The control configuration will be commissioned with the Input Drive configured to 

mainly operate in speed 

control, although the operation / functionality of the drives is easily re-configurable. 

We acknowledge that the Test Rig Drive System will be controlled by the 

University by Lab view or similar 

control.Ethernet communications has been provided to both drives for data 

collection , control and analysis. 

We have allowed for emergency stop operation / timed safety relay and basic stop start 

functionality. 

 

 

Scope of Supply 

 

AC Drive & Control Cubicle Suite 
Item Qty Description 

General CT Scope / Specification 
This Drive System will be fully engineered, manufactured and tested to ISO9001:2000 

(inc.BS5750 part2) at Control Techniques Telford Drive Centre, and will be supplied 

complete with set of CAD Schematic Diagrams, Drive and System Test Certificates and 

User Manuals. 

The cubicle will be constructed of sheet steel to IP54/44 protection - Manufactured from 

floor standing type enclosures and will include a 100 or 200mm plinth as required. The 

layout arrangement will be designed for bottom cable entry and front access only unless 

specified differently on the order. - Cubicle finish painted to the standard RAL 7032 grey 

specification. 

The cubicle suite overall dimensions will measure approximately : 2,200(H) x 800(W) x 

500(D)mm. Cubicle ventilation will be incorporated via door mounted cubicle fans and filtered 

louvers. Cubicle internal fluorescent lighting will be fitted complete with door activating 

switches. Cubicle internal equipment shrouding using clear Makralon is incorporated 

as standard to the high degree of IP2X British & European specifications. 

 

Main Incomer Section 
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– SP4403 Motoring Drive 

– SP4403 Loading Drive 

 

es ( x2 ) 

 

 

 

-Stop fail safe module 

 

 

 

 

es as standard 
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AC Drive & Control Cubicle Suite Photo ( Typical ) 
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Circuit Diagram 
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AC Motor Details 
 

 

Based on the supply of 2 off Oswald QDi13 2-2Fi 

Type QDi13 2 2 

Voltage 440 Volt 

FLC 77A 

Base Speed 7,320 RPM 

Max Speed 20,000 RPM 

Power 49kW 

Frequency 123/326 Hz 

Poles 2 

IP Rating 23 

Bearings Insulated 

Encoder Heidenhaim 512 PPR TTL 5 V Quadrature 
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D2: LASER MEASUREMENT DETAILS 
 

 

MICRO-EPSILON 
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D3: TEST COUPLING DETAILS 
 

 

BIBBY TURBOFLEX TRANSMISSIONS LTD 
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