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Abstract 

Classical techniques for mitigating vibration in rotating structures are divided into three main 

categories viz. careful design and manufacture, correct installation and effective control 

strategies. The balancing sleeves analysed in this thesis were developed as a ‘semi active’ 

method of vibration control to improve the state of balance of dynamically unstable coupling 

shafts. However, the addition of the balancing sleeves affects the natural dynamics of the shaft, 

and requires a detailed understanding of their characteristics and the impact on the overall 

shaft dynamics in order to be useful in practice.  As a first approximation, the sleeves are 

initially modelled as part of a full coupling shaft using the Extended Hamilton’s Principle. 

The simulation studies show that the flexibility of the sleeves have little impact upon the 

dynamics of the system and can therefore be neglected. However, when compared to results 

from the use of computational finite element methods with different sleeve lengths, 

discrepancies are identified.  Experimental validation using a purpose built high speed test 

facility is used to show that the difference is due to the lack of appropriate modelling of sleeve 

flexibility characteristics.  A full system model using finite element methods is therefore 

devised. More widely, a study of the impact of sleeve lengths shows that the classical 

definition of a ‘shaft mode’ does not encompass sufficient fidelity to discriminate between 

modes that are initially considered as being shaft dominated and those that are considered as 

sleeve dominated mode shapes, and the sharp transition that occurs between the two. It is 

notable that the transition between the two dominant modal contributors occurs at sleeve 

lengths that impart a natural frequency that is close to that corresponding to the shaft.  It is 

concluded that the mechanism of passive control via use of the sleeves is a combination of 

softening due to the added mass of the sleeves and coherence of the individual modes of the 

shaft and sleeves. In this way, it is shown that the sleeves act in a manner similar to a tuned 

mass-damper. By appropriate design therefore, use of balancing sleeves offer the opportunity 

to increase the critical speed margin in practical applications and reduce unwanted lateral 

vibrations. 
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 Introduction 

1.1 Problem Background 

Siemens Industrial Turbomachinery Ltd, Lincoln (SITL) produce gas turbine packages for 

power generation and mechanical drive purposes. Gas turbines are internal combustion 

engines that use incoming air flow to drive rotors in order to extract mechanical power in the 

form of rotation. The constituent parts can be grouped into three main sections; compressor, 

combustion chamber and turbine. Figure 1.1 provides a simplified view of a commercial gas 

turbine [1]. 

 

A continuous flow of air is drawn into the compressor where it is compressed and fed into the 

combustion chamber. Liquid or gas fuel is then added and the mixture is ignited, creating a 

hot gas that is channelled and accelerated through a nozzle into a number of turbine stages. 

This causes the turbine to rotate, converting the thermal energy into mechanical power. Some 

of the energy is used to drive the compressor that draws in air, with the remainder being 

traditionally used to provide mechanical power output eg. to feed a generator.  In other cases, 

a proportion of the resulting energy can also be extracted in the form of heat. The highest 

operating efficiencies for gas turbine are currently around 40% [2]. 

 

Compared with reciprocating engines, gas turbines offer high power-to-weight ratios whilst 

also containing fewer moving parts [2]. Benefits of lower complexity and increased reliability 

are tempered by the need for careful balancing of the rotor assemblies. Gas turbines are 

commonly fuelled by natural gas, although, through appropriate design, can be run on various 

mixtures of liquid fuel which may be native to the installation site.  
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Figure 1.1 – SGT-400 core engine [1] 

 

 

1.2 Application Sectors 

For the aerospace industry, the engine’s energy is used to produce thrust either through a rear 

nozzle or by a front mounted bypass fan. Industrial gas turbines use the power produced by 

the turbine to drive some form of mechanical equipment/load. Figure 1.2 shows the functional 

layout of a typical industrial gas turbine. The physical link between the turbine and the driven 

equipment is the focus of this research. 

Figure 1.2 – Gas turbine layout with driven equipment [4] 

 

Intake 
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Turbine 
Output 

Shaft 

Combustion 
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Exhaust 
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Primarily such equipment is found within the oil and gas industries.  The most common uses 

are for pumping crude oil on offshore platforms and pumping through pipelines for the 

refining process. Centrifugal compressors also use gas turbines to aid gas processing. Gas 

pipelines require the generation of sufficient pressure to transfer gas over long distances. 

Compressors are used to inject gas to boost the pressure. When used for power generation, gas 

turbines can either directly drive generators or are used in a combined cycle where residual 

heat is gathered to power steam turbines. A heat exchanger can also be incorporated to use 

this residual heat to preheat the air entering the combustion chamber, thereby increasing cycle 

efficiency. 

 

 

1.3 Coupling Shafts 

Gas turbine engine cores are connected to ancillary equipment using a coupling shaft. For high 

speed applications, the coupling will usually incorporate some form of flexible element; discs 

or diaphragms. Their flexibility can accommodate some misalignment between the prime 

mover and load, whilst allowing limited movement due to inertial forces. Figure 1.3 shows a 

typical gas turbine coupling containing flexible disc elements. The majority of the length of a 

coupling shaft is made up of a spacer tube.  

 

 

Figure 1.3 – Typical gas turbine coupling 

 

Further increase of coupling lengths mean that tolerance criteria cannot be met. Figure 1.4 

shows problems the machining process of the internal diameter of a long shaft can suffer. 

Misalignment of machining tools can lead to non-uniform thickness of the shaft wall. For 

instance, a 1500mm coupling shaft with misalignment of 0.5o will cause one machining tool 

to pass through the side of the shaft by mid-point. 

1500mm 
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Figure 1.4 – Machining of shaft internal diameter 

 

Due to problems with the machining processes involved with manufacturing these shafts, the 

dynamic behaviour can be altered away from its desired performance. Machining tolerances 

cause an uneven distribution of material, and hence mass, around the shaft, resulting in the 

centre of gravity being positioned away from the neutral axis and thereby creating eccentricity. 

The magnitude of mass and degree of eccentricity is termed unbalance. As the shaft rotates 

this generates centrifugal force perpendicular to the axis of rotation which is proportional to 

the square of rotational velocity. 

 

The centrifugal force created by unbalance can induce deflections along the length of the shaft. 

In thin walled coupling shafts such deflections can be considerable.   Since the deflection 

increases with speed, so does the eccentricity of the centre of mass away from axis of rotation. 

The effect is cumulative; unbalance causes deflection, deflection increases the eccentricity 

which increases the unbalance. The resulting centrifugal force is transferred to the support 

structures as lateral vibration. 

 

 

1.4 Natural Frequency and Critical Speeds 

A natural frequency is considered as a frequency where a system or structure will resonate.  A 

single degree of freedom system will have one natural frequency whereas complex systems 

with multiple degrees of freedom possess multiple natural frequencies.  

 

Friswell et al [3] describe the dynamics of rotating systems, giving the definition of a critical 

speed as a rotational speed of a machine at which some combination of vibration displacement 

and/or forces reaches a (local) maximum.  Adams [4] becomes more specific describing lateral 

natural frequencies as being present when a machine is running at a critical speed. This creates 

an assumption that vibration issues exhibited at critical speed are the result of lateral 

vibrations. Batrak [5] simply states that critical speeds coincide with the natural frequencies 
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of the shaft whirling vibration.  A summarised definition is that a critical speed is a rotational 

speed at which the frequency of an excitation force, such as unbalance or misalignment, 

coincides with a natural frequency. 

 

The natural frequency of a system can change with rotational speed due to gyroscopic, 

damping and support structure dynamics. Careful consideration therefore needs to be taken 

during design to ensure that the system will run across a broad range of rotational speeds 

without a natural frequency being excited.   

 

 

1.5 Problem Definition 

Siemens Industrial Turbomachinery Lincoln (SITL) produce four gas turbine models for both 

power generation and mechanical drive purposes. Output power ranges from 5 to 15MW 

(approx) depending on model and application. The most recent development unit, the SGT-

400, has exhibited vibration problems in the mechanical drive variant (SGT-400-MD).  Data 

from units in field environments have showed high levels of vibration at the rear bearing of 

the engine and front bearing of driven equipment, resulting in frequent shutdowns. The normal 

operating speed of the engine is 10,000 rpm.  However, to prevent high vibration levels and 

consequent shutdowns, the engines were routinely operated at lower than optimal running 

speeds, typically at around 8,000rpm. Increases in speed beyond this have caused large 

increases in lateral vibration indicating that the engine could be operating close to a shaft 

critical speed. However, Regulations API671 [6] dictates that for a flexible coupling the lateral 

safety margin should be 1.5 i.e. a lateral critical speed should be 1.5 times the operating speed. 

Due to this requirement, critical speeds are ‘designed out’ as part of the development process, 

suggesting that the source of the problem lies elsewhere. 

 

An alternative cause of the vibration problems has therefore been attributed to machinery 

layout, which requires long coupling shafts to be employed. Due to the requirement for access 

between the core engine and driven equipment, a long coupling shaft of up to 2000mm in 

length needs to be used. To reduce mass, and therefore inertial forces, the wall thickness of 

these shafts is (in relative terms) extremely thin; 2-3mm on a 250mm diameter shaft, and is 

therefore susceptible to unbalance induced deflections that cumulatively increase the amount 
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of unbalance forces. Even operating well away from the designed critical speed might 

therefore induce high levels of lateral vibration. 

 

In an attempt to solve this problem a novel approach was suggested through collaboration with 

SITL and the University of Lincoln [7]. The proposed design uses an eccentric sleeve that can 

be retrofitted to existing coupling shafts, Figure 1.5. The design allows for a balance mass to 

be added to the shaft to counter any unbalance that may exist. The sleeves are purposely 

flexible to allow for the eccentric position of the balance mass to increase with speed and 

therefore increase its counter-balancing effect.  However, the successful operation of the 

design requires prior knowledge of the magnitude and position of the existing unbalance in 

the shaft.  The proposal to use an eccentric sleeve was made prior to the initiation of this 

research, and is not claimed as part of the research presented in this thesis. 

 

 

Figure 1.5 – Eccentric sleeve 
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1.6 Research Objectives  

The balancing sleeve is presented as an adaptive passive design to allow for balancing across 

a range of speeds. By adding mass the shaft system, in the form of a sleeve, the fundamental 

natural frequency can be changed, and hence it would be expected that the critical speed of 

the system would also change. A significant research investigation is therefore required to 

analyse the behaviour and imparted characteristics of using the sleeves, prior to embedding 

them into engine units. To investigate the passive control characteristics of the sleeve, a 

fundamental understanding of the dynamics and effects upon the dynamics of the shaft, is 

required.  

 

The following research objectives have been pursued in this thesis: 

1. Theoretical analysis of the eccentric sleeve design 

2. Creation of a finite element model of the full geometry  

3. Experimental validation of modelling approaches 

4. Parametric study to identify the mechanism and bounds of passive control 

characteristics of the sleeves 

 

 

1.7 Thesis Outline 

The remainder of the thesis contains the following contributions to knowledge and is organised 

in the following chapters: 

 

Chapter 2 contains a detailed review of the history of rotordynamics, balancing methods and 

passive control techniques used in vibration control.  

 

Chapter 3 derives the theoretical of equations of motion for the rotating shaft with eccentric 

sleeves providing similar results to established models but with the inclusion of dynamic 

boundary conditions due to the inclusion of the eccentric sleeves. Theoretically, the sleeves 

are treated as rigid bodies and the flexibility is neglected.  
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Chapter 4 numerically solves the equations of motion and compares the results with those of 

finite element simulations, and shows a disparity between the two. When included in the finite 

element model, the flexibility of the sleeves have a greater than expected effect on the natural 

frequencies and therefore critical speeds of the shaft.  

 

Chapter 5 uses experimental validation using a purpose built test facility to show that the 

finite element simulations produce the most realistic modelling approach. When including 

bearing and support characteristics of the test facility, the experimental and finite element 

results show similar qualitative trends. It is concluded that both the mass and flexibility of the 

sleeves must be considered in order to proceed with passively controlling the critical speeds 

of a rotating shaft. 

 

Chapter 6 presents analysis of a wider range of eccentric sleeve configurations and shows 

that the critical speeds of the shaft can potentially be controlled by altering the stiffness and 

mass characteristics of the eccentric sleeves. The mechanism by which passive control occurs 

is a combination of mass damping and coherence of shaft and sleeve natural frequencies. By 

changing sleeve length it is possible to change the critical speeds of the shaft by up to +10% 

and -15 % away from the non-sleeve case. 

 

Chapter 7 presents conclusions and outlines further work. 

 

 

1.8 Research Contributions 

 The mechanism by which passive control occurs is a combination of mass damping 

and coherence of shaft and sleeve natural frequencies 

 The effect of adding eccentric balancing sleeves upon the dynamics of a rotating shaft 

is similar to that of a tuned mass damper  

 Sleeve stiffness must be considered as part of the analysis as it has a significant effect 

upon the critical speeds of the shaft. 

 



 

 

 Literature Survey 

2.1 Rotordynamics 

Much of the underlying principles of rotordynamics were derived between (roughly) 1870 and 

1960, with a resurgence in the early 1980’s when computing power became readily available 

to solve complex numerical problems; spawning the development of finite element analysis 

methods. 

 

The earliest understanding of dynamics of shafts and rotors focused on the description and 

analysis of vibration that occurs perpendicular to the axis of rotation; known as lateral 

vibration. Due to extensive work on lateral vibration by pioneers in the subject such as 

Rankine [8], Dunkerley [9], Weaver [10], Jeffcott [11], Timoshenko [12] and latterly Bishop 

[13-15] it is a well understood and is a relatively straightforward problem for modern vibration 

engineers to identify.  

 

Observations by Rankine [8], Föppl [16] and Dunkerley [9] showed that at certain speeds the 

deflection of a shaft will increase without limit – ‘The Critical Speed’. Early developments 

into rotordynamics suggested that operation above the first critical speed would not be 

possible. Rankine [8] concluded that a shaft would be stable below the first critical speed and 

would always be dynamically unstable above it. 

 

Work by de Laval in the late 19th century states that it is possible to design a shaft such that it 

can operate around critical speeds. The deflection of a flexible shaft will increase as it 

approaches a critical speed but tend to straighten out once such speeds are exceeded.  

 

In 1894 Dunkerly [9], reported on investigations into whirling and shaft vibration—the 

formulated empirical equations becoming known as the Dunkerley Method of analysis.   

However, the study neglected the fact that when a body rotates its natural frequency will 
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change from when being at rest. Therefore the method overestimates the critical speeds of a 

rotating body by considerable margins. Chree [17] later reported this phenomenon but was 

unable to produce a suitable hypothesis. 

 

In 1917 Weaver [10] derived equations describing motions of rotating structures, both 

qualitatively and quantitatively, and to explain the causes of these motions. This work drew 

particular criticisms of earlier authors for failing to understand and accurately represent the 

true physics of what occurs in a shaft when it rotates. Weaver identified that eccentricity of 

mass along the axis of rotation causes centrifugal forces which induce ‘whirl’. Several 

previously precluded terms were reported; the shaft arrangement and number of attached 

disks, the type and number of bearings, the application of power and the presence of torsion, 

effects of gravity and effects of material damping. A defining observation is the requirement 

for complex systems to be broken down to more simplified and discrete systems.  

 

A better formulated and quantified analysis of lateral vibrations was published by Jeffcott in 

1919 [11]. The Jeffcott Rotor Model considers a uniform, flexible, massless shaft with a 

centrally mounted single disc, supported by two individual bearings [18]. Later developments 

to the model brought the inclusion of flexible bearings with variable stiffness and damping 

coefficients. The Jeffcott rotor model remains in use as basis for modern analysis. 

 

In 1959 Bishop [13] produced a summary of the history of rotordynamics, paying particular 

attention to the importance and relevance of Jeffcott’s work. An alternative analysis approach 

was not presented but rather a new solution to solving problems of stability. 

 

 

2.2 Coordinate Systems 

To analyse the dynamics of rotating structures and develop equations of motion, a suitable 

coordinate system used must be defined. For rotational cases the coordinate system can either 

be stationary or attached to the spinning object, i.e. a rotating coordinate system.  

 

The choice of coordinates system is dependent upon the rotating body and its support 

structures. For most simple systems, where the geometry can be considered axis-symmetric, 

it is common to use a stationary coordinate system regardless of the type of supports. However, 
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many shafts and rotors are not axis-symmetric, whether through manufacturing imperfections 

or intentional design.  A rotating coordinate system is therefore more useful provided the 

supports are isotropic.   

 

Instances where a rotating coordinate system is required due to rotational instabilities include: 

asymmetric rotors with isotropic supports, stability analysis of asymmetric rotors and the 

effects of internal and external damping. Section 2.6 discusses the impact the chosen 

coordinate system has upon the calculated natural frequencies of a rotating structure.  

 

 

2.3 Dynamic Effects of Rotation 

A shaft or rotor will not exhibit the same natural behaviour whilst rotating as it does when 

stationary. This is due to a number of additional forces acting on the rotating structure, with 

lateral vibrations being dependent both on the speed of rotation due to gyroscopic effects and 

speed-dependent bearing properties. 

 

2.3.1 Gyroscopic Effects 

The gyroscopic effects occur due to coupling between the motions of a body as it rotates. 

Friswell [3] defines the relationship between the rotations of a disc about three axes in terms 

of conservation of angular momentum. The disc in Figure 2.1 is rotating about the Oz axis 

with constant angular speed, Ω.  

 

With a moment (Mx) applied about the x axis, a rotation will occur about the y axis with 

angular velocity, ψ̇. For a shaft rotating about its spin axis, if rotation is applied to one of its 

other axes, a moment will be applied about the third axis to maintain equilibrium. The effect 

of a rotational axis moving due to an applied moment about another is termed precession. 

 

Gyroscopic forces in rotating structures are analysed as damping terms in the system equations 

of motion. As reported by Green [19] and Föppl [16], these terms are proportional to the 

rotational speed and are therefore not apparent if the body is stationary. The Coriolis Effect is 

similar in its analysis to gyroscopic moments and is discussed in Section 2.4.1. 
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Figure 2.1 – Effects of clockwise moment about Ox [3] 

 

2.3.2 Bearing Effects 

All bearings have some degree of flexibility and can absorb energy. Therefore to conduct a 

comprehensive analysis, it is important to include stiffness and damping forces that may affect 

the dynamic performance of a rotor system. The stiffness and damping can be speed dependent 

[20]. For many types of bearings, due to the existence of fluids, the relationship of these is 

non-linear, making analysis complicated and approximations less inaccurate [15]. 

 

The rotor shaft/bearing stiffness ratio will have an effect on the type of motion observed. 

Where the supports are considered flexible compared to the rotor shaft, the mode shape 

observed will be circular and uniform in shape; the rotor is effectively undergoing rigid body 

motion. As bearing stiffness is increased, rigid body motion is prevented causing the rotor 

shaft to begin to deform. Figure 2.2 compares the first mode shapes at for a shaft rotating at 

with various levels of bearing stiffness at constant rotational speed. 

 

 

Figure 2.2 – Rotor mode shapes with varying support stiffness [22] 
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The effect of shaft/bearing stiffness ratio can be particularly important to consider during 

analysis and design as bearing stiffness cannot always be easily obtained empirically. 

Parametric studies are often needed to match models to observed behaviour. Figure 2.3 shows 

a critical speed map, produced in ANSYS [21], for eight modes of a rotating shaft with three 

mounted disks against varying bearing stiffness.  

 

  

Figure 2.3 – Critical speed map for three disk shaft [21] 

 

When compared with critical speeds measured experimentally, a critical speed map allows the 

bearing characteristics which produce particular critical speeds to be identified. Tiwari et al 

[23] conducted an investigation into experimental and theoretical methods of identifying 

dynamic bearing characteristics. In all incidences, the bearing characteristics obtained are 

likely to contain inaccuracies.   

 

2.3.3 Acceleration Effects 

To run at its operational speed a rotating structure must accelerate from rest. This potentially 

requires the machine to accelerate through one or more of its lateral critical speeds. Lewis [24] 

provides an approximate solution to the problem of running a system through its critical speed 

from rest at a uniform acceleration. The solution shows that the resonant vibration amplitude 

as it passed through the critical speed is smaller than if the rotor is held there. It is also shown 

that the critical speed will occur higher than the true critical speed during acceleration but 

lower than the true critical speed during deceleration.  
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Sirinivasan et al [25] discuss problems associated with accelerating through a critical speed 

and limited-torque acceleration. Limited torque acceleration occurs when a rotating machine 

cannot produce sufficient torque to surpass a critical speed. It is manifested by elevated 

vibration levels as the machine stalls. It is found that insufficient torque leads to low 

acceleration rates causing prolonged operation at critical speed and greater levels of vibration. 

Having sufficient torque therefore allows quicker accelerations and reduced vibration levels 

when passing through a critical speed. 

 

 

2.4 Modes of Vibration and Governing Equations 

Rotordynamic analysis can be categorised into three different types of motion; lateral, 

torsional and longitudinal (axial). Each can be discussed and analysed independently, 

however, it is not always reasonable to do so due to coupling dynamics between them.  

 

2.4.1 Lateral Vibration 

Lateral vibration considers motion perpendicular to the axis of rotation and is the primary 

category of vibration considered when operating high speed machinery. In gas turbine 

packages excessive lateral vibration can lead to both shaft and bearing wear and eventually 

failure. Lateral vibration is identified as bending vibration if the rotor shaft is significantly 

flexible but also rigid body motion if the shaft is rigid compared to the support structures. Key 

equations of motion for lateral vibration take the standard form of vibration problems. The 

equations include terms for system mass [M], stiffness [K], damping [C] and also specific 

terms for gyroscopic effects due to rotation [G]. The effects of stiffness and damping in support 

structures are included in the relevant matrices. For free vibration, the forcing function F(t) is 

zero.  

 

[M]{q̈} + [C + G]{q̇} + [K]{q} = F(t) (2.1) 

 

Gyroscopic terms are added to the damping coefficient matrix. Manipulation of the Equation 

(2.1) shows that if the rotational speed in the {�̇�} vector is zero, gyroscopic moments have no 

effect upon the system dynamics. For any non-zero rotational speed, gyroscopic terms have 

the effect of splitting the frequencies of the perpendicular motions. The magnitude of the 
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gyroscopic affect is dependent upon the polar inertia of the body undergoing rotation; 

therefore for a shaft without a mounted disc, the gyroscopic effect will be limited due to the 

low polar inertia. When using a rotating coordinate system, the required additional terms due 

to Coriolis forces [Ccor]  and spin softening [Kspin] are shown in Equation (2.2) [3]: 

 

[M]{q̈} + [C + Ccor]{q̇} + [K − Kspin]{q} = F(t) (2.2) 

  

The Coriolis matrix has a similar effect to the gyroscopic matrix in coupling the lateral 

displacements; however this is solely the effect of using a rotating coordinate system and not 

due to the geometry of the body itself [3].  The spin softening matrix accounts for the rotating 

coordinate system such that the natural frequencies obtained do not include the rotational 

velocity element [26]. Genta [27] argued using several examples that centrifugal or spin 

softening is not a real physical effect but merely an artefact of deriving the equations of motion 

of the system in a rotating coordinate system. 

 

The analysis of lateral vibration using these equations requires knowledge of the mass, 

stiffness and damping characteristics of the rotor system and bearings. To obtain the forced 

response, the nature of the excitation function, F(t), must be known.  

 

2.4.2 Whirl 

Whirling relates to the deflection in a circular or elliptical motion when a body rotates around 

the axis of rotation. The direction of whirling is not necessarily determined by the rotational 

velocity. When the directions of shaft rotation and whirl coincide, it is termed a forward whirl 

(FW). If the directions are opposite to one another, it is termed backward whirl (BW). 

 

Weaver [10] considered any circular or elliptical motion to be whirling. Downham [28] 

considers a shaft is whirling when it is rotating at its critical speed. This is opposed by Inman 

[29] who describes whirling to be the angular motion of the deflected shaft about the neutral 

axis of the shaft. Batrak [5] support Inman’s view that whirling can occur at any, non-critical 

rotational speed. It goes further to define whirl which has speed equal to the rotational speed 

of the system as synchronous whirling. Conversely whirl that occurs at a speed not equal to 

the rotational speed is defined as asynchronous whirling.  
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A forward whirl excited due to unbalance would be considered a synchronous vibration, 

however, a backward whirl would not typically be excited due to unbalance. A backward whirl 

may be excited by an external excitation such as asymmetry or cross coupling in the supports 

[30].  

 

2.4.3 Torsional Vibration 

Torsional vibration is periodic angular motion. Torsional vibrations are considerably simpler 

to model than lateral vibration as support structures have little influence on torsional natural 

frequencies [31]. Figure 2.4 shows a rotor system containing several shafts and rotor discs:  

 

 

Figure 2.4 – Simple torsional vibration rotor model [3]  

 

Equation 2.3 neglects gyroscopic forces and structural damping. The mass matrix is built using 

polar second moment of area, Ipi and the displacement matrix contains the rotations of the 

discs, ϕ. The shaft torsional stiffness Kt is determined by Equation (2.4). T(t) is applied torque:  

 

[M]{q̈} + [Kt]{q} = T(t)  (2.3) 

 

Kt𝑖 =
T

ϕ
 (2.4) 

 

Single rotor shafts are generally unaffected by torsional vibration, with the exceptions of long, 

rigidly coupled rotors seen in applications such as steam turbines. Single rotors are sufficiently 

stiff such that the torsional natural frequencies are high enough to avoid excitation through 

torque transmission. However, by coupling two or more shafts, the overall stiffness of the 

system is reduced; therefore the torsional natural frequencies are lowered, increasing the 

possibility of excitation.  
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Flexible couplings can be affected by torsional vibration. If there is torque ripple, that is where 

the torque is transferred from one coupled shaft to another and does not remain constant 

throughout, this can lead to significant torsional excitation.  Huang [32] showed that torsional 

vibration can be excited in the presence of sufficient unbalance and lateral excitation. 

Conversely torsional vibration could induce bisynchronous lateral vibrations when the shaft 

is excited at or close to the natural torsional frequency.  

 

2.4.4 Longitudinal Vibration 

Longitudinal Vibration concerns translational movement along the axis of rotation and is 

therefore also referred to as axial vibration. The analysis is of particular importance in rotating 

machines that are used to provide power by means of thrust through a fan or propeller. In gas 

turbines, the bearings usually limit the amount of allowable axial movement. Due to this, the 

analysis of axial vibrations should consider the extension and compression of the rotor shaft 

material. If a rotor system is analysed for axial vibrations, it can be modelled as a discrete 

series of spring-mass systems, as shown in Figure 2.5: 

 

 

Figure 2.5 – Axial behaviour of a multi-disc rotor [3] 

 

The forced response of the system is given by Equation (2.5) and the axial stiffness by 

Equation (2.6): 

 

[M]{q̈} + [K]{q} = F(t) (2.5) 

  

𝐾𝑎𝑖 =
F

w𝑎𝑖
 (2.6) 

 

𝑤𝑎3 

𝑘𝑎1 𝑘𝑎2 𝑘𝑎3 𝑘𝑎4 

𝑤𝑎4 𝑤𝑎2 𝑤𝑎1 
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2.4.5 Coupling of Vibration Modes 

An awareness and understanding of the mechanisms of how motions are coupled is important. 

Lateral and torsional vibrations are most commonly analysed individually and whilst it is 

recognised that both can exist within the same machine, it is generally accepted that they do 

not significantly interact. Nevertheless, there are exceptions where such coupling can occur: 

 

Lateral – Torsional  

Al-Bedoor [33] and Wu and Yang [34] found that interactions between lateral and torsional 

vibrations can only exist when a shaft or rotor system is not symmetric, and whilst a small 

amount of eccentricity in any rotating body is sufficient to explain lateral vibrations, it is not 

a significant factor alone to influence lateral-torsional coupling.  

  

Quin and Mao [35] developed a new shaft element model for coupled torsional-flexural 

vibration including; translational and rotational inertia, gyroscopic moments, bending, shear 

and torsional deformations, internal damping and mass eccentricity. Examples analysed 

included a dual rotor system, a more complex single rotor system, and a spur gear system.  

 

Huang [36] studied the torsional behaviour of a parallel misaligned coupling. This showed 

that if parallel misalignment occurs, both torsional and lateral natural frequencies are present 

at the 1x rotating frequency. Although coupling between torsional and lateral vibrations is not 

specifically mentioned, the results demonstrate that both lateral and torsional vibrations are 

excited by misalignment. Li and Yu [37] also identify misaligned gear couplings as a source 

of lateral-torsional vibration.  

 

Gosiewski [38] conducted an analysis of lateral-torsional behaviour of a three mode Jeffcott 

rotor. Previous work had found that at particular speeds coupled lateral-torsional vibrations 

led to instability. The regions of instability were found to occur at rotational speeds close to 

the intersection of lateral and torsional natural frequencies.  

 

Kumar and Roa [39] report on an experimental study of the whirling characteristics of a geared 

rotor system. The work reached similar conclusions to that of Gosiewski [38] i.e. that lateral 

vibrations are seen to peak at rotational speeds where the lateral and torsional natural 

frequencies are close. Shafts connected by gears also influence lateral-torsional coupling, Roa 

et al [40] and Lee et al [41].   
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Lateral – Longitudinal  

Papadopolous and Dimarogonas [42], [43] examined the lateral – longitudinal vibrations of a 

non-rotating cracked shaft.  Behzad and Bastami [44] demonstrated how centrifugal force can 

affect the lateral natural frequency through axial forces. The centrifugal force created by 

rotation causes a radial stress which due to the Poisson effect and the constraining of axial 

movement in rotors also causes an axial stress. The sum of axial stresses across the rotor shaft 

cross section produces a net axial force that changes the natural frequency of vibration. The 

axial force produced by rotation of a shaft and impact upon the lateral natural frequency is 

comparable with the gyroscopic effect. It was reported that for long shafts at high speed the 

axial force affect was considerable but at lower speeds negligible. 

 

Lateral – Longitudinal – Torsional  

Luo and Sun [45] developed a model for multistage, multi-mesh geared shaft systems which 

takes into account coupling between torsional-lateral-axial vibrations. It was shown to model 

some cross coupling at natural frequency that matched observed phenomena. 

 

Darpe et al [46] considered the coupling of all three modes of vibration for a cracked rotating 

shaft. The coupling between all three motions is evident by excitation of one of the modes and 

is only seen due to the presence of the crack.  

 

 

2.5 Modal Analysis 

A modal analysis determines the vibration characteristics of a structure; natural frequencies 

and mode shapes (Section 2.5.1). Modal analysis allows the design of a structure to avoid 

resonant vibrations or to vibrate at a specified frequency and gives engineers an idea of how 

the design will respond to different types of dynamic loads.  It can also serve as a starting 

point for another, more detailed, dynamic analysis, such as a transient dynamic analysis, a 

harmonic analysis, or a spectrum analysis. The natural frequencies and mode shapes are 

important parameters in the design of a structure for dynamic loading conditions. For a rotating 

structures, the gyroscopic effects resulting from rotational velocities can be included into the 

modal system along with damping effects due to the presence of bearings. The evolution of 

natural frequencies with the rotational velocity can be studied with the aid of Campbell 
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Diagrams (Section 2.6) [47]. Theoretical modal analysis allows the dynamic characteristics of 

a structure to be modelled, in terms of equations of motion, and its response predicated.  

 

Modal testing is the process of testing components or structures with the objective of obtaining 

a mathematical description of their dynamic or vibration behaviour. Doing so allows: 

1. Use of the model to predict the structural response at any point 

2. Determining the nature and extent of vibration response levels in operation 

(Determine any unknown input forces) 

3. Verification of theoretical models 

 

Ewins [48] states that modal testing requires the integration of three components:  

 Understanding of theory of vibration  

 Accurate vibration measurement  

 Realistic and detailed data analysis 

 

Modal testing uses experimentally obtained data to generate spatially frequency dependent 

models, Figure 2.6. In the modal domain, the displacement of the structure for each mode is 

observed against time, whereas in the frequency domain, amplitude spikes occur at the 

frequency each mode.  

 

 

Figure 2.6 – Modal and frequency domain [49] 

 

The relationship between input forces and the system response (X/F) can be modelled as a 

Frequency Response Function (FRF), Figure 2.7. 
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Figure 2.7 – Input forces and response of a structure related by FRF 

 

The general expression for any FRF of a structure can be modelled using Eq (2.7) where: 𝜆𝑟 is 

the eigenvalue of the rth mode (its natural frequency), �̅�𝒊𝒓 is the ith element of the rth 

eigenvector {�̅�𝒊 } (its mode shape) and N is the number of degrees of freedom. 

 

Hij(ω) =
X𝑖
𝐹𝑗
=∑

(�̅�𝒊𝒓)(�̅�𝒋𝒓)

𝜆𝑟
2 −𝜔2

𝑁

𝑟=1

 

 
(2.7) 

 

This expression forms the foundation of modal analysis: it shows a direct connection between 

the modal properties of a system and its response characteristics. Using experimental data 

obtained from a vibrating structure to create an FRF and predict its future behaviour is 

analogous with using equations of motion and theoretical modal analysis. Furthermore, 

experimental data can be further used to improve the fit of theoretical models.  

 

2.5.1 Mode Shapes 

When excited at a natural frequency, the motion of a system will move with a particular pattern 

or mode shape. The total response of a system will be a combination of all its individual mode 

shapes from differing contributions. The principle of mode superposition is considered to hold 

in such studies. The obtained eigenvectors, {�̅� }, contain the mode shapes of a system.  

 

As previously discussed, due to rotational effects, the natural frequency of a rotating structure 

will change with rotational speed and, hence, so will the shape taken by a particular mode. As 

shown in Section 2.3.2, bearing stiffness changes with rotational speed and affect the shape 

taken by the rotor. Figure 2.8 to Figure 2.10 shows the first three lateral bending mode shapes 

at critical speed of a shaft with a mounted disc. 
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Figure 2.8 – 1st bending mode shapes of a shaft with a mounted disc  

 

 

Figure 2.9 – 2nd bending mode shapes of a shaft with a mounted disc 

 

 

Figure 2.10 – 3rd bending mode shapes of a shaft with a mounted disc 
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2.6 Campbell Diagrams 

An important tool in the analysis of critical speeds is the Campbell Diagram. It is a 

presentation of resonance frequencies as functions of rotor speeds [4]. The natural frequencies 

of a machine or system are dependent upon its mass, stiffness and the damping characteristics 

which are dependent upon rotational speed. It is therefore important to plot these variations of 

natural frequency with respect to rotational speed. Figure 2.11 shows how the natural 

frequency (specifically in this instance Ω) varies with rotor speed (ω) for five modes.  

 

Figure 2.11 – Example Campbell diagram [4] 

 

Rotating bodies are also subject to external excitations. Such forces can be influenced by 

rotational speed (due to rotor unbalance, misalignment, rotor shaft deformation or cracks).  

However, they also can be unrelated or be caused by environmental factors; possibly base 

excitation through foundations and supports. If the frequency of these forces is known, it can 

be plotted against rotational speed on a Campbell diagram.  

 

When the natural frequency of a mode coincides with frequency of excitation, a critical speed 

is excited.  Critical speeds can be identified by monitoring the system for rotational speeds 

that cause large vibration amplitude, as shown in the lower part of Figure 2.11. A Campbell 

Diagram can be used to show gyroscopic effects upon the natural frequencies of modes. Figure 

2.12 shows Campbell Diagrams for the shaft in Figure 2.10. The natural frequencies of the 

first two bending modes are shown as four lines (FW and BW for each mode).  
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Figure 2.12 – Campbell diagrams in stationary and rotating coordinate systems 

 

For frequencies obtained using a stationary coordinate system, shown in Figure 2.12a, for the 

first bending mode, the disk is moving with translational motion only; therefore the gyroscopic 

moment is low, meaning the frequencies of this mode do not significantly deviate. For the 

second bending mode, the disc is tilting about its own axis; therefore significant gyroscopic 

moments are induced and there is substantial deviation of the natural frequencies.  

 

How modes appear on a Campbell diagram also vary depending on the type of coordinate 

system used. Figure 2.12b shows the natural frequencies of the shaft with central disc 

calculated in a rotating reference frame. The first bending mode shows a clear splitting which 

is not present in the stationary coordinate system. The second mode shows a greater amount 

of splitting. Both effects are a result of a combination of the Coriolis spin softening matrices.  

Figure 2.13 to Figure 2.15 repeats the process for a simple shaft without a centrally mounted 

disc.  
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When compared with Figure 2.8 it is clear that the mode shapes of the simple plain shaft are 

similar to the shaft with centrally mounted disc. However due to the lack of disc and therefore 

polar inertia, there is a very low gyroscopic moment applied in either the first or second 

bending modes of the shaft.  

 

 

Figure 2.13 – 1st bending mode of simple plain shaft 

 

 

Figure 2.14 – 2nd bending mode of simple plain shaft 

 

Observation of Figure 2.15 shows that in the stationary coordinate system this causes no 

significant splitting of frequencies.  In the rotating coordinate system, the degree of splitting 

of the frequencies for each mode, due to Coriolis matrix, is almost identical to the shaft with 

centrally mounted disk.  
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Figure 2.15 – Campbell diagrams for simple plain shaft 

 

From Figure 2.12 and Figure 2.15 there are some clear observations: 

 

1. The natural frequencies of forward whirling modes will increase with rotational 

velocity and backwards mode frequencies will decrease 

2. A forward whirling, synchronous critical speed in a stationary coordinate system is 

determined by the coincidence of a forward whirling mode with the excitation 

frequency (circled in Figure 2.12a and Figure 2.15a).  

3. When observed in a rotating coordinate system, the same critical speed corresponds 

to zero frequency [50] (circled in Figure 2.12b and Figure 2.15b). 

4. In a rotating coordinate system forward travelling modes have lower frequencies than 

backward travelling modes [3] 
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From these observations is it is possible to transform between coordinate systems. When 

observed in a stationary coordinate system, forward travelling modes in a rotating coordinate 

system have the frequency of the rotational speed (fΩ) added, whilst backward travelling 

modes have the frequency of rotational velocity subtracted [3]: 

 

fFWstat
= fFWrot

+ fΩ   (2.8) 

   

 fBWstat
= fBWrot

+ fΩ  (2.9) 

   

Using these equations allows flexibility over the choice of coordinate system used for analysis. 

There may be instances where one coordinate system should be used in preference to another 

(asymmetric rotor, anisotropic bearings, and instabilities), however, the results can be 

transformed between them [26]. This is particularly useful when comparing result from 

experimental measurements which are usually obtained in a stationary coordinate system [21]. 

 

From [3], natural frequencies obtained in a stationary reference frame are not natural 

frequencies in the usual sense. When equations of motion are converted into a stationary frame 

of reference, they contain time varying coefficients, such as shaft or support stiffness. Such 

equations cannot be solved as an eigenvalue problem and do not yield true natural frequencies. 

Therefore, any natural frequencies obtained in the rotating frame of reference must be 

transformed into the stationary frame by virtue of Equations (2.8) and (2.9) 

 

 

2.7 Methods of Vibration Control in Rotating Shafts 

Vibration control is the means of reducing the amplitude of vibration exhibited by a structure 

due to some form of disturbance. This can be carried out in two primary ways: 1) through 

design and optimal operation to ensure harmful frequencies of vibration are avoided and 2) 

aggressive mitigation techniques to directly reduce the effects of those vibration frequencies 

that cannot be avoided.  

 

Through discussion of rotating machinery it is clear that in order to reduce lateral vibration 

levels, critical speeds should be avoided during operation and exposure minimised during 
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start-up/run down. Furthermore, to minimise the effect of any residual unbalance that may 

occur in the rotor field balancing may need to be carried out. To minimise torsional vibration, 

shafts/rotors and couplings should be designed with suitable stiffness and be correctly aligned 

when in operation. 

 

Lees et al [51] gave a review of the practices involved in condition monitoring of rotating 

machines. In addition to the issues of design, unbalance and alignment, the effects of cracked 

rotors, bearing faults and rotor bow were identified as factors of considerable practical 

importance.   

 

2.7.1 Balancing  

All shafts and rotors contain some degree of residual mass unbalance due to asymmetry and 

imperfect machining. Such unbalance can lead to significant forces being exerted upon the 

surroundings; bearings, foundations and casings. It is vitally important to ensure that such 

forces are controlled by eliminating the geometric unbalance of the rotor where possible. 

Primarily this is achieved through design and high tolerances in manufacture.  Nevertheless, 

this is frequently insufficient and other means of reducing vibration levels are necessary. Post 

manufacture, dynamic balancing is achieved by adding or removing the distribution of mass 

on the rotor such that a state of balance is achieved. This resulting state of balance will still 

not be perfect as the second moment of area of the rotor will never be symmetric, therefore it 

is necessary to apply alternative balancing techniques for flexible rotors.  

 

A rigid rotor can be statically unbalanced, where an unbalance force induces a transverse 

vibration or ‘bounce’ motion, Figure 2.16a. A static unbalance occurs when there is a single 

unbalance force present on a rotor. Static unbalance is corrected by single plane balancing, 

where the addition of a single equal balance weight in the same plane but 180o out of phase in 

its radial position. 
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Figure 2.16 – a) Static unbalance b) Dynamic unbalance [2] 

 

Two-plane balancing is required when there are two unbalanced forces acting in two different 

planes. The vibration induced is a transverse ‘tilting’ motion, although the rotor remains rigid. 

This is referred to as dynamic unbalance, Figure 2.16b. To balance, two equal balance weights 

are placed in the same two planes but 180o out of phase in radial positions. If a rigid rotor is 

balanced using two planes at any speed, it is considered balanced across all speeds. Yu [52] 

proposes a method whereby two plane balancing of symmetric rotors can be achieved by the 

use of one trial weight run. Reported results are close to true values obtained by two trial 

weight runs and are deemed acceptable for field balancing. 

 

Modal balancing was proposed in the 1950s and developed by Bishop and Gladwell [14]. The 

definition of balancing involves the addition of small masses at the surface in such a way as 

to cancel out the effects of eccentricity. This paper summarised the previously derived 

mathematics required in order to achieve a ‘low speed balance’ and developed the ‘mode by 

mode balancing of flexible rotors’. The underlying mathematics also includes modifications 

to account for a lack of initial straightness of the rotor shaft. 

 

At low speeds i.e. those below the first critical speed, a flexible rotor can be assumed as a rigid 

body i.e. there is no deflection due to eccentricity. Despite this there may be considerable 

increase in centrifugal force transferred to the bearings. The purpose of low speed balancing 

is to ensure that the mass centre is effectively in line with the axis of rotation.   At high speeds 

i.e. those greater than the first critical speed, balancing as a rigid rotor becomes detrimental. 
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For each critical speed that a rotor operates above, a different balancing condition will be 

required and therefore different balance planes are required.   

 

The mathematics developed in [14] allows for the identification of each balance plane, i.e. the 

axial location where balance weights will have most effect in mitigating vibrations excited at 

a critical speed. Using the balance plane the position of each balance weight can be found by 

trial and error using trial weights. When balancing for a particular mode, a trial weight is added 

to a particular location and the amplitude of vibration is measured close to the critical speed 

being balanced.  The amplitude is plotted against location as seen in Figure 2.17: 

 

 

Figure 2.17 – Trial weight location plot [2] 

 

The process is repeated numerous times at different locations until the location is identified 

where the vibration amplitude is minimum. When the correct location is identified the mass 

of trial weight can be altered a desired state of balance is achieved.  This procedure is clearly 

tedious and time consuming but yields accurate levels of balance. Morton [53] discussed 

methods to conduct modal balancing without the use of trial weights. Existing techniques 

attempt to mathematically model a rotor system based on measured characteristics.  However 

this requires assumptions of the bearings which are difficult to model accurately. Morton’s 

model allowed for the unbalance on a rotating shaft to be calculated from running vibration 

measurements, and no bearing representation was required. The resulting model offered a 

reduction in time required running a machine in order to find a state of balance. 
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Parkinson [54] extensively summarises the theory behind unbalance in rotors with both 

flexible and rigid shafts. Although written many years after Morton, [53] the principles are 

similar, although with less mathematical focus. The fundamentals of balancing are reported 

as well as various balancing procedures; modal balancing, both single and two plane, and 

influence coefficient balancing. The process selects correction masses in positions to ensure 

that vibration is zero at a series of locations along the shaft for a series of shaft speeds. It is 

heavily reliant on computational capability. Parkinson found that modal balancing was made 

more effective by the use of the influence coefficient computer programmes and made for 

faster, more sensitive balancing than influence coefficient alone. Influence coefficient 

balancing does not require the same detailed information regarding critical speeds and mode 

shapes as the modal method. Assumptions are made concerning how a force or displacement 

at a particular position on the rotor influences a displacement or force at another positon on 

the rotor. It is suitable for in situ machines where it is not possible to directly balance on the 

plane of the known unbalance.  

 

Parkinson [54] also discusses ‘automatic balancing’ whereby balance weights have limited 

movement to allow for balancing across a range of speeds. Such devises have been proposed 

by many authors, including Rodrigues et al [55]. This research was limited to a rigid rotor 

where the degree and position unbalance may change over time.  

 

Garvey et al [56] considered rotors that have been balanced in a balancing machine during 

manufacture. There may be some variability in characteristics between the stator used for 

balancing and that of the machine in situ. The methods require significant knowledge of the 

unbalance in order to achieve a robust balance that will overcome the variability which may 

be experienced. The model may also be useful for rotors where foundation characteristics may 

change over time.  

 

2.7.2 Alignment 

Misalignment is a problem when occurs with the commissioning of turbomachinery. 

Alignment is important to consider when building a rotor system, ensuring the rotor is aligned 

correctly in its bearings. The issue becomes more important and the effects of misalignment 

greater when connecting machines together.  To transmit power, rotating machines may 

require a flexible coupling to be used in order to couple two or more shafts. Manufacturing 
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tolerances of the shafts and placement of the machines can cause the two shafts to be offset 

from each another to some degree. If there is a transverse offset between the two shaft lines 

of rotation, this is referred to as lateral or parallel misalignment, Figure 2.18. However, if the 

two surfaces being mounted together are not precisely perpendicular, an angular misalignment 

occurs, Figure 2.19. 

 

‘Correct’ alignment is achieved through ensuring appropriate tolerances are met [6]. 

Alignment tolerances are usually specified by the coupling manufacturers in line with 

international standards [57]. Alignment is assessed by four parameters; parallel and angular 

misalignment in plan and side views. Figure 2.20 refers to these as vertical and horizontal. 

With the misalignment values between the shaft rotation axes known, trigonometry is used to 

check that the configuration falls within limits. 

 

 

Figure 2.18 – Parallel misalignment of coupling shafts 

 

 

Figure 2.19 – Angular misalignment of coupling shafts 
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Figure 2.20 – Categories of misalignment 

 

Any misalignment between the shaft rotational axes can result increased levels of vibration 

and additional bearing forces. Huang [36] found that if parallel misalignment is present, both 

lateral and torsional vibrations are excited at several resonance frequencies. This leads to 

premature wear or even catastrophic failure of bearings, seals, the coupling shaft or the 

machine rotors. Misalignment has long been recognised as one of the leading causes of 

machinery damage. The greater the misalignment, the greater the rate of wear and likelihood 

of premature failure. Moreover, misaligned machines absorb more energy and consume more 

power [58] . 

 

Prabhakar et al [59] considered a rotor-coupling-bearing system passing through critical speed 

using a finite element method (FEM) developed previously. The response of misalignment 

upon lateral vibrations was analysed through a parametric study that investigated the time 

response for varying angular accelerations and types of misalignment. Simple equations of 

motion are used to build coupling and bearing stiffness matrices. The coupling was either 

considered as a frictionless joint or one that includes stiffness and damping. Using a 

continuous wavelet transform (CWT), critical speeds could readily be identified when 

misalignment was present and at low angular accelerations.  The CWT was identified as a 

useful tool for detecting misalignment when a machine is starting up. 

 

Saavedra and Ramirez published a series of papers on misalignment of couplings [60], [61]. 

Stiffness data was obtained allowing a FEM stiffness matrix to be constructed. From this, the 
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vibration caused by misalignment is predicted from simple equations of motion. The effect of 

misalignment on coupling stiffness can be seen by increased force and vibration levels. To 

validate the theoretical model a rotor system composed of motor and generator linked by 

different flexible couplings; a 3-pin and a 3-jaw, was built. The experimental results validated 

the model and it was proven that vibration characteristics are directly related to the coupling 

stiffness, i.e. the type of coupling used and amount of misalignment present. 

 

Patel et al [62] analysed the effect of simultaneous crack and coupling misalignment upon the 

whirl characteristics of a rotor shaft through a parametric study on crack size and location as 

well as misalignment type and level. Previous research had struggled to identify the vibration 

response of crack and misalignment when both were present. Using a FEM model, the effect 

of one upon another was examined and the results were found to be typical for the individual 

analysis of crack and parallel misalignment faults. Angular misalignment was found to have 

no impact upon whirl characteristics in the presence of a crack and could not be detected. 

 

Ganesan and Padmanabhan [63] modelled the varying stiffness of a flexible disc coupling 

used in gas turbine applications. As misalignment increased, the increase in asymmetry caused 

directional time-variations in stiffness. Disc stiffness was obtained through FE analysis using 

commercial software. Using the time varying stiffness, equations of motion were developed 

and a numerical model built to analyse the unbalance response due to misalignment. Sub-

critical speed responses were found to exist. Experimental validation was sought that proved 

the analysis qualitatively; however, discrepancies existed in magnitude of results, the 

difference due to assumptions regarding the level of unbalance. Nevertheless, despite the 

inaccuracies the increased credibility to the link between misalignment and increased 

excitation of subcritical frequencies. 

 

The use of long, flexible couplings allow for a degree of misalignment. This is usually 

sufficient to absorb any temporary misalignment that may occur due to unbalanced forces 

whilst machines are traversing the first critical speed.   

 

2.7.3 Active Control 

Active vibration control uses an external actuator to provide a change to the dynamic 

characteristics of the system of which it is a part. Active control requires feedback control o 

that the change supplied by the actuator is dependent on the response of the system. Actuators 
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can either be paired with a sensor or can also act as a combined actuator/sensor to provide 

feedback. The effectiveness of active vibration control is very dependent upon the robustness 

and response of the feedback system.  

Figure 2.21 shows an example control feedback system for an active vibration suppression 

setup on a structure. The response is measured and an appropriate control signal applied. 

 

Active control in rotordynamics is considered as the application of corrective lateral force to 

a shaft or rotor. This differs from active or automatic balancing where the mass distribution is 

adjusted. Automatic balancing of rigid shafts and rotors is limited in its success with high 

speed flexible shafts operating through numerous modes. Some success is seen in household 

applications such as washing machines.  

 

Many types of control law have been reported for this purpose. Wang and Inman [64] 

considered four conventional vibration suppression control laws; positive position feedback 

(PPF), Proportional Integral Derivative (PID), non-linear control and Linear Quadratic 

Regulator (LQR) controls, as well as four hybrid modifications to these law for optimal use 

of actuators in terms of vibration reduction and power consumption. Models were tested on a 

thin cantilever with a piezoelectric patch. Hybrid control laws show lower power consumption 

than classical methods. Although only tested on a non-rotating beam, the control laws are 

considered suitable to control systems for active bearings or other rotating active control 

systems.  

 

Cole et al [65] developed a real-time algorithm to calculate the amplitude and phase of 

vibration components with a view to cancelling them using dynamic feedback control. The 

controller demonstrated the ability to reduce steady state vibration levels as well as responding 

quickly to excitation  

 

Figure 2.21 – Feedback control system for active vibration control [29] 
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2.7.3.1  Active Bearings  

Zhou and Shi [66] conducted a survey into the special case of active vibration control in 

rotating machinery. The difference between rotating machinery and other flexible structures 

is that the dynamics of the rotor changes with the rotational speed of the rotor system. It was 

identified that the best control performance is obtained if control gains vary with rotational 

speed. Moreover, since the shaft is a moving element, a noncontact actuator must be used to 

apply the control force to the rotating shaft. These include electromagnetic, hydraulic and 

piezoelectric. 

 

Active bearing characteristics can be adapted to reduce vibration levels dependent on the 

systems response.  Burrows et al [67] summarised existing knowledge and current use of 

active bearings as well as what is required to  utilise active bearings to produce so called ‘smart 

machinery’ that is able to autonomously control vibrations. Again magnetic bearings feature 

heavily as actuators for future smart machinery; however, greater significance is placed upon 

effective control and diagnosis of vibration faults. 

 

Magnetic bearings 

Magnetic bearings are becoming popular in industry due to their low losses, no requirement 

for lubricant and long life [3]. Rotordynamics analysts are attracted by the ability to apply a 

synchronous lateral force to a shaft to control the unbalance response and compensate for 

vibration displacement of the shaft [66]. 

 

An active magnetic bearings are based on electromagnetic suspension that maintain an air gap 

about the shaft. Figure 2.22 shows the schematic of an active magnetic bearing system and 

electromagnet assembly; power amplifiers which supply current to the electromagnets, a 

controller, and sensors to provide the feedback required to control the position of the rotor. 

 

Magnetic bearings are affected by issues of reliability and redundancy, and failure of the 

magnetic field can result in contact and damage between the bearing and rotor. It is 

commonplace for magnetic bearings to have a backup set of ‘regular’ bearings to 

accommodate touchdown—it is known that non-linear vibrations can occur when the rotor 

falls onto the backup bearings [4].  To maintain a desired rotor position, bearing loads are 

constantly adjusted through feedback position control. Errors can arise from differences in the 

placement of sensors and position of the applied bearing force, causing instabilities.  
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Figure 2.22 – Schematic of an active magnetic bearing [4] 

 

Piezoelectricity – Piezo bearings 

Piezoelectric materials undergo mechanical deformation if subjected to an applied voltage. 

Conversely, they will generate an internal potential difference if subjected to strain. For design 

purposes. It can be assumed that the force exerted by a piezo actuator is proportional to the 

applied voltage. Research has been primarily focussed on surface mounted sensors and 

actuators for mechanical structures such as beams or frames [68-71].  However, effort has 

been made to use these principles on rotating shafts.  

 

Horst and Wolfel [72] produced an FE model of a rotor system that used shaft mounted piezo 

actuators to control vibration. The model was validated using experimental testing and 

demonstrated the ability to achieve active vibration control. However, more robust control 

techniques need to be sought.  Sloetjes and Boer [73] followed [72] by using complex 

algorithms to model surface mounted piezo sheets mounted to flexible shafts. Four rotor 

models incorporating piezo functionality are outlined in the study. The model showed that the 

actuator sheets can be self-powered but with limited function. Despite this, systems using 

piezo sheets appear feasible with further research. 

 

Piezo bearings use piezoelectric materials to provide actuation instead of magnetic 

counterparts. In this case, shafts are supported using traditional bearings with piezo sensors 

and actuators externally mounted. Figure 2.21 shows an example of a piezo bearing with 

sensors and actuators mounted externally. Control is achieved by adjusting the shaft centre of 

rotation through adjustment of the bearing position. 
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Figure 2.23 – Example of a piezo bearing [72] 

 

Pazzolo et al [74] presented a roller bearing with piezoelectric actuators, whilst Abduljabba et 

al [75] reported possible control methods for the control of lateral vibration using an active 

bearing containing piezo actuators; force feedback and robust control. The technical feasibility 

of the control methods is presented. More recent research by Pinte et al [76] considered the 

effect of an active piezo bearing on the noise radiated by rotating machinery. Using effective 

control produces a reduction in radiated sound of 10dB is shown. This effect was due to a 

reduction in shaft vibrations.  However, the degree to which this occurred was not quantified. 

Proceeding work by the authors also used a bearing that suppressed vibration through the 

dissipation of electrical energy stored in a piezoelectric transducer [77].  

 

Active control is a promising area of research for performance improvement.  However, the 

limitation of most active bearings is the maximum force the actuators can provide coupled 

with the bandwidth of actuation.  

 

2.7.4 Passive Control 

Whilst it is not always possible to prevent the source of vibration through design, balancing 

or proper operation, it may be possible to eliminate the effects of vibration through passive 

modifications by the addition of physical mass, damping or stiffness to the system. This 

requires permanent changes to the physical system which will not allow for perturbations and 

changes in system parameters. Wang [78] and Friswell [79] have demonstrated methods of 

increasing the natural frequency of a structure by altering its stiffness. Wang [78] used an 

elastic support with varying stiffness to maximise the natural frequency of a cantilever beam. 

Friswell [75] found the minimum support stiffness required to increase the natural frequency 

of a two-dimensional plate to its maximum. 
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It is well established that the vibration of rotating machinery can be reduced by introducing 

passive devices into the system [64]. A technique which alters the stiffness of a rotating 

structure is considered by Suherman and Plaut [80]. The reported method adds a flexible 

support to the structure to increase its stiffness close to the critical speed. Theoretically, the 

amplitude of resonant vibrations are shown to be reduced by increasing the stiffness of the 

support which coincidently increases the critical speed of the shaft away from the running 

speed.  

 

Vibration Isolation 

Vibration isolation through mountings under and around the support structure is intended to 

reduce the impact of the vibration source on its surroundings. For rotating machinery this will 

be the stator foundations and prevent coupling to any other machines sharing the same floor 

space. This does not remove the cause of the problem. 

 

Squeeze Film Dampers 

Squeeze film dampers (SFDs) offer dual advantages of dissipation of vibration energy and 

isolation of structural components, as well as the capability to improve the dynamic stability 

characteristics of inherently unstable rotor-bearing systems. SFDs are used to provide viscous 

damping to rolling element bearings or to reduce the bearing stiffness of tilting bad bearings 

whilst providing additional damping so as to prevent rotordynamic instabilities. 

 

Figure 2.24 shows a typical SFD configuration consisting of an inner nonrotating journal and 

a stationary outer bearing. The journal is mounted on the external race of a rolling element 

bearing and fixed to prevent spinning The annular squeeze film, typically less than 0.25 mm, 

between the journal and housing is filled lubricant. In operation, as the journal moves due to 

dynamic forces acting on the system, the fluid is displaced to accommodate the motion. As a 

result, hydrodynamic squeeze film pressures exert reaction forces on the journal to reduce the 

rotor amplitude of motion [81]. 
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Figure 2.24 – Squeeze film damper configuration [81] 

 

Tuned Mass Dampers 

A tuned mass damper (TMD) consists of a mass, spring and a damper that are attached to a 

structure to reduce the dynamic response. The frequency of the damper is tuned to a particular 

structural frequency using the mass and spring stiffness. When the specific frequency is 

excited, the damper will resonate out of phase with the structural motion. Energy  is  dissipated  

by  the  damper  inertia  force  acting  on  the structure. TMDs are extensively used in civil 

engineering for the absorption and dissipation of kinetic energy in tall buildings, bridges and 

power transmission lines [82], [83] and typically have had limited use in rotordynamics but 

do show potential.  

 

Borghesani [84] showed, at least theoretically, that optimally tuned vibration absorbers can 

reduce vibration amplitudes on rotating structures but also induce multiple resonance peaks 

which may have an effect upon the stiffness of main system, Figure 2.25.  

 

 

Figure 2.25 - Effect of tuned mass damper upon system responses and resonant peaks [80] 
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NASA [85] analytically and experimentally demonstrated a self-tuning vibration damper upto 

20,000 rpm. The work showed that the frequency of vibration could be increased or decreased 

depending upon the configuration of the added damper. The self-tuning damper was also 

shown to have a reduced but noticeable effect away from its design frequency.  

 

A patent application [86] applies a vibration absorber to the outer circumference of the shaft. 

The absorber is made of a light, elastically deformable inner member with a metal alloy outer 

shell. Vibration control is theoretically achieved by allowing the heavier outer shell to vibrate 

with the shaft, thus acting as the inertial mass element of the spring-mass system.  A second 

patent application [87] considers rotating shafts with one free end – drills, borehole operations. 

A torsional TMD is attached to the rotating body and configured to have a damping frequency 

that is tuned to a selected natural frequency. 

 

The addition of a TMD to a rotating structure is feasible but the effect upon the system 

response away from the design frequency must also be considered. 

 

 

2.8 Conclusions 

The analysis and understanding of rotating structures has significant historic grounding dating 

back to the 19th Century with the development of readily available increased computational 

power rejuvenating the field in the late 20th Century.  

All mechanical systems have an infinite number of frequencies which when excited will cause 

it to vibrate. When the natural frequencies of rotating systems are excited, usually through 

unbalanced forces, the speed at which these vibrations occur are called a critical speed. The 

standard techniques for mitigating vibration in rotating structures are split into three main 

categories; Careful design and manufacture, correct installation and effective control 

strategies.  

 

Careful balancing allows the effect of the residual unbalance present in all rotating structures 

to be minimised. This process can be timely and labour intensive and an effective state of 

balance difficult to achieve.  Furthermore, rotating machines are often only balanced for one 

optimal operating speed. The proposed sleeve is designed to be flexible to allow for a state of 



2.8 Conclusions 42 

  

 

balance to be achieved across a range of operating speeds without the need to shut down and 

reconfigure state of balance.  

  

By adding the sleeves to a rotating shaft, its fundamental dynamics will be altered. Therefore 

it is important that analysis is undertaken to understand the effect of adding the sleeves to the 

shaft and what, if any, are the practical implications of doing so.  

 

As the response of a structure to any dynamic load is determined by its physical characteristics, 

a modal analysis should be the first step prior to any further analysis or testing. From the 

established analysis and understanding of rotating structures, the following path of research 

will be undertaken: 

 

 Attempt to model the shaft and sleeve system using simplified equations of motion. 

 Use theoretical modal analysis to determine the natural frequencies and critical speeds 

of the system. 

 Seek validation and/or model refinement using finite element analysis and 

experimental tests.  

 

Once a valid model is produced, use this to investigate the effect that the sleeve can have upon 

the dynamics of the shaft, in particular the critical speeds, and if any significant improvements 

in performance can be gained. 



 

 

 Theoretical Model of a Simplified 

Shaft with Eccentric Sleeves 

3.1 Summary 

A simplified model of a shaft considering all gyroscopic effects, modelled as an Euler-

Bernoulli beam, is derived from first principles, and provides the basis for the proof of 

concept. A full shaft with eccentric sleeves at each end is modelled as a flexible shaft with 

simply supported ends and specified boundary conditions; a torsional spring for the flexible 

coupling and inertia terms of the eccentric sleeves which are modelled as rigid body eccentric 

masses. The sleeves are modelled as rigid bodies as their flexibility is shown to have little 

impact upon the critical speed of the shaft; this is demonstrated using finite element 

simulations that show that the difference in obtained critical speeds for rigid and flexible 

sleeves is only 1%. The derived equations of motion provide similar results to established 

models but with the inclusion of dynamic boundary conditions due to the inclusion of the 

sleeves.  

 

 

3.2 Chapter Highlights 

 Equations of motion for a linear elastic rotating shaft with eccentric sleeves are 

derived using the Extended Hamilton’s Principle  

 The resulting equations of motion for the shaft show comparable underpinning 

characteristics with those reported in literature, but without incorporating the effects 

of the eccentric sleeves 

 The equations neglect the flexibility of the sleeves and only contain mass and inertia 

terms. Neglecting sleeve flexibility was not anticipated to have a significant effect 

upon the calculated natural frequencies of the system.  
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3.3 Introduction 

The proposed configuration of the full shaft with flexible coupling elements and eccentric 

sleeves, is shown in Figure 3.1. In an attempt to describe the model with simplified equations, 

certain key assumptions are made, as follows.  

 

 

Figure 3.1 – Geometry of full shaft with flexible couplings and eccentric sleeves 

 

3.3.1 Key Adopted Assumptions 

 Simplified Shaft with Euler Bernoulli Theory 

The shaft is modelled as a continuous system with linear elastic behaviour using Euler-

Bernoulli beam theory. The complexity of the full geometry is replaced with approximate 

cross-sectional areas and uniform material properties. Therefore, when determining the kinetic 

and potential energies of the system, established displacement and stress-strain equations can 

be used.  

 

The Euler-Bernoulli theory assumes that the displacements of the shaft are considered to be 

sufficiently small to have negligible effect on the dynamics of the system, therefore higher 

order terms (arising from the product of the generalised coordinates), and nonlinear terms that 

arise in the derivation, such as rotary inertia are neglected [88].  

 

Certain limitations apply, however viz. the Euler-Bernoulli beam theory is only applicable for 

slender beams with small displacements and tends to overestimate natural frequencies, in 

particular, with higher order modes [18].    
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 Dynamic Boundary Conditions 

The ends of the shaft are considered to be constrained translationally, rendering the strong 

boundary conditions of the shaft to be simply supported. However, due to the addition of the 

eccentric sleeves and subsequent derivation, the weak boundary conditions contain dynamic 

terms which are dependent upon the eccentric sleeves.  

 

 Flexible Elements Have Flexibility and Resistance to Bending 

A common assumption made in the determination of critical speeds of shafts and rotors with 

flexible coupling elements is that they are considered as simply supported ends [89]. 

However, in practice this is not truly the case and it is recognised that the flexible elements 

provide a degree of bending resistance in both lateral directions. The stiffness of such 

elements can be obtained through experiment and finite element analysis when necessary. 

 

 No Shear Deformation 

Theory based on Euler-Bernoulli techniques assume that, as the displacements are considered 

small, the cross-sectional area remains perpendicular to the bending axis i.e. there is no shear 

deformation in the underlying theory. Non-inclusion of such terms will dictate that there are 

bounds of applicability for the generated model which will ultimately be examined under 

experimental testing and parametric studies. [note: If the assumption of no shear deformation 

significantly impacts on the usefulness of the analytical model, Timoshenko beam theory can 

be considered as an alternative for modelling [90] — as is often employed in beam element 

analyses in commercial finite element packages such as ANSYS.] 

 

 Rigid Body Sleeves 

The sleeves themselves are considered to have no flexibility, therefore only the kinetic 

energies are derived. Initial simulations show that the flexibility of the sleeves has negligible 

effect upon the critical speeds of the shaft and are discussed in more detail in Section 3.6.1 

 

The above assumptions are summarised in Figure 3.2; the material properties are constant, the 

sleeves are considered as rigid bodies, and the flexible elements show resistance to bending 

in the lateral directions.   
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Figure 3.2 – Model simplification assumptions 

 

 

3.4 Extended Hamilton’s Principle  

Using the assumptions in Section 3.3.1, the ‘simply supported’ Euler-Bernoulli elastic shaft is 

considered with boundary conditions to include the effects of the attached eccentric sleeves 

and torsional springs due to the flexible end couplings. The least action by the Extended 

Hamilton’s Principle is given by:  

 

δJ = ∫  (δT − δU + δT1 + δT2 − δUTORS)dt = 0
t2

t1

 (3.1) 

 

The additional terms δT1and δT2 account for the eccentric sleeves fixed at either end of the 

shaft. δUTORS is the torsional stiffness of the flexible elements in both the lateral directions. 

 

 

3.5 Derivation of Simply Supported Rotating Shaft 

Dynamics  

3.5.1  Shaft Displacements 

A shaft is considered to be rotating about its x-axis with instantaneous angle, θ, Figure 3.3. A 

coordinate system is attached to and rotates with the shaft. The position vector of location on 

shaft in rotating co-ordinate system, �̅�, is determined by an initial position (x, y, z) plus any 

displacements (Dx, Dy, Dz).  

 

 

Constant A,I,ρ,E 

Flexible element 

resistance to bending 

Rigid Body Sleeves 
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Figure 3.3 – Shaft displacements  

 

Figure 3.3 also shows the axial and lateral displacements of the shaft as it rotates. The 

translational displacements of any point along x, y, z axes are respectively, u, v, w.  The slope 

of translation displacements v and w are denoted v’ and w’.  Torsion in the shaft is denoted 

by ϕ. Librescu [91] defines the total displacements, as in Equation (3.2). 

 

r̅ = {

r̅x
r̅y
r̅z

} = {

x + Dx
y + Dy
z + Dz

} = {
x + u − yv′ − zw′

y + v − zϕ
z + w+ yϕ

} (3.2) 

 

The first and second time derivatives of the displacements yield velocity and acceleration 

vectors. Initial positions remain constant: 

 

ṙ̅ = {

r̅ẋ
r̅ẏ

r̅ż

} = {

u̇ − yv̇′ − zẇ′

v̇ − zϕ̇

ẇ + yϕ̇

} (3.3a) 

  

r̈̅ = {

r̅ẍ
r̅ÿ

r̅z̈

} = {

ü − yv̈′ − zẅ′

v̈ − zϕ̈

ẅ + yϕ̈

} (3.3b) 
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3.5.2 Shaft Position, Velocity and Acceleration Vectors 

A position vector in the global co-ordinate system is given by; r = [A][r̅]; where [A] is 

rotational transformation matrix, specific for rotation about the x axis: 

 

r = [
1 0 0
0 cos θ − sin θ
0 sin θ cosθ

] {

r̅x
r̅y
r̅z

} = {

r̅x
r̅ycos θ − r̅z sinθ

r̅z cos θ + r̅y sin θ
} (3.4) 

 

The velocity and acceleration vectors are obtained from the first (ṙ) and second (r̈) time 

derivatives of r  (using product rule). See Appendix A for the derivatives of the transformation 

matrices. 

 

ṙ = [A]{ṙ̅} + [Ȧ]{r̅} = {

r̅ẋ
 r̅ẏ cos θ − r̅ż sinθ

 r̅ż cosθ + r̅ẏ sinθ

} + θ̇ {

0
−r̅zcosθ − r̅y sinθ

r̅y cos θ − r̅z sin θ
} (3.5) 

 

r̈ = [Ä]{r̅} + 2[Ȧ]{ṙ̅} + [A]{r̈̅}

= θ̇2 {

0
−r̅y cos θ + r̅z sin θ

−r̅z cos θ − r̅y sin θ
} + θ̈ {

0
−r̅z cosθ − r̅y sinθ

r̅y cos θ − r̅z sinθ
}

+ 2θ̇ {

0
− r̅ż cosθ −  r̅ẏ sin θ

 r̅ẏ cos θ −  r̅ż sinθ
} + {

r̅ẍ
 r̅ÿ cos θ − r̅z̈ sinθ

 r̅z̈ cosθ + r̅ÿ sinθ

}    

 

 

(3.6) 

In Equation (3.6), the terms refer to centrifugal acceleration; non-constant rotating speed, 

Coriolis acceleration and translational acceleration respectively.    

 

3.5.3 Shaft Kinetic Energy 

The kinetic energy of a continuous system is given by [91] where ρ0 is mass per unit area 

and V is the volume of the body: 

 

T =
1

2
∫ ρ0 r.̇⃗⃗ ṙ  dV =

1

2
∫ρ0 ṙ

Tṙ dV
VV

 (3.7) 
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Therefore the variation of kinetic energy is: 

 

∫ δT
t2

t1

dt =
1

2
∫ ∫ρ0δ( ṙ

Tṙ)
V

 dVdt
t2

t1

 (3.8) 

 

Through integration by parts: 

 

∫ δT
t2

t1

dt = −ρ0[ ṙ
Tδr]t=t1

t=t2 −∫ ∫ρ0r̈
Tδr

V

 dVdt
t2

t1

 (3.9) 

 

At t = t1 and t2, δr = 0 ∴ −ρ0[ ṙ
Tδr]t=t1

t=t2 = 0 at initial conditions: 

 

∴ ∫ δT
t2

t1

dt = −∫ ∫ρ0r̈
Tδr

V

 dVdt
t2

t1

 (3.10) 

 

To determine the variation of kinetic energy(δT), the terms for variation of the position vector 

(δr) and acceleration vector (r̈T) are required. δr is described by a series of equations that 

individually describe the variation of the generalised coordinates r = f(u, v, w, v′, w′, ϕ, θ): 

 

∴ δr =
∂r

∂u
δu +

∂r

∂v
δv +

∂r

∂w
δw +

∂r

∂v′
δv′ +

∂r

∂w′
δw′ +

∂r

∂ϕ
δϕ +

∂r

∂θ
δθ (3.11) 

   

Using the explicit form of r from Equations (3.3) and (3.6) to include displacements: 

 

∂r

∂u
= {

1
0
0
} 

(3.12a-d) 

∂r

∂v
= {

0
cos θ
sinθ

} 

∂r

∂w
= {

0
−sinθ
cosθ

} 

∂r

∂v′
= {

−y
0
0
 } 
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∂r

∂w′
= {

−z
0
0
} 

(3.12e-g) 

∂r

∂ϕ
= {

0
−z cos θ−y sinθ
y cos θ−z sinθ

} 

∂r

∂θ
= {

0
−(z + w+ yϕ)cos θ−(y + v − zϕ) sin θ
(y + v − zϕ) cos θ−(z + w + yϕ) sin θ

} = {−

0
r̅zcos θ − r̅y sinθ

r̅y cos θ − r̅z sin θ
} 

 

{r̈}Tδr is equivalent to: 

 

{r̈}T
∂r

∂u
δu + {r̈}T

∂r

∂v
δv + {r̈}T

∂r

∂w
δw + {r̈}T

∂r

∂v′
δv′ + {r̈}T

∂r

∂w′
δw′

+ {r̈}T
∂r

∂ϕ
δϕ + {r̈}T

∂r

∂θ
δθ 

(3.13) 

 

{r̈}𝑇 is separated into components to produce four individual vectors corresponding to 

centrifugal, non-constant rotation, Coriolis and translational accelerations: 

 

 {r̈}T = {r̈1}
T + {r̈2}

T + {r̈3}
T + {r̈4}

T (3.14) 

 

The individual components of {r̈}Tδr are obtained through multiplication of Equations (3.12) 

and (3.14): 

 

𝛅𝐮 

{r̈1}
T
∂r

∂u
= θ̇2{0, −r̅y cosθ + r̅z sinθ, −r̅z cos θ − r̅y sin θ} {

1
0
0
} δu = 0 

{r̈2}
T
∂r

∂u
= θ̈{0, −r̅z cos θ − r̅y sinθ, r̅y cos θ − r̅z sin θ} {

1
0
0
} δu = 0 

{r̈3}
T
∂r

∂u
= 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sin θ , ṙ̅y cos θ − ṙ̅z sin θ} {

1
0
0
} δu = 0 

{r̈4}
T
∂r

∂u
= {r̈̅x, r̈̅y cos θ − r̈̅z sinθ , r̈̅z cos θ + r̈̅y sinθ} {

1
0
0
} δu = r̈̅x δu 

 

∴ {�̈�}𝐓𝛅𝐮 = �̈̅�𝐱 𝛅𝐮   (3.15) 
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𝛅𝐯  

{r̈1}
T
∂r

∂v
δv = θ̇2{0, −r̅y cosθ + r̅z sin θ , −r̅z cos θ − r̅y sin θ} {

0
cos θ
sin θ 

}  δv

= θ̇2(−r̅y(cos
2 θ + sin2 θ)) δv = −θ̇2r̅y δv 

{r̈2}
T
∂r

∂v
δv = θ̈{0, −r̅z cosθ − r̅y sinθ, r̅y cos θ − r̅z sinθ} {

0
cos θ
sin θ 

}  δv

= θ̈(−r̅z(cos
2 θ + sin2 θ) )δv = −θ̈r̅z δv 

{r̈3}
T
∂r

∂v
δv = 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sinθ , ṙ̅y cos θ − ṙ̅z sin θ} {

0
cos θ
sin θ 

}  δv

= 2θ̇(−ṙ̅z(cos
2 θ + sin2 θ)) δv = −2θ̇ṙ̅z δv 

{r̈4}
T
∂r

∂v
δv = {r̈̅x, r̈̅y cos θ − r̈̅z sinθ , r̈̅z cos θ + r̈̅y sinθ} {

0
cos θ
sin θ 

}  δv

= r̈̅y(cos
2 θ + sin2 θ) δv = r̈̅y δv 

 

∴ {�̈�}𝐓𝛅𝐯 = −�̇�𝟐�̅�𝐲  − �̈��̅�𝐳 − 𝟐�̇��̇̅�𝐳 + �̈̅�𝐲 𝛅𝐯   (3.16) 

 

𝛅𝐰  

{r̈1}
T
∂r

∂w
δw = θ̇2{0, −r̅y cos θ + r̅z sinθ, −r̅z cosθ − r̅y sin θ} {

0
−sinθ
cosθ 

} δw

= θ̇2[−r̅z(cos
2 θ + sin2 θ)]δw = −θ̇2r̅z δw 

{r̈2}
T
∂r

∂w
δw = θ̈{0, −r̅z cos θ − r̅y sin θ, r̅y cos θ − r̅z sin θ} {

0
−sin θ
cos θ 

} δw

= θ̈[r̅y(cos
2 θ + sin2 θ)] δw = θ̈r̅y δw 

{r̈3}
T
∂r

∂w
δw = 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sin θ , ṙ̅y cos θ − ṙ̅z sin θ} {

0
−sin θ
cos θ 

} δw

= 2θ̇[r̅ẏ(cos
2 θ + sin2 θ)] δw = 2θ̇ṙ̅y δw 

{r̈4}
T
∂r

∂w
δ = {r̈̅x, r̈̅y cos θ − r̈̅z sin θ , r̈̅z cos θ + r̈̅y sin θ} {

0
−sin θ
cos θ 

} δw

= r̈̅z(cos
2 θ + sin2 θ)δw = r̈̅z δw 

 

∴ {�̈�}𝐓𝛅𝐰 = −�̇�𝟐�̅�𝐳 + �̈��̅�𝐲 + 𝟐�̇��̇̅�𝐲 + �̈̅�𝐳𝛅𝐰 (3.17) 
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𝛅𝐯′  

{r̈1}
T
∂r

∂v′
δv′ = θ̇2{0, −r̅y cos θ + r̅z sin θ, −r̅z cos θ − r̅y sin θ} {

−y
0
0
}δv′ = 0 

{r̈2}
T
∂r

∂v′
δv′ = θ̈{0, −r̅z cos θ − r̅y sin θ, r̅y cosθ − r̅z sin θ} {

−y
0
0
} δv′ = 0 

{r̈3}
T
∂r

∂v′
δv′ = 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sin θ , ṙ̅y cos θ − ṙ̅z sin θ} {

−y
0
0
} δv′ = 0 

{r̈4}
T
∂r

∂v′
δv′ = {r̈̅x, r̈̅y cosθ − r̈̅z sinθ , r̈̅z cosθ + r̈̅y sinθ} {

−y
0
0
} δv′ = −yr̈̅xδv′ 

 

∴ {�̈�}𝐓𝛅𝐯′ = −𝐲�̈̅�𝐱 𝛅𝐯′   (3.18) 

 

𝛅𝐰′  

{r̈1}
∂r

∂w′
δw′ = θ̇2{0, −r̅y cosθ + r̅z sinθ, −r̅z cos θ − r̅y sin θ} {

−z
0
0
}δw′ = 0 

{r̈2}
T
∂r

∂w′
δw′ = θ̈{0, −r̅z cos θ − r̅y sinθ, r̅y cos θ − r̅z sin θ} {

−z
0
0
}δw′ = 0 

{r̈3}
T
∂r

∂w′
δw′ = 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sinθ , ṙ̅y cos θ − ṙ̅z sin θ} {

−z
0
0
}δw′ = 0 

{r̈4}
T
∂r

∂w′
δw′ = {r̈̅x, r̈̅y cos θ − r̈̅z sinθ , r̈̅z cos θ + r̈̅y sinθ} {

−z
0
0
}δw′ = −zr̅ẍδw′ 

 

∴ {�̈�}𝐓𝛅𝐰′ = −𝐳�̈̅�𝐱𝛅𝐰′ (3.19) 

 

𝛅𝛟  

{r̈1}
T
∂r

∂ϕ
δϕ = θ̇2{0, −r̅y cos θ + r̅z sin θ, −r̅z cos θ − r̅y sin θ} {

0
−zcosϕ − y sinϕ
y cosϕ − z sinϕ

} δϕ

= θ̇2(r̅yz(cos
2 θ + sin2 θ) − r̅zy(cos

2 θ + sin2 θ)) δϕ = θ̇2(r̅yz − r̅zy) δϕ 

{r̈2}
T
∂r

∂ϕ
δϕ = θ̈{0, −r̅z cosθ − r̅y sinθ, r̅y cos θ − r̅z sin θ} {

0
−zcosϕ − y sinϕ
y cosϕ − z sinϕ

} δϕ

= θ̈(r̅zz(cos
2 θ + sin2 θ) + r̅yy(cos

2 θ + sin2 θ))δϕ = θ̈(r̅zz + r̅yy)δϕ 
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{r̈3}
T
∂r

∂ϕ
δϕ = 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sinθ , ṙ̅y cos θ − ṙ̅z sin θ} {

0
−zcosϕ − y sinϕ
y cosϕ − z sinϕ

} δϕ

= 2θ̇( r̅żz(cos
2 θ + sin2 θ) +  r̅ẏy(cos

2 θ + sin2 θ))δϕ = 2θ̇(ṙ̅zz + ṙ̅yy) δϕ 

{r̈4}
T
∂r

∂ϕ
δϕ = {r̈̅x, r̈̅y cos θ − r̈̅z sinθ , r̈̅z cosθ + r̈̅y sinθ} {

0
−zcosϕ − y sinϕ
y cosϕ − z sinϕ

} δϕ

= r̈̅zy(cos
2 θ + sin2 θ) − r̈̅yz(cos

2 θ + sin2 θ)δϕ = r̈̅zy − r̈̅yzδϕ 

 

∴ {�̈�}𝐓𝛅𝛟 = (�̇�𝟐(�̅�𝐲𝐳 − �̅�𝐳𝐲) + �̈�(�̅�𝐳𝐳 + �̅�𝐲𝐲) + 𝟐�̇�(�̇̅�𝐳𝐳 + �̇̅�𝐲𝐲) +  �̅��̈�𝐲 −  �̅��̈�𝐳) 𝛅𝛟 (3.20) 

 

 δθ 

{r̈1}
T
∂r

∂θ
δθ = θ̇2{0, −r̅y cosθ + r̅z sinθ, −r̅z cos θ − r̅y sin θ} {

0
−r̅zcosϕ − r̅y sinϕ

r̅y cosϕ − r̅z sinϕ
}δθ = 0 

{r̈2}
T
∂r

∂θ
δθ = θ̈{0, −r̅z cos θ − r̅y sinθ, r̅y cos θ − r̅z sin θ} {

0
−r̅zcosϕ − r̅y sinϕ

r̅y cosϕ − r̅z sinϕ
} δθ

= θ̈(r̅z
2(cos2 θ + sin2 θ) + r̅y

2(cos2 θ + sin2 θ))δθ = θ̈(r̅z
2 + r̅y

2)δθ 

{r̈3}
T
∂r

∂θ
δθ = 2θ̇{0, −ṙ̅z cos θ − ṙ̅y sin θ , ṙ̅y cos θ − ṙ̅z sin θ} {

0
−r̅zcosϕ − r̅y sinϕ

r̅y cosϕ − r̅z sinϕ
}δθ

= 2θ̇(ṙ̅yr̅y(cos
2 θ + sin2 θ) + ṙ̅zr̅z(cos

2 θ + sin2 θ))δθ = 2θ̇(ṙ̅yr̅y + ṙ̅zr̅z)δθ 

{r̈4}
T
∂r

∂θ
δθ = {r̈̅x, r̈̅y cos θ − r̈̅z sinθ , r̈̅z cos θ + r̈̅y sinθ} {

0
−r̅zcosϕ − r̅y sinϕ

r̅y cosϕ − r̅z sinϕ
}δθ

= r̈̅zr̅y(cos
2 θ + sin2 θ) − r̈̅yr̅z(cos

2 θ + sin2 θ)δθ = r̈̅zr̅y − r̈̅yr̅z 

 

∴ {�̈�}𝐓𝛅𝛉 = �̈�(�̅�𝐳
𝟐 + �̅�𝐲

𝟐) + 𝟐�̇�(�̇̅�𝐲�̅�𝐲 + �̇̅�𝐳�̅�𝐳) −  �̅��̈��̅�𝐲 −  �̅��̈��̅�𝐳 𝛅𝛉 (3.21) 
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Summing together Equations (3.15) to (3.21) and using the explicit form for r from (3.3):  

 

{r̈}Tδr = ((ü − yv̈′ − zẅ′)δu) + (−θ̇2(y + v − zϕ) − θ̈(z + w + yϕ) −

2θ̇(ẇ + yϕ̇) + (v̈ − zϕ)̈  δv) + (−θ̇2(z + w + yϕ) + θ̈(y + v − zϕ) + 2θ̇(v̇ −

zϕ̇) + (ẅ + yϕ̈)δw − (yü − y2v̈′ − yzẅ′)δv′) − (zü − yzv̈′ − z2ẅ′)δw′ +

(θ̇2(yz + zv − z2ϕ− yz − yw − y2ϕ) + θ̈(z2 + zw+ y2 + yv) + 2θ̇(zẇ +

yv̇) + (yẅ + y2ϕ̈ − zv̈ + z2ϕ̈) δϕ) + (θ̈(y2 + z2 + v2 +w2 + y2ϕ2 + z2ϕ2 +

2wz + 2vy + 2wyϕ − 2vzϕ − 2yzϕ + 2yzϕ) +2θ̇(v̇y + v̇v − v̇zϕ − yzϕ̇ −

vzϕ̇+z2ϕϕ̇ + ẇz + ẇw + ẇyϕ + yzϕ̇ + wyϕ̇ + y2ϕϕ̇) − (ẅy + ẅv − ẅzϕ +

yyϕ̈ + vyϕ̈ − yzϕϕ̈ − v̈w − v̈z − v̈yϕ + zzϕ̈ + wzϕ̈ + yzϕϕ̈) δθ)  

(3.22) 

 

To simplify the solution of these equations, any higher order terms are neglected at this stage. 

Due to the small displacements under consideration, the effects of these term are expected to 

be minimal. Only δθ contains higher order terms, therefore Equation (3.22) becomes: 

 

θ̈(y2 + z2 + 2wz + 2vy + 2yzϕ − 2yzϕ) +2θ̇(v̇y + ẇz − yzϕ̇ + yzϕ̇)

− (ẅy − v̈z + y2ϕ̈ + z2ϕ̈) δθ 

(3.22a) 

 

3.5.4 Shaft Kinetic Energy Boundary Conditions 

To incorporate δv’ and δw’ into the energy equation, the relevant components of Equation 

(3.22) must be integrated by parts. Two boundary conditions are obtained (one for δv’ and one 

for δw’) as follows: 

 

𝛅𝐯′ by parts: 

−∫ ρ0(yü − y
2v̈′ − yzẅ′)δv′ 

V

 dV 

= ∫−ρ0[(yü − y
2v̈′ − yzẅ′)δv]x=0

x=LdA
A

+∫ ρ0(yü − y
2v̈′ − yzẅ′)′δv dV

V

 (3.23) 
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𝛅𝐰′ by parts: 

−∫ ρ0(zü − yzv̈
′ − z2ẅ′)δw′ 

V

 dV 

= ∫−ρ0[(zü − yzv̈
′ − z2ẅ′)δw]x=0

x=L

A

dA +∫ ρ0(zü − yzv̈
′ − z2ẅ′)′δw 

V

dV (3.24) 

 

3.5.5 Inertia Integration Coefficients 

By Equation (3.10), the variation of kinetic energy is given by integrating ρ0{r̈}
Tδr through 

the volume of the shaft. To use only the generalised co-ordinates, the terms x,  y,  z, yz, 

yz , y2, z2 are integrated to obtain relevant inertia coefficients. The integration of volume is 

conducted using cylindrical co-ordinates: 

 

 

 

 

 

 

 

 

Where:    

dV = dxdydz = RdRdφ dx           y = R cosφ            z = R sinφ 

 

Considering the cross section of the shaft, the integration is restricted to area; therefore dV 

becomes dA = RdRdφ.  The per unit area terms are integrated along the length of the shaft in 

the main energy equation. The shaft is assumed to have a constant tubular cross section with 

inner and outer radii (Ri and Ro). Integrating for 0 < φ < 2π, The specific inertia coefficients 

are given in Table 3-1. Appendix B.1 gives the full derivation for the terms. 

 

  

 φ 

R 

y 

z 
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Table 3-1  – Inertia coefficients 

Integral Equivalent Value True Value 

∬ρ0 dA I1 πρ0(Ro
2 − Ri

2) m0 

∬ρ0y dA I2 0  

∬ρ0z dA I3 0  

∬ρ0yz dA I4 0  

∬ρ0y
2 dA I5 πρ0 (

Ro
4 − Ri

4

4
) ρ0I 

∬ρ0z
2 dA I6 πρ0 (

Ro
4 − Ri

4

4
) ρ0I 

 

Using Table 3-1 to subsitute values into Equations (3.22) through (3.24), the variation of 

kinetic energy, including boundary conditions is given by: 

 

δT = −∫ I1ü δu − θ̇
2I1v − θ̈I1w− 2θ̇I1ẇ + I1v̈ − I5v̈

′′δv − θ̇2I1w+ θ̈I1v
L

0

+ 2θ̇I1v̇ + I1ẅ − I6ẅ
′′δw− θ̇2(I6ϕ+ I5ϕ) + θ̈(I6 + I5)

+ I5ϕ̈ + I6ϕ̈ δϕ + θ̈(I5 + I6) + I5ϕ̈ + I6ϕ̈ δθ dx

− [(I5v̈
′)δv]x=0

x=L −  [(I6ẅ′)δw]x=0
x=L 

(3.25) 

 

 

3.5.6 Shaft Potential Energy 

From Nayfeh & Pai [92], the variation of potential energy of an Euler Bernoulli beam is given 

by the relationship of stresses (σ) and the variation of strains (e):  

 

δU = ∫(
V

σxxδexx + σyyδeyy + σzzδezz + σyzδeyz + 2σxyδexy + 2σxzδexz) dV (3.26) 
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The derivation of stresses and strains is straightforward, considering that the shaft is made of 

linear elastic isotropic material and the displacements of an Euler-Bernoulli beam are already 

given in Equation (3.3). The strain-displacement relationships are given by [92]: 

 

∂Dx
∂x

= u′ − yv′′ − zw′′ 
∂Dy

∂x
= v′ − zϕ′          

∂Dz
∂x

= w′ + yϕ′ 

(3.27 a-f) 
∂Dx
∂y

= −v′ 
∂Dy

∂y
= 0  

∂Dz
∂y

= ϕ 

∂Dx
∂z

= −w′ 
∂Dy

∂z
= −ϕ          

∂Dz
∂z

= 0 

 

The strain tensors, eij are given in Equation 3.28 [11]: 

 

exx =
∂Dx
∂x

= u′ − yv′′ − zw′′ 

 

(3.28 a-f) 

eyy =
∂Dy

∂y
= 0 

 

ezz =
∂Dz
∂z

= 0 

 

exy =
1

2
(
∂Dx
∂y

+
∂Dy

∂x
) =

−v′ + v′ − zϕ′

2
=
−zϕ′

2
 

 

exz =
1

2
(
∂Dx
∂z

+
∂Dz
∂x
) =

−w′ +w′ + yϕ′

2
=
yϕ′

2
 

 

eyz =
1

2
(
∂Dy

∂z
+
∂Dz
∂y
) =

−ϕ+ ϕ

2
= 0 

 

These lead to the variations of strains in Equations (3.29) to (3.31): 

 

δexx = f(u’,v’’,w’’): 

δexx =
∂exx
∂u′

δu′ +
∂exx
∂v′′

δv′′ +
∂exx
∂w′′

δw′′ =  δu′ − y δv′′ − z δw′′ 
(3.29) 
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δexy = f(𝛟’): 

exy =
∂exy

∂ϕ′
δϕ′ = −

z

2
 δϕ′ 

(3.30) 

  

δexz= f(𝛟’): 

δexz =
∂exz
∂ϕ′

δϕ′ =
y

2
 δϕ′ 

(3.31) 

 

For an isotropic material, the stress-strain relationship is determined by [92]: 

 

{

σxx
σxy
σxz

} = [
E 0 0
0 G 0
0 0 G

] {

exx
exy
exz
} =

{
 
 

 
 
E(u′ − yv′′ − zw′′)

G(
−zϕ′

2
)

G(
yϕ′

2
)

}
 
 

 
 

 (3.32) 

 

Combining Equations 3.29 to 3.32 into 3.26, derives the variation of potential energy: 

 

δU = ∫ ([E(u′ − yv′′ − zw′′)δu′] − [Ey(u′ − yv′′ − zw′′)δv′′]
V

− [Ez(u′ − yv′′ − zw′′)]δw′′ + [(
Gz2ϕ′

2
+
Gy2ϕ′

2
)δϕ′])dV 

(3.33) 

 

3.5.7 Shaft Potential Energy Boundary Conditions 

To incorporate δu’, δv’’, δw’’ and δϕ′’ into the energy equation for δv and δw, the required 

components of Equation 3.33 are integrated by parts. Six boundary conditions are obtained 

(one for each of δu’, δv, δv’, δw, δw’ and δϕ′’): 

 

𝛅𝐮′ by parts once: 

∫ E(u′ − yv′′ − zw′′)δu′ dV 
V

 

= [E(u′ − yv′′ − zw′′)δu]x=0
x=L −∫ E(u′ − yv′′ − zw′′)′δu

V

 dV 

(3.34) 
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𝛅𝐯 by parts twice: 

−∫ Ey(u′ − yv′′ − zw′′)δv′′dV 
V

 

= −[Ey(u′ − yv′′ − zw′′)δv′]x=0
x=L +∫ [Ey(u′ − yv′′ − zw′′)′δv′]

V

dV 

= −[Ey(u′ − yv′′ − zw′′)δv′]x=0
x=L + [Ey(u′ − yv′′ − zw′′)δv]x=0

x=L

−∫ [Ey(u′ − yv′′ − zw′′)′′δv]dV
V

 

(3.35) 

 

𝛅𝐰′′ by parts twice: 

−∫ Ez(u′ − yv′′ − zw′′)δw′′dV 
V

 

= −[Ez(u′ − yv′′ − zw′′)δw′]x=0
x=L +∫ [Ez(u′ − yv′′ − zw′′)′δw′]

V

dV 

= −[Ez(u′ − yv′′ − zw′′)δw′]x=0
x=L + [Ez(u′ − yv′′ − zw′′)δw]x=0

x=L

−∫ [Ez(u′ − yv′′ − zw′′)′′δw]dV
V

 

(3.36) 

 

𝛅𝛟′ by parts once: 

∫
Gz2ϕ′

2
+
Gy2ϕ′

2
δϕ′ dV 

V

 

= [
Gz2ϕ′

2
+
Gy2ϕ′

2
δϕ]

x=0

x=L

−∫ (
Gz2ϕ′

2
+
Gy2ϕ′

2
)

′

δϕ
V

 dV 

(3.37) 

 

3.5.8 Stiffness Integration Coefficients 

In order to use just the generalised co-ordinates, the integration of volume is done using 

cylindrical co-ordinates restricted to over area (Appendix B.2 gives the full derivation for the 

terms). The specific stiffness coefficients are given in Table 3-2 and substitued into Equations 

(3.33) to (3.37) to give the variation of potential energy, including BCs:   

 

δU = ∫ −k1u
′′δu + k5v

′′′′δv + k6w
′′′′δw− (

k7ϕ
′′

2
+
k8ϕ

′′

2
)δϕ dx

L

+ [k1u
′δu]x=0

x=L + [k5v
′′δv′]x=0

x=L − [k5v
′′δv]x=0

x=L

+ [k6w
′′δw′]x=0

x=L − [k6w
′′δw]x=0

x=L + [
k7ϕ

′

2
+
k8ϕ

′

2
δϕ]

x=0

x=L

 

(3.38) 
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Table 3-2 – Stiffness integration coefficients 

Integral Equivalent Value 
True 

Value 

∬E dA k1 Eπ(Ro
2 − Ri

2) EA 

∬Ey dA k2 0  

∬Ez dA k3 0  

∬Eyz dA k4 0  

∬Ey2 dA k5 Eπ(
Ro

4 − Ri
4

4
) EI 

∬Ez2 dA k6 Eπ(
Ro

4 − Ri
4

4
) EI 

∬Gy2 dA k7 Gπ(
Ro

4 − Ri
4

4
) GI 

∬Gz2 dA k8 Gπ(
Ro

4 − Ri
4

4
) GI 

 

3.5.9 Shaft Total Energy Equation  

Reviewing Equation (3.1), the kinetic (3.25) and potential (3.38) energy terms for the shaft 

have been derived.  The total variation of energy in the shaft is therefore given by: 

 

δJ = ∫ ((−I1ü  + k1u
′′δu) + (θ̇2I1v + θ̈I1w+ 2θ̇I1ẇ − I1v̈ + I5v̈

′′ − k5v
′′′′δv)

L

0

+ (θ̇2I1w− θ̈I1v − 2θ̇I1v̇ − I1ẅ + I6ẅ
′′ − k6w

′′′′δw)

+ (θ̇2(I6ϕ+ I5ϕ) − θ̈(I6 + I5) − I5ϕ̈ − I6ϕ̈

+ (
k7ϕ

′′

2
+
k8ϕ

′′

2
)  δϕ) + (−θ̈(I5 + I6) − I5ϕ̈ − I6ϕ̈ δθ )dx)

− [k1u
′δu]x=0

x=L + [I5v̈
′δv]x=0

x=L + [I6ẅ′δw]x=0
x=L + [k5v

′′δv]x=0
x=L

+ [k6w
′′δw]x=0

x=L − [k5v
′′δv′]x=0

x=L − [k6w
′′δw′]x=0

x=L

− [
k7ϕ

′

2
+
k8ϕ

′

2
δϕ]

x=0

x=L

 

(3.39) 
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3.5.10 Comparison with Previously Reported Equations 

Using the shaft energy Equation (3.39), it is possible to compare the energy variation equation 

with those previously reported in existing literature. Suherman [80] conducted a derivation 

using a similar procedure for a different method of controlling shaft vibration; an internal 

support to change the stiffness and boundary conditions of the system.  

 

Table 3-3 contains the variation of the individual generalised coordinates from both 

derivations. The equations of motion derived in [80] consider non-constant rotating speed, 

gravity, energy dissipation and eccentricity but neglect torsional vibration of shaft and rotary 

inertia terms. Under the same assumptions, i.e neglecting the effects of the eccentric sleeves 

and internal support, both sets of equations show similar form. In particular, the centrifugal, 

Coriolis, non-constant rotating speed and stiffness terms for variation of lateral displacement 

(δv and δw) are identical. Any differences in the two sets of equations stem from consideration 

of different systems therefore this method will not be used for further comparison. 

 

Table 3-3 – Comparison of the variation of generalised coordinates 

 Kirk Suherman [80] 

𝛅𝐮 k1u
′′ − I1ü = 0  

𝛅𝐯 
θ̇2I1v + θ̈I1w+ 2θ̇I1ẇ − I1v̈ + I5v̈

′′ −

k5v
′′′′ = 0  

μ(θ̇2v + θ̈w + 2θ̇ẇ − v̈ + g sin θ) −

EIv′′′′ − diEIv̇
′′′′ + deμ(v̇ + θ̇w) = 0  

𝛅𝐰 
θ̇2I1w− θ̈I1v − 2θ̇I1v̇ − I1ẅ +

I6ẅ
′′ − k6w

′′′′ = 0  

μ(θ̇2w− θ̈v − 2θ̇v̇ − ẅ + g cos θ) −

EIw′′′′ − diEIẇ
′′′′ − deμ(ẇ + θ̇v) = 0  

𝛅𝛟 
θ̇2(I6ϕ + I5ϕ) − θ̈(I6 + I5) − I5ϕ̈ −

I6ϕ̈ + (
k7ϕ

′′

2
+

k8ϕ
′′

2
) = 0  

 

𝛅𝛉 −θ̈(I5 + I6) − I5ϕ̈ − I6ϕ̈ = 0 

μ (−v̈w + vẅ + 2θ̇(vv̇ + wẇ) + θ̈(v2 +

w2)) − μgv cos θ + μgv sin θ +
1

2
deμrs

2θ̇ =

0  
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3.6 Derivation of Eccentric Sleeve Dynamics 

The procedure used for the derivation of the shaft equations of motion is repeated for each of 

the eccentric sleeves. 

 

3.6.1 Numerical Analysis 

If the flexibility of the sleeve is shown to have little effect on the critical speeds of the system, 

the potential energy can be neglected. Therefore, to minimise the complexity of the modelling 

process for the sleeves, only the kinetic energies are initially considered. To determine the 

impact of sleeve flexibility, numerical determination of critical speeds is performed for two 

models using ANSYS. In the first, the sleeves are modelled with flexibility (the full geometry 

as is intended for the ‘semi-active‘ method of vibration control), and in the second, the sleeves 

are considered as rigid bodies. In this case, the flexible sleeves are removed from the geometry 

and replaced with point masses with equal mass and inertia coefficients.  Figure 3.4 depicts 

the normalised natural frequencies of the 1st and 2nd modes (FW and BW) in lateral bending 

vibration for both models. Considering the rigid body assumption there is approximately 1% 

difference in the determination of critical speed—see Table 3-4.   

 

Table 3-4 – Normalised critical speeds of system with flexible/rigid sleeves 

Sleeve Type Normalised Critical Speed 

Rigid 1.000 

Flexible 0.989 

 

Hence the assumption of zero sleeve flexibility is suitable for the analysis of critical speeds of 

the shaft. 
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Figure 3.4 – Normalised Campbell Diagram for stiff and flexible sleeves 

 

3.6.2 Sleeve Position and Acceleration Vectors 

Since the sleeves are fixed to the shaft, they are considered to be rotating in the same rotating 

coordinate system. Additionally, the eccentric mass of each sleeve, denoted by the red circle 

in  

Figure 3.5 and Figure 3.6, has motion in three dimensions – v’, w’ and ϕ describe the rotation 

of the sleeve eccentric mass about the y and z axes and torsion and rotation about the x axis. 

The coordinate system is attached to the shaft in locations x = 0 and x = L.  

 

Figure 3.5 – Coordinate system attached to each sleeve and global positions 
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Figure 3.6 – Displacements of eccentric sleeve mass at x = 0 

 

The position vector of each sleeve in the global co-ordinate system (r = [A][r̅]) is obtained 

through transformations. The total transformation matrix for the motions (neglecting higher 

order terms) is shown in Equation (3.40) and describes four successive transformations; 

rotation about each axis of deformation, v′, w′, ϕ and the total rotation of the shaft, θ. The 

term (c,t) is used to denote x = 0 or x=L. 

 

[A] = [Av′][Aw′][Aϕ][Aθ] 

= [
1 v′(c, t) 0

−v′(c, t) 1 0
0 0 1

] [
1 0 w′(c, t)
0 1 0

−w′(c, t) 0 1
] [
1 0 0
0 1 ϕ
0 −ϕ 1

] [
1 0 0
0 cosθ − sinθ
0 sinθ cos θ

] 

= [
1 0 0
0 cos θ − sin θ
0 sinθ cos θ

] [

1 v′(c, t) w′(c, t)

−v′(c, t) 1 ϕ

−w′(c, t) −ϕ 1
] 

 

= [

1 v′(c, t) w′(c, t)

−v′ (c, t)cos θ + w′(c, t) sin θ cos θ + ϕ sin θ − sinθ + ϕcosθ

−w′ (c, t)cos θ −  v′(c, t)sin θ  sinθ − ϕcosθ cos θ + ϕ sinθ

] (3.40) 
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The local position vector of the sleeves account for the axial position and eccentricity of the 

sleeve masses. Using the coordinate system established in Figure 3.5, fixed at x=0 and x=L, 

the axial position of the second sleeve is in the negative X direction. Therefore the position 

vectors for each sleeve are: 

 

r1̅ = {

r̅x
r̅y
r̅z

} = {

x + L
y + ey
z + ez

} (3.41) 

  

r2̅ = {

−r̅x
r̅y
r̅z

} = {

−x − 𝐿
y + ey
z + ez

} (3.42) 

 

The position vector in the global coordinate system is obtained by considering all 

transformation matrices in Equation (3.40); the rotation of the system about x-axis and the 

angular deformations of the shaft in boundary conditions in all directions. The resulting 

position vectors for the first (r1) and second (r2) sleeves in the global frame are therefore: 

r1 = {

r̅x + r̅yv
′(0, t) + r̅zw

′(0, t)

−r̅x(v
′(0, t) cos θ −w′(0, t)sin θ) + r̅y(cos θ + ϕ sin θ) − r̅z(sinθ − ϕcos θ)

−r̅x(w
′ (0, t)cosθ +  v′(0, t)sin θ) + r̅y(sinθ − ϕcosθ) + r̅z(cos θ + ϕ sinθ)

}  

 (3.43) 

 

r2 = {

−r̅x + r̅yv
′(L, t) + r̅zw

′(L, t)

r̅x(v
′(L, t) cosθ −w′(L, t)sin θ) + r̅y(cos θ + ϕ sin θ) − r̅z(sin θ − ϕcos θ)

r̅x(w
′ (L, t)cosθ +  v′(L, t)sin θ) + r̅y(sin θ − ϕcos θ) + r̅z(cos θ + ϕ sin θ)

}  

 (3.44) 

 

Following a similar procedure as in Section 3.5, appropriate manipulation of the positon 

vectors produces the acceleration vectors of the sleeves, Equations (3.45) and (3.46). As with 

the shaft acceleration vector, Equation (3.8), the first component of the acceleration vector is 

due to centrifugal acceleration, the second component is due to non-constant rotating speed, 

the third is due to Coriolis acceleration, and the final component is due to translational 

acceleration. 
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r̈1

= θ̇2 {

0
r̅x(v

′ (0, t)cos θ − w′ (0, t)sin θ ) + r̅y(−ϕsin θ − cos θ) + r̅z(−ϕcos θ + sinθ)

r̅x(w
′ (0, t)cosθ + v′ (0, t)sin θ ) + r̅y(ϕ cos θ − sin θ) + r̅z(−ϕsinθ − cos θ)

}

− θ̈ {

0
−r̅x(v

′ (0, t)sinθ + w′ (0, t)cos θ) − r̅y(ϕ cos θ − sinθ ) − r̅z(−ϕsin θ − cos θ )

r̅x(−w
′ (0, t)sin θ + v′(0, t) cos θ) + r̅y(−ϕsin θ − cos θ ) − r̅z(ϕ cos θ − sin θ )

}

− 2θ̇ {

0
−r̅x(v̇

′ (0, t)sinθ + ẇ′ (0, t)cosθ) − r̅yϕ̇ cos θ + r̅zϕ̇ sin θ 

r̅x(−ẇ
′(0, t) sinθ + v̇′ (0, t)cos θ) − r̅yϕ̇ sin θ − r̅zϕ̇ cos θ 

}

+ {

r̅yv̈′ + r̅zẅ′

r̅x(v̈
′ (L, t)cos θ − ẅ′ (L, t)sinθ) + r̅yϕ̈ sinθ + r̅zϕ̈ cosθ

r̅x(ẅ
′ (L, t)cosθ + v̈′(L, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

} 

 

r̈2

= θ̇2 {

0
−r̅x(v

′ (L, t)cos θ − w′ (L, t)sin θ ) + r̅y(−ϕsinθ − cos θ) + r̅z(−ϕcos θ + sin θ)

−r̅x(w
′ (L, t)cos θ + v′ (L, t)sin θ ) + r̅y(ϕ cosθ − sinθ) + r̅z(−ϕsinθ − cosθ)

}

− θ̈ {

0
r̅x(v

′ (L, t)sin θ + w′ (L, t)cos θ) − r̅y(ϕ cosθ − sinθ ) − r̅z(−ϕsin θ − cos θ )

−r̅x(−w
′ (L, t)sin θ + v′(L, t) cos θ) + r̅y(−ϕsinθ − cos θ ) − r̅z(ϕ cos θ − sinθ )

}

− 2θ̇ {

0
r̅x(v̇

′ (L, t)sin θ + ẇ′ (L, t)cos θ) − r̅yϕ̇ cos θ + r̅zϕ̇ sin θ 

−r̅x(−ẇ
′(L, t) sinθ + v̇′ (L, t)cos θ) − r̅yϕ̇ sin θ − r̅zϕ̇ cosθ 

}

+ {

r̅yv̈′ + r̅zẅ′

r̅x(v̈
′ (L, t)cos θ − ẅ′ (L, t)sinθ) + r̅yϕ̈ sinθ + r̅zϕ̈ cosθ

r̅x(ẅ
′ (L, t)cosθ + v̈′(L, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

} 

 

  

(3.46) 

(3.45) 
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3.6.3 Kinetic Energy of Sleeves 

The process for driving the variation of kinetic energy is repeated for each sleeve. The 

full derivation is listed in Appendix C with the variation of kinetic energy for the two 

sleeves given in Equations (3.47) and (3.48): 

 

δT1 = −((−θ̈ (Iyy + Izz − Iyzϕ(0, t) − 2 (Ixyv
′(0, t) + Ixzw

′(0, t))) −

2θ̇ (Ixyv̇
′(0, t) + Ixzẇ

′(0, t)) + Ixyẅ
′(0, t) − Ixzv̈

′(0, t) + Iyyϕ̈(0, t) +

Izzϕ̈(0, t) δθ) + (θ̇
2 (−Ixxv

′(0, t) + Ixy + Ixzϕ(0, t)) − θ̈(Ixxw
′(0, t) +

Ixyϕ(0, t) − Ixz) − 2θ̇ (Ixxẇ
′(0, t) + Ixyϕ̇(0, t)) + Iyyv̈

′(0, t) + Iyzẅ
′(0, t) +

Ixxv̈
′(0, t) − Ixzϕ̈(0, t) δv

′(0, t)) + (θ̇2(−Ixxw
′(0, t) − Ixyϕ(0, t) + Ixz) −

θ̈ (−Ixxv
′(0, t) + Ixy + Ixzϕ(0, t)) − 2θ̇ (−Ixxv̇

′(0, t) + Ixzϕ̇(0, t)) +

Iyzv̈
′(0, t) + Izzẅ

′(0, t) + Ixxẅ
′(0, t) + Ixyϕ̈(0, t) δw

′(0, t)) +

(θ̇2 (−Ixyw
′(0, t) − Iyyϕ(0, t) + Ixzv

′(0, t) − Izzϕ(0, t)) − θ̈(−Ixyv
′(0, t) +

Iyy − Ixzw
′(0, t) + Izz) − 2θ̇ (−Ixyv̇

′(0, t) − Ixzẇ
′(0, t)) + Ixyẅ

′(0, t) +

Iyyϕ̈(0, t) − Ixzv̈
′(0, t) + Izzϕ̈(0, t) δϕ(0, t)))  

(3.47) 

 

δT2 = −((−θ̈ (−Iyy − Izz + Iyzϕ(L, t) − 2 (Ixyv
′(L, t) + Ixzw

′(L, t))) −

2θ̇ (−Ixyv̇
′(L, t) − Ixzẇ

′(L, t)) + Ixyẅ
′(L, t) − Ixzv̈

′(L, t) − Iyyϕ̈(L, t) −

Izzϕ̈(L, t) δθ) + (θ̇
2(−Ixxv

′(L, t) − Ixy − Ixzϕ(L, t)) − θ̈(Ixxw
′(L, t) −

Ixyϕ(L, t) + Ixz) − 2θ̇ (Ixxẇ
′(L, t) − Ixyϕ̇(L, t)) + Iyyv̈

′(L, t) + Iyzẅ
′(L, t) +

Ixxv̈
′(L, t) + Ixzϕ̈(L, t)δv

′(L, t)) + (θ̇2(−Ixxw
′(L, t) + Ixyϕ(L, t) − Ixz) −

θ̈ (−Ixxv
′(L, t) − Ixy − Ixzϕ(L, t)) − 2θ̇ (−Ixxv̇

′(L, t) − Ixzϕ̇(L, t)) +

(Iyzv̈
′(L, t) + Izzẅ

′(L, t) + Ixxẅ
′(L, t) − Ixyϕ̈(L, t))  δw

′(L, t)) +

(θ̇2(Ixyw
′(L, t) − Iyyϕ(L, t) − Ixzv

′(L, t) − Izzϕ(L, t)) − θ̈(Ixyv
′(L, t) + Iyy +

Ixzw
′(L, t) + Izz) − 2θ̇ (Ixyv̇

′(L, t) + Ixzẇ
′(L, t)) − Ixyẅ

′(L, t) + Iyyϕ̈(L, t) +

Ixzv̈
′(L, t) + Izzϕ̈(L, t) δϕ(L, t)))  

(3.48) 
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3.7 Torsional Stiffness 

Considering torsional stiffness of the flexible elements, additional boundary condition terms 

need to be included for δv′ and δw′ at x = 0 and x = L. Assuming a constant torsional 

stiffness, k, in both v′ and w′ directions, the strain energy is given by: 

 

UTORS = 
1

2
kv′(0, t)2 +

1

2
kw′(0, t)2 +

1

2
kv′(L, t)2 +

1

2
kw′(L, t)2 

 

Therefore the variation of the strain energy due to torsional stiffness is: 

 

δUTORS =  kv′(0, L)δv′ + kw′(0, L)δw′ (3.49) 

 

 

3.8 Equations of Motion  

Using the Extended Hamilton Principle (3.1) and the derived individual variations of the 

kinetic and potential energies of the system (3.39, 3.47, 3.48, 3.49) the equations of motion 

and associated boundary conditions are given in Equations (3.50) through (3.56). The real 

values of the equivalent integration coefficients from Tables 3.3 and 3.4 are applied. The 

underlined terms represent those that are coupled by the non-constant rotating speed. 

 

Axial Motion 𝛅𝐮: 

 

−m0ü + EAu
′′ = 0 (3.50) 

 

Y Lateral Bending 𝛅𝐯: 

 

θ̇2m0v + θ̈m0w+ 2θ̇m0ẇ − m0v̈ + ρ0Iv̈
′′ − EIv′′′′ = 0 (3.51) 

 

Z Lateral Bending 𝛅𝐰: 

 

θ̇2m0w− θ̈m0v − 2θ̇m0v̇ − m0ẅ + ρ0Iẅ
′′ − EIw′′′′ = 0 (3.52) 
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Torsion 𝛅𝛟: 

 

θ̇2(2ρ0Iϕ) − θ̈(2ρ0I) − 2ρ0Iϕ̈ + GIϕ
′′ = 0 (3.53) 

 

Non-constant Rotating Speed 𝛅𝛉: 

 

−∫ ϕ̈(2ρ0I) + θ̈(2ρ0I)dx
L

0
− (−θ̈ (Iyy + Izz − Iyzϕ(0, t) − 2 (Ixyv

′(0, t) +

Ixzw
′(0, t))) − 2θ̇ (Ixyv̇

′(0, t) + Ixzẇ
′(0, t)) + Ixyẅ

′(0, t) − Ixzv̈
′(0, t) +

Iyyϕ̈(0, t) + Izzϕ̈(0, t) δθ) − (−θ̈ (−Iyy − Izz + Iyzϕ(L, t) − 2 (Ixyv
′(L, t) +

Ixzw
′(L, t))) − 2θ̇ (−Ixyv̇

′(L, t) − Ixzẇ
′(L, t)) + Ixyẅ

′(L, t) − Ixzv̈
′(L, t) −

Iyyϕ̈(L, t) − Izzϕ̈(L, t) δθ) = 0  

(3.54) 

 

Strong BCs arising from geometry of the problem: 

 

u(0,t) = u(L,t) = 0 

v(0,t) = v(L,t) = 0 

w(0,t) = w(L,t) = 0  

(3.55 

a-c) 

 

Weak BCs arising from the variational formulation: 

 

x=0, 𝛅𝐯′: 

EIv′′ − (−θ̈(Ixxw
′(0, t) + Ixyϕ(0, t) − Ixz) + θ̇

2 (−Ixxv
′(0, t) + Ixy +

Ixzϕ(0, t)) − 2θ̇ (Ixxẇ
′(0, t) + Ixyϕ̇(0, t)) + Iyyv̈

′(0, t) + Iyzẅ
′(0, t) +

Ixxv̈
′(0, t) − Ixzϕ̈(0, t)) − kv

′(0, t) = 0  

 

x=L, 𝛅𝐯′ 

−EIv′′ − (−θ̈(Ixxw
′(L, t) − Ixyϕ(L, t) + Ixz) + θ̇

2 (−Ixxv
′(L, t) − Ixy −

Ixzϕ(L, t)) − 2θ̇ (Ixxẇ
′(L, t) − Ixyϕ̇(L, t)) + Iyyv̈

′(L, t) + Iyzẅ
′(L, t) +

Ixxv̈
′(L, t) + Ixzϕ̈(L, t)) − kv

′(L, t) = 0  

 

(3.56 

a-b) 
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x=0, 𝛅𝐰′: 

EIw′′ − (−θ̈ (−Ixxv
′(0, t) + Ixy + Ixzϕ(0, t)) + θ̇

2(−Ixxw
′(0, t) −

Ixyϕ(0, t) + Ixz) − 2θ̇ (−Ixxv̇
′(0, t) + Ixzϕ̇(0, t)) + Iyzv̈

′(0, t) + Izzẅ
′(0, t) +

Ixxẅ
′(0, t) + Ixyϕ̈(0, t)) − kw

′(0, t) = 0  

 

x=L, 𝛅𝐰′: 

−EIw′′ − (−θ̈ (−Ixxv
′(L, t) − Ixy − Ixzϕ(L, t)) + θ̇

2(−Ixxw
′(L, t) +

Ixyϕ(L, t) − Ixz) − 2θ̇ (−Ixxv̇
′(L, t) − Ixzϕ̇(L, t)) + Iyzv̈

′(L, t) + Izzẅ
′(L, t) +

Ixxẅ
′(L, t) − Ixyϕ̈(L, t)) − kw

′(L, t) = 0  

 

x=0, 𝛅𝛟: 

GIϕ′ − (−θ̈(−Ixyv
′(0, t) + Iyy − Ixzw

′(0, t) + Izz) + θ̇
2(−Ixyw

′(0, t) −

Iyyϕ(0, t) + Ixzv
′(0, t) − Izzϕ(0, t)) − 2θ̇ (−Ixyv̇

′(0, t) − Ixzẇ
′(0, t)) +

Ixyẅ
′(0, t) + Iyyϕ̈(0, t) − Ixzv̈

′(0, t) + Izzϕ̈(0, t)) = 0   

 

x=L, 𝛅𝛟: 

−GIϕ′ − (−θ̈(Ixyv
′(L, t) + Iyy + Ixzw

′(L, t) + Izz) + θ̇
2 (Ixyw

′(L, t) −

Iyyϕ(L, t) − Ixzv
′(L, t) − Izzϕ(L, t)) − 2θ̇ (Ixyv̇

′(L, t) + Ixzẇ
′(L, t)) −

Ixyẅ
′(L, t) + Iyyϕ̈(L, t) + Ixzv̈

′(L, t) + Izzϕ̈(L, t)) = 0  

(3.56 

c-f) 

 

 

3.9 Discussion 

From the derivation of the equations of motion, it is seen that the lateral bending vibrations, 

(3.51 and 3.52) and the torsional motions (3.53) are coupled by the non-constant rotating speed 

component. Also these equations are coupled with the main non-constant rotating speed 

(3.54). 

 

Considering the system rotating at a constant speed (neglecting the underlined terms), the 

angular velocity becomes a parameter. In this case, the equations of motion describing the 
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lateral bending vibrations (3.51 and 3.52) are coupled due to Coriolis forces only, and are 

decoupled for the rest of the main equations of motion. However, through manipulation, it is 

seen that due to applied bending moment of the eccentric sleeves, all the motions (apart from 

the axial) are coupled through the weak boundary conditions, Equations (3.56a-f). 

 

It is shown, through numerical simulations, that the natural frequencies of the shaft are only 

be affected by the mass and inertia of the sleeve and that sleeve stiffness has no impact. 

Therefore the presented model neglects the potential energy and therefore the stiffness of the 

sleeves. Hence, the impact of sleeve stiffness on the natural frequencies of the shaft cannot 

be observed. The use of more complex computational models and experimental data will 

therefore test the validity of this assumption for modelling the eccentric sleeves.  

 

 

3.10 Conclusions 

The equations of motion of an elastic shaft are derived with the associated dynamic boundary 

conditions due to the existence of eccentric sleeves and torsional springs. In the case of non-

constant rotating speed, the equations of motion form a nonlinear system of partial differential 

equations. In the case of constant rotating speed, then the lateral bending vibrations are 

coupled together by Coriolis forces and with the torsional motion through the boundary 

conditions. Preliminary numerical simulations are used to validate the approach of considering 

the sleeves as rigid bodies in deriving the equations of motion; having less than 1% difference 

in the determination of the critical speeds in the specific case considered



 

 

 Dynamic Analysis of a Rotating 

Shaft with Eccentric Sleeves 

4.1 Summary 

Here, the equations of motion of a simplified rotating shaft with rigid body eccentric sleeves 

are discretised using the Galerkin technique. Manipulation of system matrices allow modal 

analysis to be conducted and the theoretical natural frequencies of the system to be obtained. 

For comparison purposes, a three-dimensional finite element model of the full shaft-sleeve 

geometry is created. Through use of Campbell diagrams, the critical speeds for both models 

are obtained for four practical cases viz. a shaft with no sleeve, and short, medium and long 

sleeves. When considering the relative difference in shaft critical speeds as the sleeve length 

is changed, a discrepancy between the two approaches is observed. Modifications to the finite 

element model to remove the sleeve flexibility but leave the mass/inertia produces results 

much similar to the theoretical model. Sleeve flexibility is therefore found to have a greater 

than anticipated effect upon the critical speeds of the shaft. Furthermore, sleeve flexibility has 

progressively more impact as sleeve length increases. 

 

 

4.2 Chapter Highlights 

 Equations of motion discretised and system matrices assembled 

 Finite element model of full geometry created 

 Results from the two compared – sleeve flexibility found to be important factor in 

passively controlling shaft critical speeds  
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4.3 Introduction 

When employing relatively basic analytical models it is often possible to find exact, closed 

form solutions. However, for more complicated models, in particular those cases containing 

partial differential equations, such as when considering the vibration of continuous systems 

containing spatial and time dependent components, approximate methods are often required.   

 

To obtain an approximate solution for a continuous system it is often desirable to discretise 

the model into a finite number of elements. Each element possesses a simplified algebraic 

equation representing that particular subdivision of the entire continuum. The summation of 

these equations gives an approximation of the entire system that can then be solved 

numerically. Using a higher number of elements generally increases the accuracy of the 

solution at the expense of computation complexity and overhead.   

 

The process of obtaining an approximated solution for a complex problem through 

discretisation, regardless of the specific technique used, is commonly referred to as the finite 

element method (FEM). Considerable research has given rise to a familiar and relatively 

standardised procedure for applying the FEM [93]:  

 

1. Divide the structure into discrete elements 

2. Select a displacement function 

3. Derive element matrices 

4. Assemble system matrices 

5. Obtain solution 

 

Commonly used methods of discretisation are the variational approach and method of 

weighted residuals. The Rayleigh-Ritz method is a variational tool that uses the principle of 

minimum energy to find an admissible function that approximates the displacements of the 

region of interest. The accuracy of the solution is determined by the suitability of the chosen 

displacement function to satisfy the differential equations of the continuum.  

 

The method of weighted residuals uses the differential equation and the boundary conditions 

of the problem to obtain a solution. A weighted residual is applied to the differential equation 

and a solution is obtained where the error between the approximation and the differential 
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equation approaches zero: the integral of the residual is zero. The method uses trial functions 

to determine an approximate solution that, on average, satisfies the differential equations over 

the region of interest. However, the selected functions must also satisfy the boundary 

conditions of the problem. The Galerkin method is a commonly employed technique that uses 

a weighted residual that is equal to the selected trial function.    

 

Once the system is discretised, the elements are connected via nodes. The combined structure 

of elements and nodes being known as a mesh. To determine the relative nodal displacements, 

(displacement) functions are applied to interpolate the displacements within the elements. The 

type of geometry under consideration affects the type of element and the complexity of the 

displacement functions that can be used. For instance, a one-dimensional problem can be 

solved with a bar element that uses a linear shape function. More complicated geometries 

require the use of elements with complex displacement interpolations in two (beam element) 

or three (solid element) dimensions. Nandi [94] showed how using 3D solid elements offered 

improved prediction of rotor critical speeds and responses than existing analytical and 2D 

methods. This was due to the capability of the elements to model complex geometry.  

 

Finite element analysis (FEA) now commonly refers to the use of computer packages and 

computational solvers that allow FEMs to be applied to a broad range of engineering problems 

including; structural mechanics, heat transfer, transient situations, nonlinearities and 

electromagnetics.  As discussed in Chapter 2, section 3, rotating structures are subjected to 

gyroscopic loads which are not present in static structures. Therefore analysis techniques must 

account for these to yield a fully representative and accurate solution. Ruffini [95] conducted 

a review of existing finite element software packages and considered the effectiveness of 

capturing the full range of gyroscopic loads that occur in rotating structures. All packages 

were found to account for gyroscopic motions but discrepancies arise at high speeds, where 

gyroscopic forces are greater, and in the vicinity of instabilities. 

 

Here it is used to conduct modal analysis to obtain the natural frequencies of rotating shaft a 

rotating shaft with attached eccentric sleeves. 
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4.4 Theoretical Model 

Chapter 3 derived the equations of motion of a rotating shaft that incorporated the effects of 

the eccentric sleeves as dynamic boundary conditions (Chapter 3, Section 8, Equations (3.50) 

to (3.56)). The model used a rotating coordinate system to analyse the simplified shaft 

geometry with approximate cross-sectional areas and uniform material properties. Due to the 

complex geometry of the eccentric sleeves, only their kinetic energy contribution is considered 

in the model. Nonlinear terms arising from the derivation are neglected as a result of 

displacements being considered to be sufficiently small. In this case, the terms for non-

constant rotating speed are also neglected. Therefore any comparative analysis, either 

computational or experimental, is undertaken at steady state speeds. 

 

4.4.1 Discretisation of Equations of Motion 

The equations of motion are discretised in space and the system matrices are formulated using 

the Galerkin method. In this instance, the Galerkin method gives a good approximation of the 

equations of motion and it is possible to find suitable functions that satisfy the boundary 

conditions.  Moreover, it requires a relatively small number of terms to obtain a convergent 

solution. Using the Galerkin method, discretisation of the equations of motion is achieved 

using the following steps: 

 

1. Integrate the main equations over the length of the shaft 

a. Symmetrise the terms by integration by parts 

b. Combine the BCs and main equations  

2. Apply the displacement functions and solutions 

3. Formulate system matrices 

 

Using the Galerkin method, the general form of the mass (mij) and stiffness (kij) matrices is 

given in Equations (4.1) and (4.2) [96]:  

 

mij = ∫ m ϕ̃i(x)ϕ̃j(x)
L

0

dx (4.1) 

  

kij = ∫  ϕ̃i(x)
L

0

Lϕ̃j(x)dx (4.2) 
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In this case the trial functions ϕ̃i and ϕ̃j are spatial functions; Yi(x), Yj(x), Zi(x), Zj(x) and  

Φi(x), corresponding to y and z plane bending and torsional displacements, respectively. 

Approximate displacement functions for these are given in Equations (4.3) to (4.5). They 

contain a spatial and a time component along with corresponding eigenvectors {�̅�𝒊} [97]. 

  

v(x, t) =∑Yi(x)qv(t)

N

i=1

{�̅�𝒊} (4.3) 

  

w(x, t) =∑Zi(x)qw(t)

N

i=1

{�̅�𝒊} (4.4) 

  

ϕ(x, t) =∑Φi(x)qϕ(t)

N

i=1

{�̅�𝒊} (4.5) 

 

Approximate solutions for the displacement functions can be of the form sin
iπx

L
  or cos

iπx

L
 

[89]. To achieve a solution, the selected function must satisfy the strong boundary conditions 

in Equation (3.55).  

 

y plane lateral bending (𝐯/𝐘𝐢(𝐱)/𝐘𝐣(𝐱)) 

Strong BCs:   

    

v(0, t) = v(L, t) = 0   

   

Using 𝐬𝐢𝐧
𝐢𝛑𝐱

𝐋
: 

 

Yi(0) = sin 0 = 0 

Yi(L) = sinπ = 0 

 

 Therefore 𝐬𝐢𝐧
𝐢𝛑𝐱

𝐋
 is suitable for 𝐘𝐢(𝐱)/𝐘𝐣(𝐱) (4.6) 
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z plane lateral bending (𝐰/𝐙𝐢(𝐱)/𝐙𝐣(𝐱)) 

Strong BCs:   

    

w(0, t) = w(L, t) = 0  

    

Using 𝐬𝐢𝐧
𝐢𝛑𝐱

𝐋
: 

 

Zi(0) = sin0 = 0 

Zi(L) = sinπ = 0  

 

 Therefore 𝐬𝐢𝐧
𝐢𝛑𝐱

𝐋
 is suitable for 𝐙𝐢(𝐱)/𝐙𝐣(𝐱) (4.7) 

 

Torsional motion (𝛟/𝚽𝐢(𝐱)/𝚽𝐣(𝐱)) 

No strong boundary conditions from physical shaft, therefore the weak boundary 

conditions must be considered from the formulation: 

 

±GIϕ′ = 0          

 

From Equation (3.71) 𝛟′ = 𝟎 , requiring:  

 

ϕ′(0) = 0 = sin0 

ϕ′(L) = 0 = sinπ 

 

Through integration: 

 

ϕ(0) = cos 0 

ϕ(L) = cosπ 

 

Therefore, 𝚽𝐢(𝐱) must be in the form of 𝐜𝐨𝐬
𝐢𝛑𝐱

𝐋
 (4.8) 
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4.4.2 Preparation of Equations for y-plane Lateral Bending  

To integrate the main equation for y-plane lateral bending and include the boundary 

conditions, Equation (3.51) is multiplied by functions Yj(x), Zj(x) and integrated over the 

length of the shaft. If the displacements and trial functions are non-symmetrical (the 

derivatives of the displacements and the spatial functions are not equal), then the terms are 

symmetrised using integration by parts: 

 

θ̇2m0∫ v Yj(x)
L

0

dx + 2θ̇m0∫ ẇ
L

0

Zj(x) dx − m0∫ v̈
L

0

Yj(x)dx + ρI∫ v̈′′Yj(x)
L

0

dx

− EI∫ v′′′′Yj(x)
L

0

dx = 0 

(4.9) 

 

The terms ρI ∫ v̈′′Yj(x)
L

0
dx  and −EI∫ v′′′′Yj(x)

L

0
dx in Equation (4.9) are non-symmetrical 

and require integration by parts.  

 

𝛒𝐈 ∫ �̈�′′𝐘𝐣(𝐱)
𝐋

𝟎
𝐝𝐱 is integrated by parts once: 

= [ρI v̈′ Yj(x)]x=0
x=L

− ρI∫ v̈′Yj
′(x)

L

0

dx 

 

Applying the strong BCs from Equation (3.55): 

 

ρI∫ v̈′′Yj(x)
L

0

dx = −ρI∫ v̈′Yj
′(x)

L

0

dx (4.10) 

 

−𝐄𝐈 ∫ 𝐯′′′′𝐘𝐣(𝐱)
𝐋

𝟎
𝐝𝐱 is integrated by parts twice: 

= −[EI v′′′ Yj(x)]x=0
x=L

+ EI∫ v′′′Yj
′(x)

L

0

dx

= −[EI v′′′ Yj(x)]x=0
x=L

+ [EI v′′Yj
′(x)]

x=0

x=L
− EI∫ v′′ Yj

′′(x)
L

0

dx 
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Applying the strong BCs from Equation (3.55): 

 

−EI∫ v′′′′Yj(x)
L

0

dx = [EI v′′Yj
′(x))]

x=0

x=L
− EI∫ v′′ Yj

′′(x)
L

0

dx (4.11) 

 

Rearranging the weak boundary condition equations to allow for inclusion in the main 

equation: 

 

v′′(0) =
1

EI
(θ̇2 (−Ixxv

′(0, t) + Ixy + Ixzϕ(0, t))

− 2θ̇ (Ixxẇ
′(0, t) + Ixyϕ̇(0, t)) + Iyyv̈

′(0, t) + Iyzẅ
′(0, t)

+ Ixxv̈
′(0, t) − Ixzϕ̈(0, t) + kv

′(0, t)) 

(4.12) 

 

v′′(L) = −
1

EI
(θ̇2 (−Ixxv

′(L, t) − Ixy − Ixzϕ(L, t))

− 2θ̇ (Ixxẇ
′(L, t) − Ixyϕ̇(L, t)) + Iyyv̈

′(L, t) + Iyzẅ
′(L, t)

+ Ixxv̈
′(L, t) + Ixzϕ̈(L, t) + kv

′(L, t)) 

(4.13) 

 

Combining (4.10) through (4.13): 

 

(θ̇2m0∫ v Yj(x)
L

0

dx + 2θ̇m0∫ ẇ
L

0

Zj(x)dx −m0∫ v̈
L

0

Yj(x)dx

− ρI∫ v̈′Yj
′(x)

L

0

dx − EI∫ v′′ Yj
′′(x)

L

0

dx 

−Yj
′(L)

(

  
 

θ̇2 (−Ixxv
′(L, t) − Ixy − Ixzϕ(L, t))

−2θ̇ (Ixxẇ
′(L, t) − Ixyϕ̇(L, t))

+ Iyyv̈
′(L, t) + Iyzẅ

′(L, t) + Ixxv̈
′(L, t)

+Ixzϕ̈(L, t) + kv
′(L, t) )

  
 

 

−Yj
′(0)

(

  
 

θ̇2 (−Ixxv
′(0, t) + Ixy + Ixzϕ(0, t))

−2θ̇ (Ixxẇ
′(0, t) + Ixyϕ̇(0, t))

+ Iyyv̈
′(0, t) + Iyzẅ

′(0, t) + Ixxv̈
′(0, t)

−Ixzϕ̈(0, t) + kv
′(0, t) )

  
 

)

 
 
 
 

= 0 

(4.14) 
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Application of the displacement function solutions Equations (4.3 through 4.5) into Equation 

(4.14) gives the final form of the equations for Y plane lateral bending prior to application of 

the displacement function solutions and arrangement into matrices: 

 

(θ̇2m0∫ ∑Yi(x)Yj(x)qv(t)

N

i=1

{�̅�𝒊} 
L

0

dx + 2θ̇m0∫ ∑Zi(x)Zj(x)q̇w(t)

N

i=1

{�̅�𝒊}
L

0

dx 

−m0∫ ∑Yi(x)Yj(x)q̈v(t)

N

i=1

{�̅�𝒊}
L

0

dx − ρI∫ ∑Yi′(x)Yj
′(x)q̈v(t)

N

i=1

{�̅�𝒊}
L

0

dx

− EI∫ ∑Yi
′′(x)Yj

′′(x)qv(t)

N

i=1

{�̅�𝒊} 
L

0

 

(4.15) 

 

−Yj
′(L)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
−θ̇2 (Ixx∑Yi

′(L)qv(t)

N

i=1

{�̅�𝒊} + Ixy − Ixz∑Φi(L)qϕ(t){�̅�𝒊}

N

i=1

)

−2θ̇(Ixx∑Zi′(L)q̇w(t)

N

i=1

{�̅�𝒊} − Ixy∑Φi(L)q̇ϕ(t){�̅�𝒊}

N

i=1

)

+Iyy∑Yi
′(L)q̈v(t)

N

i=1

{�̅�𝒊} + Iyz∑Zi
′(L)q̈w(t)

N

i=1

{�̅�𝒊}

+Ixx∑Yi
′(L)q̈v(t)

N

i=1

{�̅�𝒊} + Ixz∑Φi(L)q̈ϕ(t){�̅�𝒊}

N

i=1

+k∑Yi
′(L)qv(t)

N

i=1

{�̅�𝒊}
)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

−  Yj
′(0)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
−θ̇2 (Ixx∑Yi

′(0)qv(t)

N

i=1

{�̅�𝒊} − Ixy + Ixz∑Φi(0)qϕ(t){�̅�𝒊}

N

i=1

)

−2θ̇ (Ixx∑Zi
′(0)q̇w(t)

N

i=1

{�̅�𝒊} + Ixy∑Φi(0)q̇ϕ(t){�̅�𝒊}

N

i=1

)

+Iyy∑Yi
′(0)q̈v(t)

N

i=1

{�̅�𝒊} + Iyz∑Zi
′(0)q̈w(t)

N

i=1

{�̅�𝒊}

+Ixx∑Yi
′(0)q̈v(t)

N

i=1

{�̅�𝒊} − Ixz∑Φi(0)q̈ϕ(t){�̅�𝒊}

N

i=1

+k∑Yi
′(0)qv(t)

N

i=1

{�̅�𝒊}
)

 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

= 0 
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4.4.3 Preparation of Equations for z-Plane Lateral Bending 

Equation (3.52) is multiplied by Yj(x), Zj(x) and integrated over the length of the shaft: 

  

θ̇2m0∫ w Zj(x)
L

0

dx − 2θ̇m0∫ v̇
L

0

Yj(x)dx − m0∫ ẅ
L

0

Zj(x)dx + ρI∫ ẅ′′Zj(x)
L

0

dx

− EI∫ w′′′′Zj(x)
L

0

dx = 0 

(4.16) 

 

The terms ρI ∫ ẅ′′Zj(x)
L

0
dx and −EI∫ w′′′′Zj(x)

L

0
dx in Equation (4.16) are non-symmetrical 

and require integration by parts: 

 

𝛒𝐈 ∫ �̈�′′𝐙𝐣(𝐱)
𝐋

𝟎
𝐝𝐱  integrated by parts once: 

= [ρI ẅ′ Zj(x)]x=0
x=L

− ρI∫ ẅ′Zj
′(x)

L

0

dx 

 

Applying the strong BCs from Equation (3.55): 

 

ρI∫ ẅ′′Zj(x)
L

0

dx = −ρI∫ ẅ′Zj
′(x)

L

0

dx (4.17) 

 

−𝐄𝐈∫ 𝐰′′′′𝐙𝐣(𝐱)
𝐋

𝟎
𝐝𝐱 integrated by parts twice: 

= −[EI w′′′ Zj(x)]x=0
x=L

+ EI∫ w′′′Zj
′(x)

L

0

dx

= −[EI w′′′ Zj(x)]x=0
x=L

+ [EI w′′Zj
′(x)]

x=0

x=L
− EI∫ w′′ Zj

′′(x)
L

0

dx 

 

Applying the strong BCs from Equation (3.55): 

 

−EI∫ w′′′′Yj(x)
L

0

dx = [EI w′′Zj
′(x)]

x=0

x=L
− EI∫ w′′ Zj

′′(x)
L

0

dx (4.18) 

 

Rearranging the weak boundary condition equations to allow for inclusion in the main 

equation: 
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w′′(0) =
1

EI
(θ̇2(−Ixxw

′(0, t) − Ixyϕ(0, t) + Ixz)

− 2θ̇ (−Ixxv̇
′(0, t) + Ixzϕ̇(0, t)) + Iyzv̈

′(0, t) + Izzẅ
′(0, t)

+ Ixxẅ
′(0, t) + Ixyϕ̈(0, t) + kw

′(0, t)) 

(4.19) 

 

w′′(L) = −
1

EI
(θ̇2(−Ixxw

′(L, t) + Ixyϕ(L, t) − Ixz)

− 2θ̇ (−Ixxv̇
′(L, t) − Ixzϕ̇(L, t)) + Iyzv̈

′(L, t) + Izzẅ
′(L, t)

+ Ixxẅ
′(L, t) − Ixyϕ̈(L, t) + kw

′(L, t)) 

(4.20) 

 

Combining Equations (4.17) through (4.20): 

 

(θ̇2m0∫ w Zj(x)
L

0

dx − 2θ̇m0∫ v̇
L

0

Yj(x)dx −m0∫ ẅ
L

0

Zj(x)dx

− ρI∫ ẅ′Zj
′(x)

L

0

dx − EI∫ w′′ Zj
′′(x)

L

0

dx 

− Zj
′(L)

(

 
 
 

θ̇2 (−Ixxw
′(L, t) − Ixz + Ixyϕ(L, t))

−2θ̇ (−Ixxv̇
′(L, t) − Ixzϕ̇(L, t))

+ Iyzv̈
′(L, t) + Izzẅ

′(L, t) + Ixxẅ
′(L, t)

−Ixyϕ̈(L, t) + kw
′(L, t) )

 
 
 

− Zj
′(0)

(

 
 
 

θ̇2 (−Ixxw
′(0, t) + Ixz − Ixyϕ(0, t))

−2θ̇ (−Ixxv̇
′(0, t) + Ixzϕ̇(0, t))

+ Iyzv̈
′(0, t) + Izzẅ

′(0, t) + Ixxẅ
′(0, t)

+Ixyϕ̈(0, t) + kw
′(0, t) )

 
 
 

)

 
 
 
 

= 0 

(4.21) 

 

Application of the displacement function solutions Equations (4.3 through 4.5) into (4.21) 

gives the final form of the equations for Z plane lateral bending prior to application of the 

displacement function solutions and arrangement into matrices: 
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(θ̇2m0∫ ∑Zi(x)Zj(x)qw(t)

N

i=1

{�̅�𝒊} 
L

0

dx −2θ̇m0∫ ∑Yi(x)Yj(x)q̇v(t)

N

i=1

{�̅�𝒊}
L

0

dx 

−m0∫ ∑Zi(x)Zj(x)q̈w(t)

N

i=1

{�̅�𝒊}
L

0

dx − ρI∫ ∑Zi′(x)Zj
′(x)q̈w(t)

N

i=1

{�̅�𝒊}
L

0

dx

− EI∫ ∑Zi
′′(x)Zj

′′(x)qw(t)

N

i=1

{�̅�𝒊}
L

0

dx 

−Zj
′(L)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
−θ̇2 (Ixx∑Zi

′(L)qw(t)

N

i=1

{�̅�𝒊} + Ixz + Ixy∑Φi(L)qϕ(t){�̅�𝒊}

N

i=1

)

+2θ̇(Ixx∑Yi
′(L)q̇v(t)

N

i=1

{�̅�𝒊} + Ixz∑Φi(L)q̇ϕ(t){�̅�𝒊}

N

i=1

)

+ Iyz∑Yi
′(L)q̈v(t)

N

i=1

{�̅�𝒊} + Izz∑Zi′(L)q̈w(t)

N

i=1

{�̅�𝒊}

+ Ixx∑Zi′(L)q̈w(t)

N

i=1

{�̅�𝒊} − Ixy∑Φi(L)q̈ϕ(t){�̅�𝒊}

N

i=1

+k∑Zi
′(L)qw(t)

N

i=1

{�̅�𝒊}
)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.22) 

−Zj
′(0)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
−θ̇2 (Ixx∑Zi

′(0)qw(t)

N

i=1

{�̅�𝒊} − Ixz − Ixy∑Φi(0)qϕ(t){�̅�𝒊}

N

i=1

)

+2θ̇(Ixx∑Yi
′(0)q̇v(t)

N

i=1

{�̅�𝒊} − Ixz∑Φi(0)q̇ϕ(t){�̅�𝒊}

N

i=1

)

+Iyz∑Yi
′(0)q̈v(t)

N

i=1

{�̅�𝒊} + Izz∑Zi′(0)q̈w(t){�̅�𝒊}

N

i=1

+ Ixx∑Zi′(0)q̈w(t){�̅�𝒊}

N

i=1

+ Ixy∑Φi(0)q̈ϕ(t){�̅�𝒊}i

N

i=1

+ k∑Zi′(0)qw(t)

N

i=1

{�̅�𝒊}
)

 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

= 0 
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4.4.4 Preparation of Equations for Torsional Motion 

Equation (3.53) is multiplied by functions Φj(x) and integrated over the length of the shaft.  

 

θ̇22ρI∫ ϕΦj(x)dx
L

0

  − 2ρI∫ ϕ ̈ Φj(x)dx
L

0

+ GI∫ ϕ′′Φj(x)dx
L

0

= 0 (4.23) 

 

The GI ∫ ϕ′′Φj(x)dx
L

0
 term in Equation (4.23) is non-symmetrical and requires integration by 

parts: 

 

GI ∫ 𝛟′′𝚽𝐣(𝐱)𝐝𝐱
𝐋

𝟎
 integrated by parts once: 

= [GI ϕ′Φj(x)]x=0
x=L

− GI∫  ϕ′Φj
′(x)

L

0

dx 

 

There are no strong BCs, therefore those from formulation must be used: 

 

GI∫ ϕ′′Φj(x)dx
L

0

= [GI ϕ′Φj(x)]x=0
x=L

− GI∫  ϕ′Φj
′(x)

L

0

dx (4.24) 

 

Rearranging the weak boundary condition equations to allow for inclusion in the main 

equation: 

 

ϕ′(0) =
1

GI
(θ̇2(−Ixyw

′(0, t) − Iyyϕ(0, t) + Ixzv
′(0, t) − Izzϕ(0, t)) −

2θ̇ (−Ixyv̇
′(0, t) − Ixzẇ

′(0, t)) + Ixyẅ
′(0, t) + Iyyϕ̈(0, t) − Ixzv̈

′(0, t) +

Izzϕ̈(0, t))  

(4.25) 

 

ϕ′(L) = −
1

GI
(θ̇2 (Ixyw

′(L, t) − Iyyϕ(L, t) − Ixzv
′(L, t) − Izzϕ(L, t)) −

2θ̇ (Ixyv̇
′(L, t) + Ixzẇ

′(L, t)) − Ixyẅ
′(L, t) + Iyyϕ̈(L, t) + Ixzv̈

′(L, t) +

Izzϕ̈(L, t))  

(4.26) 
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Combining Equations (4.24) through (4.26): 

 

(θ̇22ρI∫ ϕΦj(x)dx
L

0

  − 2ρI∫ ϕ ̈ Φj(x)dx
L

0

− GI∫  ϕ′Φj
′(x)

L

0

dx

− Φj(L)

(

 
 
θ̇2 (Ixyw

′(L, t) − Iyyϕ(L, t) − Ixzv
′(L, t) − Izzϕ(L, t))

−2θ̇ (Ixyv̇
′(L, t) + Ixzẇ

′(L, t))

−Ixyẅ
′(L, t) + Iyyϕ̈(L, t) + Ixzv̈

′(L, t) + Izzϕ̈(L, t) )

 
 

−Φj(0)

(

 
 
θ̇2 (−Ixyw

′(0, t) − Iyyϕ(0, t) + Ixzv
′(0, t) − Izzϕ(0, t))

−2θ̇ (−Ixyv̇
′(0, t) − Ixzẇ

′(0, t))

+Ixyẅ
′(0, t) + Iyyϕ̈(0, t) − Ixzv̈

′(0, t) + Izzϕ̈(0, t) )

 
 

)

  
 
= 0 

(4.27) 

 

Application of the displacement function solutions Equations (4.3 through 4.5) into (4.27) 

gives the final form of the equations for torsional displacements prior to application of the 

displacement function solutions and arrangement into matrices: 

 

(θ̇22ρI∫ ∑Φi(x)Φj(x)qϕ(t){�̅�𝒊}dx

N

i=1

L

0

− 2ρI∫ ∑Φi(x)Φj(x)q̈ϕ(t){�̅�𝒊}dx

N

i=1

L

0

− GI∫  Φi
′(x)Φj

′(x)qϕ(t)
L

0

{�̅�𝒊}dx 

− Φj(L)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
θ̇2

(

 
 
 
Ixy∑Zi

′(L)qw(t){�̅�𝒊}

N

i=1

− Iyy∑Φi(L)qϕ(t)

N

i=1

{�̅�𝒊}

−Ixz∑Yi
′(L)qv(t){�̅�𝒊}

N

i=1

− Izz∑Φi(L)qϕ(t)

N

i=1

{�̅�𝒊}
)

 
 
 

−2θ̇(Ixy∑Yi
′(L)q̇v(t)

N

i=1

{�̅�𝒊} + Ixz∑Zi
′(L)q̇w(t)

N

i=1

{�̅�𝒊})

−Ixy∑Zi
′(L)q̈w(t){�̅�𝒊}

N

i=1

+ Iyy∑Φi(L)q̈ϕ(t){�̅�𝒊}

N

i=1

+Ixz∑Yi
′(L)q̈v(t){�̅�𝒊}

N

i=1

+ Izz∑Φi(L)q̈ϕ(t){�̅�𝒊}

N

i=1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4.28) 
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−Φj(0)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
θ̇2

(

 
 
 
−Ixy∑Zi

′(0)qw(t){�̅�𝒊} − Iyy

N

i=1

∑Φi(0)qϕ(t){�̅�𝒊}

N

i=1

+Ixz∑Yi
′(0)qv(t)

N

i=1

{�̅�𝒊} − Izz∑Φi(0)qϕ(t)

N

i=1

{�̅�𝒊}
)

 
 
 

−2θ̇(−Ixy∑Yi
′(0)q̇v(t)

N

i=1

{�̅�𝒊} − Ixz∑Zi
′(0)q̇w(t){�̅�𝒊}

N

i=1

)

+Ixy∑Zi
′(0)q̈w(t){�̅�𝒊}

N

i=1

+ Iyy∑Φi(0)q̈ϕ(t){�̅�𝒊}

N

i=1

−Ixz∑Yi
′(0)q̈v(t){�̅�𝒊}

N

i=1

+ Izz∑Φi(0)q̈ϕ(t){�̅�𝒊}

N

i=1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 = 0 (4.28) 

cont. 

 

4.4.5 Summation Matrices 

Equations (4.15, 4.22 and 4.28) can be simplified by the substitution of matrices in lieu of the 

trial functions. The approximate solutions for the displacement functions determined in 

Section 4.4.1 are applied. Table 4-1 contains the system matrix substitutions [Aij], 

[Bij] ,[Cij], [Dij] and [Eij]  matrices by summing and integrating along the length of the shaft 

and [F0ij], [FLij], [G0ij], [GLij] , [H0ij], [HLij], [I0ij] and [ILij] matrices at the shaft ends (x=0, 

x=L).   

 

y plane lateral bending (𝐯): 

 

(θ̇2m0[Aij]{qv(t)}{�̅�𝒊} + 2θ̇m0[Aij]{q̇w(t)}{�̅�𝒊} − m0[Aij]{q̈v(t)}{�̅�𝒊}

− ρI[Bij]{q̈v(t)}{�̅�𝒊} − EI[Cij]{qv(t)}{�̅�𝒊} 

−

(

 
 
 
 

−θ̇2 (Ixx [FLij] {qv(t)}{�̅�𝒊} + Ixy − Ixz [GLij] {qϕ(t)}{�̅�𝒊})

−2θ̇ (Ixx [FLij] {q̇w(t)}{�̅�𝒊} − Ixy [GLij] {q̇ϕ(t)}{�̅�𝒊})

+Iyy [FLij] {q̈v(t)}{�̅�𝒊} + Iyz [FLij] {q̈w(t)}{�̅�𝒊} + Ixx [FLij] {q̈v(t)}{�̅�𝒊}

+Ixz [GLij] {q̈ϕ(t)}{�̅�𝒊} + k [FLij] {qv(t)}{�̅�𝒊} )

 
 
 
 

 

−

(

 
 
 
 

−θ̇2 (Ixx [F0ij] {qv(t)}{�̅�𝒊} − Ixy + Ixz [G0ij] {qϕ(t)}{�̅�𝒊})

−2θ̇ (Ixx [F0ij] {q̇w(t)}{�̅�𝒊} + Ixy [G0ij] {q̇ϕ(t)}{�̅�𝒊})

+Iyy [F0ij] {q̈v(t)}{�̅�𝒊} + Iyz [F0ij] {q̈w(t)}{�̅�𝒊} + Ixx [F0ij] {q̈v(t)}{�̅�𝒊}

−Ixz [G0ij] {q̈ϕ(t)}{�̅�𝒊} + k [F0ij] {qv(t)}{�̅�𝒊} )

 
 
 
 

)

 
 
 
 
 

= 0 

(4.29) 
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z plane lateral bending(𝐰): 

 

(θ̇2m0[Aij]{qw(t)}{�̅�𝒊} − 2θ̇m0[Aij]{q̇v(t)}{�̅�𝒊} − m0[Aij]{q̈w(t)}{�̅�𝒊}

− ρI[Bij]{q̈w(t)}{�̅�𝒊} − EI[Cij]{qw(t)}{�̅�𝒊} 

−

(

 
 
 
 

−θ̇2 (Ixx [FLij] {qw(t)}{�̅�𝒊} + Ixz + Ixy [GLij] {qϕ(t)}{�̅�𝒊})

+2θ̇ (Ixx [FLij] {q̇v(t)}{�̅�𝒊} + Ixz [GLij] {q̇ϕ(t)}{�̅�𝒊})

+Iyz [FLij] {q̈v(t)}{�̅�𝒊} + Izz [FLij] {q̈w(t)}{�̅�𝒊} + Ixx [FLij] {q̈w(t)}{�̅�𝒊}

−Ixy [GLij] {q̈ϕ(t)}{�̅�𝒊} +  k [FLij] {qw(t)}{�̅�𝒊} )

 
 
 
 

 

−

(

 
 
 
 

−θ̇2 (Ixx [F0ij] {qw(t)}{�̅�𝒊} − Ixz − Ixy [G0ij] {qϕ(t)}{�̅�𝒊})

+2θ̇ (Ixx [F0ij] q̇v(t){�̅�𝒊} − Ixz [G0ij] {q̇ϕ(t)}{�̅�𝒊})

+Iyz [F0ij] {q̈v(t)}{�̅�𝒊} + Izz [F0ij] {q̈w(t)}{�̅�𝒊} + Ixx [F0ij] {q̈w(t)}{�̅�𝒊}

+Ixy [G0ij] {q̈ϕ(t)}{�̅�𝒊} + k [F0ij] {qv(t)}{�̅�𝒊} )

 
 
 
 

)

 
 
 
 
 

= 0 

(4.30) 

 

Torsional Motion(𝛟): 

 

(θ̇22ρI[Dij]{qϕ(t)}{�̅�𝒊} − 2ρI[Dij]{q̈ϕ(t)}{�̅�𝒊} − GI[Eij]{qϕ(t)}{�̅�𝒊} 

−

(

 
 
 
 
 
 θ̇

2 (
Ixy [HLij] {qw(t)}{�̅�𝒊} − Iyy [ILij] {qϕ(t)}{�̅�𝒊}

−Ixz [HLij] {qv(t)}{�̅�𝒊} − Izz [ILij] {qϕ(t)}{�̅�𝒊}
)

−2θ̇ (Ixy [HLij] {q̇v(t)}{�̅�𝒊} + Ixz [HLij] {q̇w(t)}{�̅�𝒊})

−Ixy [HLij] {q̈w(t)}{�̅�𝒊} + Iyy [ILij] {q̈ϕ}{�̅�𝒊}

+Ixz [HLij] {q̈v(t)}{�̅�𝒊} + Izz [ILij] {q̈ϕ}{𝑣} )

 
 
 
 
 
 

 

−

(

 
 
 
 
 
 θ̇2 (

−Ixy [H0ij] {qw(t)}{�̅�𝒊} − Iyy [I0ij] {qϕ(t)}{�̅�𝒊}

+Ixz [H0ij] {qv(t)}{�̅�𝒊} − Izz [I0ij] {qϕ(t)}{�̅�𝒊}
)

−2θ̇ (−Ixy [H0ij] {q̇v(t)}{�̅�𝒊} − Ixz [H0ij] {q̇w(t)}{�̅�𝒊})

+Ixy [H0ij] {q̈w(t)}{�̅�𝒊} + Iyy [I0ij] {q̈ϕ}{�̅�𝒊}

−Ixz [H0ij] {q̈v(t)}{�̅�𝒊} + Izz [I0ij] {q̈ϕ}{�̅�𝒊} )

 
 
 
 
 
 

 

)

 
 
 
 
 
 

= 0 

(4.31) 

 



4.4 Theoretical Model 88 

  

 

Table 4-1 – Summation matrix substations 

MAIN EQUATIONS 

MATRIX VALID TERMS ELEMENTS VALUE 

[Aij] 

∫ ∑Y𝐢(x)Yj(x)dx

N

i=1

 
L

0

 
i = j 

(Diagonal) 

L

2
 

∫ ∑Zi(x)Zj(x)dx

N

i=1

L

0

 
i ≠ j 

(Off diagonal) 
0 

[Bij] 

∫ ∑Yi′(x)Yj′(x)dx

N

i=1

L

0

 i = j 
ijπ2

2L
 

∫ ∑Zi′(x)Zj′(x)dx

N

i=1

L

0

 i ≠ j 0 

[Cij] 

∫ ∑Yi′′(x)Yj′′(x)dx

N

i=1

L

0

 i = j 
i2j2π4

2L3
 

∫ ∑Zi′′(x)Zj′′(x)dx

N

i=1

L

0

 i ≠ j 0 

[Dij] ∫ ∑Φi(x)Φj(x)dx

N

i=1

L

0

 

i = j 
L

2
 

i ≠ j 0 

[Eij] ∫ ∑Φi′(x)Φj′(x)dx

N

i=1

L

0

 

i = j 
ijπ2

2L
 

i ≠ j 0 
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BOUNDARY CONDITIONS 

MATRIX VALID TERMS ELEMENTS VALUE 

[F0ij] 

∑Yi′(0)Yj′(0)

N

i=1

 

ALL 
ijπ2

L2
 

∑Zi′(0)Zj′(0)

N

i=1

 

∑Zi′(0)Yj′(0)

N

i=1

 

∑Yi′(0)Zj′(0)

N

i=1

 

[FLij] 

∑Yi′(L)Yj′(L)

N

i=1

 

i = j 
ijπ2

L2
 

∑Zi′(L)Zj′(L)

N

i=1

 

∑Zi′(L)Yj′(L)

N

i=1

 

i ≠ j cos iπ cos jπ (
ijπ2

L2
) 

∑Yi′(L)Zj′(L)

N

i=1

 

[G0ij] 

∑Φi(0)Yj′(0)

N

i=1

 

ALL 
jπ

L
 

∑Φi(0)Zj′(0)

N

i=1

 

[GLij] 

∑Φi(L)Yj′(L)

N

i=1

 

ALL cos iπ cos jπ (
jπ

L
) 

∑Φi(L)Zj′(L)

N

i=1

 

[H0ij] 

∑Yi′(0)Φj(0)

N

i=1

 

ALL 
iπ

L
 

∑Zi′(0)Φj(0)

N

i=1
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MATRIX VALID TERMS ELEMENTS VALUE 

[HLij] 

∑Yi′(L)Φj(L)

N

i=1

 

ALL cos iπ cos jπ (
iπ

L
) 

∑Zi′(L)Φj(L)

N

i=1

 

[I0ij] ∑Φi(0)Φj(0)

N

i=1

 ALL 1 

[ILij] ∑Φi(L)Φj(L)

N

i=1

 ALL cos iπ cos jπ 

 

 

4.4.6 System Matrices  

To calculate the free response of the system, the discretised equations of motion are collated 

into the form of Equation (4.32). Individual components include the additional matrices due 

to the influence of the eccentric sleeves and torsional spring effects of the flexible elements. 

 

(([Msh] + [Msl]){q̈(t)} + ([Ccorsh] + [Ccorsl]) {q̇(t)}

+ ([Ksh] + [KT] + [Kcentsh] + [Kcentsl]){q(t)}){�̅�𝒊} = 0 
(4.32) 

 

[𝐌𝐬𝐡] = Shaft Mass Matrix 

 

= [

−m0[Aij] − ρI[Bij] 0 0

0 −m0[Aij] − ρI[Bij] 0

0 0 −2ρI[Dij]

] (4.33) 

 

[𝐌𝐬𝐥] = Sleeve Mass Matrix 

 

= −

[
 
 
 
 (Iyy + Ixx) ([F0ij] + [FLij]) Iyz ([F0ij] + [FLij]) Ixz ([GLij] − [G0ij])

Iyz ([F0ij] + [FLij]) (Izz + Ixx) ([F0ij] + [FLij]) Ixy ([G0ij] − [GLij])

Ixz ([HLij] − [H0ij]) Ixz ([H0ij] − [HLij]) (Iyy + Izz) ([I0ij] + [ILij])]
 
 
 
 

 

 (4.34) 
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[𝐂𝐜𝐨𝐫𝐬𝐡] = Shaft Coriolis Force Matrix 

 

= 2θ̇ [

0 m0[Aij] 0

−(m0[Aij]) 0 0

0 0 0

] (4.35) 

 

[𝐂𝐜𝐨𝐫𝐬𝐥] = Sleeve Coriolis Matrix 

 

= 2θ̇

[
 
 
 
 

−

0 Ixx ([FLij] + [F0ij]) −Ixy ([GLij] − [G0ij])

(Ixx ([FLij] + [F0ij])) 0 −Ixz ([GLij] − [G0ij])

−Ixy ([H0ij] − [HLij]) −Ixz ([H0ij] − [HLij]) 0 ]
 
 
 
 

 (4.36) 

 

[𝐊𝐬𝐡] = Shaft Stiffness Matrix 

 

= [

−EI[Cij] 0 0

0 −EI[Cij] 0

0 0 −GI[Eij]

] (4.37) 

 

[𝐊𝐓] = Torsional Element Stiffness 

 

= [

−k([FLij] + [F0ij]) 0 0

0 −k([FLij] + [F0ij]) 0

0 0 0

] (4.38) 

 

[𝐊𝐜𝐞𝐧𝐭𝐬𝐡] = Shaft Centrifugal Force Matrix 

 

= θ̇2 [

m0[Aij] 0 0

0 m0[Aij] 0

0 0 2ρI[Dij]

] (4.39) 
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[𝐊𝐜𝐞𝐧𝐭𝐬𝐥] = Sleeve Centrifugal Force Matrix 

 

= θ̇2

[
 
 
 
 Ixx ([FLij] + [F0ij]) 0 −Ixz ([GLij] − [G0ij])

0 Ixx ([FLij] + [F0ij]) −Ixy ([G0ij] − [GLij])

−Ixz ([H0ij] − [HLij]) −Ixy ([HLij] − [H0ij]) (Iyy + Izz) ([I0ij] + [ILij])]
 
 
 
 

 

 (4.40) 

 

{𝐪(𝐭)} = Displacement Vectors 

 

= {

qv(t)

qw(t)

qϕ(t)
} (4.41) 

 

{�̇�(𝐭)} = Velocity Vectors 

 

= {

q̇v(t)

q̇w(t)

q̇ϕ(t)
}  (4.42) 

 

{�̈�(𝐭)} = Acceleration Vectors 

 

= {

q̈v(t)

q̈w(t)

q̈ϕ(t)
} (4.43) 

 

4.4.7 Numerical Solution 

Modal analysis of the free response of the system is obtained by manipulation of Equation 

(4.32). In its simplest form, this can be converted into two first order differential equations 

where M, C and K are the global system mass, stiffness and damping matrices, respectively 

[3], [96]:  

 

[
C M
M 0

]
d

dt
{
q(t)

q̇(t)
} − [

K 0
0 −M

] {
q(t)

q̇(t)
} (4.44) 
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MATLAB is used to obtain an Eigenvalue solution for the system at chosen values of 

rotational velocity, θ̇. The eig command solves Equation (4.45) for ω which is the circular 

natural frequency of a particular mode. 

 

det[K′ −ω2M′] = 0          Where K′ = [
C M
M 0

] and M′ = [
K 0
0 −M

] (4.45) 

 

4.4.7.1 Convergence 

The number of terms in the Galerkin solution is investigated to provide good convergence 

without significantly impacting on required computational overhead.  Table 4-2 contains the 

parameters for a shaft, without the eccentric sleeves, used for obtaining results of the 

convergence study. The parameters are representative of the simplifications made to geometry 

of a full shaft. The flexible element stiffness is determined by finite element analysis using 

ANSYS Workbench 17.0.  

 

Table 4-2 – Parameters of simplified shaft 

Length 920 mm 

Spacer shaft diameter (OD/ID) 62/56 mm 

Density 7850 kgm3 

Young's Modulus 200 GPa 

Flexible Element Stiffness 1x104 N/m 

Maximum Speed 12000 rpm 

 

The first three bending modes of the shaft are considered: Modes 1 and 2 are first bending 

mode, Modes 3 and 4 are second bending mode and Modes 5 and 6 are the third bending 

modes. Convergence is investigated at zero rotational velocity, i.e. where no gyroscopic 

effects are observed and a high rotational velocity (12000rpm) where significant gyroscopic 

effects will be observed. Without gyroscopic effects, the terms of the Coriolis and centrifugal 

matrices will be zero and the obtained frequencies of the pairs of modes for each bending 

motion will be identical. However, as rotational speed increases, the gyroscopic effects 
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become more prevalent and a splitting occurs, resulting in forward and backward modes of 

different frequencies. In a rotating frame, the natural frequencies of forward modes decrease 

with increasing rotational velocity and backward modes increase [3].  

 

As a first approximation, natural frequencies are obtained using a truncation of three terms in 

the system matrices. Without increasing the truncation, it is not possible to attest whether or 

not the first approximation using three terms provides a converged solution. Therefore, 

truncation of the system matrices is increased until convergence is observed. Convergence 

error is measured by the relative difference between the obtained natural frequencies as the 

number of terms is increased. Convergence is determined to be reached once the convergence 

error reaches a steady state. Table 4-4 provides the convergence error results for the forward 

and backward motions of the first three bending modes of the shaft as the number of terms is 

increased from three to thirty.  

 

To assess the computational efficiency of the model, Table 4-3 gives the computation time for 

calculation of natural frequencies for the Galerkin solutions using three to thirty terms. Figure 

4.1 and Figure 4.2 show the convergence error and computation time for three to thirty terms 

at 0 and 12000rpm. Using up to nine terms, the increase in computation time is largely linear, 

resulting in an accurate solution being obtained in a relatively short time. However, once the 

truncation is increased to greater than ten terms, the increase in computation time becomes 

exponential.  

Table 4-3 – Computation time for 3 to 30 term solutions 

No. of 

Terms 
3 5 7 9 11 13 15 20 25 30 

Time (s) 0.51 1.50 2.60 7.63 31.66 60.90 105.8 281.5 463.1 664.4 
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Figure 4.1 – Convergence error and computation time at 0 rpm 

 

 

Figure 4.2 – Convergence error and computation time at 12000 rpm 
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Table 4-4 – Convergence error at 0 and 12000 rpm 

No. of 

Terms 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

0 rpm 

5 0.020% 0.020% 0.154% 0.154% 2.502% 2.502% 

7 0.010% 0.010% 0.062% 0.062% 0.810% 0.810% 

9 0.006% 0.006% 0.033% 0.033% 0.422% 0.422% 

11 0.004% 0.004% 0.021% 0.021% 0.261% 0.261% 

13 0.003% 0.003% 0.015% 0.015% 0.178% 0.178% 

15 0.002% 0.002% 0.011% 0.011% 0.129% 0.129% 

20 0.003% 0.003% 0.020% 0.020% 0.176% 0.176% 

25 0.003% 0.003% 0.008% 0.008% 0.157% 0.157% 

30 0.001% 0.001% 0.008% 0.008% 0.068% 0.068% 

120000rpm 

5 0.470% 0.003% 0.107% 0.227% 2.227% 2.833% 

7 0.241% 0.001% 0.043% 0.088% 0.751% 0.877% 

9 0.146% 0.001% 0.024% 0.048% 0.396% 0.451% 

11 0.098% 0.001% 0.015% 0.030% 0.246% 0.278% 

13 0.070% 0.000% 0.010% 0.021% 0.169% 0.189% 

15 0.053% 0.000% 0.008% 0.015% 0.123% 0.137% 

20 0.074% 0.000% 0.014% 0.028% 0.167% 0.185% 

25 0.068% 0.000% 0.006% 0.011% 0.150% 0.165% 

30 0.030% 0.000% 0.006% 0.011% 0.065% 0.071% 
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From Table 4-4, along with Figure 4.1 and Figure 4.2, the numbers of terms to obtain suitably 

convergent solutions for each of the bending modes can be identified. At 0 rpm the first 

bending modes (modes 1 and 2), second bending modes (modes 3 and 4) and third bending 

modes (modes 5 and 6) show identical convergence errors, due to no gyroscopic effects 

impacting on the modes. The first bending mode readily converged with five terms, the second 

bending modes show a slightly larger convergence error with five terms but good convergence 

with nine, and the third bending mode becomes more consistent with 15 terms but is still 

considerably greater than the first and second bending modes. 

  

At 12000 rpm, due to considerable gyroscopic effects and splitting of the modes, the pairs of 

natural frequencies of each bending motion differ, resulting in different convergence errors. 

The convergence error is particularly high for mode 1 as this is close to a critical speed and 

the natural frequency of the mode is approaching zero, therefore small changes of critical 

speed has a large relative effect upon the convergence error. Modes 2 to 4 all show good 

convergence using 15 terms. Due to the anticipated running speed of the shaft, the third 

bending mode is not considered as being of importance. Therefore, only converged solutions 

for the first and second bending modes need to be considered and a maximum of 10 terms is 

therefore chosen. 

 

 

4.5 Finite Element Analysis 

To assess the validity of the proposed simplified model, a three-dimensional finite element 

model is developed using ANSYS Workbench 17.0. The full assembly is shown in Figure 4.3 

and is a representation of the technical drawing in Appendix D. This shaft conforms to that 

used later for experimental validation in Chapter 5. The model could be simplified using 

symmetry, however due to the sleeve geometry, the system is not axisymmetric and has 

limited symmetry. Furthermore, a full solid model was used to produce the most accurate 

solution possible and also due to the availability of powerful computational resources. 

 

Figure 4.3 – ANSYS shaft geometry 
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4.5.1 Geometry 

The geometry of the full assembly includes 2x hubs, 4x adaptors, 2x flexible element packs, 

2x balance sleeves, 1x spacer shaft, 30x bolts and 24 x element/overload washers. Figure 4.4 

shows the shaft geometry at one end of the assembly with relevant notation.  The following 

modifications are used to reduce complexity: 

 

 Bolts removed and replaced with suitable contact regions  

The objective of this is to remove frictional nonlinearities from the analysis. Nonlinearities 

due to friction occur if the bolts are insufficiently tightened. The bolts in the experimental 

assembly are tightened to specific torque specifications and unlikely to come loose. Therefore 

calculating any friction is unnecessary and computationally inefficient. 

 

 Element washers are left in place  

This provides a link between the flexible elements and adaptors.  

 

 
Figure 4.4 – Simplified geometry at shaft end 

 

 

4.5.2 Materials 

The materials used to manufacture the shaft assembly are specified in Appendix D and 

material properties for the relevant components are listed Table 4-5. These are entered into 

the engineering data file within ANSYS and the correct material properties applied to the 

relevant components. 

Flexible element pack 

and washers 

Hub 

Eccentric sleeve 

Adaptors 

 

Spacer shaft 
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Table 4-5 – Material properties 

Material BS970 817M40T AISI 301 Stainless Grade 5 Titanium 

Component(s) 
Hub, 

Spacer, Sleeves 
Flexible Elements Adaptors 

Modulus of Elasticity 

(GPa) 
205 195 114 

Poisson Ratio 0.3 0.3 0.342 

Ultimate Tensile Strength 

(MPa) 
850 515 950 

Tensile Yield Strength 

(MPa) 
700 205 880 

Compressive Yield Strength 

(MPa) 
800 500 970 

 

 

4.5.3 Connections 

Connections between bodies are modelled as special contact regions. As with physical bodies, 

these regions allow for the transference of forces but prevent the bodies from passing through 

and penetrating one another. Regions in contact are given ‘contact’ and ‘target’ status. The 

interaction of these is dependent upon the type of contact region selected. Table 4-6 [98] shows 

the contact types available in ANSYS Mechanical. Contact types that allow separation and 

friction constantly change the stiffness matrix of the system and are therefore non-linear.  

 

The technical drawing for the shaft assembly states all fasteners must be tightened to 9Nm. 

For the size of bolts used, this provides a tightening force of ~7500N—hence it is assumed 

that the components are fully bonded with no possibility of separation. From consideration of 

Table 4-6, a bonded contact region suitably replicates this condition. Due to the bonded 

contact region, additional bolt pretension loads are not required.  
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Table 4-6 – ANSYS contact types 

Contact Type Description 

Bonded 

If contact regions are bonded, then no sliding or separation between 

faces or edges is allowed. Think of the region as glued. This type of 

contact allows for a linear solution since the contact length/area will 

not change during the application of the load. If contact is determined 

on the mathematical model, any gaps will be closed and any initial 

penetration will be ignored 

No Separation 

Similar to the Bonded case. It only applies to regions of faces or edges. 

Separation of the geometries in contact is not allowed. 

Frictionless 

Models standard unilateral contact; that is, normal pressure equals zero 

if separation occurs. Thus gaps can form in the model between bodies 

depending on the loading. This solution is nonlinear because the area of 

contact may change as the load is applied. A zero coefficient of friction 

is assumed, thus allowing free sliding. The model should be well 

constrained when using this contact setting. Weak springs are added to 

the assembly to help stabilize the model in order to achieve a 

reasonable solution. 

Rough 

Similar to the frictionless setting, this setting models perfectly rough 

frictional contact where there is no sliding. It only applies to regions of 

faces or edges. By default, no automatic closing of gaps is performed. 

This case corresponds to an infinite friction coefficient between the 

contacting bodies 

Frictional 

In this setting, the two contacting geometries can carry shear stresses 

up to a certain magnitude across their interface before they start sliding 

relative to each other. This state is known as "sticking." The model 

defines an equivalent shear stress at which sliding on the geometry 

begins as a fraction of the contact pressure. Once the shear stress is 

exceeded, the two geometries will slide relative to each other. The 

coefficient of friction can be any nonnegative value 
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In instances where a relatively small part is in contact with a relatively large area, such as 

element washers to flexible elements, the face of the smaller component is ‘mapped’ upon the 

larger face so that only the relevant areas are in contact (see Figure 4.5). Bonded contact 

regions are used.   

  

 

Figure 4.5 – Contact region taken from large area 

 

4.5.4 Element Types 

All components are meshed using solid elements SOLID187. These are 10 node higher order 

3D elements and are well suited to modelling irregular geometry, Figure 4.6.  

 

 

 

Figure 4.6 – SOLID187 element [98] 
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Contact regions use the contact/target elements CONTA174 and TARGE170, Figure 4.7. 

These are 3D elements are used to describe the boundary of deformable bodies. CONTA174 

and TARGE170 elements are used to represent contact and sliding between deformable 

bodies. The elements are placed onto the surfaces of 3-D solid elements. The elements have 

the same degrees of freedom as the solid element face with which they are connected. Contact 

occurs when the element surface penetrates one of the target segment elements on a specified 

target surface. 

 

 

Figure 4.7 – CONTA174 and TARGE170 elements [98] 

 

4.5.5 Meshing 

 Shaft, Hubs, Adaptors, Eccentric Sleeves 

Refinements are made to the mesh to ensure solution convergence. The ‘Body Sizing’ mesh 

tool is used to apply suitable mesh density to the geometry. Figure 4.8 shows the refined mesh 

in one hub and the spacer shaft.  

 

 

 

Figure 4.8 – Refined hub and spacer shaft 
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 Flexible Element Pack 

The flexible element pack is constructed from eight individual 1mm thick shims. Modelling 

as a collection of individual layers generates warning messages relating to insufficient 

elements through the thickness. Refining the mesh such that each flexible element component 

has sufficient solid elements through the thickness drastically increases the number of 

elements and increases computation time without improving results. Additional meshing 

issues become evident when replicating the mesh across all eight elements. As the individual 

flexible elements are constructed from the same material it is possible to eliminate the meshing 

problems by replacing all the individual elements with one of equal thickness to the eight. The 

single element has the same stiffness properties as the eight but imparts a more effective mesh. 

The individual flexibility of each element is not expected to play any role in the consideration 

of the lower modes of the shaft assembly. Therefore, in the following analysis, the substitution 

will not have any significant impact on the results. 

 

The ‘Virtual Topology’ tool is used to ‘clean’ the outside faces of the new flexible element 

and remove unnecessary edges. A 1mm element size is used with the ‘Body Sizing’ mesh tool. 

This enables a suitably refined mesh to be developed without significantly increasing 

computation time, Figure 4.9. Complex contact regions between each flexible element 

component are removed, thereby further simplifying the model. 

 

 

Figure 4.9 – Refined flexible element mesh 
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4.5.6 Boundary Conditions and Loads 

 Hubs 

The shaft assembly hubs are fitted directly onto two electric motors with short, solid shafts. 

An interference fit is provided by use of two externally fitted Tollock couplings. It can 

therefore be assumed that the connection between shaft and motors will be rigid. The boundary 

conditions must allow for rotation about the x axis, however no other motions will be possible. 

A ‘Remote Displacement’ boundary condition that constrains x,y,z translational movement 

and rotation about the y and z axes, suitably replicates this condition. 

 

 Shaft Assembly 

The spacer shaft, spacer adaptors and balance sleeves are contained by the flexible element 

section of the coupling. This allows movement of the spacer shaft that is not fully constrained 

by the boundary conditions applied to the hubs. There is limited rotation about the y and z 

axes. Boundary conditions are not applied directly to control movement, however, the use of 

contact regions between adaptors, washer and the flexible elements replicate the physical 

connections and allowable movement. Figure 4.10 shows the flexible element region of the 

geometry.  

 Rotational Velocity is applied about the x axis. 

 

 

Figure 4.10 – Coupling flexible element connection 
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4.5.7 Solver Settings 

ANSYS uses an Eigenvector solver to determine the free response of a structure. For simple 

analyses the structure has constant mass and stiffness, no damping and there can be no applied 

time varying loads. In such cases the equation of motion is given as [98]: 

 

[𝑀]{�̈�} + [𝐾]{𝑞} = {0} (4.46) 

 

Using a harmonic solution of the form {𝑞} = {�̅�𝒊} cos𝜔𝑖𝑡, Equation (4.46) becomes: 

 

(−𝜔2[𝑀] + [𝐾]{�̅�𝒊}) = {0} (4.47) 

 

As is the case when using the eig command in MATLAB, this equality is satisfied when 

𝑑𝑒𝑡[𝐾 − 𝜔2𝑀] = 0.  When using linear models, the system matrices are relatively sparse and 

contain many zero terms.  In such cases the Block Lanczos method, which utilises a sparse 

matrix solver, can be used. Sparse matrix solvers do not refine a result through a series of 

iterations until a solution is obtained, but use direct elimination of equations. Direct 

elimination factorise the sparse matrix into an alternative form for solution which is simpler 

to solve. For ANSYS, this form is triangular with forwards and backwards substitution. The 

resulting matrices are typically large, hence the suitability for simple linear models.  

 

When considering spinning structures in rotordynamics, the inclusion of damping is due to 

gyroscopic or Coriolis effects. These are proportional to rotational velocity and therefore the 

terms in the damping matrix are none constant. With the inclusion of damping, the 

eigenvalue/eigenvector solution to Equation (4.46) becomes: 

 

[𝐾]{�̅�𝒊} + λ𝑖[𝐶]{�̅�𝒊} = −λ𝑖
2[𝑀]{�̅�𝒊}  (4.48) 

 

 The eigenvalue solution of Equation (4.48) is complex: 

 

λ𝑖 = 𝜎𝑖 ± 𝑗𝜔𝑖 (4.49) 

 

The real part of the eigenvalue, σ, indicates the stability of the mode whilst the complex, ω, 

gives the natural frequency. The real part of the eigenvectors dictate the mode shapes of the 

system.  
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For completeness, the specific ANSYS solver settings used to generate Campbell diagrams 

and obtain critical speeds are: 

 

 Reduced Damped solver (QRDAMP) – Used for computational efficiency in terms 

of solution time. Accuracy of results is checked against Full Damped solver 

 Modes are not reused – The undamped Eigensolution is calculated at each step 

 Complex solutions is stored – Allows the complex part of the solution to be stored 

and the natural frequencies extracted for producing Campbell Diagrams 

 

The reduced damped solver uses a two stage process. Firstly, the non-symmetric stiffness and 

damping matrices that are symmetrised and the undamped Eigensolution is obtained, using 

the Block Lanczos method. In the subsequent step, the full, non-symmetric matrices are 

included and transformed with the mode shapes from the eigenvectors obtained from the initial 

undamped solution. 

 

4.5.8 Comparison of Proposed (Theoretical) and Finite Element 

Models 

For both models, a modal analysis identifies the natural frequencies, with Campbell diagrams 

used to obtain the critical speeds of the shaft over a defined range of operating speeds. Results 

from the ANSYS modal analysis are used to visualise the mode shapes of the system. To 

assess the accuracy of the proposed theoretical model, critical speeds for the rotating shaft 

have been obtained for four eccentric sleeve configurations viz. no sleeve, short sleeve, 

medium sleeve and long sleeve.  

 

The specific sleeve lengths considered for this analysis are determined by experimental testing 

performed in a previous study.  A sleeve with an overall length of 76mm (medium sleeve) had 

a stiffness equal to that of the shaft under consideration, Figure 4.3. Matching the stiffness of 

the sleeves to the shaft is considered the design configuration for optimal balancing effect. 

Additionally, lengths 66mm (short sleeve) and 86mm (long sleeve) were selected to 

investigate the effect of using stiffer and more flexible sleeves on balancing efficacy, Table 4-

7: 
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Table 4-7 – Sleeve lengths used in analysis 

Short Medium Long 

66mm 76mm 86mm 

 

Figure 4.11 and Figure 4.12 show the normalised Campbell diagrams for the theoretical and 

ANSYS finite element models for the first bending mode of the shaft in each case, normalised 

against the maximum frequency and rotational speed. Since natural frequencies are obtained 

in a rotating coordinate system, the critical speeds are determined by the speed at which the 

frequency of the mode becomes zero.  

 

Table 4-8 gives the normalised critical speeds of each sleeve configuration for the model 

variants. The critical speeds for each sleeve configuration are normalised with respect to the 

critical speed of the system with no sleeve attached. 

 

Table 4-8 – Normalised shaft critical speeds 

 No sleeve Short Medium Long 

Theoretical 1.000 0.9924 0.9923 0.9922 

ANSYS 1.000 0.982 0.971 0.942 
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Figure 4.11 – Campbell diagram for theoretical solution 

 

 

 

Figure 4.12 – Campbell diagram for finite element mode 

 

 



4.5 Finite Element Analysis 109 

  

 

Comparison of the Campbell diagrams and results in Table 4-8 show a disparity in the relative 

change of critical speed between the two models. The theoretical model shows a marked 

decrease in critical speed with the addition of the short sleeve but no further significant change 

with the addition of sleeves of increasing length. By contrast, the finite element model shows 

a continuing decrease in critical speed with the addition of sleeves of increasing length. This 

can be attributed to the theoretical model only considering mass/inertia effects of the sleeves, 

as opposed to the finite element model that accommodates for the full geometry of the system. 

As such, the results presented in Table 4-8 show that mass/inertia effects alone are not 

sufficient to describe the change in critical speed as the eccentric sleeve length increases. This 

also follows a degree of intuition, where increasing mass and reducing stiffness decreases the 

natural frequencies of the system.  

 

The effect of increasing sleeve length on stiffness can be readily observed in the mode shapes 

of the system under free vibration, as shown in Figure 4.13 to Figure 4.15. For the short sleeve, 

the deflection of the sleeve is approximately equal to that at the same location on the shaft; 

essentially it is rigid. However, as the length of the sleeve is increased, the deflection becomes 

significantly greater than that of the shaft at the same location. This can be rationalized by 

considering that, as the sleeve increases in length, it becomes more flexible. When considered 

in conjunction with the normalized critical speeds presented in Table 4-8, this indicates that 

sleeve flexibility becomes progressively more influential on the dynamics of the system as 

sleeve length increases and that the assumption of rigid body sleeves is limited.  
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Figure 4.13 – 1st bending mode of shaft with short sleeve, from FE analysis 

Figure 4.14 – 1st bending mode of shaft with medium sleeve, from FE analysis 

 

Figure 4.15 – 1st bending mode of shaft with long sleeve, from FE analysis 
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4.6 Modifications to the Finite Element Model 

To investigate the effect of sleeve flexibility on the dynamics of the system, the geometry of 

the eccentric sleeves is removed and replaced with a point mass with equivalent inertia 

properties, as shown in Figure 4.16. 

 

 

Figure 4.16 – Finite element model of shaft with point mass replacing the sleeve 

 

The effect of sleeve flexibility can be shown through the described modifications to the finite 

element model. Removing the sleeve geometry, the mass of the sleeve is induced on the system 

without any stiffness effects. Figure 4.17 shows the normalised Campbell diagram for the 

ANSYS finite element model with point mass replacement. Normalised critical speeds are 

included in Table 4-9. Results for the point mass finite element model are comparable to those 

of the theoretical model—there is an initial decrease in critical speed with the addition of the 

short sleeve but no further significant change with the addition of the medium and long 

sleeves.  

 

Table 4-9 – Normalised shaft critical speeds for point mass model 

 No sleeve Short Medium Long 

ANSYS 1.000 0.991 0.989 0.987 

Point 

Mass 
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Figure 4.17 – Campbell diagram for finite element model with point masses 

 

Removal of the sleeve geometry has shown that mass alone does not explain the change in 

critical speed and therefore sleeve stiffness does have a significant impact upon the dynamics 

of the shaft; this is in contrast to the initial assumptions made in Chapter 3. This is a 

counterintuitive result given that each sleeve is connected to the shaft at one end and in free 

space at the other. Although the overall mass of the system has been increased, the stiffness 

of the sleeve does not directly affect the stiffness of the shaft and would not be expected to 

alter the natural frequency significantly. This is suggestive that during free vibration, the 

flexibility of the sleeves is impacting the dynamics of the shaft.  

 

 

4.7 Conclusions 

The equations of motion derived in Chapter 3 are discretised using the Galerkin method. The 

resulting matrices show that the mass inertia terms of the eccentric sleeves are added to the 

inertia of the shaft. This is somewhat intuitive as mass is being added to the system. Through 

consideration of the fundamental equation for natural frequency (ω=√k/m), the addition of 

the eccentric sleeves is predicted to have a softening effect and reduce the natural frequencies 

of the shaft. 
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Solution convergence of the system matrices is used for theoretical determination of the shaft 

critical speeds through modal analysis using MATLAB. A convergence study shows that 

using a maximum of 10 terms in the system matrices provides satisfactory convergence 

without significantly increasing computation time of the solution.  

 

A 3–dimensional finite element model of the full shaft geometry is created using ANSYS 

Workbench and the results of modal analysis are compared with the theoretical model. The 

normalised critical speeds of the first bending mode are compared for each model using four 

different sleeve configurations; a shaft with no sleeve and a short, medium and long sleeve. 

When considering the relative difference in shaft critical speeds as the sleeve length is 

changed, a discrepancy is identified between the two approaches. Making modifications to the 

finite element model to remove the sleeve flexibility but leave the mass/inertia, produces 

results markedly similar to those of the theoretical model. Sleeve flexibility is therefore found 

to have a greater than anticipated effect upon the critical speeds of the shaft. Furthermore, 

sleeve flexibility becomes progressively more important with increasing sleeve length. 

 

The modelling practices have identified potential bounds of applicability for the proposed 

models. When the eccentric sleeves possess high stiffness, the theoretical model can be used 

to accurately determine the critical speed of the shaft. However, the magnitude of influence 

of sleeve stiffness on the change of critical speed of the shaft increases with decreasing sleeve 

stiffness. As such, the accuracy of the theoretical model is reduced in the latter case, requiring 

the use of more complex finite element simulations, at the expense of incurring significant 

computational overhead. 

 

Although sleeve flexibility appears to be a key parameter, experimental validation is required 

to establish the validity of the results observed here. An experimental procedure and results 

are therefore discussed in Chapter 5.  Moreover, further investigation of the effect of sleeve 

flexibility is required to fully understand the mechanism of passive control and the effect upon 

higher modes of the shaft.  

  



 

 

 Experimental Validation Study of 

Rotating Shaft with Eccentric Sleeves 

5.1 Summary 

Experimental studies are carried out using a custom high-speed test facility which is a 

dimensionally scaled representation of a coupling shaft from a Siemens SGT-400 MD gas 

turbine. A detailed description of the high speed rig, is given, including the control and 

measurement instrumentation. The response of the system is measured at a series of speeds 

for four different sleeve/shaft configurations; no sleeve, short, medium and long sleeves. The 

critical speeds of the system are identified through analysis of response plots to determine the 

speed at which the peak vibration magnitude occurs. Measured data is used to validate the 

theoretical and finite element models discussed in Chapter 4. Comparison with the proposed 

models show a similar trend as displayed by the finite element analysis, but with a slight shift 

in the absolute positions of the critical speeds. This is due to the existence of bearings and 

support structures within the experimental rig that aren’t captured by either model. Identified 

modifications to improve model accuracy becomes instrumental in proving that sleeve 

flexibility is an important factor when considering real operating conditions. 

 

 

5.2 Chapter Highlights  

 Critical speeds are identified from scaled experimental test facility 

 The results are compared with the theoretical models presented in Chapter 4 

 It is shown that he stiffness of the sleeves must accommodated when considering the 

passive control characteristics 

  



5.3 Experimental Setup and Description 115 

  

 

5.3 Experimental Setup and Description 

The high speed test facility was initially designed for concurrent research into the dynamic 

balancing capabilities of the eccentric sleeve described in Chapter 1. The motivation for the 

sleeve design is to reduce the amount of unbalance that exists within a rotating shaft. A 

positive effect of the counterbalance sleeves is considered as identifying a reduction in shaft 

deflection and reaction loads at the shaft bearings.  

 

For the purposes of this research, using experimental modal analysis would yield the natural 

frequencies of the shaft but only in a non-rotating state. This provide some validation towards 

the models but would not account for any rotational effects, nor allow to critical speeds to be 

determined.  

 

Measuring the natural frequencies whilst the shaft is rotating allows for experimental 

Campbell diagrams to determine the critical speeds of the shaft with multiple different sleeve 

lengths attached. From observation of any splitting of the modes, the degree of rotational 

effects could also be identified. Work presented in [99] and [100] shows methods for 

measuring the natural frequencies of a rotating shaft by way of on-shaft mounted, wireless 

accelerometers and telemetry systems. In practice, both methods were complicated and limited 

to relatively low speed ~ circa 1000rpm.  

 

The critical speeds are therefore inferred from the peak response, as shown in Figure 2.11 and 

assuming only unbalance excitation.   

  

5.3.1 Test Methodology 

 Obtain the critical speed of the shaft without sleeves, as a benchmark case 

 Measure the shaft displacement for each sleeve configuration, at 100rpm intervals up to 

12000rpm 

 Use the maximum peak response of the shaft mid-point to identify the experimental first 

critical speeds of the shaft for each sleeve configuration 

 Obtain critical speed for each sleeve configuration and compare the relative change from 

the benchmark case 

 Compare the results of experiment with the theoretical models in Chapter 4 
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5.4 Description of Test Rig 

The test facility is shown in Figure 5.1. It consists of two Oswald QDI13.2-2F Induction 

motors. The motors are supplied by a 415V three phase supply and are capable of producing 

49kW with a maximum operating speed of 20000 rpm. A Heidenhaim 512 bit PPR TTL 5 V 

Quadrature encoder provides positional feedback.  

 

The motors are mounted on engine support frames that are bolted to the floor on vibration 

isolation feet. A test shaft links the motors together. The shaft is dimensionally scaled from a 

full sized SGT-400 MD coupling shaft – a technical drawing is given in Appendix D. 

 

 

 

Figure 5.1 – Experimental set up 
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5.5 Test Rig Control 

Each motor is controlled using a Unidrive SP AC Drive that stores all parameters, to ensure 

repeatability, and can be interfaced either through software or analogue controller. Control 

Techniques CT Soft (Figure 5.2) allows the user to programme and monitor all drive 

parameters. A custom controller demand interface (Figure 5.3) is used to reduce the 

complexity of operation, allowing the user to control motor spin direction, speed and stop/start 

without the need for additional software.  

 

Figure 5.2 – Control software screen shot 

 

Figure 5.3 – Analogue controller 
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5.6 Shaft Balancing  

Shaft balancing was conducted by the manufacturer prior to delivery. Table 5-1 summarises 

the residual unbalance in each shaft/sleeve configuration as supplied in manufacturer’s 

certificate of conformity. 

 

Table 5-1 – Residual unbalance in test shaft/sleeve configurations 

 No Sleeve Short Medium Long 

Unbalance 

(gmm) 
4.89 6.24 4.52 7.62 

 

 

5.7 Shaft Alignment Process 

As discussed in Section 2.7, along with a good state of balance, alignment of the test shaft is 

a critical feature that influences the shaft dynamics and performance. To minimise the any 

vibration that is not associated with the dynamics of the shaft and sleeves, a tight degree of 

alignment is required.  

 

Alignment was performed using the Pruftechnik Rotalign laser alignment instrumentation to 

obtain vertical and horizontal measurements. The degree of offset and parallel alignment was 

considered for both directions. Modifications to alignment were made, keeping the driving 

motor fixed and aligning the driven motor to it using adjustment screws.   

 

Alignment tolerances for the test shaft are specified in Appendix D, as ±0.2mm for parallel 

and offset alignment. Measurements show that the required alignment is readily achievable 

(as shown in Figure 5.4).  
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Figure 5.4 – Alignment figures achieved 

 

5.8 Instrumentation 

Shaft and sleeve deflections are measured using three laser displacement sensors—see Figure 

5.5. The Micro-Epsilon optoNCDT ILD2300-20 allow for high accuracy measurement (1μm) 

with a high sampling rate of up to 50 kHz. Each sensor uses optical triangulation of the 

transmitted and reflected beams to record an oscillation of positive and negative displacement 

once per revolution. 

 

 

Figure 5.5 – Laser displacement sensors measuring shaft 
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The displacement measurements are captured directly from the Micro-Epsilon ILD2300 DAQ 

Tool V.3.1.5 GUI interface, accessed through Ethernet connections, see Figure 5.6. A 10 

second record of shaft deflection at steady state speed is taken at 100rpm intervals between 0 

and 12000rpm, Figure 5.7 and Figure 5.8. 

 

 

Figure 5.6 – Laser displacement sensors GUI 

Figure 5.7– Example complete record measurement 
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Figure 5.8 – Zoom of data record 

 

 

5.9 Experimental Results  

Figure 5.9 shows example shaft displacement measurements for each of the four sleeve 

configurations, with respect to rotational speed (8000 to 12000 rpm). Each data point is 

obtained from MATLAB analysis (the findpeaks command) of the raw data from the laser 

displacement sensors.  

 

Symmetry of orbit and centring of shaft displacement is checked and a mean displacement is 

obtained for each data set. Following the data analysis, three separate peaks can be observed 

in Figure 5.9 which correspond to the maximum deflection of the shaft mid-point for the non-

sleeve, short and medium configurations. Operation of the long sleeve (86mm) was stopped 

at 8600rpm due to high levels of shaft and base vibration.  
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Figure 5.9 – Raw displacement data from shaft for different sleeve configurations 

 

Experimentally measured critical speeds are summarised in Table 5-2. Results with the long 

sleeve were not considered a robust representation due to significant vibrations occurring at 

low speed. The resolution of the data allows the determination of the experimental critical 

speeds to within a tolerance of ±100rpm. The resolution of critical speeds is the key error from 

the experimental data. Due to the averaging process, there are some error in determination of 

the absolute shaft displacement values, however this is insignificant as it is the speed at which 

peak displacement occurs that is of importance.   

 

Table 5-2 – Experimental critical speeds 

 No sleeve Short Medium Long 

Raw 10400 10000 9900  

Normalised 1.00 0.962 0.952  

Operation 

Stopped 
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5.10 Modifications to FE Model 

Comparison of the data in Table 5-2 with the critical speeds in Table 4-8 shows similar 

characteristics as those from the finite element model, albeit over a different speed range: the 

experimental critical speeds are all lower than those predicted by the finite element model. 

This is due to the increased length of the entire drive train when the electric motor rotor shafts 

are included and the existence of bearings within the motors that have a softening effect on 

the natural frequencies of the shaft. Thus, to consider the degree of correlation between 

experimental and theoretical results, the influence of the support structures also requires 

investigation.  

 

Modifications are therefore made to the finite element model to include the effects of the 

support structures. Physical examination of the motors allows for approximations of the rotor 

geometry and bearing locations to be determined. The internal motor rotor shafts are 

determined to be 250mm long. The rotor shaft is supported by two bearings, one mounted at 

the front edge of the motor casing, with the other at the opposite ends of the shafts. The 

remainder of the motor casing is empty to aid ventilation and prevent overheating. Appendix 

E does not give specific bearing data but specifies the type as ‘spindle’.  Figure 5.11 shows 

the shaft with the motor shafts and bearings modelled and Figure 5.11 an internal schematic 

of the motors. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.10 – Modifications to finite element model to include support structure effects 
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Figure 5.11 – Internal layout of Modifications to finite element model to include support structure effects 

 

Based on the work conducted in [23], a parametric study is conducted whereby the lateral 

stiffness of the bearings is altered and the critical speed of the first bending mode recorded. 

Damping and cross coupling terms are not included. A critical speed map is shown in Figure 

5.12. 

 

For the no-sleeve configuration, the experimental critical speed of the first mode is determined 

to be 10400 rpm. To obtain a matched critical speed in the modified ANSYS finite element 

model, the critical speed map indicates that a bearing stiffness of 3.5x107 N/m should be 

incorporated. A nominal stiffness for the type of bearings used (spindle) is in the region of 

1x107 to 1x108 N/m, which provides a degree of support for the calculated value [101]. 

 

The bearing stiffness is applied to the models for the short, medium and long sleeves and the 

critical speeds compared with the experimental results. From Table 5-3, it can be seen that 

there exists a good correlation between the modified ANSYS model and experiment values 

displayed in Table 5-2. 

 

Table 5-3 – Modified finite element critical speeds 

 No sleeve Short Medium Long 

Raw 10392 10106 9993 9779 

Normalised 1.00 0.972 0.962 0.941 
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Figure 5.12 – Critical speed map for first bending mode for no-sleeve configuration 

 

 

5.11 Comparison of Experimental and Theoretical Results 

Results from the theoretical and experimental investigations are summarised in Figure 5.13, 

and normalised against the non-sleeve case in Figure 5.14. Error bars are included to account 

for the ±100rpm tolerance in determining the experimental critical speeds from the 

experimental data.  

 

The ANSYS finite element models, both with and without the bearings, also follow the 

underlying trend of the experimental data, although there is a greater relative change of critical 

speed as the sleeve length increases for the case including bearings. For both the absolute and 

normalised results, the ANSYS finite element model that includes the bearings lies within the 

100rpm tolerance.   

 

However, when compared with results from both the theoretical and ANSYS point mass 

models, the characteristics are outside the 100rpm margin of error and do not show a 

significant correlation with the experimental data. It is concluded therefore, that these models 

do not accurately represent the true dynamics of the system, as shown by the experimental 

data. 
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Figure 5.13 – Absolute critical speeds for all modelling approaches and experimental 

 

Figure 5.14 – Normalised critical speeds for all modelling approaches and experimental 
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The models which include sleeve flexibility therefore provide the best qualitative 

correspondence with the experimental measurements, and as the conclusion in Chapter 4 

suggest, confirm that the inclusion of sleeve flexibility is an important factor in identifying 

the critical speeds of the combined shaft system.    

 

 

5.12 Relative Sleeve Flexibility 

To investigate the flexibility of each test sleeve, displacement measurements are taken on the 

edge of each sleeve and at the same position on the shaft, over a small range of subcritical 

shaft speeds, as shown in Figure 5.15. The measured displacements of each sleeve are 

normalised against the same position on the shaft, and shown in Figure 5.16 

 

 

Figure 5.15 – Measurements on sleeve and shaft 

 

It can be seen that the 76mm sleeve has approximately the same mean displacement as that of 

the shaft.  This is in keeping with the initial design of this sleeve to have matched flexibility 

to the shaft. The 66mm and 86mm sleeves have, respectively, moderately lower and greater 

relative displacement than the shaft, indicating stiffer and more flexible characteristics, as 

originally anticipated. The greater flexibility of the long sleeve raises concerns about possible 

stability issues and the effect of unbalance in operation, particularly if the sleeve length is 

increased further. 
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Figure 5.16– Relative sleeve flexibilities 

 

 

5.13 Conclusions 

An experimental test facility using high speed induction motors to replicate a gas turbine and 

a piece of driven equipment is used to experimentally validate the theoretical and finite 

element models presented in Chapter 4. A full scale coupling shaft is dimensionally scaled 

and designed to incorporate a range of eccentric sleeves. Motor control software is utilised to 

develop an analogue controller for simpler motor speed control. Measurements of shaft and 

sleeve deflection are carried out using laser displacement sensors.   

 

The experimental results show a good qualitative match with those of the finite element 

solutions of the full shaft geometry; however, modifications to the model are required to gain 

a better comparison with the measured critical speeds. The inclusion of approximate support 

structure geometry and bearing stiffness yield finite element results that are within a 100rpm 

margin of error. 
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The results of the theoretical model and finite element model that neglect sleeve flexibility 

show poor correlation with experimental measurements. Combined with the results from the 

full geometry finite element models, with and without support structures, it is concluded that 

sleeve flexibility is an important parameter in the passive control of the shaft critical speeds.  

 

The included support structures only give an indication of the effect upon the shaft critical 

speed and cannot be fully relied upon without additional specific information of the motor 

internal layout.  As the results of both finite element models with and without the support 

structures show a similar relative effect with increasing sleeve length for proceeding 

parametric studies, it is possible to neglect support structure effects to reduce model 

complexity and increase computational efficiency.  

 

Measurements of the relative sleeve and shaft displacement show that initial assumptions 

regarding the predicted stiffness (Chapter 4) of the sleeves prove to be correct.  

  



 

 

 Effect of Variance Study on 

Critical Speeds of Shaft with Eccentric Sleeves 

6.1 Summary 

Having confirmed (in Chapter 5) that sleeve flexibility has a substantial effect on the critical 

speeds of a shaft, here the investigation considers the wider effect of sleeve length on the shaft 

critical speeds, including up to the third bending mode of the shaft. Observation of modes 

shapes show that for short sleeve lengths the mode shapes of the shaft are dominated by shaft 

bending.  However, with increasing sleeve length the shaft modes become dominated by the 

sleeves.  Concurrently, the modes that initially appear to be sleeve dominated at short lengths 

become dominated by the shaft as sleeve length increases.  

 

For each of the three shaft modes, it is shown that specific sleeve lengths exist that incur a 

sharp increase in the shaft critical speed. Away from these specified sleeve lengths the overall 

effect on the modes is to reduce the critical speeds, which is qualitatively similar to the effect 

of adding mass. The sharp increases in critical speed coincide with lengths of sleeve that have 

the same natural frequencies as each of the modes of the shaft. Moreover, when the flexibility 

of the sleeve is neglected and the sleeve mass is added to the shaft alone, these increases do 

not occur. Thus, the mechanism of passive control is reliant on sleeve flexibility as well as the 

modal interaction of the sleeve and shaft modes that occur when the shaft and sleeve natural 

frequencies are coincident. Away from these specific sleeve lengths the overall effect is 

softening due to added mass.  
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6.2 Chapter Highlights 

 Effect of varying sleeve length upon higher mode critical speeds is investigated 

 By changing sleeve length it is possible to change the critical speeds of the shaft by 

up to +10% and -15 % away from the non-sleeve case 

 The mechanism by which passive control occurs is a combination of mass damping 

and coherence of shaft and sleeve natural frequencies 

 Whilst in theory it is possible to increase the critical speed of the shaft to be beyond 

the non-sleeve case, the sleeve modes must be traversed which may have detrimental 

consequences for the integrity of the shaft 

 

 

6.3 Introduction 

Previous chapters have discussed the construction and validation of a finite element model for 

the modal analysis of a rotating shaft with eccentric sleeves. Specifically, it has been shown 

that increasing the length of the attached sleeves decreases the first critical speed of the shaft. 

The observed change is greater than if the equivalent sleeve mass and inertia was added to the 

shaft alone. Therefore, from the definition of natural frequency, the stiffness of the sleeves 

must have a significant influence upon natural frequencies of the shaft, which is characterised 

by a change in the first critical speed.  

 

However, the analysis in the previous chapters has been experimentally limited to a small 

number of sleeve lengths and only considers the first bending mode of the shaft. Consequently, 

only a limited degree of passive control has been demonstrated. Furthermore, the mechanism 

by which the eccentric sleeves affect the shaft critical speed has yet to be explored. To obtain 

an improved understanding of the full passive control characteristics of the sleeve, therefore, 

a parametric study is now undertaken to: 

 

 Expand the range of sleeve lengths considered 

 Investigate the effects upon higher shaft modes 

 Identify the mechanism by which passive control occurs 

 Consider the individual effects of sleeve stiffness and mass  
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Consideration of a greater range of sleeve lengths allows for the bounds of applicability of the 

passive control characteristics of the sleeve to be determined, and to identify the mechanism 

by which passive control occurs through the sleeves. Having a wider understanding of the 

magnitude and mechanism of effect will determine the viability of the sleeve as a credible 

passive control device for the future. 

 

 

6.4 Mode Classification  

A clear definition is now made regarding which modes are considered as part of this analysis. 

An ANSYS 17.0 modal analysis is used to produce visualisation of the mode shapes of the 

system in terms of relative displacements. For the system of the shaft with attached eccentric 

sleeves, the observed mode shapes are a combination of the relative displacements of both 

components of the system, with different degrees of dominance: some shaft dominated, others 

dominated by the sleeve.  As the length of the sleeve changes, its flexibility and relative 

displacement also change. Therefore, the order in which the modes are produced may change, 

in which case, it is important to be able to distinguish between each characteristic mode shape.  

 

To initially categorise the mode shapes, they are displayed for the sleeve length with matched 

flexibility to the shaft: 76mm. This length of sleeve provides a benchmark of displacement 

subject to free vibration relative to the shaft prior to making any modifications to the sleeve 

length and flexibility.  

 

Mode shapes that are dominated by the shaft, designated MODE 1, MODE 2 and MODE 3, 

are presented in Figure 6.1 to Figure 6.3. These modes take fundamental bending mode shapes 

of the shaft: 

 

 MODE 1, the first shaft mode (Figure 6.1), shows first order bending of the shaft 

with both sleeves bending in the same direction and in phase with each other.  

 MODE 2, the second shaft mode (Figure 6.2) shows second order shaft bending with 

the sleeves opposing the shaft peaks and out of phase with each other.  

 MODE 3, the third shaft mode (Figure 6.3) shows third order shaft bending with the 

sleeves opposing the outer peaks, but with the sleeves in phase with each other. 
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An illustrative measure of the particular dominance of a mode is determined by the ratio of 

maximum shaft and sleeve displacements; the displacement ratio (DR). A low DR, typically 

less than 1, indicates that a particular mode has the shaft with the greatest relative 

displacement, whereas a mode with a higher DR has the sleeve with the greatest relative 

displacement. 

Figure 6.1 – MODE 1: Shaft dominated 1st bending mode (DR = 0.61) 

Figure 6.2 – MODE 2: Shaft dominated 2nd bending mode (DR = 0.43)

 

Figure 6.3 – MODE 3: Shaft dominated 3rd bending mode (DR = 0.86) 
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Sleeve dominated modes are shown in Figure 6.4 and Figure 6.5: 

 

 MODE 4, the first sleeve dominated mode (Figure 6.4), shows large relative 

displacement of the sleeves with negligible deflection of the shaft. The sleeves are 

bending out of phase with each another. 

 MODE 5, the second sleeve dominated mode (Figure 6.5), shows a minor first order 

bending motion of the shaft with significant realtive displacement of the sleeves in 

the opposing direction. In this case both sleeves are bending in phase with each 

other. 

 

Figure 6.4 – Mode 4: 1st sleeve dominated mode (DR = 22.3) 

 

Figure 6.5 – Mode 5: 2nd sleeve dominated mode (DR = 4.79) 

 

Several methods exist for the tracking and comparison of modes. Mode correlation criteria 

use matrices filled with terms between 0 and 1 (1 being a perfect match, 0 a poor match) [102]; 

the Modal Assurance Criterion (MAC) [103] is a commonly used method. The Normalised 

Cross Orthogonality (NCO) [104] and [105] uses mass or stiffness matrices to compare the 

orthogonality of modes. In this instance, however, it is the dominance of shaft or sleeve upon 

the deformed shape of the structure that is of interest. Therefore the dominance ratio and 

classification of ‘shaft’ or ‘sleeve’ mode is sufficient for this study.   
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6.5 Bounds of the Parametric Study  

The bounds of the parametric study are chosen from observation of the mode shapes of the 

system. With a 26mm sleeve length it becomes possible to readily distinguish MODES 4 and 

5. With shorter sleeve lengths, the sleeve has insufficient flexibility to bend and essentially 

acts as a rigid disk, and therefore clear sleeve modes are difficult to identify. Similarly, 136mm 

is the longest sleeve length where it is still possible to identify distinct sleeve mode shapes. At 

length greater than this the sleeve is so flexible it is difficult to identify shapes resembling 

MODE 4 or 5.  Increments of 10mm between 26mm and 136mm are chosen for the study. In 

each case, the geometry of the sleeves is modified to the correct length using Design Modeller 

within the ANSYS Workbench suit.  Table 6-1 shows the sleeve lengths used in the parametric 

study, with those previously used in Chapter 4 highlighted. 

 

Table 6-1 – Sleeve lengths used for parametric study 

26 36 46 56 66 76 86 96 106 116 126 136 

x x x x    x x x x x 

 

 

6.6 Modal Behaviour  

Investigating the effects that a change in sleeve length has on the dynamics of the system, in 

particular the mode shapes, can be accomplished without considering the critical speeds of the 

system.  Obtaining the natural frequencies and modes shapes at 0 rpm is computationally 

efficient as there are no rotational effects to accommodate. Therefore, a damped solver is not 

required and a faster Block Lanczos solver is used here. Neglecting rotational effects remove 

the splitting of modes and reduces the number of modes that need to be considered. 

 

From the parametric sweep, Figure 6.6 shows the natural frequencies of MODES 1 to 5.  

Specifically, Figure 6.6(a) shows the natural frequencies of MODES 4 and 5 decrease with an 

exponential trend as sleeve length increases. Moreover, consideration of first shaft mode in 

Figure 6.6(b) shows the natural frequency converging with the first sleeve mode. This is 

suggestive of a mode that is initially dominated by the shaft eventually becoming dominated 
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by (only) one of the sleeve modes. This appears at odds with normal expectations, particularly 

when the natural frequency of sleeve bending is also considered.   

 

The individual natural frequencies of the non-sleeve shaft and the sleeves themselves are 

obtained by conducting a modal analysis of the isolated sleeve and shaft bodies. The sleeve is 

analysed whilst clamped on its flange faces, as shown in Figure 6.8.  The frequency of the 

bending is obtained for each of the sleeve lengths in Table 6-1. The shaft is analysed without 

the attached sleeves and the natural frequency of the first three bending modes recorded.  The 

natural frequencies of each sleeve length and the three shaft bending modes are shown in 

Figure 6.7. 

 

 

Figure 6.6 (a) – Natural frequencies of all modes against sleeve length 
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Figure 6.6 (b) – Natural frequencies of MODEs 1, 4 and 5 against sleeve length 

 

Figure 6.7 – Natural frequencies of bending for isolated shaft and sleeve 
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Figure 6.8 – Modal analysis of isolated sleeve 

 

The sleeve natural frequency of bending decreases with an exponential trend with increasing 

sleeve length. By inspection of Figure 6.4 and Figure 6.5, both modes are dominated by sleeve 

bending, albeit with opposite phase. Therefore, it stands to reason that it is both the sleeve-

dominated modes of the system that should follow the trend and not a mode that was initially 

dominated by the shaft.  

 

With some ambiguity being identified around the natural frequencies associated with each 

mode, the mode shapes in the region where MODE 1 and MODE 4 converge, in Figure 6.6(b), 

are now more closely inspected. The mode shapes and displacement ratios for 76, 86, 96, 106 

and 116mm sleeve lengths for MODES 1, 4 and 5 are presented, respectively, Table 6-2 to 6- 

4.  

 

Table 6-2 shows MODE 1 is initially dominated by the shaft, but since sleeve flexibility 

increases with length, the mode shape becomes increasingly dominated by the sleeve.  In 

particular, with a 116mm sleeve length the displacement of the shaft is negligible in 

comparison to that of the sleeve. Since this mode becomes dominated by the sleeve it is 

expected that it is more influenced by the bending of the sleeve, and therefore its natural 

frequency should decrease in concordance with Figure 6.7.   
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Table 6-3 shows that the shape of MODE 4 is very consistent with increasing sleeve length. 

There is a continuous increase in displacement ratio in favour of the sleeve whilst the shaft 

displacement remains negligible for all the sleeve lengths considered. As this mode remains 

dominated by the sleeve, the frequency of the mode should decrease in line with the frequency 

of the sleeve itself. It is concluded, therefore, that this mode is not interacting with the MODE 

1 and it is correctly displayed in Figure 6.6.  

 

Table 6-4 shows a similar but inverse pattern to Table 6-2 i.e. the sleeve is initially dominant 

but the shaft displacement surpasses it with increasing sleeve length. Despite the flexibility of 

the sleeve increasing with sleeve length, the mode shape becomes dominated by the 

displacement of the shaft itself. It would be expected that MODE 5 would follow the first 

natural frequency of the shaft. 

 

Comparison of modes shapes for MODE 1 and MODE 5 show that they remain constant but 

a switch over in dominance appears between the shaft and the sleeve at a particular sleeve 

length. The displacement ratios in Figure 6.9 show this happens at approximately 92mm sleeve 

length. This coincides with the sleeve length at which the natural frequencies of sleeve bending 

and the first shaft mode are equal, in Figure 6.7. 
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Table 6-2 – MODE 1 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

76 0.61 

 

86 1.08 

 

96 2.64 

 

106 5.68 

 

116 9.36 
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Table 6-3 – MODE 4 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

76 22.30 

 

86 35.78 

 

96 51.80 

 

106 70.59 

 

116 82.02 
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Table 6-4 – MODE 5 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

76 4.79 

 

86 2.69 

 

96 1.12 

 

106 0.56 

 

116 0.38 
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Figure 6.9 – Displacement ratio (DR) of MODE 1 and MODE 5 for sleeve lengths 76 to 116mm 

 

6.7 Participation Factor and Effective Mass 

The effective modal mass of a structure (Mieff) is a measure of the significance of an individual 

mode of vibration with respect to the entire response of a structure [98]: 

 

Mieff =
γi
2

{�̅�𝐢}
T[M]{�̅�𝐢}

 (6.1) 

 

An individual mode with a high effective mass fraction has a significant proportion of the total 

mass of the system participating in the vibration, and will therefore be readily excitable. 

Conversely, a mode with a low effective mass will not be as readily excited. The participation 

factor, γi is the square root of effective mass and provides quantitative measure of comparing 

the significance of individual modes.  
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Participation factors are directly produced by ANSYS modal analysis. The participation factor 

results of the modal analysis are normalised against the mode with the largest participation 

factor. Figure 6.10 shows the normalised participation factors for the MODE 1 and MODE 5 

for the range of sleeve lengths, 76 to 116mm.  

 

 

Figure 6.10 – Normalised participation factors for sleeve lengths 76 to 116mm 

 

Figure 6.10 shows that the participation factor, and by definition effective mass, of the system 

shifting from MODE 1 to MODE 5. When coupled with the mode shapes displayed in Table 

6-2 and Table 6-4, and the displacement ratios in Figure 1.1, this confirms that the dominance 

of the shaft is shifting from MODE 1 to MODE 5. 

 

It is notable that the displacement ratios and participation factors for MODE1 and MODE 5 

both allude to similar conclusions. However, there is a discrepancy between the two. 

Specifically, the DR shows a changeover in relative displacement at approximately 92mm, 

but the participation factors does not switch over until ~102mm. A possible explanation is that 

the relative displacement of the sleeves becomes greater at 92mm, but the full effective mass 

of the shaft does not move across modes until a slightly longer sleeve length is considered. 
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6.8 Revised Mode Classification 

With increasing length, the structure is fundamentally being changed, therefore the modes 

shapes are not strictly identical. Since the dominance of the shaft is shown to shift from one 

mode shape to another with increasing sleeve length, the classification of a ‘shaft’ or ‘sleeve’ 

mode remains sufficient in this instance, however further analysis, using methods such as the 

mode assurance criteria, would give a better and statistical comparison of how the modes 

change with increasing sleeve length.   

 

With the shifting dominance of the shaft between modes with increasing sleeve length, the 

definition of a ‘shaft’ mode now requires further clarification for these scenarios. To avoid 

confusion in classification of shaft and sleeve modes, the nth shaft mode is referred to as the 

lowest frequency mode dominated by shaft’s nth order bending behaviour. With this 

definition in mind, Figure 6.6(b) can now be displayed with greater clarity: 

 

 

Figure 6.11 – Corrected natural frequencies of MODES 1, 4 and 5 against sleeve length 
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6.9 Higher Order Modes  

For MODE 2 and MODE 3, Figure 6.6(a) shows a similar effect on the natural frequencies as 

that described for MODE 1, whereby there is an increase in shaft mode at a given sleeve 

length. The increase is observed for both modes in regions where the natural frequency of the 

shaft is close to that of the sleeve; 42 and 54mm respectively in this case.  

 

MODE 2 and MODE 4 are shown in Table 6-5 and Table 6-6 respectively, for 36, 46, 56 and 

66mm sleeve lengths. The now recognisable pattern of shifting shaft dominance from MODE 

2 to MODE 4 is observed as sleeve length increases. Figure 6.12 shows the shaft dominance 

changing from MODE 2 to MODE 4 at approximately 48mm sleeve length in this case.  

 

 

Figure 6.12 – Displacement ratio (DR) of MODE 2 and MODE 4 for sleeve lengths 36 to 66mm 
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Table 6-5 – MODE 2 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

36 0.68 

 

46 1.16 

 

56 4.23 

 

66 11.81 
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Table 6-6 – MODE 4 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

36 3.93 

 

46 2.56 

 

56 0.86 

 

66 0.44 
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Similarly, MODE 3 and MODE 5 are shown in Table 6.7and Table 6.8, respectively, for 26, 

36, 46 and 56mm sleeve lengths. The shape of MODE 5 for the 26mm sleeve shows influence 

of a much higher order mode than third order shaft bending, namely the fifth order. On closer 

inspection, the sleeves are deforming in the opposite direction to the shaft. Due to the short 

length of the sleeves, they are effectively rigid disks with an extremely high natural frequency. 

It is reasonable to assume that the high natural frequency is interacting with a higher order 

mode of the shaft, hence the observed mode shape. As the sleeve length is increased, the 

shifting dominance of the shaft is repeated from MODE 3 to MODE 5. Figure 6.13 shows the 

shaft dominance changing from MODE 3 to MODE 5 at approximately 48mm sleeve length. 

 

 

Figure 6.13 – Displacement ratio (DR) of MODE 3 and MODE 4 for sleeve lengths 26 to 56mm 
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Table 6-7 – MODE 3 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

26 1.04 

 

36 1.53 

 

46 4.35 

 

56 6.78 
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Table 6-8 – MODE 5 displacement ratios and mode shapes 

Sleeve 

Length 

(mm) 

DR Mode Shape 

26 2.17 

 

36 2.02 

 

46 0.77 

 

56 0.82 

 

 

The response of the structure is dominated by the first bending mode of the shaft (MODE 1) 

and therefore the participation factors for the other higher modes are low, and it is therefore 

difficult to derive meaningful information from the data. However, the presented mode shapes 

and displacement ratios offer sufficient evidence to confirm that there is an interaction 

between shaft and sleeve for each of the initially shaft dominated modes, that shifts the shaft 

motion, resulting in an effectual increasing of natural frequencies of the shaft. 
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6.10 Passive Control of Critical Speeds 

From the non-rotating natural frequencies of the system, the modes have been correctly 

identified and classified.  Rotational effects are applied to the model viz. Section 4.5.7, and 

Campbell diagrams used to extract the forward whirling critical speeds of the shaft for sleeve 

lengths from 0 to 136mm. Figure 6.14 shows the absolute critical speeds for the first three 

modes of the shaft. Figure 6.15 shows the critical speeds of each of the three shaft modes, 

normalised against the non-sleeve critical speed for each.  

 

All three shaft modes show an initial decrease in critical speed with added sleeve length, 

followed by a sharp increase in the regions where the natural frequency of the sleeves coincide 

with each mode of the shaft, followed by another steady decrease beyond this region. The 

critical speed of the first shaft mode never decreases below those of either of the sleeve modes. 

 

The effect of increasing critical speeds is classified as positive passive control and the 

reduction of critical speeds, of negative passive control. The point at which each mode changes 

from negative to positive control occurs at shorter lengths for increasing mode number. From 

Figure 6.7, this occurs due to the exponential increase in natural frequency of the sleeve as it 

approaches the natural frequencies of the higher modes of the shaft.  

 

The normalised data shows the maximum positive increase of critical speeds is relatively 

consistent (but not exact) for all modes, at approximately +10%. There is an increasing 

maximum reduction in critical speed with higher modes: from 5% on the first mode, 7% for 

the second and up to 15% for the third shaft mode. 
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Figure 6.14 – Critical speeds of all considered modes for sleeve lengths 0 to 136mm 

 

 

Figure 6.15 – Normalised critical speeds of shaft bending modes for sleeve lengths 0 to 136mm 
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6.11 Effect of Stiffness and Mass 

To investigate the individual effects of sleeve mass and stiffness, the process for replacing 

sleeve geometry with equivalent mass and inertia, viz Section 4.6, is applied to all the sleeve 

lengths under consideration; 26 to 136mm. Figure 6.16 to Figure 6.18 show the critical speeds 

for the full geometry and point mass models for each of the three shaft modes respectively.  

 

When sleeve flexibility is neglected, each of the three shaft modes do not show the expected 

change over from positive to negative passive control. With the exception of the third mode, 

which shows a significant decrease with the addition of the shortest sleeve length, for each 

mode increasing sleeve length has an increasing softening effect on the critical speeds. 

 

For sleeve lengths away from the region of changeover, e.g. 0-70 and 110-140 mm for the first 

mode, the full geometry model shows a similar softening effect as the non-flexibility case.  

Therefore, in these regions the passive control mechanism is due to added mass of the sleeve. 

 

 

Figure 6.16 – First critical speeds including point mass model for sleeve lengths 0 to 136mm 
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Figure 6.17 – Second critical speeds including point mass model for sleeve lengths 0 to 136mm 

 

 

Figure 6.18 – Third critical speeds including point mass model for sleeve lengths 0 to 136mm 
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6.12 Conclusions 

A parametric study to expand the range of sleeve lengths analysed, has been conducted. Using 

the validated finite element model from Chapters 4 and 5, modal analysis on a combination of 

shaft, sleeve and shaft and sleeve together have shown that the effective mass of the shaft is 

dominant in its first mode. This dominance shifts between two mode shapes of the system, 

resulting in an effective increase in shaft critical speed. This phenomenon occurs at sleeve 

lengths where the natural frequency of the sleeve is close to that of each of the modes of the 

shaft. Finally, by neglecting the flexibility of the sleeves, it is shown that for sleeve lengths 

that do not have natural frequencies that match any of the modes of the shaft, the critical speeds 

are reduce progressively.  

 

Based on the conducted analysis, it is concluded that the mechanism of passive control is a 

combination of softening due to added mass of the sleeves and coherence of the individual 

modes of the shaft and sleeves. 

 

Without consideration of sleeve flexibility it is not possible to increase the critical speed of 

any of the three shaft modes. It is shown for very short sleeve lengths that they are essentially 

rigid bodies with high natural frequencies and do not interact with the lower modes of the 

shaft. 

 

Sleeve lengths at which the natural frequency does not coincide with one of the modes of the 

shaft, reduce the critical speeds of all modes, with progressively increasing effect with higher 

modes. Dependant on the desired method of control, selection of a specific sleeve length will 

offer either positive or negative passive control. 

 

In this manner, the sleeves are not dissimilar to a tuned mass damper. When comparing a fixed 

operational speed with and without attached sleeves, if the natural frequency of the sleeve is 

matched to one of the modes of the shaft, it would be anticipated that the critical speed would 

increase and the amount of vibration at that speed would reduce.  

 

The defined mechanism offers the opportunity to increase the critical speed margin in practical 

applications and reduce unwanted lateral vibrations. However, users must be mindful that as 

sleeve length is increased, the corresponding critical speeds decrease and may become more 

detrimental than those of the shaft that are intended for control. 



 

 

 Conclusions and Recommendations  

This thesis has presented a new method for controlling the critical speeds of a rotating shaft 

using attached eccentric sleeves. This chapter draws together the various elements undertaken 

in the course of this thesis. The main conclusions are discussed, with recommendations for 

future work presented.  

 

 

7.1 Research Contributions 

 The mechanism by which passive control occurs is a combination of mass damping 

and coherence of shaft and sleeve natural frequencies 

 The effect of adding eccentric balancing sleeves upon the dynamics of a rotating shaft 

is similar to that of a tuned mass damper  

 Sleeve stiffness must be considered as part of the analysis as it has a significant effect 

upon the critical speeds of the shaft. 

 

 

7.2 Conclusions 

All mechanical systems have an infinite number of frequencies which when excited will cause 

it to resonate. When the natural frequencies of rotating systems are excited, usually through 

unbalanced forces, the speed at which these vibrations occur are called a critical speed. The 

standard techniques for mitigating vibration in rotating structures are split into three main 

categories; Careful design and manufacture, correct installation and effective control 

strategies.  

 

The eccentric sleeves were developed as a ‘semi active’ method of vibration control to 

improve the state of balance of dynamically unstable coupling shafts. However, adding the 

sleeves affects inherent dynamics of the shaft, requiring detailed analysis to understand and 
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quantify the effects. As a first approximation, the sleeves are modelled theoretically as part of 

a simplified representation of a full coupling shaft using the Extended Hamilton’s Principle.  

 

Initial simulations suggest that the flexibility of the sleeves has little impact upon the dynamics 

of the system and can therefore be neglected. Generally, to obtain an approximate solution for 

a continuous system it must first be discretised into a finite number of packages or elements. 

Ergo, the derived equations of motion are discretised using the Galerkin method and the 

resulting matrices solved numerically. Comparison with computational finite element methods 

for a small number of different sleeve lengths identifies a discrepancy between the two. 

  

Experimental validation using a purpose built high speed test facility gives good indication 

that the difference is due to the lack of sleeve flexibility in the theoretical model. Therefore in 

order to understand the mechanism of the sleeve dynamics, the full geometry of the system 

must be analysed using finite element simulations.  

 

A broader parametric study of sleeve lengths shows that the definition of a ‘shaft mode’ is 

fluid due to the effective mass of the shaft shift from an initially shaft dominated mode shape 

to a initially sleeve dominated mode shape. The phenomenon occurs at sleeve lengths where 

the natural frequency of the sleeve is close to those of the shaft. Based upon the conducted 

analysis, it is concluded that the mechanism of passive control is a combination of softening 

due to added mass of the sleeves and coherence of the individual modes of the shaft and 

sleeves. In this manner, the sleeves are not dissimilar to a tuned mass damper.  

 

The defined mechanism offers the opportunity to increase the critical speed margin in practical 

applications and reduce unwanted lateral vibrations. However, potential users must be mindful 

that as sleeve length is increased, the corresponding critical speeds decrease and may become 

more detrimental than those of the shaft that are intended for control. 
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7.3 Recommendations for Further Work 

This work identified the possible mechanism by which the chosen design of sleeve can 

passively control the critical speeds of a rotating shaft. Although some degree of parametric 

study has been conducted to broaden the scope of the investigation, additional work could 

open this out further and help to obtain an even better understanding of the dynamics.  

 

The discrepancy between the theoretical and finite element models was attributed to the lack 

of consideration of sleeve flexibility in the theoretical model. The neglected higher order terms 

in the theoretical derivation may warrant further investigation to identify if these have any 

effect upon the coherence of the two modelling approaches.  

 

Using the current range of sleeve lengths already considered, response analysis could be 

carried out using finite element simulations. Using the no-sleeve case as a benchmark with a 

small and fixed amount of unbalance excitation, the effect of changing the sleeve length (and 

therefore shaft critical speed) would demonstrate if the observed levels of vibration produced 

are mitigated or increased.  

 

During observation of the long sleeve (86mm) configuration, high levels of vibration were 

observed and the test was aborted. The reason for these high levels of vibration are unknown. 

They could potentially be due to high levels of unbalance in the sleeve itself but may be due 

to, so far, unidentified stability issues. Further theoretical analysis of the design along with 

additional experimental testing could identify the cause of the vibration. Some of the sleeve 

lengths identified do have a significant, positive and usable impact upon the shaft dynamics 

but would require operation a speeds above the sleeve critical speeds. If significant instabilities 

can be identified with thorough analysis, this would prevent significant damage and disregard 

these particular sleeve lengths from consideration. 

 

This investigation has been limited to the geometry of the sleeve as it was designed for 

balancing purposes, with slight modifications to the length. Investigating the individual effects 

of mass and stiffness of the sleeve upon the shaft critical speed would decouple the passive 

control characteristics away from the existing geometry and lead to other potential designs, 

for example a high stiffness/low mass tube without the heavy ring seen in Figure 1.5 
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With an alternative configuration identified, further experimental validation could be 

undertook to include elements of active control. If the stiffness of the geometry is identified 

as the key factor in passive control,   a sleeve   with variable stiffness could be designed. This 

could be ‘tuned’ to suit the shaft which it is connected, even during operation where the effect 

on vibration levels is monitored.  
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Appendix A Transformation Matrix Derivatives 

The derivatives of the transformation matrix [A] used for determining velocities and 

accelerations in the rotating frame for the shaft in Section 3.5 Derivation of Simply Supported 

Rotating Shaft Dynamics pp.47 and sleeve in Section 0  

Derivation of Eccentric Sleeve Dynamics pp. 67 are obtained via product rule 

differentiation: 

 

[𝐴] = [
1 0 0
0 cos𝜃 − sin𝜃
0 sin𝜃 cos 𝜃

] 

 

[�̇�] = �̇� [
0 0 0
0 −sin 𝜃 − cos𝜃
0 cos 𝜃 −sin𝜃

] 

 

[�̈�] = �̇��̇� [
0 0 0
0 −cos 𝜃 sin𝜃
0 −sin𝜃 −cos 𝜃

] + �̈� [
0 0 0
0 −sin𝜃 − cos𝜃
0 cos 𝜃 −sin 𝜃

] 
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Appendix B Integration Coefficients 

B.1 Inertia Coefficients 

The inertia coefficients in Table 3-1 pp. 59, are obtained by integration of the tubular cross 

section of the shaft: 

 

∬𝜌0 𝑑𝐴 = 𝜌0∫ ∫ 𝑟 𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝜌0 [
𝑟2

2
]
𝑟𝑖

𝑟𝑜

[𝜃]0
2𝜋 

= 𝜌0 [
𝑟𝑜
2 − 𝑟𝑖

2

2
] [2𝜋 − 0] = 𝝅𝝆𝟎(𝒓𝒐

𝟐 − 𝒓𝒊
𝟐) 

 

∬𝜌0𝑦 𝑑𝐴 = 𝜌0∫ ∫ 𝑟 cos𝜃 𝑟𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝜌0 [
𝑟3

3
]
𝑟𝑖

𝑟𝑜

[sin𝜃]0
2𝜋

= 𝜌0 (
𝑟𝑜
3 − 𝑟𝑖

3

3
) (sin2𝜋 − sin 0) = 𝟎 

 

∬𝜌0𝑧 𝑑𝐴 = 𝜌0∫ ∫ 𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝜌0 [
𝑟3

3
]
𝑟𝑖

𝑟𝑜

[− cos 𝜃]0
2𝜋

= 𝜌0 (
𝑟𝑜
3 − 𝑟𝑖

3

3
) (−cos 2𝜋 + cos 0) = 𝟎 
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∬𝜌0𝑦𝑧 𝑑𝐴 = 𝜌0∫ ∫ 𝑟 sin𝜃 𝑟 cos𝜃 𝑟𝑑𝑟𝑑𝜃           
2𝜋

0

𝑟𝑜

𝑟𝑖

(𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 =
𝑠𝑖𝑛 2𝜃

2
)

= 𝜌0∫ ∫ 𝑟2
sin 2𝜃

2
 𝑟𝑑𝑟𝑑𝜃 = 𝜌0 [

𝑟4

4
]
𝑟𝑖

𝑟𝑜

[
− cos2𝜃

4
]
0

2𝜋

  
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝜌0 (
𝑟𝑜
4 − 𝑟𝑖

4

4
)(
−cos4𝜋

4
+
cos0

4
) = 𝟎     

 

∬𝜌0𝑦
2 𝑑𝐴 = 𝜌0∫ ∫ (𝑟 cos 𝜃)2 𝑟𝑑𝑟𝑑𝜃           

2𝜋

0

𝑟𝑜

𝑟𝑖

(∫cos2 𝜃 =
𝜃

2
+
sin2𝜃

4
)

= 𝜌0∫ ∫ 𝑟2 cos2 𝜃  𝑟𝑑𝑟𝑑𝜃 = 𝜌0 [
𝑟4

4
]
𝑟𝑖

𝑟𝑜

[
𝜃

2
+
sin 2𝜃

4
]
0

2𝜋

  
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝜌0 (
𝑟𝑜
4 − 𝑟𝑖

4

4
)(
2𝜋 − 0

2
+
sin 4𝜋 − sin0

4
) = 𝝅𝝆𝟎 (

𝒓𝒐
𝟒 − 𝒓𝒊

𝟒

𝟒
)     

 

∬𝜌0𝑧
2 𝑑𝐴 = 𝜌0∫ ∫ (𝑟 sin𝜃)2 𝑟𝑑𝑟𝑑𝜃           

2𝜋

0

𝑟𝑜

𝑟𝑖

(∫ sin2 𝜃 =
𝜃

2
−
sin 2𝜃

4
)

= 𝜌0∫ ∫ 𝑟2 sin2 𝜃  𝑟𝑑𝑟𝑑𝜃 = 𝜌0 [
𝑟4

4
]
𝑟𝑖

𝑟𝑜

[
𝜃

2
−
sin2𝜃

4
]
0

2𝜋

  
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝜌0 (
𝑟𝑜
4 − 𝑟𝑖

4

4
)(
2𝜋 − 0

2
−
sin 4𝜋 − sin0

4
) = 𝝅𝝆𝟎 (

𝒓𝒐
𝟒 − 𝒓𝒊

𝟒

𝟒
)      
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B.2 Stiffness Coefficients 

The stiffness coefficients in Table 3-2 pp. 64, are obtained by integration of the tubular cross 

section of the shaft: 

∬𝐸 𝑑𝐴 = 𝐸∫ ∫ 𝑟 𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸 [
𝑟2

2
]
𝑟𝑖

𝑟𝑜

[𝜃]0
2𝜋

= 𝐸 [
𝑟𝑜
2 − 𝑟𝑖

2

2
] [2𝜋 − 0] = 𝑬𝝅(𝒓𝒐

𝟐 − 𝒓𝒊
𝟐) 

 

∬𝐸𝑦 𝑑𝐴 = 𝐸∫ ∫ 𝑟 cos 𝜃 𝑟𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸 [
𝑟3

3
]
𝑟𝑖

𝑟𝑜

[sin 𝜃]0
2𝜋

= 𝐸 (
𝑟𝑜
3 − 𝑟𝑖

3

3
) (sin 2𝜋 − sin0) = 𝟎 

 

∬𝐸𝑧 𝑑𝐴 = 𝐸∫ ∫ 𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸 [
𝑟3

3
]
𝑟𝑖

𝑟𝑜

[− cos𝜃]0
2𝜋

= 𝐸 (
𝑟𝑜
3 − 𝑟𝑖

3

3
) (−cos 2𝜋 + cos 0) = 𝟎 

 

∬𝐸𝑦𝑧 𝑑𝐴 = 𝐸∫ ∫ 𝑟 sin 𝜃 𝑟 cos 𝜃 𝑟𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸∫ ∫ 𝑟2
sin2𝜃

2
 𝑟𝑑𝑟𝑑𝜃 = 𝐸 [

𝑟4

4
]
𝑟𝑖

𝑟𝑜

[
− cos 2𝜃

4
]
0

2𝜋

  
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸 (
𝑟𝑜
4 − 𝑟𝑖

4

4
)(
−cos 4𝜋

4
+
cos 0

4
) = 𝟎     

 

∬𝐸𝑦2 𝑑𝐴 = 𝐸∫ ∫ (𝑟 cos 𝜃)2 𝑟𝑑𝑟𝑑𝜃
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸∫ ∫ 𝑟2 cos2 𝜃  𝑟𝑑𝑟𝑑𝜃 = 𝐸 [
𝑟4

4
]
𝑟𝑖

𝑟𝑜

[
𝜃

2
+
sin 2𝜃

4
]
0

2𝜋

  
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸 (
𝑟𝑜
4 − 𝑟𝑖

4

4
)(
2𝜋 − 0

2
+
sin4𝜋 − sin 0

4
) = 𝑬𝝅(

𝒓𝒐
𝟒 − 𝒓𝒊

𝟒

𝟒
)     
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∬𝐸𝑧2 𝑑𝐴 = 𝐸∫ ∫
 

(𝑟 sin𝜃)2 𝑟𝑑𝑟𝑑𝜃

2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸∫ ∫ 𝑟2 sin2 𝜃  𝑟𝑑𝑟𝑑𝜃 = 𝐸 [
𝑟4

4
]
𝑟𝑖

𝑟𝑜

[
𝜃

2
−
sin2𝜃

4
]
0

2𝜋

  
2𝜋

0

𝑟𝑜

𝑟𝑖

= 𝐸 (
𝑟𝑜
4 − 𝑟𝑖

4

4
)(
2𝜋 − 0

2
−
sin4𝜋 − sin 0

4
) = 𝑬𝝅(

𝒓𝒐
𝟒 − 𝒓𝒊

𝟒

𝟒
)      

 

As above: 

 

 ∬𝐺𝑦2 𝑑𝐴 = 𝑮𝝅(
𝒓𝒐

𝟒 − 𝒓𝒊
𝟒

𝟒
) 

 

∬𝐺𝑧2 𝑑𝐴 = 𝑮𝝅(
𝒓𝒐

𝟒 − 𝒓𝒊
𝟒

𝟒
) 
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Appendix C Derivation of Sleeve Kinetic Energies 

C.1 Kinetic Energy of 1st Sleeve 

The generalised coordinates to determine the kinetic energy of the sleeve are v’,w’, ϕ and θ. 

Therefore the variation and the derivatives of r1 are: 

 

δr1 =
∂r1
∂v′

δv′ +
∂r1
∂w′

δw′ +
∂r1
∂ϕ

δϕ +
∂r1
∂θ

δθ (C1) 

 

∂r1
∂v′

= {

r̅y
−r̅x cos θ
−r̅x sin θ

}          
∂r1
∂w′

= {

r̅z
r̅x sinθ
−r̅x cos θ

}          
∂r1
∂ϕ

= {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sinθ
} 

 

∂r1
∂θ

= {

0
r̅x(w

′(0, t) cos θ + v′ (0, t)sinθ) − r̅y(sinθ − ϕ cos θ) − r̅z(cosθ + ϕsinθ)

−r̅x(−w′ (0, t)sinθ +  v
′(0, t)cos θ) + r̅y(cosθ + ϕ sin θ) − r̅z(sin θ + ϕ cos θ)

} 

 (C2 a-d) 

 

In matrix form, {r1̈}
Tδr1 is equivalent to: 

 

{r1̈}
T
∂r1
∂v′

δv′ + {r1̈}
T
∂r1
∂w′

δw′ + {r1̈}
T
∂r1
∂ϕ

δϕ + {r1̈}
T
∂r1
∂θ

δθ (C3) 

 

 {r1̈} is broken down into components to produce four individual vectors corresponding to 

centrifugal, non-constant rotation, Coriolis and translational acceleration. (The vectors now 

have the designations {r̈11}
T {r̈12}

T {r̈13}
T, {r̈14}

T). The individual components of {r1̈}
Tδr1 are 

obtained through multiplication of Equations 3.45 and C2 (a-d): 
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𝜹𝐯′ 

{r̈11}
T
∂r1
∂v′

δv′ 

= θ̇2 {

0
r̅x(v

′(0, t) cosθ − w′ sinθ ) + r̅y(−ϕsin θ − cos θ) + r̅z(−ϕcosθ + sinθ)

r̅x(w
′(0, t) cos θ + v′ sinθ ) + r̅y(ϕ cos θ − sinθ) + r̅z(−ϕsin θ − cos θ)

}

T

 

× {

r̅y
−r̅x cos θ
−r̅x sin θ

} δv′ = θ̇2(−r̅x
2v′(0, t) + r̅xr̅y + r̅xr̅zϕ)δv

′ 

 

 

{r̈12}
T
∂r1
∂v′

δv′

= −θ̈{

0
−r̅x(v

′ (0, t)sin θ + w′ (0, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

r̅x(−w
′ (0, t)sinθ + v′(0, t) cos θ) + r̅y(−ϕsinθ − cosθ ) − r̅z(ϕ cos θ − sinθ )

}

T

 

× {

r̅y
−r̅x cos θ
−r̅x sin θ

} δv′ = −θ̈(r̅x
2w′(0, t) + r̅xr̅yϕ− r̅xr̅z)δv

′ 

 

 

 

{r̈13}
T
∂r1
∂v′

δv′ 

= −2θ̇ {

0
−r̅x(v̇

′ (0, t)sin θ + ẇ′ (0, t)cos θ) − r̅yϕ̇ cosθ + r̅zϕ̇ sinθ 

r̅x(−ẇ
′(0, t) sin θ + v̇′ (0, t)cosθ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

 

× {

r̅y
−r̅x cos θ
−r̅x sin θ

} δv′ = −2θ̇(r̅x
2ẇ′(0, t) + r̅xr̅yϕ̇)δv

′ 

 

 

{r̈14}
T
∂r1
∂v′

δv′ 

= {

r̅yv̈
′(0, t) + r̅zẅ

′(0, t)

−r̅x(v̈
′ (0, t)cos θ − ẅ′ (0, t)sin θ) + r̅yϕ̈ sin θ + r̅zϕ̈ cos θ

−r̅x(ẅ
′ (0, t)cosθ + v̈′(0, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

}

T

 

× {

r̅y
−r̅x cosθ
−r̅x sinθ

}δv′ = r̅y
2v̈′(0, t) + r̅yr̅zẅ

′(0, t) + r̅x
2v̈′(0, t) − r̅xr̅zϕ̈ δv

′ 
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∴ {�̈�𝟏}
𝐓𝛅𝐯′ = �̇�𝟐(−�̅�𝐱

𝟐𝐯′(𝟎, 𝐭) + �̅�𝐱�̅�𝐲 + �̅�𝐱�̅�𝐳𝛟)

− �̈�(�̅�𝐱
𝟐𝐰′(𝟎, 𝐭) + �̅�𝐱�̅�𝐲𝛟− �̅�𝐱�̅�𝐳) − 𝟐�̇�(�̅�𝐱

𝟐�̇�′(𝟎, 𝐭) + �̅�𝐱�̅�𝐲�̇�)

+ �̅�𝐲
𝟐�̈�′(𝟎, 𝐭) + �̅�𝐲�̅�𝐳�̈�

′(𝟎, 𝐭) + �̅�𝐱
𝟐�̈�′(𝟎, 𝐭) − �̅�𝐱�̅�𝐳�̈� 𝛅𝐯′ 

(C4) 

 

𝛅𝐰′ 

{r̈11}
T
∂r1
∂w′

δw′

= θ̇2 {

0
r̅x(v

′(0, t) cos θ − w′ (0, t)sin θ ) + r̅y(−ϕsin θ − cos θ) + r̅z(−ϕcos θ + sinθ)

r̅x(w
′ (0, t)cosθ + v′(0, t) sin θ ) + r̅y(ϕ cos θ − sin θ) + r̅z(−ϕsinθ − cos θ)

}

T

 

× {

r̅z
r̅x sinθ
−r̅x cos θ

} δw′ = θ̇2(−r̅x
2w′(0, t) − r̅xr̅yϕ+ r̅xr̅z)δw

′ 

 

 

{r̈12}
T
∂r1
∂w′

δw′

= −θ̈{

0
−r̅x(v

′ (0, t)sin θ + w′ (0, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

r̅x(−w
′ (0, t)sinθ + v′(0, t) cos θ) + r̅y(−ϕsinθ − cosθ ) − r̅z(ϕ cos θ − sinθ )

}

T

 

× {

r̅z
r̅x sinθ
−r̅x cos θ

} δw′ = −θ̈(−r̅x
2v′(0, t) + r̅xr̅y +  r̅xr̅zϕ)δw

′ 

 

 

{r̈13}
T
∂r1
∂w′

δw 

= −2θ̇ {

0
−r̅x(v̇

′ (0, t)sin θ + ẇ′ (0, t)cos θ) − r̅yϕ̇ cosθ + r̅zϕ̇ sinθ 

r̅x(−ẇ
′(0, t) sin θ + v̇′ (0, t)cosθ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

 

× {

r̅z
r̅x sinθ
−r̅x cos θ

} δw′ = −2θ̇(−r̅x
2v̇′(0, t) +  r̅xr̅zϕ̇)δw

′ 
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{r̈14}
T
∂r1
∂w′

δw′ 

= {

r̅yv̈
′(0, t) + r̅zẅ

′(0, t)

−r̅x(v̈
′ (0, t)cos θ − ẅ′ (0, t)sin θ) + r̅yϕ̈ sin θ + r̅zϕ̈ cos θ

−r̅x(ẅ
′ (0, t)cosθ + v̈′(0, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

}

T

 

× {

r̅z
r̅x sinθ
−r̅x cos θ

} δw′ = r̅yr̅zv̈
′(0, t) + r̅y

2ẅ′(0, t) + r̅x
2ẅ′(0, t) + r̅xr̅yϕ̈δw

′ 

 

 

∴ {�̈�𝟏}
𝐓𝛅𝐰′ = �̇�𝟐(−�̅�𝐱

𝟐𝐰′(𝟎, 𝐭) − �̅�𝐱�̅�𝐲𝛟+ �̅�𝐱�̅�𝐳)

− �̈�(−�̅�𝐱
𝟐𝐯′(𝟎, 𝐭) + �̅�𝐱�̅�𝐲 +  �̅�𝐱�̅�𝐳𝛟)

− 𝟐�̇�(−�̅�𝐱
𝟐�̇�′(𝟎, 𝐭) +  �̅�𝐱�̅�𝐳�̇�) + �̅�𝐲�̅�𝐳�̈�

′(𝟎, 𝐭) + �̅�𝐳
𝟐�̈�′(𝟎, 𝐭)

+ �̅�𝐱
𝟐�̈�′(𝟎, 𝐭) + �̅�𝐱�̅�𝐲�̈� 𝛅𝐰

′ 

(C5) 

 

𝛅𝛟 

{r̈11}
T
∂r1
∂ϕ

δϕ

= θ̇2 {

0
r̅x(v

′ (0, t)cos θ − w′ (0, t)sin θ ) + r̅y(−ϕsin θ − cos θ) + r̅z(−ϕcos θ + sinθ)

r̅x(w
′ (0, t)cosθ + v′ (0, t)sin θ ) + r̅y(ϕ cos θ − sin θ) + r̅z(−ϕsinθ − cos θ)

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = θ̇2(−r̅xr̅yw

′(0, t) − r̅y
2ϕ+ r̅xr̅zv

′(0, t) − r̅z
2ϕ)δϕ 

 

 

{r̈12}
T
∂r1
∂ϕ

δϕ 

= −θ̈{

0
−r̅x(v

′ (0, t)sin θ + w′ (0, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

r̅x(−w
′ (0, t)sinθ + v′(0, t) cos θ) + r̅y(−ϕsinθ − cosθ ) − r̅z(ϕ cos θ − sinθ )

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = −θ̈(−r̅xr̅yv

′(0, t) + r̅y
2 − r̅xr̅zw

′(0, t) + r̅z
2)δϕ 
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{r̈13}
T
∂r1
∂ϕ

δϕ 

= 2θ̇ {

0
−r̅x(v̇

′ (0, t)sinθ + ẇ′ (0, t)cos θ) − r̅yϕ̇ cos θ + r̅zϕ̇ sin θ 

r̅x(−ẇ
′(0, t) sinθ + v̇′ (0, t)cos θ) − r̅yϕ̇ sin θ − r̅zϕ̇ cos θ 

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = −2θ̇(−r̅xr̅yv̇

′(0, t) − r̅xr̅zẇ
′(0, t))δϕ 

 

 

{r̈14}
T
∂r1
∂ϕ

δϕ 

= {

r̅yv̈′(0, t) + r̅zẅ′(0, t)

−r̅x(v̈
′ (0, t)cosθ − ẅ′ (0, t)sinθ) + r̅yϕ̈ sin θ + r̅zϕ̈ cos θ

−r̅x(ẅ
′ (0, t)cosθ + v̈′(0, t) sinθ) − r̅yϕ̈ cos θ + r̅zϕ̈ sinθ

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = r̅xr̅yẅ

′(0, t) + r̅y
2ϕ̈ − r̅xr̅zv̈

′(0, t) + r̅z
2ϕ̈ δϕ 

 

 

∴ {�̈�𝟏}
𝐓𝛅𝛟 = �̇�𝟐(−�̅�𝐱�̅�𝐲𝐰

′(𝟎, 𝐭) − �̅�𝐲
𝟐𝛟+ �̅�𝐱�̅�𝐳𝐯

′(𝟎, 𝐭) − �̅�𝐳
𝟐𝛟)

− �̈�(−�̅�𝐱�̅�𝐲𝐯
′(𝟎, 𝐭) + �̅�𝐲

𝟐 − �̅�𝐱�̅�𝐳𝐰
′(𝟎, 𝐭) + �̅�𝐳

𝟐)

− 𝟐�̇�(−�̅�𝐱�̅�𝐲�̇�
′(𝟎, 𝐭) − �̅�𝐱�̅�𝐳�̇�

′(𝟎, 𝐭)) + �̅�𝐱�̅�𝐲�̈�
′(𝟎, 𝐭) + �̅�𝐲

𝟐�̈�

− �̅�𝐱 

 

(C6) 

𝛅𝛉  (Neglecting higher order terms) 

{r̈11}
T
∂r1
∂θ

δθ 

= θ̇2 {

0
r̅x(v

′ (0, t)cos θ − w′ (0, t)sin θ ) + r̅y(−ϕsin θ − cos θ) + r̅z(−ϕcos θ + sinθ)

r̅x(w
′ (0, t)cosθ + v′ (0, t)sin θ ) + r̅y(ϕ cos θ − sin θ) + r̅z(−ϕsinθ − cos θ)

}

T

 

× {

0
r̅x(w

′(0, t) cos θ + v′(0, t)sin θ) − r̅y(sinθ − ϕ cosθ) − r̅z(cos θ + ϕsinθ)

−r̅x(−
′ (0,t)sinθ+  v′(0,t)cosθ) + r̅y(cos θ + ϕsin θ) − r̅z(sinθ + ϕ cos θ)

}δθ = 0 
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{r̈12}
T
∂r1
∂θ

δθ

= −θ̈{

0
−r̅x(v

′ (0, t)sin θ + w′ (0, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

r̅x(−w
′ (0, t)sinθ + v′(0, t) cos θ) + r̅y(−ϕsinθ − cosθ ) − r̅z(ϕ cos θ − sinθ )

}

T

 

× {

0
r̅x(w

′(0, t) cos θ + v′(0, t)sin θ) − r̅y(sinθ − ϕ cos θ) − r̅z(cos θ + ϕsinθ)

−r̅x(−w
′ (0, t)sinθ +  v′(0, t)cos θ) + r̅y(cos θ + ϕsin θ) − r̅z(sinθ + ϕ cosθ)

}δθ 

= −θ̈(r̅y
2 + r̅z

2 − 2(r̅xr̅yv
′(0, t) + r̅xr̅zw

′(0, t)) − r̅yr̅zϕ)δθ 

 

 

{r̈13}
T
∂r1
∂θ

δθ 

= −2θ̇ {

0
−r̅x(v̇

′ (0, t)sin θ + ẇ′ (0, t)cos θ) − r̅yϕ̇ cosθ + r̅zϕ̇ sinθ 

r̅x(−ẇ
′(0, t) sin θ + v̇′ (0, t)cosθ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

  

× {

0
r̅x(w

′(c, t) cos θ + v′ (c, t)sinθ) − r̅y(sinθ − ϕ cos θ) − r̅z(cosθ + ϕsinθ)

−r̅x(−w′ (c, t)sin θ +  v
′(c, t)cos θ) + r̅y(cosθ + ϕ sin θ) − r̅z(sin θ + ϕ cos θ)

} δθ 

= −2θ̇(r̅xr̅yv̇
′(0, t) + r̅xr̅zẇ

′(0, t))δθ 

 

 

{r̈14}
T
∂r1
∂θ

δθ

= {

r̅yv̈
′(0, t) + r̅zẅ

′(0, t)

−r̅x(v̈
′ (0, t)cos θ − ẅ′ (0, t)sin θ) + r̅yϕ̈ sin θ + r̅zϕ̈ cos θ

−r̅x(ẅ
′ (0, t)cosθ + v̈′(0, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

}

T

 

× {

0
r̅x(w

′(c, t) cos θ + v′ (c, t)sinθ) − r̅y(sinθ − ϕ cos θ) − r̅z(cosθ + ϕsinθ)

−r̅x(−w′ (c, t)sin θ +  v
′(c, t)cos θ) + r̅y(cosθ + ϕ sin θ) − r̅z(sin θ + ϕ cos θ)

} δθ 

= r̅xr̅yẅ
′(0, t) − r̅xr̅zv̈

′(0, t) + r̅y
2ϕ̈ + r̅z

2ϕ̈δθ 

 

 

∴ {�̈�𝟏}
𝐓𝛅𝛉 = −�̈� (�̅�𝐲

𝟐 + �̅�𝐳
𝟐 − �̅�𝐲�̅�𝐳𝛟− 𝟐(�̅�𝐱�̅�𝐲𝐯

′(𝟎, 𝐭) + �̅�𝐱�̅�𝐳𝐰
′(𝟎, 𝐭)))

− 𝟐�̇�(�̅�𝐱�̅�𝐲�̇�
′(𝟎, 𝐭) + �̅�𝐱�̅�𝐳�̇�

′(𝟎, 𝐭)) + �̅�𝐱�̅�𝐲�̈�
′(𝟎, 𝐭)

− �̅�𝐱�̅�𝐳�̈�
′(𝟎, 𝐭) + �̅�𝐲

𝟐�̈� + �̅�𝐳
𝟐�̈� 𝛅𝛉 

(C7) 
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Summing together Equations C4 to C7, the variation of kinetic energy in the first sleeve 

can be obtained once suitable inertia coefficients are derived and substitutes into (C8): 

 

{r̈1}
Tδr1 = (θ̇

2(−r̅x
2v′(0, t) + r̅xr̅y + r̅xr̅zϕ) − θ̈(r̅x

2w′(0, t) + r̅xr̅yϕ− r̅xr̅z)

− 2θ̇(r̅x
2ẇ′(0, t) + r̅xr̅yϕ̇) + r̅y

2v̈′(0, t) + r̅yr̅zẅ
′(0, t)

+ r̅x
2v̈′(0, t) − r̅xr̅zϕ̈ δv′)

+ (θ̇2(−r̅x
2w′(0, t) − r̅xr̅yϕ+ r̅xr̅z)

− θ̈(−r̅x
2v′(0, t) + r̅xr̅y +  r̅xr̅zϕ) − 2θ̇(−r̅x

2v̇′(0, t) +  r̅xr̅zϕ̇)

+ r̅yr̅zv̈
′(0, t) + r̅z

2ẅ′(0, t) + r̅x
2ẅ′(0, t) + r̅xr̅yϕ̈ δw

′)

+ (θ̇2(−r̅xr̅yw
′(0, t) − r̅y

2ϕ+ r̅xr̅zv
′ − r̅z

2ϕ)

− θ̈(−r̅xr̅yv
′(0, t) + r̅y

2 − r̅xr̅zw
′(0, t) + r̅z

2)

− 2θ̇ (−r̅xr̅yv̇
′(0, t) − r̅xr̅zẇ

′(0, t)) + r̅xr̅yẅ
′(0, t) + r̅y

2ϕ̈

− r̅xr̅zv̈
′(0, t) + r̅z

2ϕ̈ δϕ)

+ (−θ̈ (r̅y
2 + r̅z

2 − r̅yr̅zϕ− 2(r̅xr̅yv
′(0, t) + r̅xr̅zw

′(0, t)))

− 2θ̇ (r̅xr̅yv̇
′(0, t) + r̅xr̅zẇ

′(0, t)) + r̅xr̅yẅ
′(0, t) − r̅xr̅zv̈

′(0, t)

+ r̅y
2ϕ̈ + r̅z

2ϕ̈ δθ) 

 

(C8) 
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C.2 Kinetic Energy of 2nd Sleeve 

The same generalised coordinates (v’,w’, ϕ and θ) apply for the second sleeve; however to 

determine its kinetic energy the variation derivatives of r2 must be considered: 

 

δr2 =
∂r2
∂v′

δv′ +
∂r2
∂w′

δw′ +
∂r2
∂ϕ

δϕ +
∂r2
∂θ

δθ (C9) 

 

∂r2
∂v′

= {

r̅y
r̅x cosθ
r̅x sinθ

}          
∂r2
∂w′

= {

r̅z
−r̅x sin θ
r̅x cos θ

}          
∂r2
∂ϕ

= {

0
r̅y sin θ + r̅z cosθ

− r̅y cosθ + r̅z sinθ
} 

 

∂r2
∂θ

= {

0
−r̅x(w

′(L, t) cos θ + v′ (L, t)sinθ) − r̅y(sin θ − ϕ cos θ) − r̅z(cos θ + ϕ sin θ)

r̅x(−w′ (L, t)sinθ +  v
′(L, t)cos θ) + r̅y(cosθ + ϕsinθ) − r̅z(sinθ + ϕ cos θ)

} 

 (C10 a-d) 

 

{𝑟2̈}
𝑇𝛿𝑟2 is obtained using the individual vector components of {𝑟2̈} and through 

multiplication of Equations (3.46) and (C10 a-d) 

 

𝜹𝒗′ 

{r̈21}
T
∂r2
∂v′

δv′ 

= θ̇2 {

0
−r̅x(v

′ (L, t)cos θ − w′ (L, t)sin θ ) + r̅y(−ϕsinθ − cos θ) + r̅z(−ϕcos θ + sin θ)

−r̅x(w
′ (L, t)cos θ + v′ (L, t)sin θ ) + r̅y(ϕ cosθ − sinθ) + r̅z(−ϕsinθ − cosθ)

}

T

 

× {

r̅y
r̅x cosθ
r̅x sinθ

}δv′ = θ̇2(−r̅x
2v′(L, t) − r̅xr̅y − r̅xr̅zϕ)δv

′ 
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{r̈22}
T
∂r2
∂v′

δv′

= −θ̈{

0
r̅x(v

′ (L, t)sinθ + w′ (L, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

−r̅x(−w
′ (L, t)sinθ + v′(L, t) cos θ) + r̅y(−ϕsin θ − cos θ ) − r̅z(ϕ cos θ − sin θ )

}

T

 

 × {

r̅y
r̅x cos θ
r̅x sin θ

} δv′ = −θ̈(r̅x
2w′(L, t) − r̅xr̅yϕ+ r̅xr̅z)δv

′ 

 

{r̈23}
T
∂r2
∂v′

δv′ 

= −2θ̇ {

0
r̅x(v̇

′ (L, t)sinθ + ẇ′ (L, t)cos θ) − r̅yϕ̇ cos θ + r̅zϕ̇ sinθ 

−r̅x(−ẇ
′(L, t) sin θ + v̇′ (L, t)cos θ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

 

 × {

r̅y
r̅x cos θ
r̅x sin θ

} δv′ = −2θ̇(r̅x
2ẇ′(L, t) − r̅xr̅yϕ̇)δv

′ 

 

{r̈24}
T
∂r2
∂v′

δv′ 

= {

r̅yv̈′(L, t) + r̅zẅ′(L, t)

r̅x(v̈
′ (L, t)cos θ − ẅ′ (L, t)sinθ) + r̅yϕ̈ sinθ + r̅zϕ̈ cosθ

r̅x(ẅ
′ (L, t)cosθ + v̈′(L, t) sinθ) − r̅yϕ̈ cosθ + r̅zϕ̈ sinθ

}

T

 

× {

r̅y
r̅x cos θ
r̅x sinθ

} δv′ = r̅y
2v̈′(L, t) + r̅yr̅zẅ

′(0, t) + r̅x
2v̈′(L, t) + r̅xr̅zϕ̈ δv′ 

 

∴ {�̈�𝟐}
𝐓𝛅𝐯′ = �̇�𝟐(−�̅�𝐱

𝟐𝐯′(𝐋, 𝐭) − �̅�𝐱�̅�𝐲 − �̅�𝐱�̅�𝐳𝛟)

− �̈�(�̅�𝐱
𝟐𝐰′(𝐋, 𝐭) − �̅�𝐱�̅�𝐲𝛟+ �̅�𝐱�̅�𝐳) − 𝟐�̇�(�̅�𝐱

𝟐�̇�′(𝐋, 𝐭) − �̅�𝐱�̅�𝐲�̇�)

+ �̅�𝐲
𝟐�̈�′(𝐋, 𝐭) + �̅�𝐲�̅�𝐳�̈�

′(𝐋, 𝐭) + �̅�𝐱
𝟐�̈�′(𝐋, 𝐭) + �̅�𝐱�̅�𝐳�̈� 𝛅𝐯′ 

(C11) 
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𝛅𝐰′ 

{r̈21}
T
∂r2
∂w′

δw′

= θ̇2 {

0
−r̅x(v

′ (L, t)cos θ − w′ (L, t)sin θ ) + r̅y(−ϕsinθ − cos θ) + r̅z(−ϕcos θ + sin θ)

−r̅x(w
′ (L, t)cos θ + v′ (L, t)sin θ ) + r̅y(ϕ cosθ − sinθ) + r̅z(−ϕsinθ − cosθ)

}

T

 

× {

r̅z
−r̅x sinθ
r̅x cosθ

} δw′ = θ̇2(−r̅x
2w′(L, t) + r̅xr̅yϕ− r̅xr̅z)δw

′ 

 

{r̈22}
T
∂r2
∂w′

δw′

= −θ̈{

0
r̅x(v

′ (L, t)sinθ + w′ (L, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

−r̅x(−w
′ (L, t)sinθ + v′(L, t) cos θ) + r̅y(−ϕsin θ − cos θ ) − r̅z(ϕ cos θ − sin θ )

}

T

 

× {

r̅z
−r̅x sinθ
r̅x cosθ

} δw′ = −θ̈(−r̅x
2v′(L, t) − r̅xr̅y −  r̅xr̅zϕ)δw

′ 

 

{r̈23}
T
∂r2
∂w′

δw 

= −2θ̇ {

0
r̅x(v̇

′ (L, t)sinθ + ẇ′ (L, t)cos θ) − r̅yϕ̇ cos θ + r̅zϕ̇ sinθ 

−r̅x(−ẇ
′(L, t) sin θ + v̇′ (L, t)cos θ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

 

× {

r̅z
−r̅x sinθ
r̅x cosθ

} δw′ = −2θ̇(−r̅x
2v̇′(L, t) −  r̅xr̅zϕ̇)δw

′ 

 

{r̈24}
T
∂r2
∂w′

δw′ 

= {

r̅yv̈′(L, t) + r̅zẅ′(L, t)

r̅x(v̈
′ (L, t)cosθ − ẅ′ (L, t)sinθ) + r̅yϕ̈ sinθ + r̅zϕ̈ cos θ

r̅x(ẅ
′ (L, t)cosθ + v̈′(L, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

}

T

 

× {

r̅z
−r̅x sinθ
r̅x cosθ

} δw′ = r̅yr̅zv̈
′(L, t) + r̅z

2ẅ′(L, t) + r̅x
2ẅ′(L, t) − r̅xr̅yϕ̈δw

′ 
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∴ {�̈�𝟐}
𝐓𝛅𝐰′ = �̇�𝟐(−�̅�𝐱

𝟐𝐰′(𝐋, 𝐭) + �̅�𝐱�̅�𝐲𝛟− �̅�𝐱�̅�𝐳)

− �̈�(−�̅�𝐱
𝟐𝐯′(𝐋, 𝐭) − �̅�𝐱�̅�𝐲 −  �̅�𝐱�̅�𝐳𝛟)

− 𝟐�̇�(−�̅�𝐱
𝟐�̇�′(𝐋, 𝐭) −  �̅�𝐱�̅�𝐳�̇�) + �̅�𝐲�̅�𝐳�̈�

′(𝐋, 𝐭) + �̅�𝐳
𝟐�̈�′(𝐋, 𝐭)

+ �̅�𝐱
𝟐�̈�′(𝐋, 𝐭) − �̅�𝐱�̅�𝐲�̈� 𝛅𝐰

′ 

(C12) 

 

𝛅𝛟 

{r̈21}
T
∂r2
∂ϕ

δϕ

= θ̇2 {

0
−r̅x(v

′ (L, t)cos θ − w′ (L, t)sin θ ) + r̅y(−ϕsinθ − cos θ) + r̅z(−ϕcos θ + sin θ)

−r̅x(w
′ (L, t)cos θ + v′ (L, t)sin θ ) + r̅y(ϕ cosθ − sinθ) + r̅z(−ϕsinθ − cosθ)

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = θ̇2(r̅xr̅yw

′(L, t) − r̅y
2ϕ− r̅xr̅zv

′(L, t) − r̅z
2ϕ)δϕ 

 

{r̈22}
T
∂r2
∂ϕ

δϕ

= −θ̈{

0
r̅x(v

′ (L, t)sinθ + w′ (L, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

−r̅x(−w
′ (L, t)sinθ + v′(L, t) cos θ) + r̅y(−ϕsin θ − cos θ ) − r̅z(ϕ cos θ − sin θ )

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = −θ̈(r̅xr̅yv

′(L, t) + r̅y
2 + r̅xr̅zw

′(L, t) + r̅z
2)δϕ 

 

{r̈23}
T
∂r2
∂ϕ

δϕ 

= −2θ̇ {

0
r̅x(v̇

′ (L, t)sinθ + ẇ′ (L, t)cos θ) − r̅yϕ̇ cos θ + r̅zϕ̇ sinθ 

−r̅x(−ẇ
′(L, t) sin θ + v̇′ (L, t)cos θ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = −2θ̇(r̅xr̅yv̇

′(L, t) + r̅xr̅zẇ
′(L, t))δϕ 
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{r̈24}
T
∂r2
∂ϕ

δϕ 

= {

r̅yv̈′(L, t) + r̅zẅ′(L, t)

r̅x(v̈
′ (L, t)cosθ − ẅ′ (L, t)sinθ) + r̅yϕ̈ sinθ + r̅zϕ̈ cos θ

r̅x(ẅ
′ (L, t)cosθ + v̈′(L, t) sin θ) − r̅yϕ̈ cos θ + r̅zϕ̈ sin θ

}

T

 

× {

0
r̅y sin θ + r̅z cos θ

− r̅y cos θ + r̅z sin θ
} δϕ = −r̅xr̅yẅ

′(L, t) + r̅y
2ϕ̈ + r̅xr̅zv̈

′(L, t) + r̅z
2ϕ̈δϕ 

 

 

∴ {�̈�𝟐}
𝐓𝛅𝛟 = �̇�𝟐(�̅�𝐱�̅�𝐲𝐰

′(𝐋, 𝐭) − �̅�𝐲
𝟐𝛟− �̅�𝐱�̅�𝐳𝐯

′(𝐋, 𝐭) − �̅�𝐳
𝟐𝛟)

− �̈�(�̅�𝐱�̅�𝐲𝐯
′(𝐋, 𝐭) + �̅�𝐲

𝟐 + �̅�𝐱�̅�𝐳𝐰
′(𝐋, 𝐭) + �̅�𝐳

𝟐)

− 𝟐�̇� (�̅�𝐱�̅�𝐲�̇�
′(𝐋, 𝐭) + �̅�𝐱�̅�𝐳�̇�

′(𝐋, 𝐭)) − �̅�𝐱�̅�𝐲�̈�
′(𝐋, 𝐭) + �̅�𝐲

𝟐�̈�

+ �̅�𝐱�̅�𝐳�̈�
′(𝐋, 𝐭) + �̅�𝐳

𝟐𝛟 ̈ 𝛅𝛟(𝐋, 𝐭) + �̅�𝐱
𝟐�̈�′(𝐋, 𝐭) − �̅�𝐱�̅�𝐲�̈� 𝛅𝐰

′ 

(C13) 

 

𝛅𝛉 (Neglecting higher order terms) 

{r̈21}
T
∂r2
∂θ

δθ

= θ̇2 {

0
−r̅x(v

′ (L, t)cos θ − w′ (L, t)sin θ ) + r̅y(−ϕsinθ − cos θ) + r̅z(−ϕcos θ + sin θ)

−r̅x(w
′ (L, t)cos θ + v′ (L, t)sin θ ) + r̅y(ϕ cosθ − sinθ) + r̅z(−ϕsinθ − cosθ)

}

T

 

× {

0
−r̅x(w

′(L, t) cosθ + v′ (L, t)sin θ) − r̅y(sinθ − ϕ cos θ) − r̅z(cos θ + ϕsinθ)

r̅x(−w′ (L, t)sin θ +  v
′(L, t)cos θ) + r̅y(cos θ + ϕsin θ) − r̅z(sin θ + ϕ cos θ)

}δθ = 0 

 

{r̈22}
T
∂r2
∂θ

δθ

= −θ̈{

0
r̅x(v

′ (L, t)sinθ + w′ (L, t)cos θ) − r̅y(ϕ cos θ − sin θ ) − r̅z(−ϕsinθ − cosθ )

−r̅x(−w
′ (L, t)sinθ + v′(L, t) cos θ) + r̅y(−ϕsin θ − cos θ ) − r̅z(ϕ cos θ − sin θ )

}

T

 

× {

0
−r̅x(w

′(L, t) cosθ + v′ (L, t)sin θ) − r̅y(sinθ − ϕ cos θ) − r̅z(cos θ + ϕsinθ)

r̅x(−w′ (L, t)sin θ +  v
′(L, t)cos θ) + r̅y(cos θ + ϕsin θ) − r̅z(sin θ + ϕ cos θ)

}δθ 

= −θ̈(−r̅y
2 − r̅z

2 − 2(r̅xr̅yv
′(L, t) + r̅xr̅zw

′(L, t)) + r̅yr̅zϕ)δθ 
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{r̈23}
T
∂r2
∂θ

δθ 

= −2θ̇ {

0
r̅x(v̇

′ (L, t)sinθ + ẇ′ (L, t)cos θ) − r̅yϕ̇ cos θ + r̅zϕ̇ sinθ 

−r̅x(−ẇ
′(L, t) sin θ + v̇′ (L, t)cos θ) − r̅yϕ̇ sinθ − r̅zϕ̇ cos θ 

}

T

 

× {

0
−r̅x(w

′(L, t) cos θ + v′(L, t)sinθ) − r̅y(sinθ − ϕ cos θ) − r̅z(cos θ + ϕsinθ)

r̅x(−w
′ (L, t)sinθ +  v′(L, t)cos θ) + r̅y(cosθ + ϕsin θ) − r̅z(sin θ + ϕ cos θ)

} δθ 

= −2θ̇ (−r̅xr̅yv̇
′(0, t) − r̅xr̅zẇ

′(0, t)) δθ 

 

 

{r̈24}
T
∂r2
∂θ

δθ 

= {

r̅yv̈′(L, t) + r̅zẅ′(L, t)

r̅x(v̈
′ (L, t)cos θ − ẅ′ (L, t)sinθ) + r̅yϕ̈ sinθ + r̅zϕ̈ cosθ

r̅x(ẅ
′ (L, t)cosθ + v̈′(L, t) sinθ) − r̅yϕ̈ cosθ + r̅zϕ̈ sinθ

}

T

 

× {

0
−r̅x(w

′(L, t) cosθ + v′ (L, t)sin θ) − r̅y(sinθ − ϕ cos θ) − r̅z(cos θ + ϕsinθ)

r̅x(−w′ (L, t)sin θ +  v
′(L, t)cos θ) + r̅y(cos θ + ϕsin θ) − r̅z(sin θ + ϕ cos θ)

}δθ 

= r̅xr̅yẅ
′(L, t) − r̅xr̅zv̈

′(L, t) − r̅y
2ϕ̈ − r̅z

2ϕ̈δθ 

 

∴ {�̈�𝟐}
𝐓𝛅𝛉 = −�̈� (�̅�𝐲

𝟐 + �̅�𝐳
𝟐 − �̅�𝐲�̅�𝐳𝛟+ 𝟐(�̅�𝐱�̅�𝐲𝐯

′(𝐋, 𝐭) + �̅�𝐱�̅�𝐳𝐰
′(𝐋, 𝐭)))

− 𝟐�̇� (−�̅�𝐱�̅�𝐲�̇�
′(𝐋, 𝐭) − �̅�𝐱�̅�𝐳�̇�

′(𝐋, 𝐭)) + �̅�𝐱�̅�𝐲�̈�
′(𝐋, 𝐭)

− �̅�𝐱�̅�𝐳�̈�
′(𝐋, 𝐭) − �̅�𝐲

𝟐�̈� − �̅�𝐳
𝟐�̈� 𝛅𝛉 

(C14) 

 

Summing together Equations (C11) through (C14), the variation of kinetic energy in 

the second sleeve can be obtained once suitable inertia coefficients have been derived: 
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{r̈2}
Tδr2 = (θ̇

2(−r̅x
2v′(L, t) − r̅xr̅y − r̅xr̅zϕ)

− θ̈(r̅x
2w′(L, t) − r̅xr̅yϕ+ r̅xr̅z) − 2θ̇(r̅x

2ẇ′(L, t) − r̅xr̅yϕ̇)

+ r̅y
2v̈′(L, t) + r̅yr̅zẅ

′(L, t) + r̅x
2v̈′(L, t) + r̅xr̅zϕ̈ δv′)

+ (θ̇2(−r̅x
2w′(L, t) + r̅xr̅yϕ−  r̅xr̅z)

− θ̈(−r̅x
2v′(L, t) − r̅xr̅y −  r̅xr̅zϕ)

− 2θ̇(−r̅x
2v̇′(L, t) −  r̅xr̅zϕ̇) + r̅yr̅zv̈

′(L, t) + r̅z
2ẅ′(L, t)

+ r̅x
2ẅ′(L, t) − r̅xr̅yϕ̈ δw

′)

+ (θ̇2(r̅xr̅yw
′(L, t) − r̅y

2ϕ− r̅xr̅zv
′ − r̅z

2ϕ)

− θ̈(r̅xr̅yv
′(L, t) + r̅y

2 + r̅xr̅zw
′(L, t) + r̅z

2)

− 2θ̇ (r̅xr̅yv̇
′(L, t) + r̅xr̅zẇ

′(L, t)) − r̅xr̅yẅ
′(L, t) + r̅y

2ϕ̈

+ r̅xr̅zv̈
′(L, t) + r̅z

2ϕ̈ δϕ)

+ (−θ̈ (−r̅y
2 − r̅z

2 + r̅yr̅zϕ− 2(r̅xr̅yv
′(L, t) + r̅xr̅zw

′(L, t)))

− 2θ̇ (−r̅xr̅yv̇
′(L, t) − r̅xr̅zẇ

′(L, t)) + r̅xr̅yẅ
′(L, t)

− r̅xr̅zv̈
′(L, t) − r̅y

2ϕ̈ − r̅z
2ϕ̈ δθ) 

(C15) 
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