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Change is the essential process of all existence.

Spock, Star Trek: The Original Series.



Abstract

Recent improvements in the ability of mobile robots to operate safely in human populated
environments have allowed their deployment in households, offices and public buildings,
such as museums and hospitals. However, the structure of these environments is typically
not known a priori, which requires the robots to build their own models of their opera-
tional environments. This process is commonly known as “exploration” in mobile robotics.
Moreover, real-world environments tend to change over time, which means that to achieve
long-term autonomous operation, robots must also update their environment models as a
part of their daily routine. The assumption of a perpetually-changing world adds a tem-
poral dimension to the exploration problem, making exploration a never-ending lifelong
learning process. To the best of our knowledge, this process termed “lifelong exploration”
has never been studied in detail before and forms the main topic of the work presented in
this thesis. Efficient lifelong exploration requires a robot to choose the right locations and
times at which to collect observations in order to improve its environment model.

To evaluate the ability of a robot to build and maintain its environment models, we
need to be able to compare lifelong exploration strategies under repeatable experimental
conditions. An evaluation methodology based on pre-recorded sensory datasets would not
be suitable for this purpose, as this would not allow the robot to choose the location or time
of its observations. Evaluating lifelong exploration requires the deterministic reproduction
of environment changes, while preserving the robots ability to decide upon its own actions
during the experiment. This thesis therefore contributes a new benchmarking methodology
for lifelong exploration, which replicates the events occurring in real environments through
physical simulations that reflect the environment changes gathered by ambient sensors over
long periods of time. The established experimental benchmarks are based on long-term
sensory datasets recorded in a smart home, with dynamics produced by a single person
over a period of one year, and an office environment, with dynamics produced by a team
of workers.

Building upon the aforementioned benchmarking methodology, the thesis investigates
possible strategies for lifelong exploration. An experimental comparison of lifelong ex-
ploration strategies that combine various decision-making paradigms and spatio-temporal
representations is presented. Moreover, a new approach to lifelong explorations is proposed
that applies information-theoretic exploration techniques to environment representations
that model the uncertainty of world states as probabilistic functions of time. The proposed
method explicitly models the world dynamics and can predict the environment changes.
The predictive ability is used to reason about the most informative locations to explore
for a given time. A 16 week long experiment shows that the combination of dynamic
environment representations with information-gain exploration principles allows to create
and maintain up-to-date models of continuously changing environments, enabling efficient
and self-improving long-term operation of mobile service robots.

The final part of the thesis considers the problem of acquiring and maintaining dense
3D models of dynamic environments during long-term operation, building on the work
presented in the earlier chapters. The term “4D mapping” is used to indicate 3D mapping
by mobile robots over extended periods of time. A new approach to lifelong 4D mapping
and exploration is presented, which was deployed on a real robotic platform during long-
term operation in real-world human-populated environments. The approach integrates
sensory data captured by the robot at different times and locations into a global, metric
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4D spatio-temporal model and then uses the model to decide where and when to perform
the next round of observations. Finally, the deployment of the 4D exploration method in a
real-world office scenario is described and evaluated. The one week long experiments show
that the method enables reliable 4D mapping and persistent self-localisation of autonomous
mobile robots, continually improving the robots maps to reflect the ever-changing world.

Keywords: Mobile Robotics, Service Robots, Long-term Autonomy, Spatio-temporal
Mapping, Lifelong Exploration.
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1
Introduction

1.1 Context and Motivation

The ambition to achieve autonomous robotic systems that can assist humans in a diversity

of tasks or even replace them in dirty, dangerous and dull situations has been driven by

their successful application in different fields, including industrial and medical applications.

The development of such systems is possible due to the advances in hardware technology

that enabled computers to be more powerful, while using less energy, and the development

of new sensors and their price reduction as a consequence of mass production. However,

the hardware by itself is not enough to enable robots to operate in everyday scenarios and

their deployment in human-populated environments is still an open challenge.

Like any other tool, robots were designed and developed with the purpose of assisting

humans in their duties. These duties can range from simple manufacturing tasks to more

complex security tasks, where the robot patrols a given environment, looking for anomalous

events, or even assisting people with disabilities that have an impact on their cognitive
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1.1. Context and Motivation Chapter 1. Introduction

and physical abilities. To make the above examples possible, a certain degree of reliability

and robustness must be ensured. Thus, a key requirement for autonomous mobile service

robots is the ability to operate over long-periods of time, which implies that the mobile

robot should be able to deal with unexpected events, recover from failures and adapt to

the different environment conditions.

The complex, uncertain, and unpredictable nature of human behaviour is one of the

primary factors behind the particular challenges that a mobile service robot has to face

during its long-term deployment. A service robot not only has to coexist and ensure the

safety of humans, but also exchange information with them, perform its duties efficiently

and adapt to the different events that might occur. Thus, the mobile robot needs to

somehow deal with the incomplete knowledge of its operational environment, i.e., the

environment uncertainty.

To address this uncertainty probabilistic mapping methods were developed that en-

abled the representation of the robot’s operational environment through the knowledge

extracted from noisy sensory measurements (Thrun et al. 2005). This model is typically

not given a priori and a robot has to build it either autonomously or with the guidance

of a human. Exploration strategies enable mobile robots to autonomously build a map of

the environment by combining probabilistic mapping methods with planning techniques

and allow the mobile robot to efficiently decide where to perform observations and ensure

the model completion (Kuipers & Byun 1991).

Although the majority of mobile robotic systems rely on environment representations

to perform their duties, a mobile robot does not necessarily require a map of its opera-

tional environment in order to perform tasks. For example, outdoor navigation tasks can

be solved without explicitly modelling the environment by means of path following strate-

gies (McManus et al. 2014). However, these strategies do not allow for global localisation

and efficient path planning, which are desired features in any autonomous mobile service

robot. Maps not only provide a representation of aspects of interest that describe the

robot’s operational environment, but they also play a key role in supporting the robot’s

tasks, providing the knowledge for efficient path planning and allowing a comprehensive

visualisation for humans, which allows them to easily assign tasks to a specific location

in the environment (Cadena et al. 2016). Additionally, maps allow to share information

with other autonomous systems, decreasing the times and complexity of certain tasks.

2



1.2. Mobile Robotic Exploration: Where to observe? Chapter 1. Introduction

Taking into account the above concepts, environment mapping is an essential part of the

majority of autonomous mobile robot systems, especially when these systems are deployed

in environments where assisting humans in their activities is the principal goal.

1.2 Mobile Robotic Exploration: Where to observe?

Figure 1.1 presents an overview of the typical approach to a fully integrated mobile robotic

exploration system. It relies on three main components: mapping, localisation and plan-

ning. Their combination allows the robot to build the model of the environment by itself,

use that model and the robot’s sensors to identify where in the environment the robot is

located and, finally, plan the best path and to avoid obstacles. Mobile robotic exploration

strategies have to ensure that the resulting environment model is both complete and ac-

curate (Kollar & Roy 2008) by planning which locations in the environment to observe

next by considering the completeness of the current environment model.

Figure 1.1: Based on the original by Makarenko et al. (2002), this diagram shows an overview
of an integrated mobile robotic exploration system.

While the above approach is suitable for acquiring the robot’s initial map of the en-

vironment, it does not consider the problem of lifelong updating of the map in response

to environment changes. As the robot’s map becomes more and more out-of-date, the

3
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number of failures in the localisation and navigation systems will increase and might lead

to a complete failure of the mobile robot system. These failures are typically related with

the fact that most of the methods used in mobile robotics assume that the robot’s opera-

tional environment does not change over time. Even though the static world assumption

does not represent reality, it allows to reduce the complexity of the mapping and planning

stages, assuming that the environment changes are not too severe to prevent continued

operation. Probabilistic mapping methods can deal with conflicting measurements, but

their approach is rooted in the idea that these variations are caused by inherent sensor

noise rather than by structural environment change. Thus, these conflicting measurements

are generally treated as outliers caused by unwanted noise and, consequently, the relevant

knowledge that could enrich and improve the robot’s maps and thus avoid such failures is

ignored.

The increasing need to deploy robots in human-populated scenarios leads to new re-

search questions like the ones studied in the field of long-term autonomy, which aims at

developing new methods that enable mobile robots to operate over long periods of time.

Furthermore, during its long-term operation, a mobile robot should be able to identify

its failures, learn how to avoid and recover from them and, if necessary, request human-

assistance. The field of long-term autonomy also covers questions such as optimising the

robot’s operation time by learning from the long-term experience, such as when to sched-

ule maintenance tasks, when and how to perform the robot’s daily duties, which objects

to look for in order to fulfil its duties and, finally, how to operate in environments that

change over time. To sum up, the goal is to achieve a self-improving autonomous robot

that performs its tasks more and more efficiently over time by learning from its long-term

experience.

1.3 Lifelong Exploration: Where and When to observe?

While the long-term deployment of mobile robots presents several challenges, it also offers

the opportunities to observe novel situations that would otherwise be impossible to ex-

perience. Hence, the integration of these experiences in the robot’s knowledge allows the

mobile robot to gradually learn how to adapt or even avoid critical or difficult situations.
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A mobile robot can experience different types of environment changes during its long-

term operation, which can be classified as follows (Biber & Ducket 2009):

• fluctuations – e.g.people moving around;

• variations – e.g. events that exhibit certain patterns;

• structural changes – e.g. building alterations.

Whereas some of these changes might not affect the robot’s performance, others might

lead to the complete failure of the robot’s navigation and localisation systems. Never-

theless, the categorisation of the different changes in the environment is only possible

through the re-observation of the environment. However, the limits between each of these

categories are not well defined, and thus there are no clear rules that allow a mobile robot

to successfully interpret and adapt accordingly to the different environment changes. In-

stead of aiming at this categorisation, an analysis of the persistence and frequency of the

environment changes allows to understand which changes should be learned (or kept in

memory) and which ones should be discarded or even predicted.

Taking into account the previous concept, in order to achieve long-term autonomy, the

environment models to be built by the mobile robot must take into account the different

observations taken over the duration of the deployment, i.e., the different changes in the

environment observed by the robot must be integrated in the environment model. The key

contribution of this thesis is the development of methods that allow the robot to actively

decide where and when to perform observations in order to understand the nature of the

changes that occur in the robot’s operational environment.

Figure 1.2 extends Figure 1.1 by adding the notion of time to the problem of integrated

mobile robotic exploration. Mapping not only has to consider the environment structure,

but also how the environment evolves over time leading to spatio-temporal mapping. In

order to build a spatio-temporal map, all the observed environment states must be inte-

grated into a model that allows to efficiently store all the observations, while enabling the

robot to quickly make use of such knowledge and adapt to the environment changes. The

robot’s localisation system should be able to exploit the above spatio-temporal model in

order to achieve life-long localisation and, finally, taking into account that the robot is

able to reason over time using its spatio-temporal model, planning becomes a scheduling
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problem in which the robot reasons where, how and when to perform its tasks, balancing

the different time constraints with the need to continue learning about its operational

environment.

Figure 1.2: Overview of the different modules required to achieve a long-term autonomy.

Recently, some authors have exploited the conflicting measurements observed during

long-term experiences in order to obtain information about the world dynamics and pro-

posed representations that model the environment dynamics. These dynamic representa-

tions have shown their potential by improving mobile robot localisation in changing envi-

ronments (Biber & Ducket 2009, Dayoub et al. 2011, Churchill & Newman 2013, Krajńık

et al. 2014a, Tipaldi et al. 2013, Neubert et al. 2015). Similarly to traditional robotic

mapping, introduction of spatio-temporal mapping naturally requires novel techniques

that allow to reason about how to efficiently build and maintain spatio-temporal maps

during the robot’s deployment by means of lifelong exploration.

This raises several questions regarding exploration of changing environments:

• How to evaluate and compare different lifelong exploration strategies that create,

maintain and refine representations of changing environments?

• Which environment models should be used to represent the ever-changing world?
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• How to drive the robot’s attention to the right locations and times?

• Can such a system work in a real robot that has to perform other tasks?

• How does lifelong exploration improve the efficiency of robot operation?

Based on the above questions, this PhD thesis proposes an information-driven approach

to lifelong exploration that integrates observations taken at different times and locations

into a spatio-temporal environment representation which is then used to determine where

and when to perform new observations, while being able to cope with the robot’s daily

duties. Thus, this thesis is going to focus on both mapping and environment representa-

tions and planning strategies for lifelong operation of mobile robots. While localisation

is fundamental for any mobile robot, it is highly dependent on the quality of the robot’s

world model. In order to easily identify and understand the impact of the different life-

long strategies and representations on the ability to build and maintain world models, the

robot’s localisation is assumed to be perfectly accurate. This reduces the complexity of

the overall mapping process and planning and enables a focused experimental validation.

1.4 Main Contributions

This section lists the novel contributions to the field of long-term autonomy for mobile

robots, which are as follows:

• A memory efficient 3D environment model for changing environments is presented

and described in Chapter 3. Experiments using a real-world dataset allowed to eval-

uate the compression performance as well as the ability to predict the environment’s

future states.

• Novel methodologies to benchmark and compare spatio-temporal environment rep-

resentations as well as exploration strategies are presented in Chapter 4, which are

fundamental to support the development of strategies for long-term autonomy.

• The concept of lifelong spatio-temporal exploration is presented in Chapter 5, ex-

tending the definition of spatial exploration by taking into account time and the fact

that human-populated environments are continuously changing.
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• A study using the aforementioned benchmarking tools is conducted in Chapter 5.

Several spatio-temporal strategies and goal generation methods are compared under

the same experimental conditions.

• The concept of spatio-temporal exploration is extended to 3D grids by extending the

previous methods to a fully functional real-world system (Chapter 6). The outcome,

a 4D spatio-temporal map, is then evaluated through real-world experiments and

simulations.

1.5 Publications

The work described in each of the following chapters resulted in one or more peer reviewed

publications, which are listed bellow.

Chapter 3 provides and overview of the main foundations of this thesis as well as

the mains aims of the STRANDS R&D project in which this was carried out. While

the models described are not a main contribution of this thesis, their development was

influenced by the lifelong exploration strategy proposed in this thesis, resulting in the

following publications:

• Krajńık, T., Santos, J. M., Seemann, B. & Duckett, T. (2014), Froctomap:

An Efficient Spatio-temporal Environment Representation, in ‘Advances in Au-

tonomous Robotics Systems: 15th Annual Conference, TAROS 2014, Birmingham,

UK, September 1-3,2014. Proceedings’, Vol. 8717, Springer, p. 269.

• Santos, J. M., Krajńık, T., Fentanes, J. P. & Duckett, T. (2016), Lifelong Information-

Driven Exploration to Complete and Refine 4-D Spatio-temporal Maps, IEEE Robotics

and Automation Letters 1(2), 684–691.

• Hawes, N., Burbridge, C., Jovan, F., Kunze, L., Lacerda, B., Mudrová, L., Young,

J.,Wyatt, J. L., Hebesberger, D., Körtnerr, T., Ambrus, R., Bore, N., Folkesson,

J.,Jensfelt, P., Beyer, L., Hermans, A., Leibe, B., Aldoma, A., Faulhammer, T.,

Zillich,M., Vincze, M., Al-Omari, M., Chinellato, E., Duckworth, P., Gatsoulis, Y.,

Hogg,D. C., Cohn, A. G., Dondrup, C., Fentanes, J. P., Krajńık, T., Santos, J. M.,

Duckett, T. & Hanheide, M. (2016), ’The STRANDS project: Long-term autonomy
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in Everyday Environments’, in IEEE Robotics & Automation Magazine , vol.PP,

no.99, pp.1-1.

In Chapter 4, a description of the several datasets used and a benchmarking tool that

enabled the validation of the exploration strategy resulted in the following publication:

• Santos, J. M., Krajńık, T., Pulido Fentanes, J. & Duckett, T. (2016), A 3D Sim-

ulation Environment with Real Dynamics: A Tool for Benchmarking Mobile Robot

Performance in Long-term Deployments, in ‘ICRA 2016 Workshop on AI for Long-

term Autonomy’.

The concept of lifelong exploration and its experimental validation are described in

Chapter 5 can be found in:

• Krajńık, T., Santos, J. M. & Duckett, T. (2015), Life-long spatio-temporal ex-

ploration of dynamic environments, in ‘Mobile Robots (ECMR), 2015 European

Conference on’, pp. 18.

• Santos, J. M., Krajńık, T. & Duckett, T. (2016), Spatio-Temporal Exploration

Strategies for Long-Term Autonomy of Mobile Robots, ‘Robotics and Autonomous

Systems’, Volume 88, February 2017, Pages 116-126, ISSN 0921-8890.

Finally, the extension of the lifelong exploration concept to real world described in

Chapter 6 was published in:

• Santos, J. M., Krajńık, T., Fentanes, J. P. & Duckett, T. (2016), Lifelong Information-

Driven Exploration to Complete and Refine 4-D Spatio-temporal Maps, IEEE Robotics

and Automation Letters 1(2), 684–691.
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2
Related Work

This chapter presents a survey of exploration strategies for mobile robots with a focus on

the challenges that arise from their long-term deployment in human-populated environ-

ments. As stated previously, a mobile service robot requires a model of its operational

environment in order to plan its actions in an intelligent and efficient way. The quality of

its internal environment model has a significant impact on the robot’s ability to localise

itself, navigate to the desired locations and perform other tasks in general. Thus, ob-

taining a model of the environment is an important step to achieve a reliable and robust

behaviour of the mobile service robot.

Mobile robotic exploration enables a mobile robot to autonomously build a model of

its operational environment which typically consists of two alternating processes: map-

ping, in which the robot integrates its sensory data into the world model, and planning,

during which the robot chooses the actions that would best contribute to improvement

of the model. Typical exploration strategies rely on mapping methods that assume the

environment to be static, and therefore, the exploration task is finished once all locations
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have been mapped. However, the environment tends to change over time due to human

activity, which causes any static model to become obsolete, affecting the mobile robot per-

formance and possibly even leading to a complete failure of the robotic agent. Lee (1995)

states that “world models are only useful if they continue to match the true state of the

world” and that a world model is “used to predict the state of the environment so that

effective plans can be made”. For these reasons, lifelong exploration should use models

that allow to represent changing environments and planning methods that can determine

not only the locations but also the times of observations in order to maintain the accuracy

of the model over time. Moreover, the planning strategy has to take into account different

time constraints – it has to schedule the observations in such a way that the robot has

time to recharge and can perform its other tasks as well. In order to further investigate

these aspects, this chapter provides an overview of both mapping and planning methods

for mobile robots.

After presenting an overview of the most relevant mapping and exploration strategies,

the challenges in the field of long-term autonomy are identified. Following this analysis,

the latest approaches and spatio-temporal world representations that enable long-term au-

tonomy are presented. Finally, a brief discussion on the exploitation/exploration dilemmas

specifically for long-term deployments of mobile robots in changing worlds is presented.

2.1 Autonomous Exploration

The ability of mobile robots to autonomously survey in unknown environments, gather

data, and to build a model of the environment is called autonomous exploration and

typically consists of two interleaved processes: mapping and planning. While the former

is responsible for the integration of the perceived data into the current world model, the

latter decides where to move next. Robotic exploration strategies take into account both

the completeness of the model and its accuracy, because an incomplete and inaccurate

world model might compromise the robot’s performance (Kollar & Roy 2008).

Mobile robotic exploration strategies can be categorised into map- and non-map-based

ones depending on whether it is the model of the environment is used in the planning

process or not. Non-map based strategies ignore the knowledge gathered about the world

and therefore do not guarantee the completeness of the model in a timely and efficient
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manner (Sim & Dudek 2003). They can be either based on random movements, such

as randomised obstacle avoidance methods, or follows fixed trajectories in which the

robot performs circles, spirals, or follow reactive behaviours, such as wall-following (Zhang

et al. 2010). Figure 2.1 shows the trajectories obtained by a Roomba autonomous robotic

vacuum cleaner while performing randomised obstacle avoidance coverage.

Figure 2.1: Long-exposure photo showing the trajectory performed by an iRobot Roomba
during its autonomous vacuum cleaning task (Roomba 2005).

On the other hand, map-based-strategies use the world model to identify the unknown

areas in the environment and then decide how to observe them while ensuring the model

is both complete and accurate in the shortest possible time. Typical examples of these ap-

proaches are frontier-based and Next Best View (NBV) strategies. Figure 2.2 summarises

the aforementioned categorisation of mobile robotic exploration strategies.

While non-map-based exploration strategies are more suitable for mobile robots with

limited computational or sensory capabilities operating in constrained environments, map-

based exploration strategies allow to decrease the duration of the mapping task and opti-

mise certain resources, such as the distance travelled or energy consumption.

Frontier-based Exploration Strategies

Frontier-based strategies are one of the earliest exploration methods and were first pre-

sented by Yamauchi (1997), who established the term frontier as the boundary between
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Figure 2.2: Mobile robotic exploration strategies overview.

the known and unknown parts of the environment. The frontiers are typically identified

using methodologies originating from the use of mathematical morphology in the computer

vision domain, but in this case applied to occupancy grids, in which each cell is categorised

according to its probability as occupied, unknown, or free. The robot movement is then

planned so that these frontiers are visited and removed. Figure 2.3 shows an example

of a mobile robot performing frontier-based exploration. The mobile robot transverses

a corridor and, in the process, identifies several frontiers. While the method to identify

the frontiers is typically the same, the selection of which frontier to eliminate differs from

strategy to strategy. The advantage of this approach is its scalability – the frontiers can be
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distributed among a number of robots that can explore the environment in a cooperative

manner (Yamauchi 1998).

Figure 2.3: An example of a mobile robot performing frontier-based exploration.

Holz et al. (2010) presented a survey on earlier frontier-based exploration methods,

which is complemented by an experimental evaluation of several strategies. In this study,

several issues are pointed out, including: the need to keep a minimum distance to sur-

rounding objects, the need to continuously re-check whether a frontier still exists or not

during the navigation task and, finally, the problem of visiting the same room multiple

times. For example, looking at Figure 2.3, in the case the mobile robot decides to move

along the corridor in order to remove frontier 2, it will need to perform the same path in

reverse in order to remove frontier 1 and map the room. On the other hand, removing

frontier 1 first would result in a small path diversion and would be the most efficient deci-

sion. In order to suppress these issues, the authors propose to segment the current world

model into individual rooms and select only frontiers that are within the same room, to

verify if there are unknown adjacent cells to the frontier while navigating, and to neglect

candidate frontiers that are too close to obstacles. The results obtained through real world

experiments show that the proposed improvements allow to significantly decrease the path

transversed during the exploration.
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Another work that aims at improving the efficiency of frontier-based exploration strate-

gies was presented by Yongguo Mei et al. (2006), which describes a motion planner module

that aims at finding trajectories that require low energy. This is achieved by listing all

the frontiers within the sensor range and selecting the ones that minimise the number of

obstacles in-between the frontiers. Then, a path planning method based on an extended

version of Dijkstra’s algorithm is applied to a graph in which the vertices represent both

the robot’s locations and directions between them. Thus, this orientation-based plan-

ning method allows to increase the energy efficiency of the robot while travelling between

frontiers by decreasing repeated coverage, which is a common issue for this family of ex-

ploration strategies. Wirth & Pellenz (2007) propose to extend frontier-based exploration

by combining a distance transform with an obstacle transform, i.e., the cost of a path to

the closest frontier not only by computing the distance to the frontier but also the distance

to the closest obstacle for each cell in the path. This allows the mobile robot to choose

not only the shortest but also the safest path to a given frontier, which makes it suitable

for Search and Rescue (SaR) scenarios. While in the approach developed by Koenig et al.

(2001), the mobile robot does not explicitly determine the frontiers, it moves towards non-

explored areas within the sensor range. Other strategies focus on the robustness of the

robot’s navigation system not only to minimise the robot’s localisation uncertainty (Tao

et al. 2007) but also to ensure safe navigation to the frontiers (Wettach & Berns 2010).

While the aforementioned works aim at improving the efficiency of frontier-based ex-

ploration strategies for a single robot, other authors proposed to extend the concept of

frontier-based exploration strategies to teams of multiple robots. On one hand, this al-

lows to decrease the duration of the exploration task, but on the other hand, it requires

complex planning methods in order to coordinate the team of mobile robots. Several

multi-robot frontier-based strategies that aim at distributing the different frontiers over

team of robots are described in (Burgard et al. 2005, Al Khawaldah & Nüchter 2015, Wang

et al. 2011, Wurm et al. 2008). The above approaches aim at distributing the frontiers

between the mobile robots based on different metrics. By contrast, Renzaglia & Martinelli

(2010) propose to use potential fields to naturally coordinate and distribute the robots

over all the frontiers by assigning attractive forces to the frontiers and repulsive forces to

the robots. In order to decrease the impact of local minima, a team leader is introduced,

which in turn can lead to several team leaders according to the mission’s evolution.
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Recently, a guideline and framework for multi-robot frontier-based exploration bench-

marking was presented by Faigl & Kulich (2015). In order to correctly evaluate these

strategies, four principles are fundamental: comparison, reproducibility, repeatability and

justification. Following these principles, the authors describe a multi-stage methodology

that relies on simulations and real world experiments in controllable environments, see

Figure 2.4, that enable the evaluation of the exploration strategies using different metrics

including, but not limited to, the distance travelled, duration of the exploration task, etc.

(a) The SyRoTek arena. (b) A team of mobile robots performing explo-
ration in the SyRoTek arena.

Figure 2.4: The SyRoTek reconfigurable arena is available on-line to anyone that intends
to evaluate mobile robotic exploration strategies. The user only needs to register, define the
number of robots and reconfigure the environment for the experimental evaluation (Kulich
et al. 2013).

The aforementioned methods all use the same definition of frontier and they differ only

in the way these frontiers are used for planning either single or multi-robot. While the

way frontiers are calculated and identified is the same in every strategy, the order and

distribution of visits following different metrics are the main contributions.

Next Best View Exploration Strategies

Since frontier-based exploration aims primarily at exploring the physical space by remov-

ing all the frontiers until the model completeness is guaranteed, they do not ensure the

quality of the map. On the other hand, Next Best View (NBV) strategies can take into

account both completeness and accuracy. They are based on the notion of entropy, i.e.,

the set of candidate locations to observe is computed based on the estimated amount

of information each of these locations is expected to provide (Caglioti 2001). The most
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remarkable advantage of these methods is the possibility to specify several objectives by

means of cost functions, such as the travelled distance, repeated coverage, quality of the

observations, etc. Thus, these approaches can be adapted to different types of missions

and applications by setting up the proper metrics. The information gain is calculated

as the reduction in entropy of the world model, which requires a probabilistic represen-

tation of the environment states. The lower the entropy of the environment model, the

more it reflects the actual environment state. More details on the concept of entropy and

information are given in Chapter 3. Figure 2.5 shows a mobile robot performing NBV

exploration in a domestic environment. In order to identify the most entropic locations,

the information-gain values are projected onto the ground plane. The Figure 2.5b shows

that these values are higher in the centre of the unexplored area.

(a) 3D render of a domestic environment. (b) The outcome of an information-based explo-
ration strategy.

Figure 2.5: The mobile robotic platform performs information-based exploration in a house-
like environment. The expected information-gain is projected on the ground plan. The blue
cells indicate locations where the expected information-gain is higher.

Stachniss et al. (2005) presented an information gain-based exploration framework

that integrates not only uncertainties of the map but also the uncertainties of the robots

localisation. The exploration method uses a Rao-Blackwellized particle filter to build the

map of the environment and an entropy reduction method to plan the next location to be

visited by the robot. An analogous strategy was presented previously by Makarenko et al.

(2002). In this approach, the robot performs two different types of exploration tasks: one

to integrate new observations into the model and thereby complete it, and another one

that plans where to re-observe in order to close the loop and, consequently, reduce the

robot’s pose uncertainty. Similarly, Amigoni & Caglioti (2010) propose an information-
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based strategy that proposes the next location to observe based not only on the expected

entropy reduction but also on the distance travelled. The above strategy was then extended

to Search and Rescue (SaR) missions (Basilico & Amigoni 2011). Another approach that

aims at improving the accuracy of environment model is proposed by Kollar & Roy (2008),

in which a skeleton graph is obtained from the current environment model, which is then

used to search for an optimal path by taking into account the sensing constraints at each

node.

NBV strategies to build 3D models of outdoor scenarios based on information-gain

methods were proposed by Fentanes et al. (2011). A cost function is used in order to

maximise not only the information-gain but also the model’s quality and optimising the

robots trajectory, i.e., instead of choosing the next location to observe, the mobile robot

also takes into account the sensor’s model and the angle of observation in order to obtain

a very precise 3D model of the different objects in the environment. An advantage of this

method is that it not only attempts to cover the entire environment as quickly as possible

but also plan re-observations of previously visited locations to increase the quality of the

resulting map.

Analogous to the frontier-based approaches, NBV approaches have been extended to

teams of multi-robots. Burgard et al. (2005) presented an information-based exploration

strategy that assigns robots to different locations to observe based on their trade off

between the cost to reach the desired location and the expected information-gain. Never-

theless, this approach assumes all the robots know their relative positions to each other.

Other strategies rely on semantic information in order to distribute the mobile robots

through the different points in order to reduce redundant coverage (Stachniss et al. 2006).

Alternative Exploration Strategies

Although the exploration strategies described above fit in two very specific categories there

are other strategies that do not fall in these categories, but are still relevant. For exam-

ple, potential methods, in which a high potential is assigned to the start position and a

low potential assigned to the goal position. Then, a gradient is computed through the

resulting field and used to drive the robot through the unexplored areas of the environ-

ment. Following this principle, Junior et al. (2002) propose an exploration strategy based
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on potential fields modelled by means of harmonic functions and relying exclusively in

Dirichlet boundary conditions. These harmonic functions do not generate a local minima

and, consequently, the robot does not get trapped when performing exploration. The au-

thors have successfully shown the exploration of 2D environments with a sonar equipped

mobile robot using potential fields. Another strategy based on potential fields is proposed

by Shade & Newman (2011), in which stereo vision cameras are used to perform visual

Simultaneous Localisation and Mapping (SLAM) and potential fields used to drive the

robot to unexplored areas. The proposed strategy exploits the properties of harmonic so-

lutions and Laplace’s equation in order to find a scalar field that does not contain a local

minima. Other strategies combine potential and information-based methods in order to

perform exploration, such as the multi-robot exploration strategy proposed by Rocha et al.

(2005). This strategy, which combines the concept of frontier with information-theoretical

approaches by means of gradient-based representation, allows to achieve 3D maps with

lower uncertainty. The entropies for each cell in the 3D grid are calculated and then a

continuous entropy field is sampled over each voxel. Finally, each robot selects observation

points with higher entropy gradient, which are located at the frontiers between the ex-

plored and unexplored areas. A mutual information-based measure of information utility

is proposed in order to efficiently coordinate the team of multiple robots.

Other exploration strategies aim at building maps of the environment taking into ac-

count some a priori knowledge instead of building it from scratch. For instance, Obwald

et al. (2016) propose a novel exploration strategy that aims at decreasing the exploration

time by assuming that the topology of the environment is known, such as graphs automat-

ically obtained from floor plans. In this method a Travelling Salesman Planner generates

a global plan for the exploration run while a frontier-based strategy is used to explore the

environment at each node of the graph. Fox et al. (2003) propose a learning process that

takes into account several maps to build a structural model of “typical” environments.

This model consist of a hidden Markov model that generates sequences of views observed

by a robot when navigating through an environment. The model is then used by the mobile

robot to identify whether is exploring a new area or revisiting a previously explored area.

Similarly, Strom et al. (2015) present an exploration strategy capable of predicting how

the unexplored areas may look based on previously mapped areas. This strategy combines

the knowledge obtained through previous exploration tasks (in different environments) to
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predict which observation points might close the loop with information-driven exploration

to map the environment more efficiently.

Some strategies are based on intrinsic motivation systems, which drive the robot to-

wards situations that maximise the performance of the learning process (Oudeyer et al.

2007, Thrun 1992). These strategies are able to actively identify anomalous or novel situ-

ations that might lead to decisions that provide more information and allows to deal with

situations where the information gain never decreases due to physical constraints such

as occlusions. For example, novelty detection strategies, which involve the recognition of

environmental stimuli that differ from those usually seen, allow the robot to gradually

redirect its attention according to the evolution of its internal models (Marsland 2002).

The aforementioned exploration strategies aim at building a map of the environment

in the initial stage of the robot deployment, but are not aimed at maintaining it over time,

ignoring the changes in the environment. Thus, the model accuracy will decrease as the

environment changes, which would eventually lead to major localisation and navigation

failures.

2.2 Environment Representations for Mobile Robots

The aforementioned exploration strategies are highly dependent on the type of representa-

tion used. Most of the environment models and methods that create them are tailored to

represent static scenes and treat environment dynamics as unwanted noise. Thus, previ-

ous research on mobile robot exploration was aimed at efficient acquisition, representation

and usage of static environment models, which can range from geometrical representations,

such as vector maps, to more high-level representations like topological maps. Before de-

scribing environment representations that can cope with the environment changes, an

overview of classical environment models is given.

Classical Environment Representations

Two of the most popular methods that use a different level of abstraction are metric and

topological maps. Perhaps the most known and used metric map is the occupancy grid

which was proposed by Moravec (1988). This representation allows for efficient probabilis-

tic sensor fusion, motion planning, localisation and exploration. The main drawback of
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occupancy grids is their low-memory efficiency since they represent large, empty areas of

the environment by a large number of empty cells. A popular approach that mitigates the

low memory efficiency of occupancy grids is the quadtree (Finkel & Bentley 1974, Chen

et al. 2015). It represents the environment in a tree-like structure that recursively subdi-

vides a region until it does not contain any object. OctoMaps extend the above represen-

tation to 3D (Hornung et al. 2013). An example of an OctoMap is shown in Figure 2.6.

Compared to occupancy grids, vector maps provide better memory efficiency (Sohn &

Kim 2009). These maps represent the environment by means of a set of segmented lines

or polygons; however, this representation is only suitable for structured indoor environ-

ments.

Figure 2.6: Example of an OctoMap (Hornung et al. 2013).

Topological maps represent the environment by means of graphs, in which each node

corresponds to a distinct situation, place or landmark and the edges represent the paths

between the nodes (Thrun 1998). Due to their compactness, topological maps also provide

the ability to efficiently store additional information in both edges and nodes that allow

to extend the robot capabilities. For instance, Fentanes et al. (2015) propose to learn the

different edge traversability times in order to improve the robot’s navigation performance.

While this representation enables efficient planning and memory management, compared

to occupancy grids, it requires complex methods in order to build and maintain the maps

in large-scale environments.

Other representations model the robot’s operational environment as set of landmarks

and their geometric positions (Montemerlo et al. 2002, Choudhary et al. 2015). While

in topological maps the nodes relative positives are stored and used for localisation and
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navigation from a node to another, the positions stored in landmark maps are global, i.e.,

within the same reference frame.

Figure 2.7: Example of a topological map over an occupancy grid (Fentanes et al. 2015).

While the aforementioned world models rely exclusively on an environment representa-

tion, some authors propose to combine the advantages of different environment represen-

tations to improve the performance of mobile robots in large environments. A remarkable

work on hybrid representations is presented by Kuipers & Byun (1991), which proposes

to use a hierarchical description of the environment based on a metric, topological, and

semantic level. In this model, the different locations in the environment are described

using not only their metric coordinates but also the different features. The role of the

topological level is to establish a relationship between the different locations and repre-

sentations. Based on the previous paradigm, Bosse et al. (2003) developed the Atlas

framework, which demonstrated its ability to represent large environments. Krajńık et al.

(2010) showed that a topological/landmark based representation allows ground and aerial

robots to reliably operate in a large outdoor environment over long periods of time.

Strategies and Environment Representations for Changing Environments

Once robots have attained the ability to operate for longer periods of time, the effects of

the environment changes have to be taken into account. The previously described models

represent the environment as a static structure, an assumption which tends to be violated

during long-term deployment of mobile robots in human-populated environments. Thus,
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to achieve long-term autonomy, a robotic agent must be able to deal with and adapt to

the environment changes, which can be achieved by modelling the environment without

ignoring the dynamics.

The first approaches that attempted to model environment changes were aimed at

short-term changes. In these methods, dynamic objects are identified and then removed

from the world model (Hahnel et al. 2002, Wolf & Sukhatme 2005), other approaches

used these dynamic objects as moving landmarks (Wang et al. 2007). However, some

dynamic objects do not move at the time of mapping and, consequently, the robot needs

further observations to identify them. Ambrus et al. (2014) propose to process several 3D

point clouds of the same environment obtained over a period of several weeks to separate

movable objects and refine the model of static environment structure at the same time.

The resulting model of the static part of the environment is named metaroom and an

example is shown in Figure 2.8.

Figure 2.8: Example of a metaroom (Ambrus et al. 2014).

Other approaches do not explicitly segment movable objects but use representations

that are able to model large-scale, substantial environment changes over long time peri-

ods. Some authors (Biber & Ducket 2009) represent the environment dynamics by multiple

temporal models with different timescales, and Dayoub & Duckett (2008) use a ranking

scheme that allows to identify environmental features that are more likely to be stable in

long-term. Churchill & Newman (2013) propose to cluster similar observations at the same

spatial locations to form ‘experiences’ which are then associated with a given place and
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show that this approach improves autonomous vehicle localisation. Tipaldi et al. (2013)

represent the states of the environment components (cells of an occupancy grid) with a

hidden Markov model and show that their representation also improves localisation. Sim-

ilarly, in the model proposed by Saarinen et al. (2012), each cell in the occupancy grid

stores not only the probability of it being occupied but also the likelihood of the cell to

change after a given time. Kucner et al. (2013) propose a method that learns conditional

probabilities of neighbouring cells of an occupancy grid to model typical motion patterns

in dynamic environments. Neubert et al. (2015) proposed a method that can learn appear-

ance changes based on a long-term dataset collected across multiple seasons and use the

learned model to predict the environment appearance for a given time. Another approach

that possesses the ability to predict environment changes is proposed by Rosen et al.

(2016), which uses Bayesian-based survivability analysis to predict which environment

features will still be visible after some time and which features will disappear.

Another family of algorithms aims at creating models of the environment that allow

them to predict where and when to make observations of specific phenomena within the

environment. Typically, these algorithms rely on Gaussian Processes (Singh et al. 2010,

Marchant & Ramos 2012), which allow the robot to learn patterns of environment changes.

Even though these approaches are able to build models of given phenomena, these models

are not used by the robot itself to improve essential competences such as localisation.

Biswas & Veloso (2017) propose to model and classify the environment changes in order

to improve the robot’s localisation during its long-term deployment. For this purpose, a

Varying Graphical Network is used to learn and classify the different types of changing

features in the environment. These can range from short-term to long-term features or

even static ones. This model is then combined with an episodic non-Markov algorithm that

maintains beliefs of the previous pose estimates of the robot when observing unmapped

objects. This results in a decrease of the robot’s localisation uncertainty when exposed to

environment changes.

Finally, Krajńık et al. (2014a) propose to represent the environment dynamics in the

spectral domain and apply this approach to image features to improve localisation (Krajńık

et al. 2014b), to occupancy grids to reduce memory requirements (Krajńık et al. 2014c),

and to topological maps to improve both path planning (Fentanes et al. 2015) and robotic

search (Krajńık et al. 2015a). While being applicable to most environment models used
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in mobile robotics, the aforementioned method suffers from a major drawback due to

its reliance on the traditional Fast Fourier Transform (FFT) method, which requires the

environment observations to be taken on a regular and frequent basis. This means that

the robot’s activity has to be divided into a learning phase, when it would frequently visit

individual locations to build its dynamic environment model, and a deployment phase,

when it would use its model to perform useful tasks. This division means that while the

robot can create dynamic models, which are more suitable for long-term autonomy, it

cannot maintain them during subsequent operation. Thus, the robot does not adapt to

dynamics that were not present during the learning phase. This model is discussed in

more detail in Chapter 3.

2.2.1 Exploitation vs. Exploration Dilemma

On one hand, the mobile robot needs to perform useful tasks and increase its performance

by exploiting its internal models, but on the other hand, these models need to be learnt

and kept up to date during the entire deployment. The long-term deployment of mobile

robots in human-populated environments must take into account the need to balance

exploitation of what the robot already knows and exploration that allows to select better

actions in the future (Sutton & Barto 1998). This issue is addressed by Hawes et al.

(2016), which describes a long-term deployment of a mobile robot in a care centre. Several

tasks need to be performed by the robot but there is one that directly addresses the

exploration/exploitation dilemma (Hanheide et al. 2017). Here, the mobile robot has to

act as an information terminal providing information services to visitors. This task is

scheduled at different locations in order to increase the number of interactions. However,

the scheduler must address two different objectives: exploration and exploitation. The

first one creates and maintains a spatio-temporal model of the interactions, providing

interaction likelihoods for the different locations and times. The second one aims at

visiting the different locations at times when the likelihood of observing interactions is

uncertain. Based on the above work, Kulich et al. (2016) developed and evaluated several

exploration/exploitation strategies, environment models, and path planning algorithms

to increase exploitation, or more specifically, to increase the number of interactions with

humans.
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In order to increase the interactions, the robot needs to learn human behaviours, more

specifically where and when it is more likely for a human to ask for assistance. However,

this needs to be achieved in parallel with the human interactions as well as the other

robot’s daily tasks.

2.3 Summary

Related work on mapping and planning strategies for human-populated environment has

been presented in this chapter. Several concepts and issues involved in exploration strate-

gies and the existent world models have been introduced and analysed. This is fundamental

to understand the need for novel strategies and models that can cope with environment

changes and consequently enable long-periods of autonomous operation. Although the

field of long-term autonomy is still recent, most of the challenges and guidelines to over-

come them were firstly presented by Austin et al. (2001). The authors claim that only

when a “system that can run 24 hours a day, 7 days a week for up to a year with no

supervision” is achieved, the field of mobile robotics has reached “maturity”. Another

relevant point, which is also the main motivation of this thesis, is that mobile robots must

be able to deal with dynamic environments not only to detected dynamic objects, such

as people, but also to localise in a changing environment and to maintain a world model

over time. Finally, the same way humans spend time studying and learning about nature

and its physical phenomena, the long-term deployment of mobile robots allows to gather

data that, consequently, enables a mobile robot to learn about its environment.

Recently, Cadena et al. (2016) presented a survey that not only covered the current

state of SLAM strategies but also their scalability to long-term mapping and the future of

these strategies. New research questions that enable the development of autonomous self-

learning mobile robots in changing environments are presented, such as the need to develop

SLAM approaches that are fail-safe and failure-aware, approaches that automatically learn

the best parameters while performing the mapping task and finally the ability to cope with

the environment changes in order to operate over long periods of time. While not directly

addressing all aforementioned issues, Biswas & Veloso (2016) have shown that self-learning

systems that aim at understanding environment changes enable the successful operation

of mobile robots over long periods of time.
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Having this in mind, in the next chapter, the main foundations that support lifelong

exploration strategy proposed in this thesis are described. These foundations are in line

with the above considerations on the field of long-term autonomy.
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3
Main Foundations

This chapter provides a detailed description of the methods and models used in the devel-

opment of the proposed lifelong exploration strategy. As stated previously, a map-driven

exploration strategy aims at building a model of an unknown environment, which is then

used by a mobile robot to decide where to perform the following observations. Thus, the

development of any map-driven exploration strategy has to take into account the way

the robot’s operational environment is represented. The lifelong exploration for mobile

service robots proposed in the scope of this thesis was built upon a spatio-temporal model

named Frequency Map Enhancement (FreMEn) (Krajńık et al. 2014a), which enables the

extension of information-based concepts into time and, consequently, enables the mobile

robot to predict how much information it will obtain by observing a specific location at a

given time and, therefore, decide where and when to observe the environment. While the

aforementioned model is not the main contribution of this thesis, due to the simultaneity

of its development, it was highly influenced by the requirements of lifelong exploration.

Not only does the lifelong exploration strategy require a spatio-temporal representation
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that can model the environment states over time and reason about when and where to

make new observations but the model itself requires the possibility of efficient integration

of sparse and irregular observations gathered over long periods of time.

This chapter is crucial to understand the concepts and methods used in this thesis

and is organised as follows. Firstly, an overview of the collaborative project which this

thesis is part of is conducted, giving an overview of the goals and allowing to contextualise

the different methods used in the development of the lifelong exploration strategy as well

as the experimental conditions. Secondly, a detailed description of the FreMEn model on

which the proposed exploration was built is presented. Finally, the concept of information,

data and entropy are explained and linked to the aforementioned spatio-temporal model.

3.1 The STRANDS Project

This thesis was carried out as part of the STRANDS R&D project funded under the Eu-

ropean Community’s Seventh Framework (FP7/2007-2013), grant agreement No. 600623.

This section provides a brief description of the project and its aims, which contributed

to establishment of the goals and contributions of the work presented in this thesis. The

main aim of the STRANDS project, which stands for Spatio-temporal Representation and

Activities for Cognitive Control in Long-term Scenarios, is to enable mobile robots to

intelligently adapt and operate over long periods of time in human-populated changing

environments by learning from their long-term experience (Hawes et al. 2016).

To achieve long-term adaptive behaviour in changing environments, the mobile robot

has to understand how the environment changes while at the same time exploit the knowl-

edge that is obtained through the entire duration of its deployment. The long-term de-

ployment not only enables the mobile robot to experience novel and unexpected situations,

but also provides the opportunity to learn how to adapt to them. Figure 3.1 presents an

overview of the STRANDS system. In this system, the robot takes actions in a never-

ending lifelong learning phase that happens while performing its duties, i.e. the mobile

robot is continuously learning from its experience. Thus, the exploitation of the long-term

knowledge gathered during this life-long learning stage allows the mobile robot to identify

patterns of change and recurring events in the environment that are then used to improve
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the robot’s performance. These patterns can be identified in several domains that range

from human activities to objects or even certain physical phenomena.

STRANDS
Project

Robust,
Intelligent,

Autonomous
Behaviour

Long run-
times in
everyday

environments

Novel oppor-
tunities to

learn structure
environment

Exploitation
of structure
for improved
performance

Figure 3.1: The STRANDS project overview (Hawes et al. 2016).

The system developed in the scope of the STRANDS was entirely developed using the

Robot Operating System (ROS) framework. It consists of several layers, where each layer

provides different levels of knowledge abstraction. These layers range from perception,

navigation and localisation, executive control to representation and analysis. Due to the

nature of the STRANDS system, the exchange of information happens in both ascending

and descending ways, i.e., the lower layers provide knowledge to the top layers and the top

layers provide methods that enable the robot to improve its own knowledge and behaviour.

All the methods developed in the scope of the STRANDS project are evaluated in two

highly challenging real-world scenarios: a security scenario and a care scenario. In both
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scenarios, the robot needs to perform tasks that benefit the end-user without having a

negative impact on the end users’ daily routines. The deployment in the security scenario

took place at G4S headquarters in Crawley, United Kingdom, during the first two deploy-

ments and later on at the Transport Systems Catapult offices in Milton Keynes, United

Kingdom, as shown in Figure 3.2a. As part of the security deployment, some of the mo-

bile robot tasks include learning how the environment changes, learning to identify and

segment the dynamic parts in the environment from the static ones, learning the objects’

appearance and also people. While the security scenario does not provide many chances

for the robot to fully interact with humans while performing different tasks, the care sce-

nario represents a more complex environment, where people with different disabilities and

different cognitive capabilities are found. The care scenario took place in a care home

named “Haus der Barmherzigkeit” situated in Vienna, Austria, as shown in Figure 3.2b.

In the care scenario, the robot takes an active part in some of the activities available for

the patients, playing a key role in the therapies while enriching the experience for both

patients and staff. For example, walking activities are carried out every week in order to

keep the residents active but also to stimulate them cognitively. In this specific example,

the robot takes part of the activity by playing songs and displaying several activities on

its display that allow the patients to interact with while also enriching the interaction

between patients and patients and the therapists. Other relevant task included using the

mobile robot as a mobile info-terminal that displays relevant information in the different

locations of the care home.

While in this scenario most of the robot’s duties imply human-robot interaction, the

security scenario aims at learning objects from changes observed in the robot’s sensor

data. The complexity of tasks in this scenario is significantly higher due the nature of the

environment and people involved. At the moment, the security scenario aimed at learning

objects, while the care scenario aimed at interacting directly with the assisting therapists

and patients. The robot has been deployed in both scenarios over several weeks, increasing

the deployment times gradually from year to year. For the first year, the deployments took

15 days and were aimed at patrolling tasks and detecting people and environment changes.

The second year deployment took 30 days and was aimed and detecting human activities,

creating Qualitative Spatial Representations (QSR) and learning objects. Finally, the last

two deployments with durations of 60 and 120 days were aimed at exploiting the robot’s
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knowledge in order to predict environment changes, learn about objects and detect usual

events and activities.

(a) Security scenario. (b) Care scenario.

Figure 3.2: Photos of the real-world environemnts used in STRANDS.

3.2 Spectral-based Temporal Representations

Many mapping approaches assume that the principal components of a particular environ-

ment model are independent and can be in two distinct states. For example, cells of an

occupancy grid are occupied or free, edges of a topological map are traversable or not,

doors are opened or closed, rooms are vacant or occupied, landmarks are visible or oc-

cluded, etc. In a typical situation, the state of each model component is uncertain because

it is measured indirectly by means of sensors which are affected by noise. A common way

to represent the uncertainty in the state estimate of the jth world model component is by

its associated probability pj . This allows to counter the effect of noisy measurements by

employing statistical methods, such as Bayesian filtering. While Bayesian filtering meth-

ods allow to keep up with a changing environment, the mathematical foundations they

are based on assume a static world, i.e. the pj of the world components are assumed to be

constant. As a result, a change in the environment causes the old state to be “forgotten”

over time.

Assuming pj as a function of time leads to the need to outline a suitable representation

for pj(t). Although one could simply store the entire history of the environment model,

such an approach would quickly face memory limitations. Typical static 3D models of

complex environments contain millions of distinct components and storing the entire model
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history is infeasible. Moreover, in the context of robotic mapping, it is not clear how to

utilize the past estimates of the environment models, i.e. what is the relation of the past

models to the current state of the world.

The approach described in the section assumes that the variations of the environment

are caused by a number of unknown processes, which might be periodical. Thus, by

identifying the influence and periodicity of these processes, the probabilities pj(t) can

then be obtained from their description.

The Fourier Transform (FT) is a well-established mathematical tool widely used in the

field of statistical signal processing. It transforms a function of time f(t) into a function

of frequency F (ω), i.e. F (ω)=F(f(t)). The function F (ω) is commonly referred to as

the frequency spectrum of f(t). The FT is invertible, and therefore, one can recover the

function f(t) from its spectrum F (ω), i.e. f(t) = F ′(F (ω)). If one wants to analyse or

alter the periodic properties of a process characterized by a function f(t), it is possible to

calculate its spectrum F (ω), perform the analysis or alteration in the frequency domain,

and then transform the altered spectrum F ′(ω) back to the temporal domain. Such a

process is referred to as spectral analysis.

Typically, F (ω) is a complex-valued function, whose absolute values and arguments

correspond to the amplitudes and phase shifts of the frequency components ω. Considering

that f(t) is a real periodical discrete function, the spectrum F (ω) can be represented by a

finite set of complex numbers. More details about the FT and Discrete Fourier Transform

(DFT) are given in Appendix A.

3.2.1 Notation

To describe the spectral model used in this thesis, the following notation is used:

• sj denotes the state of the i-th cell in a grid;

• pj denotes the probability of the i-th state in a grid;

• l denotes the set of most prominent coefficients;

• S denotes the set of world states;

• P denotes the set of prominent coefficients;
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• O denotes the set of outliers;

• ς denotes a saturation function;

• ω denotes the angular frequency;

• A denotes the frequency spectrum of observations;

• B denotes corrective spectrum;

• C denotes the corrected frequency spectrum;

• α denotes the components of spectrum of observations;

• β denotes the components of corrective spectrum;

• µ denotes the mean probability;

• H denotes the information gain.

3.2.2 Frequency Map Enhancement

For simplicity, this approach will be explained using an occupancy grid, which is repre-

sented as a set of independent components that can be in two distinct states. Each grid

cell state sj = {occupied, free} is assumed not to be constant, but a function of time,

i.e. sj(t). Consequently, the uncertainty of the state sj(t) is represented by its probability

pj(t). Additionally, working under the assumption that the occupancy of each grid cell

is affected by a set of unknown periodical processes, which can be identified by the FT,

and that the occupancy of individual cells is independent from each other, the Fourier

transform on the state s(t) of a single cell will be demonstrated in the following section.

The spectral model

The main idea behind the proposed model is to measure the temporal sequence of states

s(t) and calculate their frequency spectrum by means of a FT as S(ω) = F(s(t)). Then,

the l most prominent (i.e. of highest absolute value) coefficients Si of the spectrum S are

selected and stored along with their frequencies ωi in a set P. The function coefficients

stored in P are then used to recover the p(t) by means of the Inverse Fourier Transform

p(t) = ς(F ′(P(ω))), where ς denotes a saturation function that ensures that p(t) ∈< 0, 1 >.
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One can easily verify that P (s(t) = occupied) = p(t) ≥ 0 and P (s(t) = occupied) +

P (s(t) = free) = p(t) + 1− p(t) = 1, i.e. p(t) satisfies Kolmogorov’s axioms and therefore

is a probability. Thresholding the probability p(t) allows to calculate an estimate s′(t)

of the original state s(t). In order not to lose any information of the original signal, the

differences between s′(t) and s(t) are stored in an outlier set O, which is ∆-encoded, see

Figure 3.3.

Thus, the proposed model of the state consists of two finite sets P and O. The set P

consists of l triples abs(Pi), arg(Pi) and ωi, which describe the amplitudes, phase shifts and

frequencies of the model spectra. Each such triple might be interpreted as the importance,

time offset and periodicity of one particular periodical process influencing the state s(t).

The number of modelled processes l (i.e. the number of triples in P) is referred to as the

‘order’ of the spectral model. The set O represents a set of k time intervals, during which

the state s(t) did not match the state s′(t) calculated from p(t). Internally, the set O is

implemented as a sequence of values, indicating the starts and ends of time intervals when

the predicted and observed state did not match, i.e. s′(t) 6= s(t).

Model adaptation

To be able to build, maintain and use this representation, four operations are defined:

reconstruction of the original state s(t), addition of a new measurement, model update

and prediction of the future state with a given confidence level. The aforementioned

representation allows to retrieve the cell state s(t) by means of the following equation:

s(t) = (F ′(P) > 0.5)⊕ (t /∈ O), (3.1)

where ⊕ is a XOR operation. The idea behind this equation is to reconstruct the proba-

bility p(t) from the spectrum P, set s(t) = 1 if p(t) exceeds 0.5 or s(t) = 0 otherwise and

finally, to negate s(t) if t belongs to the set of outliers O.

Whenever a real state sm(t) is measured, s(t) is calculated by means of Equation (3.1)

and if it differs from sm(t), the current time t is added to the set O:

sm(t) 6= ((F ′(P) > 0.5)⊕ (t /∈ O))→ O = O ∪ t. (3.2)
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Since p(t) does not predict s(t) with perfect accuracy, the set O is likely to grow larger as

measurements are added.

To update the model, s(t) is reconstructed in the desired time interval < tstart, tend >

and its spectrum P calculated. Again, the l coefficients with highest absolute values |Pi|

are selected and the outlier set O reconstructed by means of Equation 3.2. In a typical

situation, the updated spectrum P would reflect s(t) more accurately, causing reduction

of the set O. Note that the spectral model order l of the updated model can differ from

the order of the original one.

The outlier set O described above is part of the original FreMEn model description and

allows to fully reconstruct the original signal. Thus, it is only described to fully understand

the foundations of the FreMEn and not used in the development of the lifelong exploration

strategy.

Prediction

Note that Equation (3.1) allows for calculating s(t) for any t and that the threshold value of

0.5 can be set arbitrarily. In fact, a threshold c such that P (s(t) = occupied) > c represents

a confidence level of the grid cell being occupied at time t. Therefore, Equation (3.1) can

be used for future prediction of s(t) with a certain confidence level c. In the case of

prediction, the outlier set O is not included in the calculation and the predicted state

might not match the real state, so it is denoted s′(t, c). To simplify notation, s′(t) is

defined as s′(t, 0.5). Therefore, s′(t, c) and s′(t) can be calculated as follows:

s′(t, c) = F ′(P ) > c. (3.3)

An example of the third-order spectral model which represents a quasi-periodic func-

tion is provided in Figure 3.3. Since the observed processes are not identified perfectly,

one can expect that the prediction becomes less and less accurate over time. However,

modelling the uncertainty of the model prediction is outside the scope of this thesis. More

details about this spatio-temporal representation can be found in video created by Krajńık

et al. (2015b).
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Measured state − s(t)
Probability function − p(t)

Estimated state − s’(t)
Outlier set − O
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Model coefficients
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Parameters of the learned model

abs(P): { 196,   46,   23 }
arg(P): {  0,  1.57, 1.57 }
Frequencies: { 0, 0.2, 0.6 }
Outlier set O: { 3.7, 3.8 }

Figure 3.3: An example of the measured state and its spectral model. The left part shows
the time series of the measured state s(t), probability estimate p(t), predicted state s′(t) and
outlier set O. The upper right part shows the absolute values of the frequency spectrum of s(t)
and indicates the spectral coefficients, which are included in the model.

3.2.3 FreMEn: Non-uniform Sampling

Similarly to the aforementioned spectral representation (Krajńık et al. 2014a), the pro-

posed method still aims to identify the periodic patterns of the environment states and

use them for predictions. Unlike the previous representation in (Krajńık et al. 2014a),

the method proposed here allows to update the underlying dynamic models incrementally

from sparse, irregular observations. This method represents each state by the number of

performed measurements n, its mean probability µ, and two sets A, B of complex numbers

αk and βk that correspond to the set Ω of periodicities ωk that might be present in the

modelled environment. Initially, the mean value µ is set to 0.5 and all αk,βk are set to 0,

which corresponds to a completely unknown state.

Addition of a new measurement

Each time a state s(t) is observed at time t, its representation is updated, i.e. the number

of measurements n, the mean µ and values of A, B, which are actually a sparse spectral
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representation of s(t), as follows:

µ ← 1
n+1 (nµ+ s(t) ),

αk ← 1
n+1 (nαk + s(t)e−jtωk ) ∀ωk ∈ Ω,

βk ← 1
n+1 (nβk + µe−jtωk ) ∀ωk ∈ Ω,

n ← n+ 1.

(3.4)

The proposed update step is analogous to incremental averaging – the absolute values

of |αk − βk| actually correspond to the average influence of a periodic process (with a

frequency of ωk) on the values of s(t). Note that the size of the representation of the state

(i.e. the number of elements in A, B) is independent of the number of observations, which

means that the memory requirements of the proposed representation do not grow over

time. Note also that if the times of observations t and frequencies ωk are equally spaced,

i.e. t = i∆t and ωk = i∆ω, i ∈ N, then (3.4) corresponds to the traditional DFT.

Performing predictions

To predict the value of state s(t) for a future time t, a set C consisting of γk = αk − βk
is first created and then sorted descendingly according to the absolute values |γk|. Then,

the first m elements γl are extracted along with their corresponding frequencies ωl and

the state’s probability over time calculated as follows:

p(t) = ς(µ+
m∑
l=1

|γl|cos(ωkt+ arg(γl))), (3.5)

where ς(.) ensures that p(t) ∈ [0, 1]. The choice of m determines how many periodic

processes are considered for prediction. Setting m too low would mean that might not

include some environment processes that actually influence the state, while setting m too

high might include components of C that are caused by sensor noise. An optimal value of

m can be determined by a cross-validation scheme.
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3.3 3D Spatio-temporal Representation

One of the goals of the proposed lifelong exploration strategy is to efficiently build, main-

tain and update a 3D spatio-temporal representation of the robot’s operational environ-

ment. Thus, a method that enables efficient volumetric representation of dynamic three-

dimensional environments over long periods of time is proposed and evaluated in this

section. While the previous model description aimed at understanding how to model the

environment changes based on their frequency analysis, its extension to 3D requires a

study on the computational power and memory requirements.

One of the most popular environment representations is the occupancy grid, which al-

lows for efficient probabilistic sensor fusion, motion planning, localisation and exploration.

The main drawback of occupancy grids is their low-memory efficiency because they rep-

resent large, empty areas of the environment by a large amount of empty cells. This is

mitigated by the so-called Octomap (Hornung et al. 2013) framework that locally adapts

the grid resolution to the level of detail required. Octomaps have shown to be able to

represent large-scale environments with a fine level of detail on standard computational

hardware. The combination of FreMEn with the volumetric environment model called

Octomap results in an environment model, where the occupancy of each cell (voxel) is a

binary function of time, i.e. the occupancy of ith cell is represented as si(t). Thus, the

efficiency of Octomaps to model large spatial scales and the efficiency of FreMEn to rep-

resent long periods of the time are combined in an efficient spatio-temporal environment

model.

3D FreMEn-based Occupancy Grid

The occupancy of each cell (voxel) stored in an Octomap is considered to be a binary

function of time, i.e. the occupancy of ith cell is represented as si(t). Thus, this approach

takes a series of Octomaps observed over time and builds a temporal model of each observed

voxel. After that, the system allows to calculate the state of the individual voxels and

recover the Octomap for any given time.

To evaluate the ability of the uniform FreMEn method to represent the long-term

dynamics of three-dimensional environments, two million occupancy grids of a university

office were collected over the course of 112 days. The environment consisted of personal
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office with a working desk and meeting table. This dataset was collected by a stationary

RGB-D camera that captured and stored a depth image every five seconds. These range

measurements were integrated into a FreMEn occupancy grid, where the occupancy of each

cell was modelled by the proposed method. Fine-grained occupancy grids captured by the

RGB-D camera are shown in Figure 3.4 (for the purpose of visualization, the resolution

of the grids shown is higher than those in the dataset). Each day, the spectral model

(a) Empty office 3D grid. (b) Occupied office 3D grid.

Figure 3.4: Fine-grained 3D occupancy grids of the ‘Office’ dataset.

of the entire grid was updated and the resulting representations were saved in separate

files. To evaluate the efficiency of the resulting 4D representations, the compression ratios,

estimation precisions, and times needed to calculate the update were measured.

The compression ratio evaluation was based on the size of the file that contains the

spectral model. Assuming that a file of size z[bits] contains a FreMEn model of an envi-

ronment with n states and m observations, and that a traditional model would use one

bit per observation, the compression ratio is simply:

r =
mn

z
. (3.6)

The compression ratios were calculated simply by comparing the size of the saved

files to the theoretical size of a traditional model by Equation 3.6, where the number of

modelled states n, i.e. the number of cells in the grid was ∼213 000 and 17 200 observations

per day, were considered. This means that storing all the observed states would require
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∼500MB per day and a naive representation of the entire dataset would require around

50 GB of storage space. The estimation error of the entire model was calculated as an

average of estimation errors of the individual cells that changed at least once – calculating

the average estimation error for all cells would result in small numbers, because most of

the cells represent space that is always empty. Finally, the update time was obtained by

direct measurement of the time needed to update the spectral models of all the grid cells.

These experiments were performed on an i7-4500U processor with 16 GB of RAM.
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Figure 3.5: Computational and memory requirements of the FreMEn spatio-temporal occu-
pancy grids.

Five types of spectral models were calculated. The first, ‘lossless’ model maintains not

only the spectral representation, but also an outlier set O of each cell, and can recover all

the measurements. The other, ‘lossy - order 1-5’ models did not use the outlier set and

maintained 1 to 5 spectral components of the dynamic cells. The dependencies of the sizes

of the ‘lossy’ models on the length of the dataset represented are shown in Figure 3.5. One

can see that after some initial growth, the storage requirements of the models stabilize at

the order of megabytes. The growth of the ‘lossy’ models is caused by the fact that longer

data collection means that more cells change their states at least once, which causes the

method to extend their temporal models.

Given that the naive representation of the dataset grows by 500 MB per day, the

compression rates of the ‘lossy’ models actually grow in time (see Figure 3.6) and are in

orders of 10 000. The ‘lossless’ representation grows linearly with time at a rate of 2 MB
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per day achieving compression rates of 1:250. Figure 3.5 also shows that the time needed to

update the model, which represents 4×1011 cell observations is reasonably short – creation

of a 16-week-long spatio-temporal model takes less than one hour. Using the non-uniform,

incremental Fourier Transform results in an update time that exhibits a similar trend to

the ‘lossy’ model sizes. This is caused by the fact that the number of cells for which the

transform has to be calculated increases over time, i.e. the same effect that causes the

growth of the ‘lossy’ models. Finally, the estimation errors of the spatio-temporal models
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Figure 3.6: Estimation errors and compression ratios of the FreMEn spatio-temporal occu-
pancy grids.

with different orders are presented in Figure 3.6, which shows that as the model includes

more spectral components, its estimation error and compression rates drop. The ‘Static’

model, which takes into account all the observations and calculates the probability of a

given state simply as the arithmetic mean of all its past observations, fails to correctly

estimate approximately 6% of the states, while the ‘lossy’ FreMEn estimates fail in 3% to

4% cases. This means that using the FreMEn method reduces the amount of incorrectly

estimated states by 30%-50%. Using the lossless method results in faithful (0% error) state

reconstruction at the expense of a lower (1:250) compression rate. However, the number of

observations per day performed in these experiments is excessive when using this approach

in service mobile robots. In fact, the model error can be decreased by carefully selecting

the times of observation and thus the need to develop novel strategies that allow to build

and update spatio-temporal models. The results indicate that representing an increased
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rate of the environment changes would impact the error rate of the ’Static’ model more

than the FreMEn one. Also, an environment poor in periodicities would lead to similar

performance between the ‘Static’ and the FreMEn models.

3.4 Information Metrics for Mobile Robotic Exploration

In Chapter 2, a review of exploration strategies for mobile robots was presented. In this

review, the different strategies were categorised based on their planning approaches. Some

of these strategies were based on information theoretic metrics in order to plan where in

the environment to observe next. These family of strategies enabled the development of

the lifelong exploration strategy described in this thesis and, consequently, a brief overview

on information theory is required in order to understand the “mechanics” of the proposed

strategy.

3.4.1 Information and Entropy: the basics

The definition of entropy in information theory was firstly introduced by Shannon (1948)

and arose from the need to quantify information exchanged in distributed systems. While

there is no universal and acknowledged definition of information, its definition is related

to the concept of data. Data can be seen as the most basic building block in information

theory. It consists of a set of symbols or facts. On the other hand, information is built

upon these facts and provides a semantic meaning or context. Looking at the example of

two agents continuously exchanging messages, even if the amount of data in the messages

is constant (the message size does not change over time), the information encoded in the

message might change, providing more or less information. Cuff (2016) states that “the

more surprise we experience upon observing a particular outcome, the more information

provided by that outcome”, which is quantified by Shannon’s entropy definition and fits

perfectly in mobile robotic exploration.

For the case of mobile robotic exploration, and assuming the robot’s operational envi-

ronment is represented by an occupancy grid, each cell can be either occupied or free, and

thereby only one bit is required to encode all the information. The Shannon’s entropy is
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calculated using Equation 3.7.

Hj = −pj log2(pj) [bit] (3.7)

Taking into account that being occupied or free are mutually exclusive events, i.e.

pocc = 1− pfree and pfree = 1− pocc, the calculation of the entropy for the jth cell in the

grid is as follows:

Hj = −pj log2(pj)− (1− pj) log2(1− pj) [bit] (3.8)

As the probability of a cell being occupied is close to 0 or 1, the entropy H(p) tends

to zero, as shown in Figure 3.7. Thus, the observation of a fully explored location by the

robot will result in no surprise and likewise the robot does not receive any information.

On the other hand, if the mobile robot observes an unexplored area (p = 0.5), the robot

receives 1 bit of information for each unknown cell observed.
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Figure 3.7: Entropy evolution according to the proability of occupancy in a cell.

3.4.2 Entropy Over Time

The above example was taking into account that the environment representation does not

consider the temporal aspects, thereby, the occupancy of the cell does not change over

time. However, the FreMEn model, described in Section 3.2.2 allows to have probabilistic

functions of time that can be easily combined with the concept of entropy. Equations

(3.3) and (3.5) allow to calculate the probability of occupancy of the ith grid cell. Given
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that a robot placed at a particular location can observe a set C of the grid cells and the

observation will cause the probability of these cells to approach either 0 or 1, the overall

entropy reduction due to that particular observation can be calculated as

H(C, t) = −
∑
ci∈C

p(t) log2 p(t)[bit], (3.9)

which corresponds to the expected information gained by observing a set of cells C at a

time t.

The information-gain strategies take into account the experiences the robot has gath-

ered so far to plan when and which location to visit. These strategies attempt to reduce

the uncertainty of the environment models by planning the observations that maximize

the potential information gain, assuming that direct observation of particular states at a

given time reduces the entropy of these states to zero. Thus, the information gained by

the observation of a particular location L at a time t can be estimated as the sum of the

entropies of the states observed at a given location as

I(L, t) = −
∑
i∈L

(pi(t)log2(pi(t)) + (1− pi(t))log2(1− pi(t))). (3.10)

3.5 Summary

In this chapter, the foundations and tools on which the main contributions of this thesis are

built were introduced. The FreMEn model enables the representation of the environment

states over time. This enables the efficient storage of previous observations, the repre-

sentation of environment states as probabilistic functions of time and prediction of these

states for a given time in the future. Moreover, the combination of the FreMEn model

with a 3D representations was presented and a study that evaluates its computational

and memory requirements using long-term datasets was conducted. Finally, the main

concepts behind information theoretic exploration strategies were described and linked to

the aforementioned spatio-temporal model.

To sum up, this chapter provides the theoretical background that enabled the develop-

ment of a lifelong exploration strategy for mobile robots in changing environments, which

is described in more detail in Chapters 5 and 6.
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4
Benchmarking Long-term Robot Behaviours

While the previous chapter described the underlying methods of the exploration strategy

proposed in this thesis, the current chapter focuses on the tools that enable its evaluation

and comparison with other strategies.

Over the past years, the number of service mobile robots being deployed in real world

scenarios has increased significantly. However, as stated in Chapter 1, long-term deploy-

ment of these service robots has led to the necessity of developing novel strategies that

are able to deal with the environment changes and the consequent uncertainty. Thus, the

field of long-term autonomy has been focusing on novel mapping, navigation and plan-

ning algorithms that are able to deal with the changes in the environment and allow the

robot to perform tasks reliably even if unexpected events occur, as reviewed in Chapter 2.

The outcome of these strategies is typically an environment representation that not only

takes into account the spatial configuration of the world but also the way the environment

states change over time. While the literature is rich in benchmarking methodologies for

approaches that assume the environment to be static, the evaluation of lifelong learning
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strategies such as the one proposed in this thesis is still an open question. Typically, such

benchmarking strategies are built upon datasets in which the sensory data is recorded by a

robot with fixed behaviour (Howard & Roy 2003) and, consequently, the same sequence of

perceptions are fed into the algorithms. However, in the case of mobile robot exploration

strategies, the robot’s behaviour cannot be evaluated online or it needs to be changed

so it works with pre-recorded datasets. Additionally, these datasets do not include or

consider the environment states that are not covered by the robot’s field of view when

making new observations. In the case one needs to evaluate robot behaviour, then a high

fidelity simulation is needed. Furthermore, in the case of lifelong learning strategies, the

simulator must be able to simulate changes, since the environment states highly influ-

ence the robot’s decision making process. Thus, while datasets are typically suitable for

benchmarking localisation and mapping algorithms, simulators enable the benchmarking

of robot behaviour, such as navigation and exploration. Following this line of thought, to

benchmark lifelong approaches, in which the robot’s behaviour plays a key role, realistic

dynamic simulation frameworks are required.

The most common and accurate method to validate these models is to compare the

model error with respect to ground truth. Spatial-only methods only require the ground

truth to be built once due to the static world assumption. Replicating the same experi-

mental conditions in order to compare these methods is relatively easy. However, for the

long-term (spatio-temporal) case, the ground truth must be built over time due to the

changes in the environment that the robotic system should be able to deal with. Ad-

ditionally, the comparison between spatio-temporal methods should be performed under

the same conditions, which for real-world experiments can be difficult if not impossible

to replicate. For example, to ensure the same conditions for all teams in the 2014 Kinect

Autonomous Mobile Robot Navigation Contest (Microsoft 2014), the dynamics introduced

in the environment followed a strict sequence that precisely determined when, where and

who should move around. In general, this is not a feasible method when evaluating the

performance of autonomous systems over long periods of time. In most previous works on

long-term autonomy for mobile robots, pre-recorded datasets of robot sensory data were

used to evaluate state estimation algorithms such as mapping, self-localisation, people

tracking and activity recognition. However, these pre-recorded datasets do not permit the

experimenter to change the behaviour of the robot during the experiments. Simulation
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could be a very useful tool to allow long-term experiments to be repeated consistently in

reasonable time. However, building full 3D simulations for an extended period of time is

in itself a very costly exercise.

4.1 Proposed Method

To address the aforementioned issues, a benchmarking approach based on recorded long-

term datasets comprising high-level tracks of dynamic entities such as people, furniture

and other objects of interest is described in this chapter. Thus, the main difference between

the proposed datasets and the ones typically used for benchmarking is the “point of view”,

i.e., the datasets described in this chapter provide a complete overview of the environment

over time rather than having the sensory data recorded from the robot’s perspective only.

These datasets were captured using an additional sensor system composed of ambient

person-presence sensors (Fernandez-Carmona & Bellotto 2016) or hand-annotated images

from overhead fisheye cameras.

Moreover, they can be used either directly or by means of a 3D simulation framework.

High-level information about the changes in the environment can be given to the robot

directly through a virtual sensor, which allows to eliminate the influence of the perception

and localisation subsystems and focus on higher level planning. For example, Santos

et al. (2016) uses a virtual sensor that can detect a human in a given room with 100%

accuracy. However, the perception, localisation and navigation subsystems affect the way

the exploration system works, so a simulator that can use the semantic information about

the environment dynamics to generate a full 3D scene using geometric models of the

dynamic objects is necessary.

Also, since this data is somehow pre-processed, using the datasets directly allows to

benchmark only the lifelong decision-making strategy. On the other hand, the simula-

tion uses the aforementioned semantic information tracks based on real sensory data to

parameterise a full 3D simulation, which contains its own geometric models of the scene

background and the dynamic entities. This allows to achieve a realistic simulation of hu-

man spatio-temporal behaviour based on real-life dynamics rather than artificially gener-

ated dynamics, making the simulation a more accurate tool to compare different methods.

Moreover, the full 3D simulation enables the evaluation of all the modules that consti-
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tute an intelligent autonomous system such as the navigation algorithms, which require

decision-making and control of the robot, exploration or path planning, as well as state

estimation algorithms, such as 3D mapping and self-localisation.

4.2 Datasets

To evaluate the ability of the various temporal models and exploration strategies, three

datasets gathered over several weeks are proposed. The first, “Aruba” dataset was gath-

ered by a team at the Center for Advanced Studies in Adaptive Systems (CASAS) to

support their research concerning smart environments (Cook 2010). The second, “Bray-

ford” dataset was created at the Lincoln Centre for Autonomous Systems (L-CAS) for

their research on long-term mobile robot autonomy (Krajńık et al. 2014b). Finally, the

“Witham Wharf” was also recorded at L-CAS specifically to validate mapping strategies in

changing environments. The aforementioned datasets were processed so that the dynamics

of these environments are represented as visual-feature-based, semantic, topological and

metric maps (Krajńık et al. 2016).

4.2.1 Aruba

The ‘Aruba’ dataset consists of maps capturing 16-week long dynamics of a large apart-

ment that was occupied by a single house-bound person who occasionally received visitors.

An occupancy grid and a topological map were created for every minute of the 16-week

long period – the resulting dataset contains over 160 000 metric and topological maps.

Since the original dataset (Cook 2010) is simply a year-long collection of measurements

from 50 different sensors spread over an eight-room apartment, these maps had to be

created by means of simulation.

First, the events from the original datasets motion detectors were processed in order

to establish the location of the people in the flat for every minute of the 16 weeks. Then,

the flat was partitioned into ten different areas, where eight areas represent the rooms

and one corresponds to a corridor. Then a topological map that indicates the presence of

people in these locations was created as shown in Figure 4.1.

To obtain the metric representation, a simulated environment with the same structure

as the “CASAS” apartment was created, see Figure 4.2. Then the simulation was provided
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Figure 4.1: The Aruba dataset topological map.

with a sequence of person locations recovered in the previous step. As a result, the

simulated environment contains physical models of people at locations provided by the

real-world dataset, and thus it reflects the dynamics of the real apartment. A virtual

RGB-D camera equipped robot was also introduced into the virtual environment. Every

time the configuration of the simulated environment (i.e. locations of the people) changed,

the robot used its 3D sensors to create occupancy grids of the flat’s individual rooms.

Thus, occupancy grids that reflect the real environment dynamics minute-by-minute were

obtained for 16 weeks.

Figure 4.2: The Aruba 3D enviornment.
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4.2.2 Brayford

The Brayford dataset was originally collected for the purpose of benchmarking long-term

mobile robot localization algorithms in dynamic environments (Krajńık et al. 2014b). The

data collection was performed by a MetraLabs Scitos G5 robot equipped with an RGB-D

camera in a large, open-space office of the Lincoln Centre for Autonomous Systems. The

robot was set up to obtain RGB-D images of eight designated areas every 10 minutes

for a period of one week. Representative examples of the captured images are shown in

Figures 4.3. While the high-level environment model of this dataset contains informa-

Figure 4.3: Examples of Brayford dataset images.

tion about people presence at the individual locations, the states of the low-level model

represent the visibilities of image features. The resulting dataset contains more than

8000 feature-based and 8000 semantic maps collected over a period of one week (Krajnk

et al. 2017).

4.2.3 Witham Wharf

The “Witham Wharf” dataset consists of a description of more than 20 objects and hu-

man positions over time. The data acquisition was performed using two fish-eye cameras

installed on the ceiling, as shown in Figure 4.4, which took a snapshot of the environment

every second over 5 business days. The dataset consists of a log file containing the posi-

tions of several dynamic objects over time, which were obtained by manually annotating

the successive snapshots taken by the cameras. The objects’ positions were acquired from

videos recorded by two ceiling cameras, as shown in Figure 4.5.
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(a) Placement of the fisheye cameras in the en-
vironment.

(b) The Kodak PixPro SP360 camera used.

Figure 4.4: Setup used to record the “Witham Wharf” dataset.

Figure 4.5: View from one of the cameras installed in the L-CAS office.

4.3 Simulation Environments

The proposed benchmarking approach for lifelong strategies consists of two main modules:

1) a simulation environment that provides the geometry of the environment and 2) a

module that rearranges the dynamic entities in the environment over time according to

what has been captured by physical sensors installed in a real environment.

The simulation environment was based on MORSE (Echeverria et al. 2011), which

is part of the STRANDS project software (Hawes et al. 2016). However, any other 3D

simulation environment could be used, such as Gazebo. A 3D replica of the environment

was first created, see Figure 4.6. This replica was based on the office plans and the current
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furniture arrangement. Several dynamic objects were then added, such as chairs, laptops

and humans.

Figure 4.6: Simulated environment for the “Witham Wharf” dataset.

The configuration module controls the simulation by maintaining a list of all entities

and their positions in the environment, rearranging them in the environment according to

the logged events observed in the real world, which are stored in a file. The aforementioned

module uses the MORSE sockets middleware to send commands that reconfigure the

simulation so that it follows the real dynamics. Moreover, a software component that

allows to reconfigure the simulated environment on the fly was created. Combination of

the reconfigurable simulator with the aforementioned datasets allows to create a realistic

simulation that reflects the real-world dynamics. Thus, this simulation does not only

reflect the environment static structure but also simulates dynamic elements, such as

moving people, chairs, laptops and doors (see Figure 4.6).

The main advantage of the simulation is the possibility to obtain ground truth that

spans the entire space and time of the experiment. The ground truth for a single time

slot was obtained by configuring the simulation for a particular time and letting the robot

perform its 3D sweeps at several locations in order to obtain a complete overview of

the environment, as shown in Figure 4.7. This tool is available for download at https:

//github.com/santosj/lifelong_benchmarking.
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Figure 4.7: Simulation overview. Each entry in the dataset corresponds to a given re-
arrangement of all objects and human models in the environment.

4.4 Summary

This chapter described a method that allows to benchmark spatio-temporal strategies

in long-term deployments. The described framework has been used on two different 3D

environments, an apartment and an open office, which contain physical models of people

and objects’ locations that change according to what was observed by sensors installed in

both real-world environments. Moreover, additional datasets and 3D environments can be

easily added to the current framework and used to benchmark lifelong learning strategies

in different types of environments.

This benchmarking framework played a key role in the development of the lifelong

exploration strategy proposed in this thesis. More details on the experimental validation

of this strategy are provided in Chapters 5 and 6.
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Exploration Strategies for Long-term Deployments

As stated previously, mobile service robots have to cope with environmental changes in

order to operate safely and robustly in human-populated environments. Also, the majority

of mobile robot mapping approaches are built upon the assumption that the world is static,

and thus do not take into account the need to re-observe the environment and update the

world model when deployed over long periods of time. In Section 2.2, several approaches

that cope with changing environments were described, although the mobile robot does not

actively decide how to build and maintain the world model. In fact, these approaches are

typically validated using pre-recorded datasets, ignoring the impact of a decision-making

on the world model quality and the ability to use the model to improve the robot’s long-

term performance.

The primary goal of the lifelong exploration strategy proposed in this thesis is to

build, update and maintain a 3D spatio-temporal representation of the robot’s operational

environment, or, in other words, a 4D model of the world, while taking into account

the time constraints that arise from the robot’s daily duties. While the introduction of
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spatio-temporal world models enables the robot to learn about the environment changes,

strategies to efficiently and intelligently build and maintain these models are also required.

As seen in Section 2.1, classic exploration strategies aim at building a spatial model that

covers the robot’s entire operational environment, ignoring the fact the environment might

change after its completion. However, in order to keep the 4D representation up to date, an

exploration strategy has to reason about the times and become a never-ending exploration

task for the following reasons. Firstly, some areas of the operational environment are not

exactly predictable during certain times, which requires the robot to re-observe those

locations at the times when their state is uncertain. For example, even if the general

habits of a certain person are known, his/her presence at his/her workplace is uncertain

around the start and end of office hours, and thus, it makes sense to observe the workplace

during these times to further improve the 4D representation. Secondly, the patterns in

the environment dynamics might change and identification of new patterns requires re-

observation of the particular area at the right times. For example, the workplace might

later be occupied by a new employee with a different working pattern. Additionally, the

general structure of the environment can change due to reconstruction or displacement of

furniture.

Thus, the robot needs to take repeated observations of locations in its operational

environment over time in order to successfully build and maintain a spatio-temporal model.

This requires the robot to continuously explore the environment in addition to the other

tasks it was designed for. Therefore, lifelong exploration must become a part of the robot’s

daily routine that has to be carried out along with other tasks that the robot is required

to perform. The ability to build and maintain the aforementioned 4D representation

allows the mobile robot to better cope with changes in the environment and to perform

its daily duties efficiently. Hence, being able to build, maintain and reason over such

an environment representation plays a key role in achieving long-term operation without

requiring any major human intervention, i.e., long-term autonomy.

To further understand the requirements and challenges of a lifelong exploration strat-

egy that efficiently maintains a 4D world model, which accurately represents the envi-

ronment, a study on different spatio-temporal representations and exploration strategies

must be conducted. For this reason, before moving to a fully metric spatio-temporal rep-

resentation, one has to know which strategies and models are more suitable for lifelong
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exploration of changing environments. In order to efficiently understand the impact of the

different constraints and further understand the challenges of building and maintaining

spatio-temporal representations, one has to reduce the complexity of the problem. Thus,

in this chapter an investigation using high-level data representations is carried out. Addi-

tionally, the investigation conducted considers the mobile robot not only to have noise-free

sensors but also to know the topology of the environment a priori. Then, an evaluation

of all possible combinations of four different spatio-temporal models and five planning

strategies by their long-term performance, according to their ability to provide an accu-

rate environment model over time, is conducted. To complete this study, the exploration

versus exploitation dilemma is re-visited, and the impact of different exploration ratios on

the overall accuracy of the model is evaluated.

To sum up, this chapter presents a detailed description of the concept of lifelong

exploration as well as a study on a higher layer of abstraction in order to fully understand

how to achieve a 4D lifelong exploratory behaviour. This study has been presented in

(Santos et al. 2016, Krajńık et al. 2015c).

5.0.1 Notation

The notation used over the following sections to define the problem of lifelong exploration

and the models used are as follows:

• S denotes the set of world states;

• L denotes the set of locations to explore;

• l location to explore;

• ε denotes the model error;

• µ denotes the mean probability;

• T denotes the set of time slots to perform exploration;

• λ denotes the event rate;

• I denotes the information-gain.
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5.1 Problem Definition

The primary purpose of robotic exploration is to autonomously acquire a complete and

precise model of the robot’s operational environment. To explore efficiently, the robot

has to direct its attention to environment areas that are currently unknown. If the world

was static, these areas would simply correspond to previously unvisited locations. In the

case of dynamic environments, visiting all locations only once is not enough, because they

may change over time. Thus, dynamic exploration requires that the environment locations

are revisited and their re-observations are used to update a dynamic environment model.

However, revisiting the individual locations with the same frequency and on a regular basis

is not efficient because the environment dynamics will, in general, not be homogeneous

(i.e. certain areas may change more often and the changes occur only at certain times).

Similarly to the static environment exploration problem, the robot should revisit only the

areas states of which are unknown at the time of the planned visits. Thus, the robot has

to use its environment model to predict the uncertainty of the individual locations over

time and use these predictions to plan observations that improve its knowledge about the

world’s dynamics.

To tackle the problem of predicting environment uncertainty over time, the FreMEn

model described in Section 3.2.3 is used to model the probabilities and entropies of the

environment states as functions of time, as described in Section 3.4. Unlike the method

in (Krajńık et al. 2014b) that requires frequent and regular environment observations,

the method proposed in this chapter allows to incrementally and continuously update the

spatio-temporal model from sparse observations taken at different locations and times.

This eliminates the need for a separate training and deployment phase and allows inte-

gration of spatio-temporal exploration into the robot’s daily routine. Thus, the robot

can continuously refine its internal environment model and improve its efficiency from the

experience gathered over long periods of time.

5.1.1 Problem definition

Let us represent the environment as a set S of n discrete non-stationary independent bi-

nary states si(t) that are observable by a mobile robot through its sensors. The states si(t)

might represent the occupancy of individual cells in an occupancy grid, the traversability
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of edges in a topological map, the visibility of environmental features, etc. Since these

states are dynamic and the robot cannot observe all the states all the time, it main-

tains an internal environment model that is denoted as a set S ′, where each element s′i(t)

corresponds to the real-world state si(t). To represent the fact that the currently unob-

served states are uncertain, each state is associated with a probability value pi(t) such

that pi(t) = P (si(t) = 1). The probability function pi(t) and the way it is calculated from

the past observations of si(t) is referred as temporal model.

Let us define a location as a set of environment states that can be observed simul-

taneously, i.e. a location Lj is a subset of S, such that by visiting location Lj at time t,

observations of the states that belong to Lj are obtained. Given that the robot location

at time t is l(t), the robot can directly observe only the states si of location Ll(t) and the

states observable at other locations have to be estimated. Thus, the states of the robot’s

internal environment model are

s′i(t) =
si(t) if si ∈ Ll(t)
pi(t) ≥ 0.5 otherwise.

(5.1)

The purpose of the exploration process is to obtain and maintain as faithful an environment

model as possible, i.e. to minimize the difference between the states of the real environment

S and its model S ′. Technically, this corresponds to minimization of the model error ε(T )

calculated as the difference between the real and estimated states over the time period

[0, T ) as

ε(T ) =
1

T

T−1∑
t=0

n∑
i=1

|s′i(t)− si(t)|. (5.2)

Although the reduction of the error ε(T ) can be partially achieved by visiting the relevant

locations as often as possible, the robot has to perform other tasks and the number of

observations is typically limited. Thus, the robot has to carefully plan where and when

to perform observations so that it obtains the relevant data to create, maintain and refine

its spatio-temporal models of the environment. From a technical point of view, the robot

has to use its internal temporal models pi(t) to determine a sequence of locations l(t).

The way the robot plans the sequence of l(t) from pi(t) is referred to as its exploration

strategy.
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5.2 Alternative Models

The most popular way to deal with the uncertainty of the environment is based on

Bayesian filtering, which updates the state estimates based on the sensor noise charac-

teristics (Thrun et al. 2005). The typical measurement rate of the robot sensors exceeds

the mid- to long-term environment dynamics, therefore the Bayesian update scheme causes

the probabilities of the observed states to quickly converge towards the latest observed val-

ues. Thus, the traditional Bayesian filtering tends to reflect the latest state measurements

and acts as a Short-term Memory (SM). Typically, the traditional environment repre-

sentations tend to reflect the latest state measurements, discarding older measurements.

However, for long-term deployment it is sensible to use representations that somehow

reflect the prior environment states since the initial deployment stage. To strengthen

this study, two additional environment representations that take into account all the pre-

vious observations are described in this section, a Long-term Memory (LM) model

and Gaussian Mixture Models (GMM). However, these models are not contribu-

tions of this thesis, but rather state-of-the-art world representations used to complete and

strengthen the study conducted in this chapter.

5.2.1 Short-term Memory

In order to model the short-term dynamics, a similar model to (Saarinen et al. 2012) is

proposed. This model is based on a Markov chain and aims at representing not only

the environment states but also how likely they will change given the last observed state

and the time it was observed. Assuming that each measured state s can be occupied or

free, the goal of this method is to estimate the conditional probabilities that represent the

transition from a state to another, which are p(s = 0|s = 1) and p(s = 1|s = 0). These

probabilities are estimated by means of a Poisson process, i.e., these probabilities can be

approximated by the ratio between the number of state changes observed and the total

number of observations.

p(s = 0|s = 1) ≈ λ0 = #nr exit events+1
#nr observations

p(s = 1|s = 0) ≈ λ1 = #nr entry events+1
#nr observations

(5.3)
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0 1

λ0

λ1
−λ0 −λ1

Figure 5.1: The underlying Markov chain in the short-term memory model.

However, as described in Section 5.1, due to the nature of spatio-temporal exploration,

the observations of states are not performed uniformly in time, and consequently the

discrete Markov chain described in (Saarinen et al. 2012) as well as the estimation of

aforementioned probabilities do not apply in our case. Thus, a continuous Markov chain

to model the recency of the environment states is proposed, as shown in Figure 5.1. In this

case, the transition rates between the states 0 and 1, λ0 and λ1, are inversely proportional

to the average time that an observed state remains at 0 or 1. From the Markov chain

shown in Figure 5.1, it is possible to infer the transition rate matrix, Q, as follows:

Q =

−λ0 λ0

λ1 −λ1

 , (5.4)

Thus, the probability vectors are given by:

ṗ0(t) = −λ0p0 + λ1p1(t)

ṗ1 = −λ1p1(t) + λ0p0(t)

. (5.5)

Since there are only two states, for any time t, we have p0(t) + p1(t) = 1. Thus, by

differentiating and substituting the previous set of equations, Equation 5.6 is obtained,

which allows to predict the probability of the state s(t) for a given future time t, where T

is the time of the most recent observation.

p(t) =
λ0

λ0 + λ1
+ (p(T )− λ0

λ0 + λ1
)e−(λ0+λ1)(t−T ). (5.6)
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5.2.2 Long-term Memory

A way to reflect the uncertainty of the observed states in the long-term is to implement

a Long-term Memory (LM). The proposed model works as a memory that takes into

account all the observations and calculates the probability of a given state simply as the

arithmetic mean of all its past observations.

5.2.3 Gaussian Mixture Models

Gaussian Mixture Models (GMM) that can approximate multi-dimensional functions as a

weighted sum of Gaussian component densities are a well-established method of function

approximation. GMMs find their applications in numerous fields ranging from botany to

psychology (Titterington et al. 1985). The Gaussian Mixture Model of the function f(t)

is the weighted sum of m Gaussian functions:

f(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(t−µj)
2

2σ2
j . (5.7)

The parameters of individual components of GMMs, i.e. the weights wk, means µj and

variances σj are typically estimated from training data using the iterative Expectation

Maximization (EM) or Maximum A-Posteriori (MAP) algorithms. While GMMs can

model arbitrarily-shaped functions, their limitation rests in the fact that they cannot

naturally represent functions that are periodic.

To deal with this issue, it is assumed that people perform most of their activities on a

daily basis and thus the object presence in the individual areas is considered as being the

same for every day. While this assumption is not entirely correct (as working days will

be different from weekends), such a temporal model might still be better than a ‘static’

model where the probability of object presence is a constant.

Prior knowledge of the periodicity allows to transform the measured sequence of states

s(t) into a sequence p′(t) by

p′(t) =
k

τ

k/τ∑
i=1

s(t+ iτ), (5.8)

where τ is the assumed period and k is the s(t) sequence length. After calculating p′(t), the

Expectation Maximization algorithm to find the means µj , variances σj and weights wj
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of its Gaussian Mixture, approximation is employed. Thus, the probability of occupancy

of a room at time t is given by

p(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(mod(t,τ)−µj)
2

2σ2
j , (5.9)

where τ is the a priori known period of the function p(t) and mod is a modulo operator.

The advantages of this Periodic-GMM (PerGaM) are complementary to the weaknesses of

the FFT-based one. It can approximate even short, multiple events, but it can represent

only one period that has to be known a priori.

An example comparison of the GMM and FreMEn models of person presence in a week-

long experiment in an office environment is shown in Figure 5.2. The figure demonstrates
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Figure 5.2: PerGaM and FreMEn models example/comparison.

that while GMM can model short-term event like lunch-breaks, it fails to capture the

week-long dynamics.
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5.3 Exploration Strategies

As noted in Section 5.1, an exploration strategy is defined as a process that determines

both which locations to visit and when to visit them. One has to assume that a real mobile

robot has to perform other tasks as well and can spend only a fraction of the total time

on actual exploration. This fraction is referred to as the exploration ratio e, e.g. e = 0.2

means that the robot can spend 20% of its operational time on exploration.

Thus, given an exploration ratio e and a set T of time intervals [ts, ts+1), the exploration

algorithm has to determine a sequence l(ts) of locations to visit. To represent situations

where the time slot [ts, ts+1) is allocated to an unrelated activity, the value of l(ts) is

set to zero, whereas a non-zero value of l(ts) signifies the location to be observed during

[ts, ts+1).

5.3.1 Information-based Strategies

Information-gain strategies take into account the experiences the robot has gathered so

far to plan when and which location to visit. These strategies attempt to reduce the

uncertainty of the environment models by planning those observations that maximize the

potential information-gain. To estimate how much information is gained by a particular

observation, the definition of entropy is used as explained in Section 3.4. The direct

observation of particular states at a given time is assumed to reduce the entropy of these

states to zero. Thus, the information gained by a particular observation can be estimated

as the sum of the entropies of the states observed at a given location as

I(L, t) = −
∑
i∈L

(pi(t)log2(pi(t)) + (1− pi(t))log2(1− pi(t))). (5.10)

Greedy Strategy

The Greedy strategy calculates the potential information gains for all given time slots

and locations, then assigns the best location to visit at each time slot. Then, it selects a

subset T ′ of time slots with the highest information gain such that e = |T ′|/|T |. The re-

maining time slots are assigned to other tasks. Thus, this strategy maximizes the potential

information gain obtained over the time slots in the set T .
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Monte Carlo Strategy

The Monte Carlo strategy chooses the locations randomly, but the probability of select-

ing a given location at a given time is proportional to the estimated information gain. At

first, it estimates the I(l, ts) for all given time slots and locations and sums these values

to I ′. Then, it calculates the value of I(0, ts) = I ′(1 − e)/(ne). Finally, it calculates the

probabilities of each l(ts) as

P (l(ts) = j) =
I(j, ts) + ι∑
i∈L I(i, ts) + ι

. (5.11)

Here, the value of I(0, ts) does not represent actual information gain but is added to ensure

that the exploration ratio e is satisfied by ensuring sufficient chance of assigning the time

slots to exploration-unrelated tasks. The positive constant ι ensures that the locations

will be occasionally visited even at times when the spatio-temporal model predicts their

state with absolute certainty. This allows the robot to detect unexpected changes in the

environment dynamics.

Novelty-driven Strategy

The Novelty-driven strategy follows the same principle as the Monte Carlo one. How-

ever, unlike the Monte-Carlo strategy, which strictly follows a schedule determined by

Equation 5.11, the novelty-driven strategy uses a combination of temporal models to iden-

tify situations where a change in the Monte-Carlo schedule would result in a large amount

of information obtained. To identify such situations, the novelty-driven strategy predicts

the amount of information obtainable in the following time slot by:

I(t) = −pexpc(t)log2(pinfo(t))− (1− pexpc(t))log2(1− pinfo(t)), (5.12)

where pexpc(t) is calculated by the short-term memory model (see Section 5.2.1) and serves

as a measure of expectation, whereas pinfo is provided by another model and represents

the amount of information expected. If I ′(L, t) >> I(L, t), i.e. the amount of infor-

mation predicted by Equation 5.12 is significantly higher than the value calculated by

Equation 5.10, then the location to visit in the following time slot is changed accordingly.

Thus, if the observed states at a recently visited location did not match their predictions,
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the robot re-observes the location again to obtain more information about this unexpected

event.

5.3.2 Uninformed Strategies

For comparison purposes, strategies which select the places to visit regardless of the envi-

ronment dynamics were considered. These strategies calculate the sequence of visits l(ts)

simply from the values of the ratio e, number of locations n and number of time slots m.

Random Strategy

The probability of a given slot being assigned to a non-exploration task is equal to 1− e,

and the probability of visiting the individual locations is uniform and equal to e/n.

5.3.3 Round Robin Strategy

The Round-Robin strategy visits all areas of the environment with the same frequency,

interleaving the observations with other tasks so that the exploration ratio e is satisfied.

5.4 Qualitative Evaluation

To gain an insight into the robot’s exploratory behaviour, we interpret the data gathered

during the exploration of the ‘Aruba’ topological map as described in Section 4.2. Here, the

robot’s task was to create a spatio-temporal model of person presence in the individual

rooms of a small apartment. For the purpose of this explanation, let us focus on the

dynamics of three rooms only – the bedroom, the kitchen and the storage room. Let the

robot use the best-performing exploration method that combines the FreMEn temporal

models and the Monte Carlo exploration strategy. Applying the proposed spatio-temporal

exploration method to this dataset produced the behaviour in Figure 5.3. The top part

of Figure 5.3 shows the real state of the environment, where the three binary functions

si(t) represent the room’s occupancies over time. The second part shows the robot’s

internal model of the environment, i.e. the probabilities pi(t). The third graph displays

the information that is expected to be obtained by visiting these three locations at a given

time. Finally, the bottom graph shows which locations have been visited at a particular

time – an exploration ratio of e = 0.5 is assumed, which reflects the situation where
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the robot has to spend half of its time on its charging station. The color of the dots in

bottom graph reflect the room visited, the horizontal position relates to the times of the

visit and vertical placement reflects the outcome of the observation, i.e. person present

or absent. To understand the robot behaviour, one should read the graphs from left to

right: initially, the knowledge of the robot about the person presence is nil, but after each

day, the probabilistic and entropy models are updated from the previous day observation,

which is reflected by the observation schedule. The following description intends to shed

some light on how the robot’s understanding of the environment changes over time and

how this affects its exploratory behaviour day by day. The complete overview of Figure 5.3

is shown in Appendix B.
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Figure 5.3: Spatio-temporal exploration behaviour: The robot uses its probabilistic world
model (second row) and spatio-temporal entropy estimates (third row) to schedule its observa-
tions (bottom graph) and learn the environment dynamics (top). As the environment knowl-
edge improves over time, the scheduled observations provide more information which allows
for further refinement of the environment model.

Day one

Initially, the robot has no knowledge of the environment and therefore the probabilities

pi(t) of the world states s(t) are equal to 0.5. This means that the expected information

gain from visiting any of the rooms equals 1 bit at any time of the first day. Thus, the

robot has no room or time preference when scheduling the first day’s observations, which
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results in scheduling of an equal amount of observations spread over the entire day and

the three rooms.

Day two

After performing the first day’s observations, the environment models provide enough

evidence that the three rooms are not occupied with the same probability. This is reflected

in the second day’s environment model – see the probability functions pi(t) of the second

day in Figure 5.3. Thus, the robot expects to gain more information by visiting the

bedroom and kitchen than by going to the storage room. This is reflected in the second

day’s observation schedule – the last row of Figure 5.3 shows that the first two rooms are

visited more often.

Day three

The additional observations obtained during the second day provide information about

the rooms’ dynamics: the robot assumes that the bedroom has a daily periodicity and

that the kitchen is visited five times per day. This causes the expected information gain

to be time-dependent – the third day of the third row of Figure 5.3 shows that evening

and morning observations of the bedroom provide more information than in the afternoon.

This fact is rather intuitive: visiting the room at the time of its state transition allows to

refine the room’s state periodicity. Thus, on the third day, the bedroom is visited mostly

in the evening and morning, while the afternoon visits are scheduled to the kitchen.

Days four and five

Based on the data gathered during the third day, the robot modifies its hypothesis about

the periodicity of activities in the kitchen and assumes that it is visited three times per

day. During the following days, the robot tends to visit the kitchen and bedroom more

often, and checks the storage room only occasionally. While the kitchen is visited mostly

in the early afternoon, the bedroom is visited in late evenings and mornings, which allows

to refine the robot’s model of the person’s daily habits.

This example indicates that the combination of a probabilistic temporal model with

an information-based strategy not only allows the robot to obtain knowledge about the
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environment dynamics, but the observations are scheduled in a seemingly logical way:

at first, all the locations are visited often and with the same frequency. As the spatio-

temporal environment model becomes more refined, the robot tends to visit particular

locations only at times when their states are uncertain.

While the robot exploration behaviour seems to be intelligent, the real question is how

efficient the algorithm really is. As noted in Section 5.1, the efficiency of the exploration

algorithm is evaluated by comparing the robot’s internal model to the real environment

state by Equation (5.2).

5.5 Experimental Evaluation

To evaluate the ability of the various temporal models and exploration strategies, a com-

parison using the ‘Aruba’ and ‘Brayford’ datasets described in Chapter 4.2 is performed

in this section. For this purpose, it is assumed that the aforementioned datasets reflect

the real state of the environments they have been captured in, and thus the sequence of

the observations in the datasets are used as ground truth. To evaluate how the various

temporal models and exploration strategies affect the robot’s ability to create and update

its internal environment models, the exploration process is emulated using these datasets.

Also, it is assumed that the exploration can be performed during only half of the robot’s

operational time (i.e. e = 0.5), and that a single observation takes 10 minutes. While

10 minutes might seem like a long time, creation of a 3D occupancy grid of a given loca-

tion means that the robot has to position itself precisely, and capture and process several

RGB-D images. More precisely, similar to the MetraLabs Scitos G5 mobile robot used

in the STRANDS project, the simulated mobile robot is equipped with a PTU unit that

allows to capture a full view of the environment. Thus, taking into account the Field of

View (FoV) of 58◦ horizontal and 45◦ vertical of the RGB-D camera used, approximately

50 RGB-D images from different viewpoints need to be captured. Additionally, several

RGB-D images are taken per viewpoint and then averaged in order to deal with sensor

noise.

This time also includes navigation to the given spot, leaving the charging station, etc.

This exploration procedure corresponds to the situation when the robot updates its

spatio-temporal model and generates a new observation schedule every 24 hours at mid-
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night. The robot starts with an empty environment model that has all probabilities

constant and equal to 0.5.

First, the entropy functions of the individual locations are calculated and 72 observa-

tions for the following day are scheduled. Then, these 72 observations are retrieved from

the given dataset and the temporal models of the environment states are updated. The

updated temporal models are used to recalculate the spatio-temporal entropy and the next

day’s observation schedule is then generated. These steps are repeated for every day of

the given dataset.

5.5.1 Evaluating environment model error

To compare the performance of the temporal models and exploration strategies described

in Sections 5.2 and 5.3, the resulting world model is compared to the actual dataset

using Equation 5.2, which estimates the error in the environment model. Since there

are 4 temporal models and 5 exploration strategies, each comparison considers 20 values

that characterize the ratio of incorrectly estimated states to the total number of envi-

ronment states. One dataset evaluation consists of two comparisons, each corresponding

to the given environment representation. Table 5.1 shows the evaluation resulting from

the ‘Aruba’ dataset as described in Section 4.2.1, in which the people presence is given

qualitatively (binary signal) or by means of 3D occupancy grids.

Table 5.1: Aruba dataset results: Model errors for different exploration strategies and spatio-
temporal models [%]

Spatio-Temporal model
People Presence 3D Grids

Strategy SM LM FT GM SM LM FT GM

Round Robin 09.3 09.7 06.5 07.5 08.9 09.3 05.6 05.8
Random 08.9 09.5 09.2 07.5 08.7 09.0 08.3 07.2
Greedy 08.5 08.7 07.0 09.4 07.7 10.9 06.2 07.1
Monte-Carlo 08.5 08.9 05.8 06.4 08.0 08.3 05.0 05.7
Novelty-driven 08.5 08.9 05.7 06.1 08.0 08.4 04.9 05.4

The results of the ‘Aruba’ dataset summarized in Table 5.1 show that the combination

of FreMEn with the novelty-driven or Monte-Carlo strategies reduces the model error by

more than 40% when compared to the worst performers. Nevertheless, the combination

of FreMEn and the novelty-driven strategy performs slightly better than the combination
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of the same model with the Monte-Carlo one. One may think that the greedy strategy

would be the best performer since it always chooses the room with higher entropy, but in

most situations, this strategy fails to maintain an up-to-date model. For example, in the

case of noisy and unpredictable signals in a given room, the robot will attempt to focus

its attention mainly on that room. While this is a logical behaviour – not being able to

model the location, the robot will gather the data about it through direct observation, it

might not be really desirable, because the robot might not be getting valuable data at all.

Also, this behaviour would mean that the robot would not observe the remaining rooms,

since the entropy of the current room would be higher due to the higher uncertainties.

Figure 5.4 shows that the FreMEn model error is higher during the first days, but that

as soon as the environment patterns are identified the error decreases substantially. This

demonstrates that this strategy allows for quick identification of the environment patterns

and to lower errors in the long-term. Since more than 99% of the cells in the ‘Aruba’

occupancy grids represent empty space or static objects, the model error (Equation 5.2)

is calculated for the cells that change their occupancy at least once.

Table 5.2: Brayford dataset results: Model errors for different exploration strategies and
spatio-temporal models [%]

Spatio-Temporal model
People Presence Visual Features

Strategy SM LM FT GM SM LM FT GM

Round Robin 23.7 23.7 16.3 20.2 25.7 27.0 12.7 17.9
Random 23.7 23.8 23.0 23.8 25.9 27.0 25.2 20.3
Greedy 20.2 22.3 19.2 20.1 29.9 29.3 24.4 18.6
Monte-Carlo 23.5 23.5 16.4 19.3 25.6 27.0 12.3 16.9
Novelty-driven 23.4 23.5 15.2 19.4 25.6 27.0 12.1 17.1

The model errors of the ‘Brayford’ dataset as shown in Table 5.2 again indicate that the

most faithful environment representation is based on frequency-enhanced temporal models

(see Section 3.2.3) in combination with the novelty-driven strategy. The improvement is

more prominent in the case of visual features models. The reason for this might be that the

visibility of image features tends to follow regular patterns given by the daily illumination

cycle, whereas the presence of people can be influenced by unexpected events.

Figure 5.4 shows that initially, the GMM model achieves the lowest error, but in the

long-term, it is outperformed by FreMEn. This is caused by the fact that the GMM model
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FreMEn − Novelty−driven strategy
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Figure 5.4: Comparison of the average error of the novelty-driven and Monte Carlo explo-
ration strategies.

is tailored to represent daily periodicities, while the FreMEn model has to identify the

patterns of changes from the data by itself. After several days, FreMEn identifies several

important periodicities (not only the daily one) and its prediction capability improves,

allowing it to better schedule observations and decrease the model error. Figure 5.4 also

shows that the novelty-driven strategy performs slightly, but consistently, better than the

Monte-Carlo one. In the experiments performed, the novelty-driven strategy is able to

identify one or two unexpected observations per day.

5.5.2 Exploration vs. Exploitation

In the above experiments, the robot’s exploration ratio e was set to 0.5. Thus, the robot

could spend 50% of its time gathering data about its operational environment. However,

such a ratio is unrealistic – the robot has to spend some time replenishing its batteries,

and we have to assume that it should perform other tasks as well depending on the

application. Moreover, we have to assume that the purpose of the robot is not in creating

precise environment models, but to perform useful tasks. Thus, exploration is just an

instrument to obtain and maintain knowledge to improve the robot’s performance. If the

robot spends too much time on exploration, it would not be able to exploit the obtained

knowledge in its everyday activities.
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Figure 5.5: Exploration vs. exploitation analysis: The influence of the fraction of time spend
with exploration on the performance of the exploration strategies.

The efficiency of the individual exploration strategies with different exploration ratios

for predicting person presence on the Aruba dataset was evaluated. The Frequency Map

Enhancement model has been compared with four different exploration strategies by fixing

the exploration ratio to a value between 0 and 1, and let the robot explore the Aruba

environment for two consecutive weeks. The obtained result error of the model obtained

is shown in Figure 5.5. The results indicate that if the fraction of the time that the robot

can spend on actual exploration is low, the dynamic models might make wrong assumptions

about the environment changes and perform worse than their static counterparts – this is

especially notable with the Greedy and Round Robin strategies. However, this effect can

be mitigated by a proper exploration strategy – the graph shows that both Monte Carlo

and novelty-based strategies improve the model even if the robot cannot spend too much

time on exploration.

Note that the initial model error is 10% – this is caused by the fact that the Aruba

dataset represents the presence of people in 10 different areas and the flat has only one

inhabitant. Without any observations, the robot simply assumes that the flat is empty,

which results in 10% error.

5.6 Case Study: Info-terminal

The concepts behind the lifelong exploration described in this chapter were used to en-

hance the performance of a service robot in a real-world care home. As seen in the previous
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(a) User accessing the “info-terminal”. (b) The interface.

Figure 5.6: The mobile “info-terminal” deployment in the STRANDS care scenario.

sections, the combination of spatio-temporal world representations with scheduling strate-

gies enables a mobile robot to gather more information about its operational environment

changes, and thereby improve its performance over time. Based on this concept, a mobile

“info-terminal” based on a Scitos G5 platform was developed and deployed in the care

scenario described in 3.1.

The purpose of “info-terminal” system is to allow users to access information relevant

to them at the most appropriate times and locations. Thus, the exploration strategy

described in this thesis provides to the system the means to learn where and when to

provide relevant information to a high number of users. The information displayed by

the mobile robot can range from weather forecasts to the daily canteen menu as show in

Figure 5.6. A description of the system and long-term study on the impact of such system

in the resident’s life can be found in (Hanheide et al. 2017). The system has shown to be

able to build accurate spatio-temporal model of interactions over time that contributed

to an overall increase of interactions between the robot and the residents. Additionally,

the same spatio-temporal models were used to efficiently reason which information should

be immediately displayed at the different times and locations where the robot decides to

perform an info-terminal task.

Figure 5.7 shows the resulting models of the ”info-terminal” operation. Note that

the different locations exhibit different periodicities. For example, the cafeteria exhibits

approximately 3 hour periodicity, which matches the typical human meal routines. More-

over, Figure 5.8 demonstrates that the robot is able to gather more interactions over time,

revealing once again that is able to reason about where and when its more useful.
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Figure 5.7: The temporal models learned for a set of locations in the environment (Hanheide
et al. 2017).
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Figure 5.8: Interaction success rate over time (Hanheide et al. 2017).

5.7 Summary

In this chapter, the concept of lifelong exploration of changing environments was presented.

Assuming the robot’s operational environment is subject to perpetual change requires a

method that can model and predict these variations. The purpose of lifelong exploration

is not only to obtain the environment structure and keep it up-to-date with any changes

but also to allow the robot to observe and understand the world changes.

The problem of lifelong exploration can be tackled by combining information-gain-

based exploration strategies with probabilistic dynamic environment models. To verify

this hypothesis, the performance of five exploration strategies and four temporal models
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were compared on real-world data gathered over the course of several months. The com-

bination of spectral-based temporal models with information-gain-based novelty-driven

strategies resulted in an intelligent exploration behaviour that improves as the environ-

ment knowledge becomes more refined.

Analysis of the robot behaviour shows that when introduced to a new environment,

the robot prefers to explore unknown locations. After it has obtained the spatial models,

it starts to revisit these locations in order to learn about their dynamics. Finally, the

learned dynamics allow the robot to schedule which locations to visit at which times and

adapt this schedule in the case of unexpected observations.

The evaluations performed in this chapter involved several assumptions to simplify the

problem. The first assumption was that the time the robot spends moving to a particular

location is negligible compared to the time it takes to make an observation. The second

assumption was that the locations of observations were predefined and that the robot

could position itself with perfect accuracy. The third assumption is that the observations

are error-free, i.e. there is no noise on the sensory data.

The aforementioned simplifications enable to validate the concept of lifelong explo-

ration and to further understand which challenges must be tackled. Thus, the lifelong

exploration has shown to be able to maintain the robot’s world models over time as well

as the ability of the robot to better reason over time, which is essential to ensure the

long-term operation of mobile service robots. While these assumptions were needed for

validation purposes in this work due to the known difficulties of ground-truthing when

comparing exploration strategies, the study conducted further enabled the development

of a full 4D metric-based spatio-temporal exploration, as described in Chapter 6.
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6
4D Lifelong Exploration

This chapter addresses the problem of acquiring and maintaining a full 4D metric-based

spatio-temporal model during the robot’s long-term operation. While the previous chapter

focused on validating the concept of lifelong exploration and evaluating the performance of

several scheduling strategies and world representations at a higher level of abstraction, the

exploration approach described in this chapter aims at building a full metric representation

of the environment that accurately represents the 3D robot’s operational environment over

time. Comparatively to the work described in the previous chapter, the mobile robot was

used as a completely virtual entity with no physical parameters or constraints that have

an impact on the robot’s performance. In the method proposed in this chapter a real

mobile robot is used that not only has to deal with noisy observations but also has to plan

the path to perform the observations and to localise while the locations to observe are

not limited to a specific set of locations. Thus, the overall system complexity to enable

a metric-based 4D lifelong exploration and mapping strategy is higher. The exploration

approach proposed in this chapter is designed not only to integrate sensory data captured
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at different locations and times into a 3D dense spatio-temporal model but also to plan

the path to these locations and to safely navigate to them.

The application of information-theoretic scheduling methods described in Chapter 5

to time-dependent probabilistic environment representations results in a continuously im-

proving exploratory behaviour, which evolves with the knowledge of the environment dy-

namics. Thus, this allows the mobile robot to create, maintain and refine its 4D envi-

ronment representation as a part of its daily routine and improve the robot’s efficiency

in performing other tasks at the same time, which is essential for long-term mobile robot

operation in changing environments.

The proposed method extends the concept of lifelong exploration presented in Chap-

ter 5, which builds frequency-enhanced spatio-temporal models from sparse and non-

uniform observations and examines the performance of various exploration strategies and

dynamic models. However, the method described in Chapter 5 was based on several sim-

plifications that make its real-world use difficult: it assumes that the topology of the

environment is known a-priori and it neglects the fact that navigating between different

locations requires different time durations. In other words, the robot simply selects which

pre-defined topological locations should be visited at particular times in order to create

and maintain local dynamic models on top of an a-priori known topological structure.

The work presented in this chapter describes an exploration pipeline that starts without

any a-priori knowledge about the robot’s 3D operational environment. The locations to

be observed are not selected from a predefined set, but the robot infers the locations from

the 3D structure itself. Thus, it considers not only the information gain obtained by

visiting a given location but also its reachability and the time it takes to navigate there.

This results in a life-long exploration system that allows to create and maintain global 4D

spatio-temporal representations of real, changing environments without prior knowledge

of their topology. To evaluate the method, a comparison with a standard exploration

method performed during a 5-day-long simulation and real-world experiments performed

in a human-populated environment has been made.
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6.1 From Simulation to Real World Deployment

As stated before, robotic exploration methods usually consist of two alternating phases:

planning and mapping. Considering that the environment is constantly changing, both

planning and mapping have to take into account the notion of time. Thus, 3D mapping

has to explicitly model the environment dynamics and becomes “4D mapping”. The plan-

ning has to determine not only which locations to explore but also when to perform the

exploration. Other activities which form part of the robot’s daily routines may also be

scheduled here since a robot in a real-world application would have to balance its explo-

ration activities with other activities that exploit the current spatio-temporal knowledge.

The proposed exploration system is composed of five main modules: the Spatio-

Temporal Model that maintains the environment map, the Scheduler that determines

the robot activity, the Planner that calculates which locations are to be explored, the

Executioner that acts as a bridge between these modules, and the Robot’s navigation and

sensing systems. The robot’s activity consists of separate exploration tours during which

the robot leaves its charging station, navigates to a set of locations, where it uses its depth

camera to observe the environment, and finally docks to its charging station using a precise

marker-based localization method described in (Krajńık et al. 2014). In this section, an

overview of the exploration system and then details of its main modules are provided.

6.1.1 Notation

The notation used over the following sections to describe the 4D lifelong exploration strat-

egy is as follows:

• s denotes the set of world states;

• p denotes the probability of a given state;

• S denotes the set of world states;

• P denotes the set of prominent spectral coefficients;

• µ denotes the mean probability;

• ω denotes the natural frequency;
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• α denotes the components of the spectrum of observations;

• ς denotes the saturation function;

• Ω denotes the set of candidate frequencies;

• I denotes the information-gain;

• E denotes a the score of a given candidate location;

• G set of goals to observe.

6.1.2 System Overview

The overall system structure and its most important data flows are shown in Figure 6.1.

Every 24 hours at midnight, the Scheduler sets up an activity plan for the upcoming day,

which is partitioned into several time slots of the same duration. To determine which

time slots are to be used for exploration and which ones to use for charging, it uses

the Planner and the Spatio-Temporal Map to estimate how much information would be

obtained by performing exploration at each of the time slots. In particular, the Scheduler

sends the start time of a particular time slot to the Spatio-Temporal Map and the number of

locations to visit to the Planner. The Spatio-Temporal map then predicts the probability

and entropy of the environment states for the given time and passes the model to the

Planner. The Planner then generates a sequence of candidate locations to visit, querying

the Spatio-Temporal Map for the expected information gain at those positions and the

Reachability Map for the probability that the robot will be able to navigate to those

locations. The Planner then selects a number of locations to visit, where the number is

given by the Scheduler, and reports the overall information gain back to the Scheduler.

Based on the estimated information gain for each time slot, the Scheduler decides which

time slots are to be used for exploration and which ones to use for recharging. The

schedule-generation process is computationally expensive, mainly because the robot has

to calculate the potential information gains across many locations and times. The entire

schedule-generation process takes approximately two minutes and is performed during

recharging. While the generated schedule ensures that the robot will tend to explore the

environment when it is more likely to exhibit changes, the plans (sequences of points)
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Figure 6.1: Exploration system modules and main data flows

generated by the Planner during the process of schedule generation might not be suitable

at the time of their execution because the environment might change in a way that was

not originally predicted.

Thus, at the beginning of each time slot allocated for exploration, the Scheduler queries

the Planner for a new plan. The Spatio-Temporal Map predicts a temporary 3D occu-

pancy grid, which is used to estimate the information gain and the Reachability Map for the

given time. The Planner uses this information to decide which locations to visit and the

Executioner determines their order and passes these goals one-by-one to the Robot ’s nav-

igation system. The Robot monitors whether the required locations (goals) were reached

and passes this information to the Reachability Map. If a goal is reached successfully, the

Robot uses its pan-tilt unit and depth camera to update the temporary 3D grid using the

method in (Levoy 1990) and marks which cells were observed. After each 3D sweep, the

updates made in the temporary 3D grid are propagated to the Spatio-Temporal Map using

Equation (6.2). The Figure 2.5 illustrates the basic concept of the system – the entropy

grid, which indicates the most informative locations to observe. Note, that the entropy

81



6.1. From Simulation to Real World Deployment Chapter 6. 4D Lifelong Exploration

maximum is in the centre of the unexplored area – the Planner would prefer this location

over the others.

6.1.3 Spatio-Temporal Map

The Spatio-Temporal map used in this system is based on a uniformly-spaced 3D occu-

pancy grid extended by the Frequency Map Enhancement (FreMEn) concept as described

in Section 3.2.3. While in Chapter 5 the non-uniform FreMEn model is calculated incre-

mentally using Equations 3.5 and 3.4, in this approach the observations are processed in

a batch mode. Moreover, in this exploration system a simplified scheme of transformation

between the time domain s(t) and the frequency domain S(ω) is proposed. Assuming that

the spectral representation P (ω) of the state s(t) consists of a small number of frequencies

ωi, phase shifts arg(αi) and amplitudes |αi|, the probability p(t) of the state s(t) can be

calculated as

p(t) = ς(µ+

n∑
i=1

|αi|cos(ωit+ arg(αi))), (6.1)

where µ corresponds to the ‘static’ probability of the state s(t), n is the number of peri-

odicities modelled, and ς() ensures that the result of Equation (6.1) is bounded between

0 and 1. To reflect the fact that we cannot be absolutely certain when predicting a given

state, function ς() limits the p(t) between 0.05 and 0.95.

To obtain the parameter αi from m measurements of the state s taken at times tk,

we first calculate the value of µ as an arithmetic mean of all past observations s(t0) to

s(tk−1). Then a set of candidate frequencies Ω is created, which represent the periodicities

of the hidden processes that affect the state s(t). Finally, we establish the amplitudes αc

as

αc =

m∑
k=1

(s(tk)− µ)e−j2πtkωc , (6.2)

where ωc are elements of the set Ω. Note that the parameter βk calculated in Equation 3.4

is not used in this scheme, reducing the memory requirements of the model, but resulting

in slightly less accurate model.

Then, we order the frequencies ωc according to their amplitude αc, select the first n

of them and store these as parameters ωi,ϕi and αi, which are used in Equation (6.1).

Note that unlike the traditional DFT described in Section 3.2.2, Equation (6.2) allows
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to update the spectral model as new observations of the state s(tk) are obtained. While

faster to calculate and allowing for non-uniform sampling, the proposed representation

does not ensure precise reconstruction of the original sequence s(t) but typically results

in ∼ 2% reconstruction error.

The Spatio-Temporal Map applies the FreMEn concept to occupancies of cells in a

3D occupancy grid. Thus, each cell contains its own set P (ω) that allows to calculate

the probability of the cell’s occupancy for any given time. This model is updated by

Equation (6.2) every time the cell is observed and its state s(tk) is measured.

Both Equations (6.1) and (6.2) are derived from the continuous formulation of the

Fourier transform by Rahman (2011), but unlike the classic discrete Fourier transform

(DFT), Equations (6.1) and (6.2) simply do not assume time-uniform sampling of the

state s(t). In the case of uniform sampling with period ∆t, i.e. tk = k∆t, Equation (6.2)

would become equivalent to the standard DFT.

Temporal model design

The set Ω of candidate frequencies in Equation (6.2) defines which periodicities will po-

tentially be captured by our model. The elements of Ω can be chosen arbitrarily, but one

should consider that larger Ω enables a finer representation of time at the expense of higher

memory consumption of the spatio-temporal model. In the experiments conducted, the

set Ω consist of 24 elements ωi, which are distributed in the same way as in the traditional

FFT, i.e. ωi = (24 × 3600)/i. This allows to model several periodicities ranging from

one day to one hour. To model spatio-temporal dynamics of office-like environments, one

could extend the set Ω by adding day-to-week periodicities as in Chapter 5. However, the

duration of the real-world experiments performed were no longer than five business days.

The parameter n in Equation (6.1) determines how many periodicities of Ω are actually

considered in the state prediction. Previous work indicates that a good choice of n is 2,

which typically results in modelling week- and day-long periodicities in indoor environ-

ments and year- and day-long cycles outdoors. Note that setting n to 0 means that the

probability p(t) becomes a constant as in traditional spatial-only representations. Simi-

larly, non-periodic dynamics will cause the coefficients αi calculated by Equation (6.2) to

be close to 0, which will cause the p(t) to be almost constant as well.
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6.1.4 Predicting the information gain

Similarly to the work described in Chapter 5, the FreMEn model can predict the proba-

bility of each cell being occupied, and it also allows to estimate the amount of information

that the robot obtains by observing a particular cell at a given time. The amount of infor-

mation I(t) obtained by observing a single cell at time t can be calculated as the difference

between the cell’s a-priori entropy E(t) and a-posteriori Er entropy, i.e. I(t) = E(t)−Er,

which are functions of the cell’s occupancy probability before and after the observation.

Since the cell’s occupancy probability is considered a function of time and we assume that

the robot observes a given cell long enough to determine its state with certainty pc = 0.95

(i.e. the probability of the cell being occupied after the observations becomes either 0.05

or 0.95), the expected information gain at time t is

I(t) = −p(t)log2p(t)− (1− p(t))log2(1− p(t))

+pc log2 pc + (1− pc) log2(1− pc),
(6.3)

where p(t) is the probability of occupancy of a given cell at time t calculated by Equation

(6.2). Using the predicted occupancies and entropies, the Spatio-Temporal map allows to

estimate the amount of information that the robot will obtain by observing a particular

part of the environment at a particular time using its depth camera. Since the robot

uses its pan-tilt unit to create a 360◦ ‘sweep’ of its surroundings, the Spatio-Temporal

Map implements a function that can estimate the obtained information given the robot’s

position and the time of observation.

6.1.5 Reachability map

Although the ability of the robot to reach individual locations of the environment can

be inferred by the Planner from the environment’s spatio-temporal representation, some

locations might not be reachable due to factors that are not included in the spatio-temporal

model, such as transparent obstacles or objects with dimensions smaller than the spatio-

temporal grid resolution. To reflect that, the exploration system maintains a Reachability

Map, which is a 2D (50×50 cm) grid with cells that contain the robot’s success rate over

the last five attempts to reach that particular location. This information is taken into

account when the exploration plans are calculated.
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6.1.6 Locations to observe

In this work, it is assumed that moving to and observing one location takes approximately

two minutes. Taking into account the time needed to dock to and leave the charging

station, the robot can visit 6 locations in a 15-minute time slot.

To determine which locations are to be visited during a given time slot, the Planner first

generates a uniform 2-D grid of candidate positions xi, yi ∈ D that cover the operational

environment. Then, it sends these positions to the Reachability Map, which returns the

probability with which the robot will be able to reach these positions, i.e. the Planner

will obtain a reachability probability pr(xi, yi) for each candidate location (xi, yi). If a

position (xi, yi) is reachable, i.e. pr(xi, yi) > 0, the Planner forwards the position (xi, yi)

to the Spatio-Temporal Map, which uses the predicted 3D grid to estimate which cells

are likely to be observable by the robot’s depth camera from the position (xi, yi). The

Spatio-Temporal Map sums the information gain of these cells using Equation (6.3) and

reports it to the Planner as Ic(xi, yi). This allows the Planner to create an evaluation

E(xi, yi) of each candidate location as

E(xi, yi) = pr(xi, yi)I(xi, yi). (6.4)

Once Equation (6.4) has been calculated for every (xi, yi), the Planner starts to gen-

erate the locations to visit. First, the Planner finds the global maximum Emax(xj , yj) of

E(xi, yi), adds (xj , yj) and Emax to the set of goals G and sets E(xj , yj) to 0. To take

into account the fact that the cells observable from (xj , yj) are also visible from neigh-

bouring locations but observations at locations close to (xj , yj) would not provide the

same expected information, the values of E(xi, yi) in the vicinity of (xj , yj) are decreased

proportionally to their proximity to (xj , yj) by taking into consideration the sensor range.

The aforementioned two steps, i.e. maxima search and suppression of the information

gain estimates at the neighbouring locations, are repeated until the number of goals in

the set G equals the number of locations requested by the Scheduler. Then, the Planner

calculates the sum EG of information gains Emax(xj , yj) in G and reports the value of EG

to the Scheduler along with the locations in G.
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6.1.7 Generating the schedule

Once the Scheduler obtains the summarised information gain EG for every time slot using

the aforementioned procedure, it uses a Monte-Carlo-based method to determine which

time slots to use for exploration and which ones to use for charging. Thus, the probability

that a given time slot will be selected for exploration is proportional to its expected infor-

mation gain EG. The generated schedule is then saved and the Scheduler is deactivated

until the start of the next time slot.

At the beginning of each time slot, the Scheduler checks whether the time slot was

allocated for exploration and eventually queries the Planner for an up-to-date plan for the

given time. Then, it forwards the set of locations to observe to the Executioner.

6.1.8 Plan execution

The Executioner module is responsible for carrying out the plan provided by the Scheduler.

At first, the Executioner uses a 2-opt method (Croes 1958) to establish a sequence in

which the planned locations should be visited. Then, it ensures that the robot leaves its

charging station, follows the given path while taking measurement at the given locations

and returns back to recharge. If the Executioner fails to reach a given location, which is

typically caused by the location being blocked, it first waits for the location to be cleared.

If the location remains unreachable, the Executioner simply proceeds with the following

location in the plan. After each run, the Executioner reports the successes or failures in

reaching the planned locations to the Planner, which updates the Reachability map. This

causes the robot to avoid areas that are more likely to be blocked. However, the amount

of obtainable information for the neighbouring cells is likely to be high, causing the robot

to perform observations in nearby locations in the next exploration run.

6.2 Experimental Evaluation

In order to evaluate the above system, real-world experiments were performed in office

environment over five business days. The experimental conditions and the robotic platform

used are described in the following sections.
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6.2.1 The robot

The platform used in this paper is a Scitos-G5 mobile robot equipped with RGB-D cameras

and a laser rangefinder as shown in Figure 6.2. The robot’s navigation system is based

on open-source software developed during the STRANDS project (Hawes et al. 2016),

which extends the navigation stack of Robot Operating System (ROS). The sensor that

was used for 4-D mapping was the Asus Xtion RGB-D camera, which was mounted on a

pan-tilt unit placed on top of the robot’s head. Using this pan-tilt unit, the robot created

360◦×90◦ 3D sweeps with a 4 m radius at locations it was supposed to observe.

Figure 6.2: The Scitos-G5 platform used in the experiments.

6.2.2 Experiment description

To evaluate the proposed lifelong exploration algorithm, a comparison against a method

that considers a static environment model is performed. This Spatio-Only (SO) explo-

ration method is equivalent to state-of-the-art, information-based exploration methods,

such as (Amigoni & Caglioti 2010).

To compare these two methods, the previously described robot platform running the

system described in Section 6.1 was deployed in both a simulated and a real-world office

for five business days.
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Every midnight, the Scheduler generated a schedule for the following day. This sched-

ule was composed of 15-minute-long time slots, of which 48 were exclusively allocated for

the SO and 48 for the Spatio-Temporal (ST) exploration algorithm. Since each method

had to use half of its allocated time slots to replenish the robot’s batteries, the robot per-

formed 24 exploration tours guided by the spatio-temporal method and 24 tours guided

by the spatial-only method per day.

Both methods operated as described in Section 6.1. The only difference between them

was that the ST method used the predicted (by the Spatio-Temporal Model) map while the

SO method used the last obtained map. We hypothesize that the use of a predicted map

should allow the Scheduler to determine when it is more likely to obtain more information

and schedule more exploration tours at the times when the office is more likely to be

occupied. Moreover, the Planner should be able to predict which areas of the environment

are likely to change at a particular time and take this into account when generating the

locations to explore.

6.2.3 Real-world experiment

The real-word experiment was performed in an open-plan office of the Lincoln Centre

for Autonomous Systems (L-CAS), as described in Section 4.2.3. The office consists of

a kitchenette, a lounge area and 20 working places that are occupied by students and

postdoctoral researchers. During the experiment, two ceiling cameras were used to capture

a time-lapse video of the office dynamics, which allowed not only for a location-based

ground truth comparison, but also to build a database of the office dynamics.

After five days of exploration, we calculated the amount of changed cells that were

observed by the two aforementioned strategies during the individual exploration tours.

The Figure 6.3 shows that at the start of the exploration process, the number of cells that

changed their state was high, but gradually decreased as the environment structure became

known. After the first day, the amount of changes observed by both methods tended

stabilize around a value given by noise and the environment dynamics. During the second

day, the ST method would start to identify the daily routines and the Planner would guide

the robot to locations that are more likely to exhibit changes – see Figures 6.5 and 6.6 for

the spatio-temporal map obtained after the first two days of the experiment. After the
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Figure 6.3: The number of observed occupancy changes by the Spatio-Temporal versus the
Spatial-Only exploration methods.

second day, the ST method would allocate more exploration tours to the afternoon, when

the office is more likely to be populated. In fact, there were 30% more tours scheduled for

the afternoon than for the morning.

In the last three days of the experiment, the ST method observed more changes than

the Spatial-Only one due to its ability to identify the locations and times of environmental

changes. In other words, the ST exploration method could plan better where and when

to explore. Figure 6.4 shows a top view of the 4D model obtained after the experiments,

in which it is possible to visualise that the areas more prone to change are located near

the workstations or social areas that can be found in the office environment.

To establish the accuracy of the models created, six working locations in the office were

selected, as shown in Figure 6.6, and the presence of people at these locations over time

was manually established. Then, both environment models built by the two exploration

strategies were used in order to predict the overall occupancy of these areas (see to Figure

6.6) for every hour of the five-day experiment. Then, occupancies to the ground truth

provided by hand-annotated people presence were compared. This allowed to calculate

the error of each model in the same way as in Chapter 5, i.e. as an average deviation from

the ground truth during the experiment.

Table 6.1 indicates that part of the dynamics of these locations can be explained by

periodic processes related to human activity. The researchers working at these six places
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 Chair  Storage  Table  Sofa  Kitchen

Figure 6.4: Top view of the 4D spatio-temporal model obtained through the lifelong explo-
ration strategy. The static cells are in green and cells that exhibit daily periodicity are in
red.

(a) L-CAS office view. (b) L-CAS spatio-temporal model.

Figure 6.5: Spatio-temporal occupancy grid of the Lincoln Centre for Autonomous Systems
(L-CAS) office. The static cells are in green and cells that exhibit daily periodicity are in red.

had diverse working habits, which caused the error rates to vary across the individual

locations. Performing a paired t-test indicates that the error of the ‘Spatio-Temporal’

environment model is significantly lower than the error of the ‘Spatial-Only’ method, with

a level of confidence of 95%.
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Figure 6.6: The layout, the spatio-temporal occupancy grid and top camera view of the
Witham Wharf office. The static cells are in green and the cells that exhibit daily periodicity
are in red. The locations for ground-truth evaluation are marked with numbers.

Model type
Location Avg StD

0 1 2 3 4 5 — –

SO 28 23 43 23 21 29 28 8
ST 20 23 25 19 17 14 20 4

Table 6.1: Overall error of the environment model [%]

6.2.4 Simulated experiment

To speed up testing and to allow for a more representative ground-truth comparison, the

3D MORSE-based simulation was used, as described in Section 4.3.

The experiment was performed in the same way as in the real environment. The

number of changed cells captured by both the ST and SO algorithms followed a similar

pattern as in the real-world experiment. The outcome of the experiment can also be

visualised in the video of Santos (2016).

The ground truth for a single time slot was obtained by configuring the simulation for

a particular time and letting the robot perform its 3D sweeps at several locations in order
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to obtain a complete overview of the environment. This was repeated for every time slot of

the experiment, obtaining 480 static 3D grids that represent the environment’s evolution

over time. The error of a particular model at a given time is calculated as the number of
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Figure 6.7: The ratio of incorrectly estimated cells for the Spatial-Only and Spatio-Temporal
strategies.

cells whose states differ from the ground truth divided by the total number of observed

cells.

To compare the performance of the SO and ST models, we calculated their errors

for each time slot. The error of the ST and SO models over time are illustrated in

Figure 6.7. During the second day, the ST model started learning the periodic patterns,

which improved its performance.

The experimental results indicate that the Spatio-Temporal method can identify peri-

odic patterns in the environment and take them into account when creating the schedule,

which results in more changes observed. The observed changes improve the predictive abil-

ity of the Spatio-Temporal model, which allows to construct a better exploration schedule.

Note that this is due to the fact that part of the environment dynamics is periodic. If

the environment was changing non-periodically, both Spatial-Only and Spatio-Temporal

methods would capture a similar amount of changes.
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6.3 Summary

In this chapter a 4D lifelong exploration method for changing environments that extends

information-driven exploration in order to take into account time is presented. This explo-

ration method is built upon the lifelong exploration concepts described in Chapter 5, which

were extended in order to build, update and maintain a 4D representation of a real-world

environment. Thus, the 4D representation obtained explicit models of the changing world

and can predict these environment states at future times, based on past experience. The

predictive ability enables the mobile robot to reason about the most informative locations

to explore in the 3D space for a given time.

The experimental results conducted have shown that taking into account the environ-

ment changes and integrating them into the robot’s world model increases the amount of

information gathered compared to approaches that represent the environment as a static

structure, ignoring the world changes. Thus, the described method allows for creation

and maintenance of spatio-temporal representations that decrease the robot’s uncertainty

and, consequently, increases the robot’s efficiency in long-term scenarios. Additionally, the

environment changes detected on a metric level carry relevant information to other mod-

ules in the system. To sum up, these experiments allowed to understand not only what

is the best strategy for 4D metric exploration but also how quickly the spatio-temporal

representation used takes to converge and “identify” the periodic changes in the environ-

ment. The method has shown to be able to deal with sparse observations in a fully metric

representation.
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Discussion and Conclusion

In this thesis, the concept of lifelong exploration for mobile robots in changing environ-

ments was presented.

While spatio-temporal representations that can cope with the environment changes

seem sufficient to enable mobile service robots act intelligently and robustly navigate

and localise in these environments, these approaches are specifically aimed at tackling

the problem of how to model the environment changes, ignoring the problem of how to

efficiently learn these models taking into account the robot’s time constraints. Thus, this

thesis addressed the problem of building and updating these models given the robot’s time

constraints resulting from its duties.

An extensive survey of the literature on mobile robotic exploration and world repre-

sentations taking into account the problem of modelling changing environments was also

presented. This review allowed to understand not only what mobile robotic exploration

consists of and how environment changes can be modelled but also which direction to

take in order to tackle the problem of maintaining and building world models with mobile
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robots that have to perform other tasks, and consequently can only perform mapping at

certain times of the day. The review of the state-of-the-art on mobile robotic exploration

allowed to understand how a mobile robot can autonomously decide where to observe next

in order to build its world model and the concepts on which these strategies are built upon.

Nevertheless, these previous exploration strategies were developed and designed assuming

that the world does not change and thus the exploration task ends with the completeness

of the world model. An overview of spatio-temporal representations was also presented,

which was necessary to understand how to model changing environments, what are the

requirements and which type of environment changes are aimed for. While these repre-

sentations are able to model the environment changes, the mobile robot did not take an

active part in the mapping process, i.e., it did not choose where or when new observations

have to be performed.

Before proceeding to the main contributions of this thesis, a method to benchmark

and validate lifelong decision strategies for keeping the robot’s world models up to date

was proposed. The typical benchmarking strategies in previous works are suited for map-

ping and localisation methods that do not take into account the changing nature of the

environment or the robot’s ability to take decisions about where and when to go in the

long-term. Thus, to validate the methods proposed in the scope of this thesis that are es-

sential to ensure reliable and robust performance of the robot during long-term operation,

simulation environments that rely on ambient sensors to replicate real-world scenes were

proposed.

Then, the main foundations that enabled the development of the lifelong exploration

strategy were presented. Firstly, the spatio-temporal representation used in the develop-

ment of the lifelong exploration strategy was described, i.e., the FreMEn model. The Fre-

MEn spatio-temporal model is built upon the concept of Fast Fourier Transform (FFT) and

enables the identification of periodicities in the environment changes (Krajńık et al. 2014a).

Thus, when applied in this thesis to a commonly used 3D occupancy grid, this model al-

lows to have occupancy probability functions of time for every cell in the grid. Secondly,

a study on the ability to model all the observed environment changes while ensuring the

model is compact enough so it can be used in real world situations was conducted. This

study has showed that the model is able to achieve significantly low errors while keep-

ing the memory requirements low. The model predictive capability that results from the
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exploitation of the periodicities in the environment changes was linked to information-

theoretical concepts showing that modelling the environment states as functions of time

enable the extension of information-based exploration strategies in order to also reason

over time.

Following the above line of reasoning, the concept of lifelong exploration was finally

presented and described in detail. While the main goal of the exploration strategy is to

build and maintain a metric based model of the environment, due to the novelty and

complexity of the problem, the concept was first studied and validated assuming that the

topology of the environment is known a priori and by using long-term semantic datasets.

The results have shown that a lifelong exploration strategy based on a Monte Carlo method

in combination with the FreMEn model was able to build a significantly more accurate

model of the environment compared to other strategies and models. In fact, the experi-

ments demonstrated that the robot is not only able to build the model, but also to use

the model in order to reason about the best times and locations to observe, i.e., resulting

in a self-improving exploratory behaviour.

Finally, a 4D lifelong exploration method built upon the above studied concepts was

presented. While in the previous study several simplifications were made to fully under-

stand the concept of lifelong exploration and which environment models and scheduling

strategies suit the best the needs of a mobile service robot, in this method the approach

was taken to the metric domain, increasing the complexity of the problem. For example,

compared to the previous study, the environment topology is not known a priori, the set

of locations to observe are not predefined, the robot has to plan a path and take into

account the times of travel. The different modules required to achieve a 4D exploration

system were described and a comparison with a classical exploration approach was per-

formed. This comparison was conducted through five business days long real-world and

simulation experiments. The purpose of this experiment was to evaluate how quickly a 3D

FreMEn-based representation converges and to evaluate if the same reasoning performed

over semantic data is possible in the metric domain. This hypotheses was successfully val-

idated and it was shown that after one and a half days, the mobile robot starts improving

its behaviour and scheduling the exploration tasks according to the learned patterns of en-

vironment changes. The method was also able to maintain a more accurate representation

of the world when compared to classical exploration strategies.
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As shown by the research aimed at long-term autonomy for mobile robots, represen-

tations that explicitly model the time domain allow mobile robots to interpret the envi-

ronment changes, which improves their efficiency in long-term operation. While a robot

that only exploits the knowledge of spatio-temporal changes previously observed is more

likely to succeed in its tasks, it will inevitably obtain biased data because it is more likely

to operate at times and locations where the certainty of its success is higher. Feeding

these biased data results in over-confident models, which lead the mobile robot to ignore

certain locations and times, resulting in even more biased observations. This confirma-

tion bias prevents the robot to adapt to new patterns of the environment changes (Kulich

et al. 2016) hampering its efficient long-term operation.

To compensate for this confirmation bias, the robot should be allowed to observe

situations where the certainty of the given task outcome is low. To address this problem,

the concept of entropy has been applied to spatio-temporal representations and used to

drive the mobile robot’s attention to the locations and times that are more likely to

provide unbiased observations with higher information values. This resulted in a system

that allows a robot to create and maintain spatio-temporal world models during its routine

operation, i.e. without allocating unnecessary time for the model maintenance.

7.1 Future Work

The concept of lifelong exploration described and validated in this thesis opens several

questions for further investigation. Beyond the scope of this work, some aspects can

eventually be explored in future research in the long-term autonomy field. In particular,

how much time the robot should spend on exploration (represented by the ‘exploration

ratio’ e in the experiments presented in this thesis) during the initial stages of deployment,

when the environment model is created, and what is the optimal e later on, when the

model is just maintained or when the model needs to be re-built due to changes in the

environment dynamics. This will function according to the environment dynamics and

will be different for different environments and situations. Thus the need to develop a

methodology to adaptively determine this ratio depending on the circumstances, which

may change over time. In addition, the lifelong exploration could be extended in order
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to achieve an autonomous system that learns how to automatically adjust its parameters

based on the spatio-temporal context.

One can also think of a method that enables the mobile robot to take several observa-

tions of the same location from different points of view in order to refine the 4D model and

to more accurately model the environment states. This method in combination with the

novelty-driven method described in Chapter 5 would result in a more refined and accurate

4D model. Moreover, the experiments described in this thesis were conducted indoor and

assumed both a planar environment and an accurate self-localisation system simplifying

the mapping and navigation tasks. Thus, extending the approach described in this thesis

to outdoor environments and full 6 degrees-of-freedom would allow to extend the method

to other applications besides service robots. Additionally, the proposed lifelong explo-

ration strategy could be extended in order to deal with the loop closure problem. To this

end, the robot would have to reason which locations and when are they more prone to

undergo an appearance change. This would allow to actively learn when different appear-

ances corresponds to same location. Additionally, the above reasoning could be performed

taking into account the entire path instead of computing a set of locations a priori.

While the concept of lifelong exploration has been shown to work well in domestic and

office environments, in industrials scenarios the requirements and constraints are different,

yet it is still necessary to keep the environment model up to date. For example, in a

warehouse, the patterns in the environment might change considerably more quickly than

in a domestic scenario, so the model predictions tend to be less effective. Additionally, a

mobile robot can not just roam around in order to observe the environment where humans

and robots have to work in a synchronized way (Heyer 2010). Thus, the need to observe

the environment should consider the robot’s tasks and where and when they have to be

performed in order to perform exploration as well.

One could use the 4D representation that results from the described lifelong explo-

ration strategy in order to learn about objects (Fäulhammer et al. 2017) and human

activities (Coppola et al. 2016). The full 3D metric spatio-temporal representation would

allow to predict when and where human activities will happen, and thus allow the robot

to decide when, where and from which point of view to observe the human activities

decreasing occlusions and gathering as much information about the activity as possible.
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Finally, it would be interesting to extend the lifelong exploration concept to the case of

multiple robots. Here, the complexity of the scheduling problem will increase significantly

since it needs to take into account the time constraints of several robots, their current

location and which robots are more suitable to visit certain areas.
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A
Fourier Transform

A.1 Continuous Fourier Transform

This appendix provides an overview of the of the Fourier Transform as well as its most
relevant properties. The FT decomposes a signal or a function of time into a sum of
sinusoidal functions, which are complex exponential functions defined by both an absolute
value and a complex argument. The first value represents the amount of a given frequency
in the original signal and the latest represents the phase offset of the same sinusoid in
the original signal. Thus, the FT enables the representation of functions of time in the
frequency domain.

The Fourier Transform of a function g(t) is defined by:

F{g(t)} = G(f) =

∫ ∞
−∞

g(t)e−2πift dt (A.1)

The result is a function of f , or frequency. As a result, G(f) gives how much power
g(t) contains at the frequency f and is often called the spectrum of g. The function g can
be recovered from G via the inverse Fourier Transform, which is given by:

F−1{G(f)}} =

∫ ∞
−∞
G(f)e2πift dt (A.2)

A.2 Discrete Fourier Transform

The DFT is the equivalent of the continuous Fourier Transform for a finite sequence of
equally sampled data or discrete signal. Considering g(t) to be a continuous signal and
its N equally spaced samples to be denoted as g[0], g[1], g[2], . . . , g[N − 1]. The FT of the
original signal, g(t), would be

F{g(jω)} = {g(t)} =

∫ ∞
−∞

g(t)e−jωt dt (A.3)
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Thus, considering each sample of g[k] as an impulse having area g[k] and that the
integrand exists only at the sample points:

F(jω) =

∫ (N−1)T

0
g(t)e−jωt dt (A.4)

F(jω) = g[0]e−j0 + g[1]e−jωT + . . .+ g(N − 1)e−jω(N−1)T (A.5)

F(jω) =

N−1∑
k=0

g[k]e−jωkT (A.6)

The FFT algorithm allows to efficiently compute the DFT, which allows to calculate
the DFT of N in O(N2) compared to O(NlogN) of the main algorithm. While the original
FreMEn model was based on the FFT algorithm, the FreMEn model used in this thesis is
an approximation of the original continuous FT.
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B
Lifelong Exploration Example

This appendix is an extension of the qualitative exploration example given in Section 5.4,
where the evolution of the robot’s internal models and schedules are described day-by-day.
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(a) Internal world model and schedule at the start of the day 1.
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(b) Internal world model and observations made during day 1.

Figure B.1: Internal world models, schedule and events of day 1 of the Aruba apartment
experiment. Initially, robot’s world models assume probabilities equal to 0.5, and therefore,
there is no location or time preference of observations.
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(a) Internal world model (updated based on the observation from day 1) and observation schedule for
day 2.
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(b) Internal world model based on day 1 observations and observations made during day 1 and day 2.

Figure B.2: Internal world models, schedule and events of day 1 and day 2 of the Aruba
apartment experiment. After the first day, the robot has information about spatial distribution
of the human presence, and therefore, it prefers certain locations in its day 2 observation
schedule. There is no preference for times, because one day of observations was not sufficient
to identify daily patterns of changes.
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(a) Internal world model (updated based on the observation from days 1 and 2) and observation schedule
for the day 3.
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(b) Internal world model based on first 2 days observations and observation results of the first 3 days.

Figure B.3: Internal world models, schedule and events of the first 3 days of the Aruba
apartment experiment. After 2 days of observations, the robot identified daily patterns of the
person presence and develops preference in observing certain locations at certain times.
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(a) Internal world model (updated based on the observation from the first 3 days) and observation
schedule for day 4.
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(b) Internal world model based on first 3 days observations and observation results of the first 4 days.

Figure B.4: Internal world models, schedule and events of the first 4 days of the Aruba
apartment experiment. Based on the already known daily patterns, the robot could schedule
observations that allowed it to refine its spatio-temporal model of person presence.
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(a) Internal world model (updated based on the observation from the first 4 days) and observation
schedule for day 4.
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(b) Internal world model based on first 5 days observations and observation results of the first 4 days.

Figure B.5: Internal world models, schedule and events of the first 5 days of the Aruba
apartment experiment. The observation schedule follows closely the spatio-temporal entropy of
the person presence, causing the robot to perform observations at locations and times, where
the person presence is uncertain. .
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