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ABSTRACT A data-driven generalization of the crossover model is proposed, characterizing the human
control of systems with both integer and fractional-order plant dynamics. The model is developed and
validated using data obtained from human subjects operating in compensatory and pursuit tracking tasks.
From the model, it is inferred that humans possess a limited but consistent capability to compensate
for fractional-order plant dynamics. Further, a review of potential sources of fractionality within such
man—machine systems suggests that visual perception, based on visual cues that contain memory, and
muscular dynamics are likely sources of fractional-order dynamics within humans themselves. Accordingly,
a possible mechanism for fractional-order compensation, operating between visual and muscular sub-
systems, is proposed. Deeper analysis of the data shows that human response is more highly correlated
to fractional-order representations of visual cues, rather than directly to objective engineering variables,
as is commonly proposed in human control models in the literature. These results are expected to underpin
future design developments in human-in-the-loop cyber-physical systems, for example, in semi-autonomous
highway driving.

INDEX TERMS Human-in-the-loop systems, data-driven modeling, cyber-physical systems oriented con-

trol, fractional order control, vehicle automation.

I. INTRODUCTION

A. BACKGROUND

This paper revisits a fundamental control problem for human-
in-the-loop Cyber-Physical Systems (CPS) [1] — how humans
control the motion of machines via visual perception and
neuromuscular response in Fig. 1. Part of the motivation for
this work is the growing interest in the control of autonomous
and semi-autonomous ground vehicles, in particular the need
to ensure human-machine system performs safely and effec-
tively on the one hand, and for automated vehicles to behave
in ways that are predictable and acceptable to other human
drivers [2]. There is of course a rich classical literature
on the general topic, but the modeling and understanding
of human neuromuscular dynamics has developed over the
years [3] [4], as have the signal processing and optimization
techniques available to perform diagnostic analysis of exper-
imental results [5] [6].

Traditionally in the literature on man-machine systems,
humans are assumed to respond to objective machine output
variables, which might be translational or angular displace-
ments, ratios of such variables and their future predic-
tions [7] [8], or visual field information derived from the

focus of expansion generated by the motion of a vehicle [9].
Until now, little attention has been given to the question of
how this variables are processed by the visual system and the
central nervous system prior to the generation of a response
action. Further, there has been little research into the manner
in which memories of these inputs are used in human control.
In this paper an in-depth analysis is made on both topics in
the context of a simple laboratory control task.

B. RELATED WORK

With the broader objective in mind, research conducted over
50 years ago is revisited in this paper, and in particular
McRuer’s Crossover (CO) model [10], perhaps the most
common example of a human control model, is taken as a
benchmark. The CO model (see Section II-B) describes how
humans adapt to different plants to elicit stable and effective
control responses. In this classical CO model, the input is rep-
resented directly as a displacement error between a target and
a human-controlled follower. Similarly in [11], where another
class of models is formulated using optimal control theory,
the input to the human controller is represented as an objec-
tive ‘engineering’ variable. While optimal control methods
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are often effective at performing machine control, the link to
human performance is not clear. The same difficulty is found
in a more recent scheme for reproducing human-control
performance: deep reinforcement learning [12]. By contrast,
while the CO model only offers a good description of the
human over a certain range of frequencies, it is simple and
interpretable.

In the area of driver modeling (i.e. human control of high-
way vehicles, most specifically steering control) many tech-
niques from control theory and human performance modeling
have been applied — for reviews of such models see [13], [14].
Driver models can be broadly divided into those based on
optimal control, e.g. [15], and those based on the feedback of
error from previewed target points, e.g. [16]. Again, optimal
control methods can achieve high quality tracking perfor-
mance, but are not strongly connected to human performance.
Examples include Macadam’s model [15] where the human
is assumed to act as a linear optimal controller after a certain
response delay, and that of Prokop [17] where the steering
control task is formulated as a path optimization problem.

Preview models can be divided into single and multi-
ple point preview models according to their number of
inputs [18]. For example, Kondo’s model uses a prediction
of the lateral offset after a given preview time [16].

Salvucci and Gray [19], on the other hand, proposed
a model based on a two-point control strategy. Similar
to this, the CO model was itself adapted to construct a
virtual-driver [20].

Further approaches have made use of neural net-
works [21] or deep learning [22] to achieve human-level per-
formance control. But, as with optimal control methods, such
‘black box’ approaches do not provide much insight or infor-
mation about the characteristics of human control. And in
all the cited cases the model adopts objective ‘engineering
variables’ as input and does not explicitly consider memory
aspects, although some memory storage may be still present
in these models as a byproduct of the modeling strategy.

C. CONTRIBUTION

The motivation for incorporating explicit memory model-
ing and identification of memory-based variables in human-
control comes from established neuroscience research; for
example, humans are known to keep a saccadic record
between tracking eye movements while observing their envi-
ronment [23]. Models in neuroscience suggest that neurons
can be modeled as integrators of past elements of infor-
mation [24]. And the muscular system displays a memory
component in its behavior too [4].

It is widely known that the response of a system modeled
by ordinary differential equations (equivalently, in the lin-
ear case, modeled by transfer functions) to any given input
is determined by a single vector of initial condition states.
For instance, in a mechanical system, these are usually the
generalized position and velocity variables that describe the
available degrees of freedom. On the contrary, it seems natu-
ral than human tracking behavior, and biological systems in
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general, elicit a response based on a series of past observa-
tions. In [25], the limitations of classical linear models for
the particular case of steering control are shown.

Thus a mathematical approach that explicitly includes
memory processes is motivated. With this purpose in mind,
the method of fractional calculus is considered, based on the
property that fractional derivatives add memory processes to
a dynamical system [26]; one example of modeling memory
with fractional calculus is its application to electronic com-
ponents [27] [28]. And to test out the relevance of fractional-
order dynamics to human control performance, experiments
are conducted on human tracking behavior for plants which
have the dynamic characteristics of fractional-order systems.
Further motivation for considering this approach is that frac-
tional operators introduce wider power law behavior into the
frequency spectrum of a system; for example it is known that
pink noise occurs naturally in biological systems [29].

Hence, in the following work, a generalization of the CO
model has been introduced by analyzing human response to
plants of fractional-order, which we refer to as the Fractional
Crossover Model (FCO model). The intention is as follows:
(i) to test if humans can interact in a coherent way with
fractional-order plants; (if) to formulate a generalization of
the CO model that accounts for memory behavior in the
system; (iif) to investigate potential sources of fractional-
ity or memory behavior in real man-machine systems; (iv) to
test whether humans can compensate for the fractionality
of a system and hence simplify the overall human-machine
dynamics; (v) to investigate whether fractional-order dynam-
ics are inherent within the human control; (vi) to introduce
the theory of fractional calculus to human-machine systems
and driver behavior modelers.

The paper is structured as follows: in Section II the required
mathematical background for this research is summarized
(the theory of fractional calculus and the CO model), while
in Section III the details of human performance experiments
and data collection are discussed. Then, in Sections IV and V
we perform in-depth data analysis to elicit the contributions
of memory and perception effects on control performance,
and finally, in Section VI the conclusions are outlined and
the potential implications of this research are discussed.

Il. BACKGROUND

A. OVERVIEW OF FRACTIONAL CALCULUS FROM A
‘MEMORY’ PERSPECTIVE

1) THE FRACTIONAL DIFFERENTIAL AND INTEGRAL
OPERATOR

The Laplace transform of successive derivatives of a func-
tion D'f(t) = f(t), when the initial conditions are zero,
is known to be

LID"f (1)} = s"F (s). ()

For nested integrals D~"f(r) = [4dr [¢ ... [o"~' f(n)dn,
LIDT"f (1)} = F(s)/s". 2
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FIGURE 1. Conceptual diagram of the human-in-the-loop CPS studied. The human-operator interacts with a fractional order plant through physical
devices - joystick and steering wheel - and reacts to the present and past observations of a visual input. From a data-driven modeling approach,
by recording data from human subjects (Section IlI) a fractional order model is proposed (Section IV). Parts of this image are available under a creative

commons license CC BY 2.5 (source: Wikipedia).

From equations (1) and (2) it can be inferred that transfer
functions, corresponding to derivative or integral operators,
always yield a magnitude frequency response with a slope
multiple of 20 dB/decade. The phase response is always
a multiple of 7 /2 rad. Nevertheless, ‘colored’ noise with
frequency spectrum 1/f* o« € (0,2) seems to occur gen-
erally in complex systems, particularly in human response.
Measurements of mental noise and human tracking behavior
have shown magnitude frequency responses with slopes that
are not multiples of 20 dB/decade [26] [30].

To represent this behavior, transfer functions with addi-
tional terms can be used, although this results in having
multiple additional free parameters to be fitted. Then there is
the alternative of considering simple transfer functions with
fractional exponents: s* for « € R. From (1) and (2) it can be
extrapolated that this is equivalent to employing non-integer
powers of the differential operator:

L{oD; ()} = F(s)/s,

In fact, as it is known that! £{r*~!/T'(a)} = 1/s% and by
using the Convolution Theorem it is inferred that

o eR. 3)

t
! |
D) = £GP0 = s [ £~ 07 . )
0

Equation (5) coincides with the definition of the Riemann-
Lioville fractional integral [26].

Definition 1 (Riemann-Liouville Fractional Integral): 1f
a € RT and f is a piecewise continuous function on the

Where T'(z) = jbooxz_le_xdx is the gamma function which
generalizes the factorial operation to non-integer values — it satisfies
I'z)=@—DI'(z—1) VzeC\{Z U{0}}.
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interval (0, T], with T € RT, and f is integrable on the
interval [0, T'], then for ¢ € (0, T]

1

oD, “f () = m

t
/ F@O)t — ) ax )
0

is the Riemann-Lioville fractional integral of order « at 7.

To perform fractional differentiation of order v > 0 it
is only needed to compose conventional differentiation with
fractional integration:

oDf(t) = DDl (), 6)

where [x] represents the ceiling function.

There are different definitions of the fractional differential
operator [31] [32]. The most common are the Riemann-
Liouville and the Griinwald-Letnikov definitions, which are
equivalent to each other for smooth functions. The Riemann-
Lioville fractional operator displays clearly the non-locality
of the operator — even fractional differentiation is defined
through an integral — and its frequency spectrum character-
istics. The Griiwald-Letnikov fractional operator shows that
fractional differintegration can be expressed as the sum of a
time series. It follows from the expression to define classical
derivatives from backward differences,

. n
D"'f(t) = A%h_” Z =" (m)f(t —mh), ne N (7)
m=0
that can be extended to non-integer order of differentiation

and integration [33] by using the gamma function.
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Definition 2 (Griinwald-Letnikov Fractional Operator): >

1 2 ron — )
DYf (¢ —1 —f(t
oD (1) = lim - Z T
Equation (8) can be approximated with its discretized
counterpart:

—mh), « € R\N. (8)

t/h

oDif (1) = = Z o
m=0

I'(m—a)
—f(t —mh), « € R\N. (9)

The last expression, essentially a linear filter, displays clearly
that the fractional operator is a weighted sum of past obser-
vations and therefore it is an operator with memory. This
is unlike the classical derivative which provides only local
information. Thus the limits of integration (here 0 and ), must
be specified also when applying fractional derivatives — left
and right subscripts in (8). Equations (3) and (8) underlie the
relationship between power spectrum slope and memory.

There are other ways in which a dynamical system holds
memory. The states of a system are memory variables them-
selves, as well as transport delays. Memory can also be held
in a dynamical system in a cumulative manner, such as a mean
of previous states, an integrator, a Bayesian model [34] or a
Kalman filter. This last approach has been considered in
human control to design optimal control models [11]. How-
ever, the fractional operator models memory in a more natural
form: it considers a memory history of every past state which
decays through time. The weights in (8) satisfy the property
that recent states of the system are more relevant than older
events. Besides, as fractional calculus is included within the
framework of differential equations, it is a very practical way
to include memory while modeling dynamics. In addition,
a fractional operator characterizes its memory properties with
only one parameter.

2) APPROXIMATION ERROR OF FRACTIONAL DERIVATIVES
It can be proved [33] that the discretization error when com-
puting oD"‘ £ (¢) satisfies’

oDEf (1) — oD2f (1) = O(h). (10)

The truncation error, by considering only a finite memory
window of width L can be bounded as follows:

(l)| < M—_a
P — o)

where M is a bound for |f|. Equation (11) is referred to as the
short-memory principle and encapsulates the idea that recent
events are more relevant that distant ones. Thus by choosing
L such that ML~ /|I"'(1 — «)| ~ h the total approximation
error is O(h).

loD7f (1) — 1L DYf (11)

2Generalized from (7) by using the property:
Fn—2l'z—n+1) = (-)'"T'(=zx)I'(1 4+ z) forz € C and n € N. The
expression in the definition cannot be evaluated when « is a positive integer,
which corresponds to classical differentiation, because the gamma function
has a pole in every negative integer.

3For analytic functions.
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3) FRACTIONAL DIFFERENTIAL EQUATIONS

From (3) an equivalence between fractional differential equa-
tions and transfer functions can be established. In particular
the following case is considered:

Y (s) K
UGs)  s* (Ts+ 1)
¢
ToDly(t) + oDYy(t) = Ku(t). (12)

Substituting (9) into (12) and reorganizing terms yields:
t/h

—[h““Ku(r) -y %f(t — mh)

£ = o

m=1
t/h

hZF(m

By using (13) in a step-wise manner, equation (12) can be
numerically integrated with a local discretization error O(h).
While there exist higher order algorithms to approximate
fractional derivatives and for numerical integration of frac-
tional differential equations [32] [35], for use in human-in-
the-loop interactions and real time application the method in
Equation (13) seems to be the most appropriate. Also, there
is little risk of drift arising from any approximation error,
since the human operator is constantly canceling errors when
performing closed-loop control.

In the recent literature, the topic of fractional order control
has gained increasing attention, due to its capability to model
higher order behavior. For example, in [36] a fractional order
observer is considered to control fractional order plants, and
in [37] fractional PID controllers are employed to design rail
vehicle tilt controllers.

—mh)| + O(h). (13)

B. CROSSOVER MODEL

The CO model describes the combined action of a human
operator and a controlled plant within a restricted range of
frequencies. The model was deduced by recording responses
of human subjects to visually presented stimuli in single-loop
tracking tasks [38]-[40]. In the original experiments, human
subjects were requested to control a moving element in a
display by means of a control stick held between thumb and
forefinger. The position of the moving element represented an
error, which was induced by a quasi-random forcing function.
Test subjects were requested to minimize the error by moving
the controlled element towards a reference point in the center
of the display. The control actions that the human performs
over the moving element — with known dynamics given by
a chosen transfer function — places the human as a serial
element inside the control loop (Fig. 2a).

It was observed that the manipulative control actions of the
human operator are different for different transfer functions,
but the combined human-machine behavior is approximately
invariant. Thus the CO model exhibits a behavioral invariant
of the human in its effort to adapt to the plant, offering a
consistent human-machine behavior. What characterizes the
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FIGURE 2. Human-machine control loop as in the classical and the here
presented experiments for each display mode: (a) compensatory and
(b) pursuit.

human controller is its dexterity in different contexts. The
model is expressed as a product of transfer functions for
the combined human-machine system and is characterized
by just two parameters: the crossover frequency w. and a
time constant t, which represent the combined control gain
and the effective time delay respectively. The effective time
delay characterizes the sum of the neuromuscular lag and
the transport delays of the system. The open-loop transfer
function for the forward path in the CO model is

wee ™

Yn () Yp () = ——, (14)

where Y}, represents the human operator and Y, the plant.
As mentioned, w, is both the crossover frequency and the
system gain. The amplitude and phase response for the model
are:

A(wr) = 20(log w. — logwy) dB. (15)
P(wp) = —m/2 — Ty rad. (16)

One important aspect of the model is that it accurately
represents human behavior only in the vicinity of w.. But this
is sufficient to ensure closed-loop stability and transient per-
formance, via the gain and phase margins, i.e. via the open-
loop responses in the vicinity of the crossover frequency.
The CO model is a linear approximation of a system that is
nonlinear and complex, at least in the human part. The error
of approximation between the linear model and the recorded
human output is called the remnant. This combination of
linear part plus noisy remnant constitute the theory of quasi-
linear models [7]. The CO Model, since it was introduced, has
been continuously used in human performance and control
research, one example being its application to vehicle steering
control [10] [41].

C. MECHANISMS IN VISUAL MEMORY

This section considers the question of which information the
human-operator collects and responds to from the perceived
visual input. Motion detection is one of the oldest acquired
visual capacities; it is essential to make predictions while
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tracking a moving target. It would be unfeasible to detect
motion without some type of pre-filtering that compares
stimuli perceived at different instants. As a mechanism of
motion detection, it has been proposed to result from temporal
delay filtering [42]. Thus motion detection involves integra-
tion of past visually perceived inputs; it is a process with
memory. Besides motion detection, the following reported
mechanisms illustrate that memory processes are inherent in
the visual system:

1) TRANS-SACCADIC MEMORY

In the human eye, the fovea centralis provides the maximum
resolution of receptors within the retina, but this only spans
a field of view of 2-3 degrees. Consequently, the eye usually
moves actively and selectively to sample the surroundings.
Humans redirect their gaze about three times per second.
This allows for the different objects in the visual field to
be projected into the foveal region [43]. However, even if
vision consists of a chain of discrete actions, we perceive
the environment as a unified continuous image. It has been
verified that a trans-saccadic memory is retained during sac-
cadic periods. During each saccadic period visual perception
is temporarily halted and humans are basically blind [44].
But changes in natural scenes during saccadic periods are
detected after the saccade [23]. As a result, even the initial
stages of visual perception involve some kind of memory.

2) LINEAR-NONLINEAR MODELS

Encoding models in neuroscience use linear filters to repre-
sent trains of neuron spikes produced by time-varying input
stimuli. In these models, the output firing rate is approx-
imated by a linear filter in time followed by a non-linear
transformation in cascade [24]. Although these models in
general don’t offer a direct relationship between biological
parameters and fitted parameters, the success in the approach
implies that neurons can be modeled as integrators of tempo-
ral information. Thus it can be inferred that visual response
is based on an aggregate of stimuli perceived at different
instants.

3) OCULOMOTOR NEURONS

In [3] it is proposed that the dynamics of motor and premo-
tor neurons in different oculomotor subsystems, which lead
to pursuit saccades, are of fractional nature. One particular
case is the vestibulo-oculomotor system, which counteracts
head rotation with eye rotation to maintain a steady image
in the visual field [45]. The fractional attributes of these
neurons suggest that there is a memory component in visual
tracking.

In view of the above, it seems reasonable to propose a
model which introduces memory effects via fractional-order
dynamics within the human control model — whereby the
human operator integrates past observations to produce a
response from a combination of visually perceived inputs
over a finite time-window. And to test and validate the pro-
posal, it is also appropriate to expand the dynamics of the
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plant being controlled to include the option for fractional-
order dynamics.

IIl. EXPERIMENTAL SETUP AND METHODS

A. COMPENSATORY AND PURSUIT MODES

Within the existing literature on human control, two similar
control tasks are commonly tested: compensatory mode and
pursuit mode [46] [47]. Both display modes are consid-
ered in the following data collection experiments. The main
difference between the modes is in the number of moving
elements presented in the display. In compensatory mode,
there is only one moving element in addition to one fixed
reference point. The error e(¢) is represented as the Euclidean
distance between the moving and the fixed elements. The
task of the human operator is to minimize e(¢) by means of a
control device, which allows them to generate an input to the
plant — with transfer function Y),. The error is the difference
between a quasi-random forcing function r(¢) and the plant
output m(t) (Fig. 2a). Hence, in compensatory mode only the
relative error is seen by the human, who does not have direct
access to the plant output. The position of the moving object
results as the joint effect of the forcing function, the human
response and Y, acting in closed-loop.

In pursuit mode there are two moving elements. The ref-
erence point now moves according to the forcing function
r(t), and does not depend on the human manipulative control
actions. The other moving element, controlled by the human,
displays the plant output m(¢). In this case neither one of the
moving elements directly represents e(¢), but the error is again
perceived as the Euclidean distance between the two moving
elements (Fig. 2b).

B. HUMAN-IN-THE-LOOP TRACKING EXPERIMENTS

A number of human tracking experiments were recorded
from ten subjects of mixed gender, whose ages spanned from
22 to 33 years. In each of the experiments, four signals were
recorded: the forcing function r(¢), the plant output m(z),
the error signal e(¢) and the human response c(¢) (Fig. 2).
The controlled moving element was presented on a computer
monitor as a circular solid dot, which varied in color for
each plant considered, so that the subjects were aware of a
change in the dynamics and thus the adaptation time was
shortened. The reference point was displayed as a circle of
slightly larger size and different color. Besides the two display
modes, the tracking experiments were performed according
to other variants: two different control devices (a joystick and
a steering wheel) and five different plants.

Each participant performed 4 experiments consisting of a
round of 5 tracking ‘events’ of 90 s duration Table 1, each
event with a different plant. The considered transfer func-
tions for each plant are given in Equation (12) with o =
0.5,0.75, 1, 1.25, 1.5 (and T = 0.1). The order of the
different plants was randomized for each subject. For each
participant, half of the experiments were executed with a
joystick and half with a steering wheel. Half of the subjects
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performed the joystick experiments in compensatory mode
and the steering wheel experiments in pursuit mode, while
this was reversed for the other half. After each round the
subjects were requested to rest. A training round of tests,
which were not recorded, was performed prior to the actual
tests in order to habituate the participants to the experimental
setup.

The forcing function r(¢) was composed of a sum of sinu-
soids with a range of frequencies fy = 0.01 — 20 Hz:

rit) = > e~ Mesin(f - 2wt — ) (17)
/€{0.01,0.02,...,20}

where ¢y € [—m, ] is a randomized phase for each sum-
mation term. With this choice, the amplitude is negligible
for frequencies outside of the range where a human-operator
can perform adequate control. The choice of quasi-random
forcing functions was based on the knowledge that humans
find it difficult to perform adequate tracking when the forcing
frequencies are greater than approximately 1 Hz [48].

The experimental data was sampled at 100 Hz. For each
of the 90 s events, the initial 20 s were excluded, in case the
subjects were adapting to the new plant dynamics. Another
reason to exclude these initial data is to allow the fractional
operators to populate their internal memory. Similarly the
final 10 s were excluded, as during that time the forcing func-
tion was gradually returned to zero, to minimize discontinuity
during a change in plant dynamics. Thus from each event,
only 60 s of data are analyzed.

In nine of the recorded events it was observed that the
magnitude of the frequency response (in dB) remains neg-
ative; hence no crossover frequency could be determined.
Since these events do not reflect the normal characteristics
of the human operator described by the CO model, they
were regarded as non-representative and hence discarded
from further analysis. The anomaly of these events may have
been caused by different levels of attention or fatigue during
the tests, though no systematic pattern of occurrence was
noticeable.

IV. FRACTIONAL CROSSOVER MODEL (FCO MODEL)
A. MODEL DESCRIPTION
Firstly, the question of whether the human operator is
able to interact and control fractional-order plants is exam-
ined. By fitting the CO model with the recorded data
(Section III-B) corresponding to non-fractional (@« = 1)
and fractional-order plants (@ # 1), it is shown that the
invariance property of the CO model does not hold in the
fractional case; the recorded event data corresponding to
fractional order plants do not display the characteristic slope
of —20 dB/decade of the CO model. An initial examination
(Fig. 3) of a representative set of event data exhibits that the
slope and phase conditions (15), (16) are no longer satisfied.
By analyzing the particular cases the following pattern is
observed [26]:

- For o = 1 the classical CO model is consistently verified

as described in [38] (Fig. 3b).
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TABLE 1. Summarized experimental and data analysis parameters.

(%) The frequencies of the forcing function are spaced every 0.01 Hz. Note
that the frequencies are weighted so that they are only effective up to
0.5 Hz (17). The remaining frequency values are added to simulate noise
in the system.

‘ Experimental Parameters ‘

Number of subjects 10

Age of subjects 22-33 years
Duration of each event 90s (60 analyzed)
Number of recorded events 200

Forcing function freq. range 0.01-20Hz*
Sampling frequency 100 Hz
Steering wheel range —450 to 450 degrees

Analysis Parameters (system identification) ‘

FFT window size 1024 samples~10s
FFT window overlap 512 samples~5 s
Genetic algorithm # generations 2000
Genetic algorithm # population 500

TABLE 2. Average of the mean square error (MSE) for the recorded events
between the frequency response in the data and each fitted model.

Crossover Model FCO Model
o || MSE amp. | MSE ph. || MSE amp. [ MSE ph.

0.5 || 0.063 0.162 0.021 0.033

0.75 || 0.025 0.034 0.018 0.019
11| 0.119 0.099 0.090 0.067

1.25 || 0.010 0.163 0.009 0.045
1.5 || 0.018 0.252 0.009 0.106

] Mean H 0.047 \ 0.142 H 0.029 \ 0.054 \

- For o < 1 the slope of the frequency response magnitude
is greater than the —20 dB/decade predicted by the CO
model. Besides, there is an additional positive constant
shift in phase (Fig. 3a).

- Fora > 1 the slope of the frequency response magnitude
is less than the predicted —20dB/decade. In this case
there is an additional negative constant shift in phase
(Fig. 3¢).

In light of the above, a generalization of the CO model is

proposed — the FCO model:

(we) e ™

Yi ()Y (s) = 5 (18)

The model includes an additional parameter A that reproduces
the pattern described. Y, hk (s) is the human transfer function
and Y7 (s) = K/s*(Ts + 1) is the plant. The amplitude and
phase response for the FCO model are:

Ay (wr) = 201(og w, —logwy) dB. (19)
D, (wf) = —m /21 — Twp 1ad. (20)

B. MODEL VALIDATION AND DEPENDENCE OF
PARAMETERS

Comparing the results between the two models for different
values of «, it is observed that the FCO model significantly
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FIGURE 3. Frequency responses fitted to the classical CO model and the
FCO model for three sample events (using the steering wheel and in
pursuit mode). Plant transfer functions: (a) « = 0.5, (b) « = 1 and

(C) oa=1.5.

improves the fit (Table 2). The FCO model reduces the MSE
by 38% for magnitude and 62% for phase.

The new parameter A exhibits an approximate linear rela-
tionship with respect to «. In Fig. 4 the distributions of X are
fitted independently for each event and grouped according
to «. The relationship is estimated by fitting a linear trend
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FIGURE 4. Distribution of the parameter A, for all the events, and for each
plant with their corresponding box plots. The limits of the boxes denote
the 25% (q,) and 75% (qs) percentiles. The whiskers have a maximum
length of 1.5 the interquartile difference (g3 — q;). Outside of this range
the values are regarded as outliers. The median values are fitted with a
dashed line.

to the median values for each fractional plant:
A=ma—+c~my+1 21

and values m = 0.31, ¢ = 0.72 are obtained. It is convenient
to define y := o — 1 as a measure of how far the plant is from
a non-fractional model — we may call this the fractionality of
the plant. Accordingly, for these particular values of m and c,
the FCO model can be rewritten as:

(@) Hle®
sHY(Ts+1)
and hence, the response of the human operator is given by

Y) (5) = K N s =m(Ts + De™™. (23)

er (s)

gy +1 (22)

The result m ~ 0.3 can be interpreted as follows: on aver-
age the human operator is able to compensate for about
70% the fractionality of the combined human-machine sys-
tem. The compensation is represented in the model of the
human (23) by an additional factor we s 1= not present
in the CO model. Hence, the FCO model offers a suitable
generalization of the classical CO model, describing human
control of a wider category of plants. These may include com-
plex and nonlinear plants or plants with hysteresis effects, and
where a fractional order approximation can be determined
(see for example Section V-A below). With the given data it is
only possible to speculate about what may happen by further
increasing the fractionality towards o = 2. It seems natural
that only the difference from « to the nearest integer order is
relevant.

The frequency range of validity of the CO model is not
reported in the classical literature [38], as it is dependent
of the forcing function, the human response characteristics,
the control device and the controlled plant. For the presented
setup, it is observed that the CO and the FCO models are
generally valid on the frequency range of 0.05-0.5 Hz.
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FIGURE 5. Comparison of the effective time delay for the two tested
control devices: joystick and steering wheel. The human operator is able
to produce a quicker response with the joystick. The median values are
0.275 s and 0.34 s for the joystick and the steering wheel respectively.

C. STEERING WHEEL CONTROL

Concerning the applicability of the presented work to steering
wheel control, longer neuromuscular lags are obtained with
the steering wheel than with the joystick (Fig. 5); steering
wheel control involves a higher participation of the mus-
culoskeletal system. Nevertheless, the median MSE for the
recorded events are very similar: 0.091 and 0.138 for the
joystick and the steering wheel respectively. On the other
hand, regarding the control of ground vehicles, the steer-
ing ratio in the steering system of a conventional vehicle
(typically around 16:1) implies that steering wheel con-
trol provides superior directional precision compared to a
joystick. For example, in [49] it is reported that the tracking
performance is superior with a steering wheel than with a
joystick for normal driving, but equivalent in crash avoidance
maneuvers. While joystick control can yield a faster response,
it is too sensitive to allow an intermittently-active driving
attendance; it demands constant and quick readjustments.

D. DISCUSSION

It is known that the crossover frequency is larger for more
skilled operators [26] [40]. Higher values of w, mean that
stable tracking occurs across a higher frequency range. For
example, lower control gains have been reported for ine-
briated drivers [50]. Examining the fitted values of w. for
every o (Fig. 6), smaller values are observed in fractional-
order plants. In particular . seems smaller for larger |y]|,
especially for higher order plants. Additionally, for « > 1,
the variability between the different events is seen to be
smaller. This suggests that fractional-order plants are more
difficult to control, and while for some events subjects were
able to achieve relatively larger values of w, when o < 1,
for o > 1 the crossover frequency is consistently smaller; the
degree of difficulty in a tracking task also increases with the
order of the plant.
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FIGURE 6. Distribution of the fitted v values for all the studied events
and for each plant. Smaller values of ¢ are generally observed for
fractional plants (« # 1), specially for the higher order ones.
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FIGURE 7. Distribution of the fitted effective time delay values 7 for all
the studied events and for each plant type.  increases along with the
order of the plant, especially for o« > 1.

Interestingly, while for « < 1 the crossover frequency is
smaller than for the non-fractional plant (@« = 1), the neu-
romuscular lag is very similar (Fig. 7). This indicates that,
even when the subjects operate at lower bandwidth when
controlling fractional-order plants, for « < 1 the values of T
are similar to those in the non-fractional case. It may be that
subjects are able to use the memory in the system to predict
its behavior in the lower fractional order cases.

This is further supported by the fact that almost identical
performance is found for « < 1 and for « = 1 - Fig. 8.
On the other hand, the higher order plants (o« > 1) result in
a higher error e(¢) = r(t) — m(t). For « = 1.5 the variability
in the data is significantly higher, which suggests that not all
the subjects were able to fully adapt to the plant during the
course of the tests.

The simplicity of the CO model relies on the fact that
it depends on just two parameters (w. and t), which have
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FIGURE 8. MSE of e(t) for the events tabulated according to «. The
performance is lower for the higher order plants and equivalent for lower
order plants.

an intuitive interpretation. The FCO model adds just one
additional parameter: the fractional exponent of the combined
human-machine system (1). A is therefore related to the
memory in the whole system. Besides, A also has an intuitive
meaning: it determines the slope of the frequency spectrum
and the added phase offset. Because A depends on the plant,
which in most cases will be known, the FCO model can still
be considered a two parameter model.

Since fractional derivatives lie between two integer order
derivatives, the results for « < 1 suggest that humans can
effectively combine information with different levels of dif-
ferentiation. This is equivalent to combining input variables
such as position and velocity or velocity and acceleration, and
suggests it is possible for humans to respond to such com-
posite variables, rather than directly to ordinary ‘engineering
variables’. This motivates the further analysis of Section V.

V. SOURCES OF FRACTIONALITY IN HUMAN-MACHINE
SYSTEMS

Real-world plants should be uncomplicated to control, so lev-
els of fractionality are likely to be low for most systems [51].
Nevertheless, the possible sources of fractionality in real-
world man-machine systems are analyzed in this section
by considering the various subsystems. In particular, as the
motivation behind this research is its potential application to
characterizing driver behavior, the case in which the plant is
a ground vehicle is principally considered. Further, the possi-
bility that human operators themselves introduce fractionality
in the man-machine control loop is also studied.

A. PLANT DYNAMICS

To test the extent to which vehicle response can be considered
fractional, the parameters of a fractional linear bicycle model
were fitted with data obtained by running a simulation with
CarMaker® [52], a high fidelity simulation tool used exten-
sively in the industry. Details on the derivation of a fractional
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FIGURE 9. Relative errors eg and eg from (28a) and (28b) vs. the
fractional parameter . Each point corresponds to a member of the
Pareto frontier, which contains the potential optimal solution alternatives
yielded by the optimization algorithm. The two curves intersect at

i =~ 0.987 with eg = ep ~ 0.154.

bicycle model, data recording and the optimization process
can be found in the appendix.

A multi-objective optimization process was employed to
fit the parameters of a linear bicycle model with additional
fractional dynamics. The model consisted of two dynamical
equations: one equation for the body slip angle and the other
for the yaw rate of the vehicle. Two objective functions, ep
and eg, represent the relative error between the simulated data
and each of the equations. The fractionality was introduced
in the model with an additional parameter . The optimized
values of the Pareto frontier are displayed in Fig. 9. The fitted
parameters show that the fractional bicycle model is very near
to the non-fractional case (u© = 1) with u© = 0.987, although
the fractional model fits better the transient phase in the step
response (see appendix). According to this analysis, ground
vehicles may introduce a certain degree of fractionality in
the human-machine system, but not to the same degree as in
the experiments of Section IV. This fractionality is likely to
derive from the elasto-kinematics of the tyre, the steering sys-
tem or the suspension systems, and may be more significant
for heavy vehicles or for vehicles driven off-road.

B. HUMAN-OPERATOR DYNAMICS

Section II-C suggested two mechanisms involved in visual
perception that can imply fractionality within the human
operator: trans-saccadic memory and vestibulo-oculomotor
neurons. Regarding the first, it has been reported that the
duration of a saccade is generally less than 100 ms [53]. This
gives an approximation of the memory integration time of this
process.

There is another way in which the visual system may
introduce fractionality: perceived visual inputs are processed
in different parts of the brain via a complex network of feed-
forward and feedback connections [54]. The neural visual
pathway displays a peak in activation before any motor output
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FIGURE 10. Relationship between the order of the plant (12) and the
fractional-order v that brings maximal correlation between oD;’e(t) and
c(t) for the recorded events.

is performed [55]; neural processing of a perceived image
until identification can take around 150 ms. Thus visual
processing has a memory integration time comparable to that
of the duration of a saccade.

Here the possibility that visual processing of the tracking
error can be modeled with a fractional operator is considered
For the 200 recorded events, a genetic algorithm was run that
maximizes the correlation between (D} e(t), the fractional
derivative or integral of e(t), and c(¢), the human operator
manipulative control actions, by varying v (Fig. 10). Through
this method, it is inferred that the human operator response
displays greater correlation to a delayed fractional error vari-
able, rather than to an integer power of the differential opera-
tor; the time delay having been separately estimated by fitting
the CO model to the data [26]. In the analysis, the median
correlation was shown to increase from 0.758 to 0.816, when
the fractional operator was added.

Further, the fractional error variable relates to the fraction-
ality of the plant through an approximate linear relationship:

v=na+dy =ny +d; 24)

with n = 0.56, d; = —0.40 and d» = 0.16.

This result provides indirect evidence for fractionality in
the human controller. Our interpretation is that the human
operator responds to visually interpreted information with
some level of fractionality, and that visual inputs for the
tracking task can be modeled as a linear filter that takes into
account sampled past observations (8) (Fig. 11).

C. DISCUSSION

Taking as benchmarks the CO model and the FCO model
and the classical literature, it can be concluded that the over-
all human control response for non-fractional order plants
is itself non-fractional. But human responses appear more
highly correlated to fractionally integrated visual informa-
tion. Further, in Section IV it was shown that humans are
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FIGURE 11. Suggested scheme by the analysis in the recorded data: The
human-operator responds to an error variable that can be modeled with
a fractional operator. The human operator compensates to produce a
non-fractional response c(t) - when interacting with non-fractional
plants - according the the FCO model.

able to reduce the fractionality of the whole human-machine
system in about 70%. Considering that most real-world plants
are non-fractional, this raises the question of why humans
possess any skill to control and compensate fractional order
plants. One explanation is that visual perception, muscular
dynamics and the central nervous system contain memory
aspects that can be described as a fractional process, and
human neuromuscular responses can be characterized as a
process that compensates this fractionality, yielding a non-
fractional response. In order to interact with a non-fractional
plant, the most convenient approach for the operator is to
produce a non-fractional manipulative action. A mechanism
of fractional compensation has previously been proposed for
vestibulo-oculomotor neurons; in [3] it is contemplated that
the fractional dynamics of motor neurons compensates the
fractional dynamics of the eye. From the analysis presented
here, a mechanism of fractional compensation is the most
plausible explanation.

The mechanism of fractional compensation can occur in a
number of different ways. One possibility is that it occurs in
the muscular system. Fractional-order dynamics seem to be
general in the muscular system [4] [56]. The musculoskele-
tal system is composed of viscoelastic polymers, which are
known to be well modeled by fractional dynamics. In [25]
the plausibility of driver steering control to be character-
ized by intermittent asymmetrical pulses was demonstrated.
However, human steering output recordings appear to be
smooth. The fractional aspects of the motor system can
explain the transition between discrete pulses and smooth
steering response. Regarding the fractional compensation,
another possibility is that it occurs during the visual pro-
cessing stage. However, without a complementary analysis of
neural recordings the exact process of compensation cannot
be fully characterized.

VI. CONCLUSIONS

The research presented in this paper is motivated towards the
formulation of biofidelic human-control models, for example
in the control of ground vehicles. This paper has examined
the characteristics of human control, in the presence of frac-
tional order dynamics. The investigation was conducted by
analyzing the closed-loop control actions of humans (data-
driven modeling) to track the response of various plants — of
fractional and non-fractional order — subject to quasi-random
disturbances.
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It was first shown that the classical Crossover (CO) model
does not perform satisfactorily when fractional-order plants
are considered. A generalization of this model, the Fractional
Crossover (FCO) model, was proposed and validated with
human data. For the case when the plant is non-fractional,
the FCO model coincides with the CO model. The FCO
model shows that humans can compensate for fractionality
in the controlled plant. Further, strongest correlations were
observed between the human response and a fractional deriva-
tive of the input error; and the order of the optimal fractional
operator, was seen to depend on the order of the plant through
an approximately linear relationship.

These findings lead the authors to advance a series of
plausible conjectures regarding human-control; it is proposed
the hypothesis that visual cues in tracking tasks are com-
posite motion variables, that can be represented by frac-
tional derivatives of the standard engineering variables. In
addition, the approximated but consistent linear relationships
observed, are hypothetized to be the result of the adaptation
by the human operator, providing evidence of inherent frac-
tionality within the human controller. The resulting hypoth-
esis is that humans integrate spatio-temporal visual informa-
tion to determine the required response, and this effect can be
represented with fractional variables.

The research has clearly shown that humans compensate
for fractional order dynamics, at least partially. One possible
interpretation is that visual perception and neuromuscular
dynamics have the characteristics of a fractional-order pro-
cess, and further visual processing or muscular response can
reduce the associated fractionality. Perhaps this is the under-
lying basis for the fractional order compensation seen in the
test results.

The results here presented have been tested on a par-
ticular type of plant, thus cannot be generalized to every
human-control setting. But the fact that they coincide with
the CO model for the non-fractional case suggests that the
experimental approach is correct.

One difficulty in this proposition is the unfeasibility in
determining the exact location of the fractionality in the
system, simply by analyzing the motor response of the
human. Thus several potential sources of fractionality were
considered. As exemplified by the handling dynamics of a
ground vehicle, real world plants have very low levels of
fractionality.

In real-world control problems, the visual stimulus is more
complex than a single moving dot. In this article, the biologi-
cal or optical aspects of visual perception have been intention-
ally set aside, so that patterns in data are more conveniently
identified. Future research is to be aimed towards the design
of biofidelic human-control models which do include more
realistic visual stimuli, in particular the road scene used for
the steering control in ground vehicles. This will aid the
development of effective shared-control systems and cyber-
physical systems, for example in the vehicle industry. More-
over, such models may provide insights to guide neuroscience
about the functional performance of the central nervous sys-
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FIGURE 12. Ground vehicle simulation representing the characteristics of
a Toyota Camry 2006 with a band limited random steering angle, in a
straight road.

TABLE 3. Mathematical symbols, variables and parameters.

Symbol Meaning
L£{} Laplace transform
s Complex frequency

Ofo(t) Fractional derivative (§ > 0) or integral
(£ <0)of f of order £ € R.

() Gamma function

h Differintegration step

N,Z,R,C Natural, Integer, Real and Complex numbers
respectively

Crossover frequency

Effective time delay

Time constant of the plant

Fractional order plant

Plant fractionality

Fractional order (human)

Fractional order human + plant

Human transfer function

Plant transfer function

Forcing function

e(t) Control loop error

h(t) Human response

m(t) Plant response

Body slip angle

r Yaw rate

Oy Steering angle

M Vehicle mass
U

1

o

_;§§§th QN3 €

<

—~
~+

~

Vehicle speed

Vehicle yaw moment of inertia

Coy Vehicle front cornering stiffness

Car Vehicle rear cornering stiffness

ly Distance from vehicle center of gravity to
front axle

Iy Distance from vehicle center of gravity to
rear axle

Optimization error for body slip angle and
yaw rate respectively

tem, and so complement research at the neural level, e.g using
fMRI or EEG data.

APPENDIX

FRACTIONAL MODELING OF A VEHICLE

To estimate the level of fractionality in a complex road vehi-
cle, as modeled by a simple fractional order system, data was
obtained by running a simulation in CarMaker® in Fig. 12.
The simulation represented a Toyota Camry 2006 vehicle
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FIGURE 13. Step response for the optimized solution for (27) with 1 =1
(non-fractional), . = 0.987 and for the CarMaker® simulation setup:

(a) body slip angle and (b) yaw rate. While the transient is slightly
different for 1 # 1 - more overshoot is present in fractional case - the
steady state response is very similar for both models. The step input is of
3¢ = 0.05 rad.

with a band limited random steering angle, in a straight road
of non-limiting width. The recorded signals were the body
slip angle B(¢) and the yaw rate r(¢). The data were sampled
at 50 Hz and the signal had a duration of 100 min.

The parameters of a linear bicycle model — and of a frac-
tional version of this model — were fitted with the data. The
considered bicycle model (from [57]) is:

[B}:_[LO/MU 1+L1/MU2i||:5:|+[Caf/MUi|5f

P Ly/1 Ly/1U r lrCor /1
(25)
with
14) = Cozf + Car
L= lfCaf + 1 Cor (26)

Ly = l]gcaf + lrzcar

and where Cyr and Cy, are the axle cornering stiffness for
the front and rear axle respectively, M is the mass of the

27633



IEEE Access

M. Martinez-Garcia et al.:

Extended Crossover Model for Human-Control of Fractional Order Plants

vehicle, U the speed — which was chosen to be constant at
100 km/h, Iy and I, are the distances from the center of gravity
of the vehicle to the front and rear axle respectively, I the yaw
moment of inertia and & the front steering angle. A fractional
version of the model can be rewritten as a transfer function
with an additional parameter j:

2)-

where L{B(1)} = B(s), L{r(t)} = R(s) and L{8(1)} = Ar(s).
For i = 1 (27) is identical to (25).

A multi-objective optimization process through a genetic
algorithm is used with a grey-box modeling approach: It is
pre-assumed some knowledge about the data — it follows
approximately (27) with known M, U, ¢, [, and I — but as
Cyy and Cy, are more difficult to approximate experimentally
and p is unknown, the genetic algorithm will fit Ly, L,
Ly, Cyr and . The bidimensional objective function for the
optimization process is:

Cof (IUS* Ml U +Ly—Ly )
IMU2s2+(ILgU+LyMU)s# +LoLy— L3 —L MU A
Cof UMUIp s +Loly—Ly) f
IMU2s24+(ILgU +LoyMU st +LoLo—L3 —L MU

27)

2 B(jw) — B(jo) |2
ep = . 17 Z ‘ S0 (282)
U = ‘RA—U“’) — R(jw)? (28b)
\ N e R(jw)

where B and R are the estimates of the frequency response of
(27) and N the number of samples in the range 0.1-2 Hz. Thus
the objective function is dimensionless. The step responses
for each system are very similar, although the fractional
model offers a better fit during the transient phase (Fig. 13).
Both models present a less precise fit of the steady state
response, possibly due to effects introduced by the steering
compliance, which the bicycle model does not replicate.
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