
 

 

 

 

 
Abstract — In this paper, an algorithm for the reconstruction 

of an outdoor environment using a mobile robot is presented. 

The focus of this algorithm is making the mapping process 

efficient by capturing the greatest amount of information on 

every scan, ensuring at the same time that the overall quality of 

the resulting 3D model of the environment complies with the 

specified standards. With respect to existing approaches, the 

proposed approach is an innovation since there are very few 

information based methods for outdoor reconstruction that use 

resulting model quality and trajectory cost estimation as 

criteria for view planning. 

I. INTRODUCTION 

  

3D modelling of large environments has become a matter 

of increasing interest in recent years due to its multiple 

application fields, such as reverse architecture, archaeology, 

public works or multimedia presentations, among others.  

This is possible thanks to recent advances in laser scanning 

technology and related 3D processing algorithms. Laser 

devices permit automatic scanning of the environment to the 

desired resolution and measure the geometric coordinates 

(x,y,z) of every point travelled across by the laser beam, 

with respect to the scanner location.  

However, setting up a typical stationary laser scanning 

scheme is a difficult and time consuming labour. These 

devices are usually heavy and require the set up of many 

different pieces of equipment (tripod, batteries, GPS antenna 

and computer). Moreover, a human operator has to choose 

which views will be less occluded and will provide more 

information and has to decide when the number of scans is 

large enough to cover the complete model. All this is done 

usually upon operator experience, without taking a close 

look at the resulting model. 

The use of mobile robots equipped with on board 3D 

scanning systems emerges as a suitable alternative, ([1], [2], 

[3]) given that robots provide mobility, computing system, 

physical support to the scanner and positioning sensors. 

However, though the use of mobile robots reduces greatly 

the effort involved in the scanning process, the automation 

of the view selection is still an open problem. 

This issue has been addressed within the field of mobile 

robot exploration. Most research effort has been focussed on 

the SLAM (Simultaneous Localization and Mapping) 

problem, and the developed techniques are designed to 
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improve relevant feature extraction along robot trajectories 

in order to maximize robot localizability and map 

information. Usually, the main objective of these approaches 

is to obtain indoor maps which help robots to self localise, 

and mapping process is reduced to the x-y dimensions.  

Outdoor environments have many characteristics that make 

the problem different form indoor case. The environment is 

less structured: it is not restricted by walls, the floor is not 

plain, there are arbitrary but relevant 3D elements (such as 

trees, stones and cars), and thus 2D maps are not efficient for 

navigation purposes. Moreover, 3D mapping is a more 

complex problem due the huge memory and computational 

resources required for data handling, besides of other 

problems such as occlusions. Fortunately, the localization 

problem is less severe in outdoor environments due the 

availability of absolute localization sensors like DGPS and 

compasses, which provide reasonably accurate robot 

localization. 

Under these circumstances, the algorithm presented in this 

paper is focused on optimizing the exploration process by 

maximizing the map quality, while reducing the amount of 

scans required for creating a good quality 3D model of the 

environment. The goal is to have a robot that can build a 

model of its surrounding environment in an efficient way, so 

this robot has to consider previous data to choose the best 

next locations to carry out a new scan, and compute the 

trajectory towards these locations. This methodology can be 

applied to most outdoors scenes such as urban locations, 

monuments, archaeological sites and forest.  

 

II. PREVIOUS WORK 

 

Several exploration techniques have been proposed in the 

literature, following two main strategies: strategies where a 

given trajectory or behaviour (e.g. wall following or moving 

to random positions) is defined upon a priori information of 

the environment ([4], [5]), and strategies that predict which 

movement will improve the most the robot knowledge of the 

environment, based on acquired information.  

The first group of strategies lacks adaptability to unknown 

environment, where they tend to either leave unexplored 

areas or be highly inefficient. Therefore, the second group of 

strategies has received more attention since environment 

information is used to decide further actions and they are 

more adaptable to any kind of environment. In general 

methods belonging to this second group are known as next 

best view (nbv) given that their focus is to find the best next 

observation position. 

Common methods within nbv approaches are greedy 

methods [6], where the robot moves to the closest location of 

interest; frontier based methods [7], where candidate 
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locations are generated on the frontier between the explored 

and unexplored areas; and information based strategies that 

use evaluation functions where different criteria is employed 

to choose the next best position according to the selected 

criteria, for example traveling cost [8]. 

Among the information based works, some of them use 

functions to predict the utility of a given location. For 

example, in [9] the utility of a target location is defined as an 

expected information gain. In [10] traveling cost is 

combined with information gain so that the next best view 

point is chosen to maximize coverage and reduce traveling 

distance. Some strategies find interest areas within the map 

that are also used as a criteria, for example in [11] relevant 

features within the map are included and used for evaluating 

next best view considering that seeing these regions will 

facilitate SLAM. 

For 3D mapping, [12] proposes a hierarchical nbv method 

for quickly evaluating multiple 3D views in indoor scenarios 

using model quality and completeness as criteria, this work 

presents different algorithms to efficiently evaluate several 

viewpoints with respect to large sets of 3D data where 

different where positioning and sensing constraints are taken 

into account.  A different solution for outdoor 3D mapping is 

proposed in [13], where a 2D floor map of the area to be 

scanned is used to find possible occlusions that a 3D scan 

would have from different floor points. The combination of 

viewpoints that requires the lowest number of scans to 

entirely cover the target area is then found upon this process. 

Once a 3D scan has been taken from each previously 

calculated viewpoint, a view planning algorithm is used to 

cover all unpredicted occlusions on the model with as few 

scans as possible. 

 

III. THE EXPERIMENTAL FRAMEWORK 

 

The proposed algorithm has been designed for an all-

terrain robot we have developed for outdoor 3D 

reconstruction (Fig. 1). This robot has a six wheel 

differential traction system, an electronic traction control 

system, an on-board PC system, and a multi-channel, long-

range communication system for teleoperating or monitoring 

the robot in autonomous and semi-autonomous missions, as 

well as different navigation sensors (cameras, laser, GPS and 

IMU). 

 
Fig. 1: All-terrain Robot developed by CARTIF 

The robot is also provided with an on-board 3D scanner 

(Fig. 2) designed within this work. It uses a 2D Sick LMS-

111 laser system on a rotating platform that spins at a 0.2 to 

5 hz speed. The scan resolution of this system depends on 

the spinning speed and the number of turns of the scanner. A 

typical scan has a 0.5º x 0.5º pant-tilt resolution and takes 

about 10 seconds to be completed.  

However, given that the development of an exploration 

algorithm requires extensive tests and the scanning of 

different environments from as many viewpoints as possible, 

simulation becomes desirable and is a better suited tool for 

the development of the algorithm. 

 

 
Fig. 2: Representation of a laser scan: front view (left) and top view 

(right). SickLMS-111 mounted on a spinning platform allows obtaining 

an almost full environment scanning coverage. 

Therefore, we have developed a 3D robotic environment 

simulator (Fig. 3), that simulates our robotic system on 

which exploration algorithm tests can be run at a low cost. 

The simulator has been developed in C++ using ODE 

dynamic simulation libraries [14] for the simulation of 

physic variables and ray collider. 3D data loading has been 

implemented using Trimesh2 [15] libraries. IPC [16] 

libraries have been used for communicating simulator with 

other programs such as the proposed exploration algorithm. 

This way, transition from simulated environments to real 

scenarios is quick and transparent to the user. The simulator 

is open software that can be downloaded from 

https://sourceforge.net/projects/simbot3d, and future releases 

will include communication with well-known Player-Stage 

[17]. 

 

 
(a) 

 
(b) 

Fig. 3: Simple environment simulation screenshot. Frontal Camera (a)  

and aerial view (b). 

IV. OVERVIEW OF THE PROPOSED ALGORITHM 

 

The proposed method is based on the multiple criteria nbv 

algorithm [18], where not only the distance and the expected 

information gain is considered for exploration, but also other 

critical information such as resulting model quality, view 

occlusion and navigation difficulty, 
 

     
                    

      
       (1) 

 

In this equation, u(t) is the utility evaluation function used 

by the algorithm, t is the candidate position to be evaluated, 

A(t) is a normalized value that represents expected 

information gain, Q(t) is the improvement on model quality, 

https://sourceforge.net/projects/simbot3d


 

 

 

 

O(t) stands for the number and quality of interest zones 

covered from target t, C(t) is a cost function that quantifies 

the difficulty of reaching each target; and wA, wQ, wO and wC 

are constant values that weight the influence of each criteria 

in the evaluation function. 

All these criteria are chosen in order to obtain an 

environmental 3D model that fulfils model quality 

requirements while reducing the number of scans needed to 

cover the working area during movement, thus reducing the 

process time and energy requirements.  

Figure 4 shows the flowchart of the proposed algorithm, 

Input information is the scanned point cloud data, and an 

OpenGL Style transformation matrix which represents the 

robot pose. A 3D analysis process is carried out in order to 

determine robot navigation area, model quality analysis and 

interest zone extraction. Afterwards a 2D grid map is created 

to calculate information about the resulting model quality 

and robot navigability, and over which a set of candidate 

targets is created. Finally, each created target is evaluated 

using the utility evaluation function to determine from where 

the next scan should be taken. 

 
Fig. 4: Algorithm block diagram 

V. 3D DATA ANALYSIS 

 

In this stage, the acquired 3D mesh is analyzed point by 

point in order to extract which points correspond to 

traversable surfaces and obstacles, to estimate model quality 

at each point and to extract interest zones from discarded 

triangles. This process is executed every robot scan. 

 
A. Extraction of Safe Navigation Zones and Obstacles  

 

3D data contains a large amount of information about the 

environment, and 3D points can correspond to obstacles, 

drivable surfaces (ground) or objects that the robot cannot 

reach [19]. The extraction of safe navigation areas is done by 

calculating the probability of each point of the mesh of 

belonging to the ground (safe navigation zones) or an 

obstacle. This data is useful to analyze navigability within 

the surrounding area. 

If a point is at a reachable angle for the robot (i.e. the robot 

does not need to climb beyond its possibilities to reach this 

point), and its normal vector projection onto the world Z axis 

has is large enough, this point has a high probability of 

belonging to a traversable zone from a local point of view. 

However, neighboring points have to be also considered, 

for example, a point on an elevated plane may comply with 

local conditions, but its neighbor probabilities could be 

largely lower. 

For this reason, the extraction of safe navigation areas is 

done in two steps. First, a probability from a local point of 

view Fpl(p) is computed using (2), where Pz is the point 

height, dp is its distance to the scanner on the XY plane, Nz 

is its normal Z component on the global reference system 

and Θ is the maximum angle that the robot can climb. 
 

               
  

        
   (2) 

Then, a probability from a “global” point of view Fpg(p) is 

computed as the average of each neighboring point 

probability, Fpl(p) (points sharing 3D mesh triangles with 

point p),  

       
 

 
                    (3) 

where γ(p) is the set of neighbors of point p and n is the 

number of neighbors. Once Fpg(p) has been computed, the 

final probability F(p) for each point is obtained by  

weighting wl and wg their corresponding probabilities, 
 

                             (4) 

A point can belong to an obstacle if it is at a reachable 

position for the robot and the plane to which it belongs to is 

facing the robot (the dot product between the ray and the 

point normal vector is close to 1). Neighbours are also 

important since an obstacle point surrounded by floor points 

can be traversable. The probability of belonging to an 

obstacle is computed using a “local” probability function 

Bl(p) (5) and a “global” probability function Bg(p) (6): 
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              (6) 

where |Nxy| is the magnitude of the resulting vector addition 

of point normal components on X and Y axis,      is a vector 

from the 3D scanner to point p and      is its normal vector. In 

(6), the neighbours to point p are used to find the global 

probability value. Then, the final probability B(p) is obtained 

by weighting with wbl and wbg the Bl(p) and Bg(p) relevance,  
 

                        (7) 
 

   Some results can be seen in Fig. 5. Ground and obstacle 

probability values are used to create a navigation map that is 

used to find trajectories and calculate route difficulty, as will 

be explained in section VI. 

  
Fig. 5: Left: Ground Extraction Process Result. Right: Obstacle Extraction Result 

 

B. Model Quality Analysis 

 

Model Quality has to be analysed point by point because it 

is not a homogeneous characteristic and is affected by 

various factors within one scan. In the analysis process each 

point p gets a score (between 0 and 1) AP(p) where 0 



 

 

 

 

correspond to bad quality and 1 to the desired quality or 

better. This score is given according the following criteria, 
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where AA(p) is a function that compares current area per 

point against maximum desired point area for point p, PAr is 

point p area, Amax is the desired point area, AIp(p) is a quality 

factor that depends on ray incidence angle for point's plane, 

     is a vector from the 3D scanner to point p and      is its 

normal vector. Finally,    and    are parameters to adjust 

area against ray incidence angle relevance. Fig. 6 shows 

model quality by area and ray incidence angle. 

 

  
Fig. 6: Left: Map Quality by Point Area criteria. Right: map quality 

by ray incidence angle criteria (cold colours mean higher quality) 

 

C. Extraction of Interest Zones  
 

The last step in the 3D analysis process is the extraction of 

the interest zones. These zones are extracted from model 

discarded triangles, which usually are occluded planes.  

In order to be useful for utility evaluation, a vector that 

points to the centre of each occluded plane is created. These 

vectors are stored on a list along with points at the centre of 

each occluded plane, and are used to measure how well 

interest zones will be scanned from each candidate position. 

The resulting list is projected onto the 2D information grid 

where information on which occlusion planes and how are 

they covered from each evaluated target t, can be extracted 

using 

                               (11) 
 

δ is the set of visible cells from target t, β is the set of 

interest zones stored for each cell j,        is a vector from the 

3D scanner to the point that marks the centre of an interest 

zone and      is the vector that is normal to the occlusion 

plane.  

 
Fig. 7: Interest Zones (in red) Extracted From One Scan 

 

 

VI. EVALUATION OF CANDIDATE TARGETS  

 

Candidate evaluation using 3D data can be a really high 

resource and time consuming process. For this reason, a 2D 

information grid is used in this work, in order to keep time 

and resources low without losing information from 3D data. 

Each cell in this grid stores all the information from an area 

of the environment, so processing information becomes 

much simpler. All the information of a mesh is projected 

onto the grid every time a new scan is taken. 

This representation is useful for many different tasks, such 

as computing navigation maps by analysing the amount of 

points that have high probability of belonging to obstacles or 

traversable surfaces in a cell. 

 
A. 2D Navigation Map 

 

This representation is based on the navigability concept 

[20]. It is a map very similar in appearance to occupancy 

grid maps used for 2D environments. However, cells in 

occupancy maps contain the probability of a cell of being 

occupied by an object, while cells in the navigation map 

contain the probability of a cell of being traversable by the 

robot.  

Each time a new point with high probability of belonging 

to a traversable surface is added to a cell, the probability of 

this cell to be traversable is increased. Otherwise, if an 

obstacle point is added, then this probability is decreased. 

Navigability per cell        has ranges from 0 to 1, 1 

corresponding to a completely traversable cell. This map 

(see Fig. 8) is computed using all points that have a 

probability of belonging to a traversable surface over a given 

   value, or a probability of belonging to an obstacle over a 

   value. 
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In this expression, φ is the set of points on cell c 

with        , npf is the number of points in set φ, ∝ is the 

set of cell points with         and npo is the number of 

points in group ∝. 

 
Fig. 8: Navigation Map 

Candidate targets are generated in cells where        
   , so that every evaluated target is reachable. Targets are 

distributed uniformly around robot position; so many 

different viewpoints are evaluated. 

 

 

 

 



 

 

 

 

B. Expected Information Gain 

 

In order to compute how much new information can be 

captured from each evaluated candidate, the number of 

points and the minimum and maximum point heights per cell 

are used. This information is used to compute how many 

new cells will be scanned from each target and which cells 

will be occluded by other ones. 

The first relevant value is the area covered from each 

candidate target An(t), which is computed using 
 

      
     

   
 

      (16) 

where Ac is the area represented by each cell and Cse is the 

number of unexplored cells within the scanner range. 

Computation is refined by subtracting the area of occluded 

cells Ao(t) from the unexplored area that could be covered 

from a given candidate target. 

Occluded cells are computed using a height map that is 

created using per cell min and max point height; and using 

for unexplored cells the info of the closest explored cell in 

robot direction. 

Using map information, three points mk are generated: one 

point at the minimum height of each cell, other one at the 

maximum height that the scanner could reach on that cell 

from the evaluated target, and another one at the middle of 

said points. Then, lines are traced from the scanner position 

at the evaluated target t to each of these three points, and 

lines that cross a cell under its maximum height nil are 

counted. The occluded area is then computed using  

      
     

 
      (17) 

 

The expected information gain A(t) can be computed upon 

(16) and (17) using 
                    (18) 

 
C.  Expected Model Quality Gain 

 

Model quality gain is the difference between quality 

information stored in the 2D information map, and the 

quality information after a scan from the evaluated target t is 

taken. 

Expected quality is calculated using two terms. The first 

term is expected per cell point area EQAP, which is computed 

using the distance from the candidate target to each cell re, 

the maximum desired point area Amax and Pan-Tilt 

resolutions resp and rest. 
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     (20) 

 

The second term corresponds to the quality improvement 

computed from laser incidence angle. A new ray incidence 

quality for each point on the cells that are within the scanner 

reach from the evaluated target, EIC(c), is computed using 
 

       
 

   
  

        

    
   
              (21) 

 

where φ is the set of points stored in each cell, npc is the 

number of points in each cell,      is a vector from the 

evaluated target to each cell point and      is a unit vector 

normal direction to each cell point.  Expected quality gain 

Q(t) is obtained using 
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where σ is the set of cells within the range of the scanner, 

AP(p) is the quality per point mark computed in section V-B, 

and    and    are the values introduced in that section. 

 
D.  Trajectory Cost Evaluation 

 

Trajectory cost evaluation is done by adding the difficulty 

of crossing each cell on the trajectory. This difficulty 

depends on the slope of each cell, the difference between the 

entry and the exit angle for each cell, the navigability        
value computed in section VI-A and the distance between 

cells dec. It is computed using: 
 

         

    
               

           
 

      
      (23) 

where fga is a difficulty scale factor that depends on the 

trajectory curvature (see Fig. 9), ci is the current cell in the 

trajectory and Θmax is the maximum slope that the robot can 

climb. 

  
Fig. 9: Left: difficulty factor when crossing Cells; Right: Difficulty Map 

upon Slope 

VII. RESULTS 
 

Four experiments carried out on a simple environment in 

the simulator (see section III) are shown for evaluating the 

proposed algorithm, the first three experiments are done 

using the proposed algorithm, the fourth experiment is an 

implementation of a greedy mapping algorithm for 

comparison purposes. The area to be explored is shown in 

figure 3b. Three different value choices for parameters in (1) 

were tested in order to achieve different objectives. In the 

first experiment, the parameters have been set in an 

equilibrate way; in the second experiment information gain 

has been given more importance than the other parameters; 

and in the third experiment, model quality has been the 

dominant criteria. The parameter values chosen for the first 

three experiments can be seen in Table I.  
 

TABLE I  

PARAMETERS USED IN THE THREE EXPERIMENTS 
 wA wQ wO wC 

Experim. I 0.43 0.35 0.22 0.09 

Experim. II 0.65 0.25 0.10 0.09 

Experim. III 0.36 0.5 0.14 0.09 
 

In all experiments, Amax was 0.025m
2
 and 2D cell size was 

0.3m x 0.3m. wc parameter was not modified so trajectories 



 

 

 

 

were determined only by the desired model criteria. The 

amount of targets evaluated after each scan varies depending 

on the number of traversable cells with a maximum of 1/25
th

 

of those cells. Resulting trajectories can be seen in Fig. 10. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10: Resulting trajectories for Exp. I (a); Exp. II (b); Exp. III (c); 

Exp. IV(d). Colder Colours Represent Better Quality 

   Table II shows the result for each experiment in terms of 

travelled distance, the number of scans done in each 

experiment, the amount of cells explored within the given 

area and a quality score given by the mean of per point 

quality score on each cell within the area to be explored. 
 

TABLE II  

RESULTS OBTAINED IN EXPERIMENTS 
 Travel 

Distance 

Quality 

Score 
Coverage Scans 

Experim. I 106 m 0.6846 92.5 % 12 

Experim. II 107 m 0.6904 94.1 % 10 

Experim. III 128 m 0.7503 93.6 % 13 

Experim. IV 116 m 0.5013 91.4 % 8 
 

All experiments were stopped when the coverage was over 

90% of the reachable cells. Experiment II proved to be the 

most efficient one since it covered the entire area using only 

ten scans whilst travelling only 1 meter more than the 

shortest trajectory. On the other hand, Experiment I provided 

a very similar model but took two extra scans. Experiment 

III required more scans (13) than any other test and more 

travel distance than any other test; however it captured a 

very high quality model. 

Experiment IV showed that, in comparison with the greedy 

mapping algorithm, the proposed algorithm may require 

more scans to achieve the same level of coverage. However, 

it leads to much higher quality score. The difference in terms 

of traveled distance and coverage is not noticeable, but 

trajectory is inefficient for greedy method since it requires 

the robot to execute rougher turns for reaching the targets. 

Finally, there is an important difference in the quality 

distribution, this distribution being much more uniform in 

the experiments carried out with the proposed algorithm, as 

can be seen in Fig. 10. 

Algorithm execution times vary greatly depending on the 

amount of 3D data to be processed, however for these 

experiments on a 3GHz Intel Core2 Duo processor the 3D 

analysis process took around 350 ms each time a new scan 

was made, and for the target evaluation step the evaluation 

time for each target was at most 100 ms. 

VIII. CONCLUSION 

An algorithm for efficiently planning of viewpoints from 

3D data, for 3D reconstruction of outdoor environments, has 

been presented. Different criteria are used by this algorithm, 

in order to obtain a model with quality over a predefined 

minimum. The trajectory that the robot must follow in order 

to reach each possible target is also considered, so the 

process is carried out keeping a balance between the utility 

of a point and the cost of getting to it. 

The way the 3D data are processed in order to quantify the 

model quality and extract navigation surfaces, obstacles and 

interest regions has been discussed. Also a navigation map 

useful for 3D environments and its resemblance to 2D 

occupancy grid maps has been introduced.  

The obtained results show that the algorithm can calculate 

efficient trajectories for reconstructing the environment, and 

that these trajectories change depending on the parameters 

chosen to fulfill a given criterion. Also, our preliminary tests 

of the algorithm implemented on the real robot (see Fig. 1) 

have led to similar results than those obtained in simulation. 

These results will be presented in future publications. 
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