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Abstract 
 

Delivery of anti-cancer drugs using graphene and its derivatives: graphene oxide (GO) 

and reduced graphene oxide (RGO) has sparked major interest in this emerging field. 

The anti-cancer therapies often pose a limitation of insolubility, administration 

problems and cell-penetration ability. In addition, systemic toxicity caused by lack of 

selective targeting towards cancer cells and inefficient distribution limits its clinical 

applications. Graphene nanocomposite is a promising tool to address these drawbacks. 

Graphene is a flat monolayer of carbon atoms that holds many promising properties 

such as unparalleled thermal conductivity, remarkable electronic properties, and most 

intriguingly high planar surface and superlative mechanical strength, which are 

attractive in biotechnology applications. 

However the synthesis route for the production of GO or RGO often involves the use 

of harsh chemicals which jeopardize its further application as a drug delivery cargo. 

To overcome these limitations, a simple one-pot strategy was used to synthesize RGO 

nanosheets by utilizing an easily available over-the-counter medicinal and edible 

mushroom, Ganoderma lucidum. The produced RGO was readily dispersible in water 

and various solvents. The RGO was highly biocompatible towards colon (HT-29), 

brain (U87MG) and normal cells (MRC-5). By functionalization of RGO with an 

amphiphilic polymer, PF-127, a more stable RGO was produced, called GP. 

Curcumin (Cur) and Paclitaxel (Ptx) was then loaded onto the GP cargo, resulting in a 

nano-sized GP-Cur-Ptx sytem with the particle size of 140 nm. A remarkably high 

drug loading was also achieved with 678 wt.%, highest thus far, compared to any 

other Cur nanoformulations. Based on cell proliferation assay, the GP-Cur-Ptx is a 

synergistic treatment and is highly potent towards A549 (lung) and MDA-MB-231 

(breast) cancer cells. These positive findings are further confirmed by increased 

reactive oxygen species (ROS); mitochondrial membrane potential (MMP) depletion; 

and cell apoptosis. The same treated with normal cells (MRC-5) shows that the 

system is biocompatible and cell-specific.  

Keywords: reduced graphene oxide, synergistic treatment, A549, MDA-MB-231, 

Curcumin, Paclitaxel 
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10x IC50 
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FESEM 

 

field emission scanning electron 

microscope 
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Förster resonance energy transfer 

 

FTIR 

 

Fourier transform infrared spectroscopy 
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Ganoderma lucidum 
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polymer functionalized RGO 
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paclitaxel loaded onto a polymer-
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GP-Cur-Ptx 

 

curcumin and paclitaxel loaded onto a 
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sulfuric acid  
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high-resolution transmission electron 
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50% inhibitory concentration 
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tetraethylbenzimidazolcarbocyanine iodide 

 

KMnO4 

 

potassium permanganate 

 

MDA-MD-231 

 

breast  cancer cells 

 

MDR 

 

multidrug resistance 

 

MMP 

 

mitochonria membrane potential  
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MTT 

 

3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide 
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PPO 
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reduced graphene oxide 
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RP-HPLC 

 

reversed phase HPLC 

 

RT 

 

room temperature 

 

TGA 

  

thermal gravimetric analysis 
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UV-Vis spectroscopy 
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X-ray photoelectron spectroscopy  
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X-ray powder diffraction  
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1.0 Introduction 
 

Graphene, a ‘wonder material’ of this decade has gained tremendous interest from 

researchers across the globe since its discovery in 2004, using a sticky tape and a 

pencil [1]. Graphene is a two-dimensional (2D) sheet with one atom thickness and 

consists of sp
2
 hybridized carbon atoms, arranged in a honeycomb network [2]. It is 

also the building block of other carbon allotropes, whereby wrapping of graphene 

forms 0D fullerene [3], rolling forms 1D carbon nanotubes (CNTs), and stacking can 

produce 3D graphite [4]. 

In this short period of time, extensive research has been carried out on graphene and 

its derivatives, with the number of publications exceeding 23,000 (Science Direct), 

closely catching up on CNTs’ 33,000 publications, which was discovered back in 

1991 [5]. The explosion of interest in this new nanomaterial is due to its properties 

such as superlative mechanical strength (Young’s modulus of 1100 GPa) [6], 

unparalleled thermal conductivity (5000 W/m/K) [7], electrical conductivity (mobility 

of charge carriers of 200,000 cm
2
V

-1
s

-1
) [8,9], high planar surface area (2630 m

2
/g) 

[6], ease of functionalization [10,11], low cost and easy scalability on its production 

[12-15].   

As graphene research has expanded, many potential applications were discovered 

such as new energy storage devices, sensors, transparent electrodes, photodetectors 

[6,16-18], as well as recent advances in medical applications such as drug or gene 

delivery, biosensor, medical imaging, tissue engineering, photothermal therapy, 

antibacterial applications and water treatment [2,14,15,19-26].  

Graphene oxide (GO) and reduced graphene oxide (RGO) is part of the graphene 

family, besides other derivatives such as graphene nanosheets, few-layer graphene 

and ultrathin graphite [27]. GO, in particular is the most researched material in the 

graphene family due to its ease of functionalization. GO consists of carboxylate 

groups on the periphery as well as epoxide, hydroxyl and graphenic domains on the 

basal plane. The graphenic domain exhibits hydrophobicity and displays pi-pi  
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interactions with other aromatic molecules, whereas the remaining functional groups 

provide hydrophilicity. However, most of the routes for synthesizing GO involve 

strong oxidizing agents which are ultimately carried forward to the end-product. 

Moreover, GO is highly acidic which could cause damage to the normal cells, thus 

jeopardizing its role as a carrier in drug delivery system. Moreover, presence of 

hydroxyl and epoxide groups on the basal plane in GO hinders effective pi-pi 

interactions with other aromatic molecules due to steric hindrance, as compared to 

preferable drug carrying capacity in RGO (Figure 1) [28,29]. 

On the other hand, RGO is the reduced form of GO that contains only the graphenic 

domains on the basal plane, without any oxygen functional groups. Hence, RGO is 

hydrophobic and tends to agglomerate irreversibly or even transforms back to graphite 

due to its van der Waals’ interaction and its stronger π-π stacking, which limits its 

further applications. Therefore, the route of synthesis of RGO is of vital importance to 

impart stability as most of its unique electrical and mechanical properties are 

associated only with the individualised graphene sheets [30-32]. In addition, 

imparting solubility in water is also crucial as a well-dispersed RGO would allow 

further functionalization and open opportunities for various technological 

applications.    

 

Figure 1 Graphical illustration of GO and RGO. 
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Several methods have been reported to obtain RGO such as micromechanical 

cleavage [1], epitaxial growth [33], chemical vapour deposition (CVD) [34], un-

zipping of carbon nanotubes (CNTs) [35] and chemical reduction of GO [36]. 

Micromechanical method suffers from low yield and hinders large scale applications 

[37]; the epitaxial growth method produces graphene with random and uncontrollable 

thickness [4]; whereas the methods of CVD and un-zipping of CNTs involve using 

several chemicals and lengthy reaction steps. Hence, much focus has been emphasized 

on solution-based reduction of GO which generally produces single to few-layer 

graphene sheets. Conventional thermal reduction, however requires higher 

temperatures and pressures for the removal of intercalated water molecules and oxide 

functional groups such as epoxides, hydroxides and carboxylic acids [37,38]. In 

addition, it requires a specific reaction vessel and may cause environmental and 

economic concerns when large scale production is considered.   

Therefore, researchers are more intrigued in finding out suitable reducing agents. The 

most commonly used chemical reducing agents are anhydrous hydrazine [39], 

hydrazine monohydrate [40], sodium borohydrate [41], and hydroquinone [42]. These 

reducing agents are highly toxic, harmful and explosive. Moreover, hydrazine-

reduced graphene tends to agglomerate irreversibly and converts into graphite [43].  

Metal/hydrochloric acid reduction is another alternative, however impurities formed 

from the residual metal hinders further applications [44,45].  

Recently, reduction of GO using environmentally friendly organic agents such as 

vitamin C [46], amino acid [47], glucose [48], protein [49], plant extract [50-52], 

dextran [53], bacterial respiration [54] and E-coli [38] have taken a centre stage and 

have been proposed as alternatives. Although these methods are green, they demand 

lengthy experimental procedures; require expensive reagents and longer reaction 

times. Besides, some of these methods introduce foreign materials to RGO that may 

reduce its purity and limit its further applications. An additional step of sonication is 

often necessary to produce good dispersion in water. Moreover, incomplete reduction 

and formation of large graphene aggregates hamper its good electrical conductivity 

[55]. Most of the reports also claim their suitability for drug delivery; however 

cytotoxicity studies on normal healthy cells have never been looked into. Thus, there  
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is an impending demand to develop an easy approach which can produce RGO with 

good purity but without losing its excellent electrical properties and its 

biocompatibility.  

Ganoderma lucidum (GL) or widely known as Reishi in Japan, or Ling Zhi in China, 

has been a popular mushroom often used in many medicinal applications. It is used in 

the treatment of a variety of ailments such as hypertension, diabetes, hepatitis, cancer 

and AIDS. In Asia and North America, usage of this mushroom extends to 

nutraceuticals and food processing due to many of its astounding properties such as 

anti-oxidant, anti-inflammatory, anti-bacterial, and anti-viral [56-59]. One of the 

interesting properties of this mushroom extract is its high content of polysaccharides 

which exhibit strong anti-oxidant properties [60,61]. Thus, GL extract is a promising 

prospect to be used as a reducing agent in an eco-friendly RGO synthesis. In addition 

to this, the polysaccharide is highly soluble in water and does not react with RGO and 

as a consequence, a simple ultracentifugation step can be carried out to separate the 

reducing agent (extract) after the reaction [28]. From our investigation, it was found 

that the GL extract can be used at least three times with good conversion efficiency 

(75%), as depicted in Figure 2. 

 

 

Figure 2 Schematic representation of RGO production from the reduction of GO. 

 

Following the synthesis of RGO which was found to be highly biocompatible towards 

cancer cells (colon, HT-29 and brain, U87MG) as well as normal (MRC-5) cell lines  
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[28], the possibility of employing RGO as a drug delivery cargo was investigated. 2 

types of hydrophobic drugs were employed, i.e. curcumin (Cur) and Paclitaxel (Ptx) 

in terms of drug loading efficiency, and synergistic effect of these 2 drugs on lung 

(A549) and breast (MDA-MD-231) cancer cells as well as MRC-5 cells were also 

determined.  

Curcumin (Cur) is a yellow colored naturally occurring polyphenolic phytoconstituent 

purified from the rhizome of the plant, Curcuma longa. Cur, despite being well-

known for its anti-inflammatory, anti-oxidant and anti-bacterial properties, it is also 

an anticancer agent which has gained much attention. It was reported to be able to 

suppress and treat various types of malignancies such as breast, cervical, lung, 

prostate, kidney, pancreatic and colorectal epithelial carcinoma [62-66]. This multi-

targeting property is mainly contributed by Cur’s ability to regulate about 100 cell 

signalling pathways [67-69]. Paclitaxel (Ptx), on the other hand is a highly potent and 

toxic anticancer drug isolated from the bark of Taxus brevifolia. Ptx has often been 

studied in various nanoformulations and in conjunction with other chemotherapeutic 

agents to enhance its therapeutic effectiveness. It was reported to be able to inhibit 

breast cancer metastasis [70] and has been used in the treatment of lung, prostate, 

ovarian, and neck carcinomas, however chemoresistance was also observed in some 

instances [71-75].  

Combination drug therapy with the use of Cur and Ptx has proven as an attractive 

anticancer modality [76,77]. In this synergistic treatment approach, the co-delivered 

drug regimen serves as a complimentary effect by targeting different pharmacological 

pathways. At the mechanistic level, Ptx is a potent microtubule-stabilizing agent that 

triggers cell cycle arrest which subsequently leads to cell death via apoptosis [78]. In 

addition to stabilizing microtubules, Ptx up-regulates the expression of nuclear factor-

κB (NFκB) which subsequently leads to the enhanced expression of multidrug 

resistance (MDR) protein, thus promoting cancer cell survival, proliferation, invasion 

and metastasis [79].  On the other hand, Cur attacks biologically by regulating 

multiple signal transduction pathways, including the ability to down-regulate the 

transcriptional factor NFκB, thus eventually inducing cell apoptosis [80]. At the same  
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time, Cur also sensitizes cancer cells so that its response to anticancer drugs increases 

and thus improves the therapeutic potential of Ptx [79,81]. Moreover, Cur also 

overcomes the MDR effect of Ptx by down-regulating the P-glycoprotein production 

and increase the accumulation of Ptx in cancerous cells [82]. By co-delivery, both of 

these drugs enhance caspase-3/7 activity, thus significantly increases apoptosis and 

inhibit lung and breast cancer metastasis [83].  

With the simple functionalization of RGO with an amphiphilic triblock co-polymer, 

such as PF-127 (P), a polymer-functionalized RGO cargo can be produced called GP. 

In GP enhanced stability and solubility can be attained, whereby the polypropylene 

oxide (PPO) groups of the polymer will be adsorbed on the surface of RGO via 

hydrophobic interaction, whereas the polyethylene oxide (PEO) brush will extend out 

imparting solubility [84]. The hydrophobic drugs, Cur and Ptx can then be loaded to 

the empty spaces on the RGO via pi-pi interactions between the drugs and the 

aromatic structures of RGO, as shown in Figure 3.  

 

 

Figure 3 Schematic representation of hydrophobic drugs loaded onto the polymer-

functionalized RGO (GP). 

 

Studies have shown that the drug delivery vehicles that are administered 

intravenously will immediately be cleared from the blood by opsonisation of the 

mononuclear phagocytic system (MPS), also known as reticuloendothelial system 

(RES).  To overcome this, stealth coating of the delivery vehicles with polymers such 

as PEG or pluronic allows extended half-life and blood circulation for more than 40 h 

[85,86]. A pluronic polymer or PEG coated drug delivery vehicle was found to be 

able to significantly increase the level of recirculation and accumulation of drugs in  
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tumor and RES organs. In addition, it was found to have extended presence in the 

systemic circulation at higher concentrations, compared to non-functionalized ones 

[87-89].  

In this engineered design, it is hypothesized that apart from enhanced solubility of Ptx 

and Cur, exceedingly high drug loading on the GP cargo can also be achieved. The 

vast unhindered surface on RGO would allow effective and maximal drug loading via 

pi-pi interactions, which would otherwise be marginally detrimental in GO due to the 

interference of epoxide and hydroxyl functional groups on its surface. Although there 

are many reports on combined drug regimen using Cur and Ptx, the dose tested was 

often random, sometimes in the ratio of 1:1, contradicting the main aim of reducing 

systemic toxicity. An attempt to use the lowest possible amount of Ptx, such as at the 

amount of sub-inhibitory concentration of 20% or sub-effective dose of IC20 along 

with abundance of Cur has never been tested, thus far. In addition, the polymer-

functionalized RGO (GP) cargo is hypothesized to be non-toxic to normal cells and 

thus, this nano-sized material is expected to contribute a better drug delivery into 

cancer cells with increased effectiveness on cancer cell inhibition, compared to 

treatments with single drug agents [90]. 
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2.0 Methodology 
 

2.0 Methodology 

2.1 Materials  

Graphite was purchased from Asbury Graphite Mills, Inc. (Asbury, USA). 

Ganoderma lucidum (commercial grade) was contributed by Ganofarm Sdn. Bhd., 

Malaysia. Typically, mushrooms (including stalk, gills and cap) were dried and 

ground into powder form and sold to the commercial market. Other reagents 

employed were of analytical grade and used as-received. Anhydrous D-Glucose was 

purchased from Fisher Scientific (UK) and PBS buffer was obtained from Sigma 

Aldrich (USA). Ultrapure deionized water was obtained from a Milli-Q Plus system 

(Millipore Corp., USA).  

2.2  Characterization 

The reduction of GO was monitored by measuring the UV-Vis spectrum of the 

reaction at predetermined time intervals using a Lambda 35 Spectrophotometer 

(Perkin Elmer). FTIR spectra of solid samples were recorded on a FTIR Spectrometer 

(Spectrum RX1, Perkin Elmer) in the frequency range of 4000-400 cm
-1

. The 

crystalline nature of synthesized RGO was investigated by using a PANalytical 

X’Pert Pro diffractometer. The XRD was operated at 45 kV with a current of 35 mA 

and using Cu/kα radiation (λ=1.54060). TGA was performed under a nitrogen flow 

(50 mL/min) using a TGA/DSC 1, Star
e
 System (Mettler Toledo). Samples were 

heated from room temperature to 1000°C at 5 °C/min. Ultrasonication was employed 

by using an ultrasonic bath (Elma, Germany, 130 and 35 kHz, 200 W). Zetasizer 

Nano ZS (Malvern Instruments, UK) was used to analyse the hydrodynamic diameter 

of the particles. Samples dispersed in absolute ethanol were drop-casted on Si 

substrate and dried in air before subjecting to Raman and XPS analysis. Raman 

spectra were acquired on a inVia Raman Microscope (Reinshaw) with 514 nm laser 

excitation source. XPS measurements were performed using a Kratos Axis Ultra 

(Shimadzu, Japan) spectrometer equipped with a monochromatized Al kα radiation 

(hv = 1486.6 eV). The graphene/ethanol suspension was also drop-casted on Cu grid  
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(3 nm thick) and mica substrate for HRTEM, AFM and SEM analysis. High-

resolution TEM images were acquired using a Philip model (JOEL, Japan) operating 

at an accelerating voltage of 120 kV. The thickness of graphene materials was 

examined using 5500 Agilent Technologies AFM System (USA) using a nanosensor 

NCH with ultrasharp tips. Morphological analysis was carried out using field 

emission gun SEM (Quanta FEI 400 instrument). 

 

2.3  Preparation of Graphene Oxide (GO) 

GO was produced at room temperature based on the modified Hummer’s method [91]. 

Briefly, to a 3 g of graphite, H2SO4 (95%) and H3PO4 (88%) were added in the ratio 

of 9:1, followed by a slow addition of 18 g of KMnO4. The resulting inhomogeneous 

solution was allowed to stir. After 72 h, the reaction was terminated with the addition 

of 400 g of ice cubes followed by 18 ml of H2O2 (30%). The mixture was then 

centrifuged at 6,000 rpm for 10 min. To the supernatant, 1 M HCl was added to 

discard the sulphate and phosphate ions followed by centrifugation at 11,500 rpm for 

30 min. This was repeated three times followed by washing with DI water for six 

times. The final mixture was a viscous brown GO solution. A standard calibration 

curve of GO was generated by measuring the characteristic absorbance of GO at 230 

nm by using UV-Vis spectrophotometer. The concentration of the prepared GO was 

found to be 10 mg/ml.  

2.4  Preparation of GL extract 

To 1 g of GL mushroom powder, 100 ml of Milli Q water was added and the mixture 

was allowed to boil at 95°C for 3 h. To remove the spent powder, the mixture was 

centrifuged at 10,000 rpm for 15 min. The solution was then stored at 4°C and used 

directly for the reduction of GO as mentioned in section 2.6.  

2.5 Determination of the concentration of GL extract  

Concentration of the GL mushroom extract was determined using the phenol-

sulphuric acid assay [92] with glucose as a reference. Briefly, to a 10 ml of GL 

extract, 30 ml of ethanol was added and stored overnight at 4°C. The crude 

polysaccharide precipitate was then separated by centrifugation at 10,000 rpm for 15  
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min and the clear supernatant was then subjected to vacuum drying at 40°C to obtain 

a solid powder. The powder was then dissolved in 1 ml of Milli Q water and 0.1 ml 

was taken to determine the concentration following the method as reported by [92] 

The concentration obtained was found to be 1 mg/ml.  

2.6  Preparation of RGO using GL extract 

pH adjustments were carried out on the GO solution (0.1 mg/ml) by using NaOH to 

obtain a pH of 7. 50 ml of GL extract was then added to a 50 ml of GO solution and 

transferred to a water bath which was pre-heated to 85°C and allowed to react for 16 h 

at 120 rpm. The resulting black dispersion was then ultracentrifuged at 10,000 rpm for 

20 min to remove the GL extract. The product was then washed three times with 

water to further remove the residual GL extract. The resulting black RGO dispersion 

was then re-dispersed in water. 

2.7 Reusability of GL extract  

The GL extract which was separated in section 2.6 was reused for 2 more cycles to 

reduce the freshly prepared GO using the same reduction protocol. UV-Vis 

measurements were used to determine the amount of GO that was converted to RGO 

by determining the intensity of RGO peak at 260 nm. In each case, the amount of GO 

converted to RGO was calculated. The first use of GL extract was considered as 100% 

conversion from GO to RGO. The yield (%) was determined by drying the obtained 

RGO in an oven for 48 h at 60 °C. 

2.8  GO and RGO size analysis and solubility test 

5 min of ultrasonication (20 kHz, 45% amplitude, 750 W) with a microtip was carried 

out to disperse the GO and RGO before subjecting to size distribution by dynamic 

light scattering (DLS). For solubility test, RGO was dispersed in water, PBS buffer, 

ethanol, methanol and acetone by ultrasonication for 5 min. The dispersed samples 

were kept at RT and observation was continued for 12 months.    

 

 



Extended abstract        
K. Muthoosamy   
 

11 
 

 

2.9 Cell lines and culture conditions 

Human grade IV glioblastoma (U87MG), colon adenocarcinoma (HT-29) and normal 

lung fibroblast (MRC-5) cells were used in this study. HT-29 and MRC-5 cells were 

cultured with RPMI (Nacalai Tesque) whilst U87MG cells were cultured with MEM 

containing sodium pyruvate (Nacalai Tesque). The steps on propagation and 

maintenance of the cells were followed as described previously [93].
 

2.10 Neutral red uptake assay 

Cell viability of GO and RGO treatments was performed by neutral red uptake assay 

on U87MG, HT-29 and MRC-5 cells as described by Lim et al. [94]. A total of 5 x 

10
3 

cells were seeded in 96 well plates (SPL Life Sciences, Korea) and incubated 

overnight for attachment. The cells were treated with 200 μl of media containing 0.1-

50 μg/ml of GO and RGO, whereas the cells grown in media without any treatment 

were used as a negative control. Following 48 h of incubation at 37 ˚C, the percentage 

of cell viability was determined. All the experiments were carried out in triplicates in 

three independent experiments. Absorbance readings of the plates were captured by 

using a microplate reader (Thermo Fisher Scientific, USA) at 490 nm. 

2.11 Statistics 

Statistical analysis was performed using the Graphpad Prism (version 5) software. 

One way Anova was used to test for statistical significance between treated and 

untreated groups using Dunnet t-test. Meanwhile, comparison amongst the treatment 

groups was done by two way Anova using Bonferroni t-test. 

2.12 Preparation of GP 

 

PF-127 polymer (P) of 0.12 g were added to 20 ml of G (0.15 mg/ml), followed 

by bath sonication (35 kHz frequency, 100% amplitude, 200 W) for 3 h in a 

pulse mode with 3 min ‘on’ and 15 min ‘off’ to control the temperature which 

was maintained at 25±3 °C. The reaction was then left under a shaker overnight 

at 120 rpm. Subsequently, un-loaded P was removed by dialysis (MW cut-off = 

14 kDa) against double-distilled water and left for a further 24 h. To further  



Extended abstract        
K. Muthoosamy   
 

12 
 

 

remove the unbound polymer, ultracentrifugation at 10,000 rpm for 5 min was 

carried out. The final product, G functionalized with P will be named as GP 

hereafter.  

 

2.13 Cur loading studies 

 

Cur in ethanol (2 ml) of various concentrations (0.1-2 mg/ml) was mixed with 2 ml of 

GP (0.15 mg/ml) and bath sonicated for 1 h, followed by mixing under shaker for 

another 1 h at 120 rpm. The resulting solution was centrifuged at 10,000 rpm for 15 

min. The supernatant was then subjected to UV-Vis analysis, which represents the 

amount of Cur in excess. A Cur in ethanol calibration curve was initially obtained for 

quantification. The Cur loading efficiency is determined as follows, 

 

drug loading capacity = [(Winitial Cur - WCur in excess) / WGP]  x 100 

drug loading efficiency = [(Winitial Cur - WCur in excess) / Winitial Cur] x 100 

 

where, Winitial Cur is the initial weight of Cur added, WCur in excess is the weight of 

Cur in the supernatant and WGP is the weight of GP. Samples were analyzed in 

triplicates. 

 

2.14 Preparation of Cur loaded GP (GP-Cur) and Ptx loaded GP (GP-Ptx)  

 

Synthesis of GP-Cur was based on the maximum loading obtained from the above 

Cur loading studies. Cur (2 mg) was initially dissolved in DMSO/distilled water (1:1) 

solution. GP (0.15 mg/ml) solution was then introduced and the mixture was bath 

sonicated (35 kHz frequency, 100% amplitude, 200 W) for 0.5 h before preparing 

various concentrations of GP-Cur with RPMI media as solvent. For comparison 

purposes, Ptx loaded onto GP (GP-Ptx) was also tested. For GP-Ptx, 1 ml of Ptx in 

DMSO (2 mg/ml) was added to 1 ml of GP (0.15 mg/ml), followed by bath sonication 

for 0.5 h and kept as aliquots at -20°C. Cur and Ptx loaded onto polymer (P-Cur and 

P-Ptx) was also prepared as controls using the same protocol by replacing GP solution 

with the polymer solution.   
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2.15 Preparation of Cur and Ptx co-loaded onto GP (GP-Cur-Ptx)  

 

IC20 of Ptx (determined from the cell proliferation assay, section 2.19) was 

added to the GP-Cur solution, followed by bath sonication (35 kHz frequency, 

100% amplitude, 200 W) for 0.5 h and dilutions as required in RPMI media. 

Briefly, IC20 of Ptx in A549 and MDA cell lines were determined as 69.7 and 

46.7 ng/ml, respectively. Thus 69.7 and 46.7 ng/ml of Ptx were added to GP-

Cur (0.2-200 µg/ml) to be tested against A549 and MDA cells, respectively.  

 

2.16 Cell culture 

 

MRC-5 (human normal lung fibroblast), MDA-MB-231 (MDA, human breast 

adenocarcinoma) and A549 (human lung adenocarcinoma) cell lines were obtained 

from ATCC (Manassas, USA) and cultured in RPMI media supplemented with 10% 

FBS and 1% penicillin/streptomycin. All cell lines were maintained at 37°C in a 

humidified 5% CO2 atmosphere. 

 

2.17 Determination of cell proliferation using neutral red uptake assay 

A total of 5x10
3
 of MRC-5, MDA and A549 cells were cultured in 96-well 

plates, followed by incubation overnight for cell attachment. The cells were 

then exposed to 200 µL of various concentrations of the treatment groups (GP-

Cur, GP-Ptx, GP-Cur-Ptx) and further incubated for 48 h. For comparison 

purposes, unmodified Cur and Ptx were also tested. Briefly, 2 mg/ml of Ptx was 

prepared in DMSO. To obtain the same drug concentration as in GP-Ptx, 1 ml of Ptx 

(2 mg/ml) was added to 1 ml of distilled water. Subsequent dilutions were made in the 

RPMI media. The same protocol was adapted to prepare unmodified Cur. Cells 

grown in the media without any treatment served as a negative control. 

Following 48 h of incubation, the cell viability was determined using the 

neutral red uptake assay according to the previously described protocol [95]. 

The IC50 values were determined using the non-linear regression curve fit of the 

Graphpad Prism5 software. Neutral red was used instead of MTT assay to avoid 

false positive reading as both the drug Cur and MTT solution are yellow-colored,  
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whereas the neutral red is a red-colored reagent that absorbs at a wavelength of 540 

nm in the UV-Vis spectroscopy.  

2.18 Determination of intracellular ROS generation  

 

The generation of intracellular ROS was determined using MAK 142 fluorometric kit 

(Sigma Aldrich, USA). A549 and MDA cell lines were seeded at a density of 5x10
4
 

cells in black 96-well plates with a clear bottom. In a preliminary study, the ROS 

generation peaked at 120 min, which was taken as the incubation time. Cells were 

treated with IC50 and 10-fold IC50 doses of respective treatments (Cur, GP-Cur, Ptx, 

GP-Ptx, GP-Cur-Ptx) and GP (0.15 mg/ml) as well as plain media (untreated) cells 

serving as negative controls. After 120 min of incubation, the ROS generated were 

determined according to the manufacturer’s protocol. Subsequently, the fluorescence 

intensity was quantified using a fluorescence Varioskan flash microplate reader 

(Thermo scientific, USA) with excitation and emission wavelengths fixed at 650 and 

765 nm, respectively. ROS generation was determined as the percentages of ROS 

compared to the control. For fluorescence microscopy imaging, A549 and MDA cell 

lines were seeded in 4-well chamber slides (SPL Life Sciences, South Korea). ROS 

reagents of 125 µL were used and images were captured using Nikon Az100 

fluorescence microscope (Nikon, Japan). 

 

2.19 Determination of MMP depletion  

 

A total of 5x10
4
 A549 and MDA cell lines were seeded in black 96-well plates with a 

clear bottom and were allowed to attach overnight. The cells were then exposed to 

200 µL of the treatment groups at concentrations of IC50, 10-fold IC50 and plain media 

(untreated control) and GP (0.15 mg/ml) to monitor the effect of increased dose. After 

48 h of incubation, MMP in terms of permeability of JC-10 dye was quantified using 

MAK159 MMP kit according to the manufacturer’s protocol (Sigma Aldrich, USA). 

JC-10 forms reversible red-fluorescent aggregates in the healthy cells with polarized 

mitochondrial membrane, however, upon the collapse of MMP, JC-10 returns to its 

monomeric green-fluorescent form [96].
 
MMP loss for each treatment group is  
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calculated as a ratio of green (λex = 490/λem = 525 nm) to red (λex = 540/λem = 590 nm) 

fluorescence and was taken as a percentage over control.  

 

2.20 Determination of apoptosis using Annexin-V assay 

A549 and MDA cell lines were seeded at a density of 5x10
4
 cells in 4-well chamber 

slides and treated with IC50 and 10-fold IC50 doses in comparison with the untreated 

control and GP (0.15 mg/ml) for 24 h. Thereafter, apoptosis was detected using 

Annexin V-Cy3 apoptosis detection kit according to the manufacturer’s protocol 

(Sigma Aldrich, USA) with slight modifications. Briefly, treated cells were washed 

twice with PBS (100 µL) and three times with 100 µL of binding buffer (0.1 M 

HEPES at pH 7.4, 1.4 M NaCl and 25 mM CaCl2). Subsequently, 100 µl of double-

label staining solution containing Annexin Cy-3 and 6- Carboxyfluorescein diacetate 

(6-CFDA) was then added and incubated for 10 min at RT to quantify the living cells 

from apoptotic and necrotic cells. The staining solution was then removed and the 

cells were washed five times with 50 µL of binding buffer. Finally, 50 µL of the 

binding buffer were placed in each well and protected with cover slips and images 

were captured using Nikon Az100 fluorescence microscope fitted with TRITC filter 

(Nikon, Japan). Annexin Cy3 stains red on necrotic cells, by binding to 

phosphatidylserine, which is present outside the plasma membrane of cells 

undergoing apoptosis. Upon entering the living cells, the non-fluorescent 6-CFDA is 

hydrolyzed by esters producing a green-fluorescent product. Cells in the early stages 

of apoptosis, however, stained yellowish-green [97].
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3.0 Results and Discussion 
 

3.1 Characterizations of RGO 

The reduction of GO using GL extract was monitored by time-dependent UV-Vis 

spectroscopy as shown in Figure 4. The strong absorption peak at 230 nm (0 h) is a 

distinctive peak of GO which corresponds to π-π* transition of C=C bond and the 

shoulder at 300 nm is due to n-π* transition of the C=O bonds in GO. Gradual red-

shifting of the 230 nm peak towards 260 nm can be seen during the reaction, 

suggesting the restoration of π-conjugation network of RGO after reduction. 

Moreover, the gradual disappearance of the plasmon peak at 300 nm confirms the 

removal of oxygen groups in RGO [30,98,99]. The formation of RGO was observed 

within 1 h with the red shift of a typical GO peak at 230 nm to 251 nm. The highest 

absorbance was observed at 16 h, which indicates that reaction time is directly 

proportional to the amount of RGO formed. A tested duration of 48 h gives ≈73% 

yield. 

 

 

Figure 4 UV-Vis spectra of GO reduction with GL extract at different time intervals. 
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The formation of RGO is further confirmed by FTIR spectroscopy as shown in Figure 

5a. FTIR spectra of GO shows a strong absorption peak of νO-H at 3412 cm
-1

 due to 

stretching vibrations and a deformation peak at 1396 cm
-1 

due to the hydroxyl groups 

located on the plane of GO. Carboxyl groups at the edges of GO sheets show 

stretching vibration and the νC=O peak appears at 1726 cm
-1

. The spectra also exhibit 

several characteristic peaks of GO; νC=C at 1630 cm
-1

 due to the aromatic C=C bonds;  

νC-O at 1246 cm
-1

 due to the epoxy C-O stretching vibration; and  νC-O at 1116 cm
-1

 

due to the alkoxy C-O stretching vibration [31,38,100]. Compared to graphite the GO 

spectrum indicates successful oxidation with the presence of hydroxyl, epoxy, alkoxy 

and carboxyl functional groups. Successful deoxygenation could be seen for RGO 

with the disappearance and reduced intensities of all the oxide functional groups. A 

broad C-O band that appears from 1214 to 1000 cm
-1 

even after reduction could be 

attributed to oxygen atoms or cyclic ether accumulated at the edges of defects in 

RGO. This indicates that all the oxygen groups are removed from the region adjacent 

to edges and only clean graphene domains are present in RGO [4,101]. The spectra of 

GL extract exhibit a broad band around 3397 cm
-1

 due to the stretching of N-H and O-

H groups, and a corresponding N-H bending at 1639.5 cm
-1

. Other characteristic 

peaks of the GL extract are at 2930 cm
-1

 and at 2884.9 cm
-1

 due to the asymmetric 

stretching of CH3 and symmetric stretching of CH2, respectively. The sharp peaks at 

1074.4 cm
-1

 and at 1046.5 cm
-1

 are due to C-O stretching and bending of C-OH in the 

polysaccharide [102,103]. The absence of these characteristic peaks in RGO confirms 

the complete removal of the GL extract after the reaction. 
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Figure 5 (a) FTIR spectra of (i) graphite, (ii) GO, (iii) RGO and (iv) GL extract; (b) 

XRD patterns of (i) graphite, (ii) GO and (iii) RGO. 

 

 

The XRD analysis (Figure 5b) is a good tool to estimate the interlayer spacing 

between the graphitic layers, the crystalline properties as well as to determine the 

completion of reaction. Graphite exhibits a strong basal reflection (002) at 2θ = 26.6° 

with an interlayer distance (d-spacing) of approximately 0.33 nm. This intense 

crystalline peak is a characteristic peak of hexagonal pristine graphite. The 

disappearance of this peak in GO confirms the complete oxidation of graphite. Upon 

oxidation, the diffraction peak (001) of GO appears at a lower angle (2θ = 9.2°) with a 

d-spacing of 0.96 nm. The larger interlayer spacing after oxidation is due to the 

intercalation of oxide functional groups on both sides of GO sheets. In addition, 

structural defects (sp
3
 bonding) generated on the originally flat graphite sheets 

contribute to an atomic-scale roughness and thus a larger d-spacing of GO [104]. 

After reduction, the distinctive GO peak of RGO disappears indicating reduction as 

well as exfoliation of the layered RGO sheets [49,105]. A broad peak has been 

observed for RGO, starting from 2θ = 15 to 30°, with the peak centred at 2θ = 24.0°, 

and a d-spacing of 0.37 nm. The appearance of this peak at 24.0° is due to restoration 

of van der Waals interaction between the carbon frameworks on the graphene sheets  
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upon reduction. The presence of a broad peak indicates the loss of a long range order 

in the graphene sheets and stacked with few layers thickness [43,100,106,107]. In 

addition, the significant reduction in the interlayer spacing of RGO as compared to 

GO suggests the removal of oxygen groups and water molecules from the interlayer of 

graphene sheets in RGO.  

The formation of RGO was further confirmed by XPS analysis. The C1s of GO as 

shown in Figure 6a demonstrates the highest intensity at the binding energy of 287.8 

eV, which belongs to carbonyl functional groups. Other peaks at 284.8, 286.3 and 

289.1 eV correspond to C=C/C-C in aromatic rings; C-O in hydroxyl and epoxy 

groups; and O-C=O in carboxyl groups, respectively [38,43,108]. After reduction, the 

peak intensity for all the oxygen species has decreased dramatically suggesting the 

effective removal of oxygen containing groups in RGO. In addition, a sharp increase 

in the C=C/C-C peak at 284.4 eV and the appearance of a pi-pi* peak at 288.5 eV 

indicate the restoration of sp
2
 carbon network [109]. C/O molar ratio calculated from 

the peak areas shows a very high content of oxygen species in GO (1:13.6), whereas 

in RGO the molar ratio was found to be only 1:2.16, again confirming the successful 

reduction of GO.       

 

Figure 6 XPS spectra of C1s of (a) GO and (b) RGO. 

 

Figure 7 shows the FESEM images of GO and RGO. It could be observed that GO 

(Figure 7a) has a continuous and smooth wave-like sheets, whereas a flake-like 

morphology could be noted in RGO (Figure 7b) which forms a disordered solid with  
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the individual sheets closely stacked [110,111]. With the removal of oxygen groups 

from the basal plane as well as from the edges of RGO, the graphene sheets are now 

allowed to closely associate and stack via van der Waals interactions. This finding is 

in good agreement with the results of XRD obtained for RGO, where the d-spacing or 

interlayer distance is smaller than GO, permitting the stacking of RGO flakes. The 

RGO flakes lie flat on top of each other suggesting the possibility of good electrical 

contact between them [112]. The microstructure of GO and RGO was further 

investigated by HRTEM. It could be seen that GO has a wavy structure with few well-

defined layers of stacking at the edges (Figure 7c). The observed stacking could be 

due to strong hydrogen bonding interaction between the GO layers or with water 

molecules [113]. As for RGO, thin veil-like sheets were observed with scrolling and 

wrinkles which confirms that the reduction of GO has taken place. It was reported that 

scrolling is caused by the presence of isolated epoxy and hydroxyl groups, whereas 

the wrinkles are due to the removal of strain on the C-C bond in the epoxy groups 

which was created during the formation of three-membered epoxide ring in GO [114]. 

In addition, RGO appeared transparent which is similar to the graphene produced 

from electrolytic exfoliation of graphite.  Lateral dimension of RGO in both FESEM 

and HRTEM was approximately 500 nm. 

To further confirm the reduction of GO, Raman spectroscopy was used to investigate 

the nature of layering and defects on the graphitic sheets. The Raman spectra of 

graphite (Figure 8) displays a sharp G band at 1582 cm
-1

 due to in-phase vibration of 

the graphite lattice and a weak D band at 1370 cm
-1

 indicating low degree of defects 

that are mostly due to the sheet edges. In comparison, GO exhibits a prominent G 

band which is blue-shifted to 1586 cm
-1

 signifying the presence of isolated double 

bonds which resonate at higher frequencies than that of graphite. The intensity of D 

band at 1352 cm
-1

 was also increased which could be attributed to the decrease in size 

of in-plane sp
2
 domains compared to graphite [38,43,49,104]. For RGO, the G band is 

broadened and shifted to 1611 cm
-1

 and moved closer to the G band of graphite 

attributed to graphitic self-healing and successful reduction [115], as the removal of 

oxygen groups allows the RGO to associate and re-stack. The D-band of RGO  
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becomes more prominent and remains almost at the same position as GO i.e. at 1351 

cm
-1

.  

                                                                                                                                                                                                                                                        

Figure 7 FESEM images of (a) GO and (b) RGO and HRTEM images of (c) GO and 

(d) RGO. 

 

The intensity ratio of D to G (ID/IG) is a good indicator of the degree of distortion in 

the graphitic sheets. As expected, the intensity ratio of RGO has dramatically 

increased to 0.99 as compared to GO (0.94) and graphite (0.07). A higher intensity 

ratio as seen in GO compared to graphite is due to the introduction of defects after 

oxidation of graphite, whereas the highest intensity ratio seen in RGO indicates 

disorder on the graphene sheets after reduction and an increase in the number of sp
2
 

domain. It is suggested that the reduction of GO causes fragmentation and yields 

smaller RGO graphitic domains with different sizes [116,117].   

The 2D band represents the symmetry-allowed overtone of the G band. The shift, 

shape and width of the 2D peak are sensitive to the stacking order of the graphene  
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sheets along the c-axis and the number of graphene layers, in which single-layered 

graphene has a single sharp Lorentzian peak below 2700 cm
-1

. Multiple layered sheets 

have broader and up-shifted 2D peaks [30,100,104,118]. The broad 2D band of 

graphite from 2627 to 2776 cm
-1

 indicates the presence of multiple layered graphite 

sheets, whereas the 2D band of GO at 2700 cm
-1

 indicates a single layered sheet. After 

reduction, this peak has marginally broadened and shifted to 2769 cm
-1

 suggesting the 

presence of three-layered graphene sheets [119]. The cooperation between D and G 

peaks gives    D + G combination band which indicates the presence of highly 

disordered and randomly arranged graphene sheets [30,31]. The D + G band is 

observed for GO at 2690 cm
-1

 and a slightly broader band is observed for RGO at 

2692 cm
-1

 indicating the presence of more random arrangement in RGO. The absence 

of these peaks in graphite shows that it exists as a continuous long sheet. 

 

Figure 8 Raman spectra of (a) graphite, (b) GO and (c) RGO. 

 

GO and RGO were then subjected to AFM to determine their respective topography 

as well as thickness (Figure 9). The cross-section from AFM analysis shows that the 

maximum thickness of GO is approximately 1 nm which is in compliance with the d-

spacing of GO i.e. 0.96 nm as determined by XRD. After reduction, the RGO’s 

thickness is approximately 1-2 nm. The thickness obtained is similar to those  
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produced from hydrazine reduced GO [120,121] and hydrothermally reduced GO 

[114].  

 

Figure 9 AFM images of (A) GO and (B) RGO with respective thickness 

measurements taken along the cross-section, as indicated by a line and a red arrow. 

 

Based on the XRD analysis of RGO with 0.37 nm d-spacing, it could be estimated 

that RGO is few-layered (3-5 layers) similar to the observation made using Raman 

analysis.  

The particle size distribution of aqueous dispersion of GO and RGO was determined 

by DLS analysis. Although DLS is more suitable for spherical particles rather than for 

planar sheets like graphene, it serves to indicate whether a uniformly-sized dispersion 

of graphene was produced in addition to demonstrating the changes in the size of GO 

and RGO. As shown in Figure 10, the average size of GO and RGO is 313 nm and 

181 nm, respectively. In GO, the peak appearing after 1,000 nm could be due to the 

presence of remnants from the reaction of graphite oxidation. Also, the presence of 

undisrupted long continuous sheets in the GO results in larger size. RGO however 

shows a uniform size distribution with sizes generally at least two times smaller than  
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GO. This concludes that there is a loss of long range graphitic order in RGO and 

corroborates with the observation of a D+G peak in the XRD spectra. The smaller 

sized RGO observed could be mainly due to the method of synthesis employed and 

due to the effect of 5 min of ultrasonication. Generally, ultrasonication breaks the 

RGO nanosheets to smaller fragments, a similar observation was also noted in GO 

[122]. In addition, ultrasonication of RGO results in better dispersion in water. A 

solubility test conducted (Figure 10) shows that RGO is stable in the tested solvents 

for up to 12 months, without any visible aggregation or sedimentation. It is reported 

that ultrasonic treatment induces cavitation near surfaces of RGO sheets which 

inhibits the aggregation of RGO by weakening its van der Waals interactions and thus 

enhanced the formation of stable RGO dispersion [109].  

 

 

Figure 10 Above: Size distribution analysis on a) GO and b) RGO with its respective 

polydispersity index (PDI) and average size (Z). Below: Solubility of RGO in (a) 

water (b) PBS buffer (c) ethanol (d) methanol and (e) acetone. 

 

3.2 Cell viability of GO and RGO on normal and cancer cells 

Based on the fact that viable cells incorporate and bind more dye as compared to 

damaged or dead cells [123], the dose dependent cytotoxicity of GO and RGO can be 

determined by neutral red uptake assay. Cell viabilities were normalized using  
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untreated cell readings. Both GO and RGO showed no significant toxicity towards 

HT-29 cells as shown in Figure 11a. Over 90% cell confluence was observed at the 

highest concentration (50 µg/ml), even for GO. However, a different cytotoxicity 

pattern is seen in U87MG cells as shown in Figure 11b. A decrease in cell viability 

was observed for GO starting from 10 µg/ml when compared to untreated cells. GO 

has been largely reported to cause plasma membrane damage and oxidative stress, 

thus the anti-proliferative distress to the cells [124]. On the other hand, RGO was 

found to be biocompatible with almost 100% cell confluency even at the highest 

concentration (50 µg/ml). By comparing GO with RGO, significant difference in cell 

viability was observed starting from the concentration of 25 µg/ml (p < 0.01).  

 

 

Figure 11 The cell viability (%) on (a) HT-29, (b) U87MG and (c) MRC-5 cells and 

(d) overall IC50 values of GO and RGO treatments for 48 h generated by neutral red 

uptake assay. Bars represent mean±SEM of triplicates in three independent 

experiments (n=9). (*) = significant difference when treated groups were compared 

with untreated (p < 0.001) using one way Anova with Dunnel t-test. (#,##) = 

significant difference when GO was compared to RGO with p < 0.5 and p < 0.01, 

respectively, using two way Anova with Bonferroni t-test.  
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GO (Figure 11c) shows obvious toxicity towards MRC-5 as compared to the un-

treated cells even from concentration as low as 5 µg/ml as GO was reported to induce 

cytotoxicity, genotoxicity and oxidative stress to MRC-5 cells. In contrast, RGO 

showed no cytotoxicity towards normal cell lines with the cell viability above 90%, 

even at 50 µg/ml.  

GO was found to be toxic especially towards U87MG cells with IC50 at a very low 

concentration of 26.27 µg/ml (Figure 11d). This is due to the presence of oxygen 

functional groups in GO, which consequently lead to oxidative stress to cells and 

results in poor cell survival [99]. RGO shows better cell survival compared to GO for 

all the three cell lines with IC50 values beyond 50 µg/ml and up to 390 µg/ml. Since 

the cell viability assay is conducted only up to a concentration of 50 µg/ml, the 

concentration values in Fig. 9d only serve as an estimation generated by the software. 

Nevertheless, based on the current findings, our mushroom synthesized RGO, without 

the need of any functionalization shows good aqueous stability and is equally 

biocompatible similar to the functionalized ones such as carboxyl modified graphene 

[125].  Although our RGO does not pose any selectivity against the two cancer cell 

lines and normal cells tested, this feature is still of great value for the synthesized 

RGO to be a tool for protein/gene transfection as well as a drug delivery vehicle for 

cancer treatment, such as by the conjugation of an anticancer drug, as reported in 

subsequent section.     

 

3.3 Charaterizations of polymer-functionalization of RGO forming a GP cargo 

The successful functionalization of RGO with polymer was further validated using 

XRD (Figure 12a). The semicrystalline polymer, P, has two peaks at the same region 

of RGO starting at ≈19-36° [126,127]. Upon functionalization, these peaks appeared 

in the GP composite with an overlap of RGO and P bands at 15-19°. The peaks also 

appeared red-shifted compared to RGO and P alone, revealing successful 

functionalization. 
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The thermal stability of GP was analyzed by TGA as shown in Figure 12b. P suffered 

from 100% weight loss, with obvious weight drop seen from 270-400°C, which is due 

to the decomposition of the PEO and PPO copolymer [128]. However, upon 

functionalization with RGO, GP showed enhanced thermal stability.  

 

 

Figure 12 (a) XRD patters of RGO, P and GP. (b) TGA curves of RGO, P and the 

functionalized GP. Note: RGO: reduced graphene oxide; P: polymer; GP: polymer-

functionalized reduced graphene oxide. 

 

3.4 Characterizations of Cur and Ptx loaded onto GP 

Upon modification of RGO with P resulting in GP, surface roughness was created 

with the presence of a porous structure, as shown in Figure 13b. In addition, the 

height profile shows increased thickness of ≈4 nm, which is due to the immobilization 

of P onto the surface of RGO. Accordingly, the height profile of GP-Cur is around 2 

nm and upon introduction of Ptx has increased by ≈2-3 nm, confirming the non-

covalent interaction of Cur and Ptx on the surface of GP. In addition, it is presumed 

that the molecules of Cur and Ptx, which are smaller in sizes, could have filled the 

pores that appear in GP.   
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Figure 13 Tapping mode AFM images and its corresponding height profiles for (a) 

RGO, (b) GP, (c) GP-Cur and (d) GP-Cur-Ptx. Note: RGO: reduced graphene oxide; 

GP: polymer-functionalized reduced graphene oxide; GP-Cur: curcumin loaded onto 

GP; GP-Cur-Ptx: curcumin and paclitaxel co-loaded onto GP. 

 

The hydrophobic interaction between Cur and the cargo GP can be further ascertained 

in fluorescence emissions (Fig. S1). Graphitic materials generally induce quenching 

upon interaction with aromatic or double bond conjugated materials, which is an  
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imperative tool to confirm loading of the fluorescent materials or drugs. At 420 nm 

excitation wavelength, Cur exhibited maximum fluorescence emission at   ≈540 nm.  

In GP-Cur however, a 93% quenching of fluorescence was observed which is due to 

the strong pi-pi interaction between the conjugated system in Cur and the aromatic 

structures in GP. As a result, a photoinduced electron-transfer process or fluorescence 

resonance energy transfer (FRET) takes place in the GP-Cur hybrid system that 

diminishes fluorescence [84,129,130]. Interestingly, the fluorescence signal was 

found higher (78% quenching) upon introduction of Ptx to the GP-Cur system. This 

phenomenon may be ascribed to the loading of Ptx molecules which interferes with 

the GP-Cur interaction, consequently releasing Cur from GP, which then exhibits 

increased fluorescence intensity [21]. In comparison, GP, Ptx and GP-Ptx did not 

demonstrate any fluorescence activity.  

The surface morphology of the materials can be further elucidated using FESEM. As 

reported above, RGO has a flake-like structure with closely packed graphene sheets 

[28]. After functionalization with P, the GP has obvious surface roughness (Figure 

14a) and with higher magnification, the microporous structure was observed, which is 

consistent with the topographical observation under AFM (Figure 14b). On the 

contrary, in the hybrid system, crystals of Cur in either rectangular or cubic shapes 

appeared to decorate the surface of GP, which is also in line with the observations 

reported in other studies [131,132]. Similarly, the appearance of granule like Ptx in 

the GP-Ptx hybrid system confirms the successful pi-pi interaction of Ptx and the GP. 

In GP-Cur-Ptx, more homogenous and non-aggregated drug loading was observed. 

Under higher magnification, the spherical structure of polymers can be seen adsorbed 

on the surface of G, together with the drugs which appeared brighter under the 

FESEM.  

The lateral and size distribution of the aqueous dispersions of drug loaded GP were 

evaluated further using DLS. Upon modification with P, the size of GP slightly 

increased owing to the adsorption of polymer onto the flat surface of the RGO (Table 

1). In their unmodified form, Cur and Ptx dissolved in ethanol/water (1:1) have  

 



Extended abstract        
K. Muthoosamy   
 

30 
 

 

average sizes much larger than their hybrid form of GP-Cur and GP-Ptx, respectively. 

As both are hydrophobic drugs, the aqueous dispersion is somehow limited, however 

upon loading onto GP, the solubility of these drugs were significantly improved thus 

the lowered average sizes. A more convincing result can be seen in GP-Cur-Ptx, 

whereby upon loading of the drugs, the hydrodynamic average size was increased to 

≈140 nm, which is higher than GP-Cur and GP-Ptx, proving the co-loading of Cur and 

Ptx onto the GP cargo system.  

The size of the drug loaded GP carrier which is below 200 nm is highly advantageous 

for drug delivery applications as drug carriers within these sizes have been shown to 

have long half-life in the blood [133,314]. Since the tumor vasculature have defective 

architecture within these pore sizes, consequently this increases the propensity of the 

drugs to extravasate through vascular fenestrations of tumors and escape filtration by 

liver and spleen [86,135]. In addition, the poor lymphatic drainage of tumor cells 

prevents an efficient removal of the drug carrier and collectively <200 nm drug carrier 

allows enhanced permeability and retention (EPR) effect, which increases the drug’s 

efficacy [136].   

 

3.5 Drug loading studies of Cur onto GP cargo 

From the various concentrations of Cur tested (0.1-2 mg/ml), the highest amount of 

Cur loading was 2 mg with the loading efficiency of ≈97% and loading capacity of 

678 wt. %. Loading efficiency is determined as a percentage of experimental drug 

loading compared to theoretical drug loading, whereas loading capacity is determined 

as weight of the drug loaded compared to the weight of the GP cargo. As described 

earlier, this remarkably higher drug loading is mainly due to the unperturbed surface 

that is present on GP, contributing to efficient pi-pi interaction with Cur molecules. 
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Figure 14 FESEM images of (a) GP, (b) GP in higher magnification, (c) GP-Cur,         

(d) GP-Ptx, (e) GP-Cur-Ptx and (f) GP-Cur-Ptx in higher magnification.  

Note: GP: polymer-functionalized reduced graphene oxide; Cur: curcumin; GP-Cur: 

Cur loaded onto GP; Ptx: paclitaxel; GP-Ptx: Ptx loaded onto GP; GP-Cur-Ptx: Cur 

and Ptx co-loaded onto GP. 
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Table 1 

The average hydrodynamic diameter of GP and drug loaded GP and its respective 

polydispersity index (PDI). 

Sample Average 

size (nm) 

PDI 

GP 156.3 0.111 

Cur 231.6 0.019 

Ptx 148.0 0.038 

GP-Cur 123.5 0.245 

GP-Ptx 133.1 0.078 

GP-Cur-Ptx 139.9 0.063 

 

Note: GP: polymer-functionalized reduced graphene oxide; Cur: curcumin; GP-Cur: 

Cur loaded onto GP; Ptx: paclitaxel; GP-Ptx: Ptx loaded onto GP; GP-Cur-Ptx: Cur 

and Ptx co-loaded onto GP. 

 

3.6 Cytotoxicity assessment of GP-Cur-Ptx against A549, MDA and MRC-5 cells  

Following cell viability studies, the antiproliferative effects of Cur and Cur loaded 

onto GP (GP-Cur) against A549 and MDA cell lines were determined. A dose-

dependent cell viability was observed with cell growth inhibition evident at 0.2 µg/ml 

of GP-Cur in A549 and 20 µg/ml for MDA cells (Figure 15a, b). A similar dose-

dependent pattern was also observed upon treatment with Ptx and GP-Ptx. Significant 

growth inhibition was evident at 20 ng/ml in cells treated with GP-Ptx, in contrast to 

90% cell viability observed in cells treated with same concentration of Ptx alone 

(Figure 15c, d). As shown in Table 2, Ptx induced 50% growth inhibition in A549 and 

MDA cell lines with IC50 values of ≈0.17 and ≈0.12 µg/ml, respectively. Remarkably, 

an IC50 value of 0.0077 µg/ml of GP-Ptx was observed against A549 cells 

representing almost 25-fold reduction in the required potent dose as compared to Ptx. 

Similarly, only 0.0148 µg/ml GP-Ptx was needed to achieve IC50 in MDA cells, which 

is 8-fold lesser amount than using Ptx alone.   

Since pluronic polymer has been suspected to be able to improve the cellular uptake 

of drugs, Cur and Ptx loaded polymer (P-Cur and P-Ptx) were also taken as controls 

(Figure 15A-D). Based on the observations, the cytotoxicity of P-Cur and P-Ptx 

appears to be the same as Cur and Ptx, respectively. This concludes that in the drug  
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loaded polymer solutions, the drugs present as a mixture rather than forming micelles 

with the pluronic polymer. If the latter was formed, higher cytotoxic effect will 

otherwise be observed as compared to Cur/Ptx.  

Pluronic polymers alone cannot be considered as an optimal delivery vehicle for the 

hydrophobic drugs due to their low solubility in aqueous media and short residence 

time in the physiological environment [137]. Thus, alterations such as polymeric 

micelles, covalent modifications or polymer thermogels based synthesis are necessary 

to encapsulate the hydrophobic drugs (Cur/Ptx). In this work, the drugs (Cur/Ptx) 

were loaded via simple mixing and bath sonication for 0.5 h, which is believed to be 

not sufficient to form micelle or covalent bond or thermogels with the residual 

pluronic polymer, if any. A similar finding was also previously reported [138], 

whereby a non-covalent functionalized pluronic polymer-CNTs showed no 

enhancement in the cellular uptake by A549 cells as compared to covalent 

functionalized ones. 
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Figure 15: Representative histograms showing dose dependent growth 

inhibition of A) A549 cells treated with Cur, P-Cur and GP-Cur, B) MDA cells 

treated with Cur, P-Cur and GP-Cur, C) A549 cells treated with Ptx, P-Ptx and 

GP-Ptx, D) MDA cells treated with Ptx, P-Ptx and GP-Ptx, E) A549 cells 

treated with GP and GP-Cur-Ptx and F) MDA cells treated with GP and GP-

Cur-Ptx. Following 48 h of treatment, IC50 was determined as described in the 

methods. Bars represent the mean ± SEM of triplicates from three independent 

experiments (n=9). *, ** and *** indicate significant difference when 
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compared between treatment groups, with P<0.5, P<0.01 and P<0.001, 

respectively using two-way ANOVA with Bonferroni t-test.  

 

 

The enhanced cell toxicity effects seen in GP-Cur and GP-Ptx hybrid system could be 

due to better solubilisation of these drugs, upon loading onto the GP cargo system. 

The synthesized RGO [28], has good dispersion and stability in both water and 

physiological solution, which could have contributed to better solubilisation of the 

loaded drugs. In addition to this, the high surface area coverage on RGO allows more 

reactive sites of the drugs available for cytotoxicity reaction to take place and possibly 

better cell internalization. These findings raise the concern whether the markedly 

increased cellular toxicity of the GP-Cur and GP-Ptx hybrid system was due to 

toxicity from GP, instead of the drugs. Cell viability studies showed that GP did not 

induce toxicity to A549 and MDA cell lines, even at high concentration of 200 µg/ml 

(Figure 15e, f).  

Based on the cell viability assay, the IC20 of Ptx was determined as 69.7 ng/ml for 

A549 cells and 46.7 ng/ml for MDA cells. With the introduction of 69.7 and 46.7 

ng/ml of Ptx onto GP-Cur to the A549 and MDA cell lines, respectively, inhibition of 

cell growth was observed at 0.2 µg/ml (Figure 15e, f). IC50 values showed that the 

GP-Cur-Ptx system was slightly more potent towards MDA cells, needing only 1.450 

µg/ml drugs, compared to 13.24 µg/ml for A549 cells (Table 3).  The combination 

index (CI) calculated based on previously described method [139],  showed 

synergistic growth inhibition by Ptx loaded GP-Cur (GP-Cur-Ptx) against the tested 

cells with slightly higher potency observed in MDA (0.43) compared to  A549 (0.54) 

cells (Table 3). 
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Table 2 

The 50% inhibitory concentration (IC50) values of Cur and Ptx; Cur and Ptx loaded 

onto GP (GP-Cur and GP-Ptx) and Cur and Ptx co-loaded onto GP (GP-Cur-Ptx), 

tested against A549 and MDA cell lines. 

 

 

 

 

Note: Cur: curcumin; GP: polymer-functionalized reduced graphene oxide; GP-Cur: 

curcumin loaded onto GP; Ptx: paclitaxel; GP-Ptx: Ptx loaded onto GP.  

 

 

Table 3 

Combination index (CI) analysis of GP-Cur-Ptx against A549 and MDA cell lines and 

the effects of these doses on MRC-5 cells, in terms of IC50 values.  

 

Note: Pharmacological interaction deduced the CI values of >1 as antagonistic, =1 as 

addictive and <1 as synergistic.  

 

 

In order to ascertain that the synergistic system is not toxic towards healthy cells, 

cytotoxicity test was also conducted against MRC-5 cells. As shown in Table 2, GP, 

Cur and combined GP-Cur did not cause toxicity to non-cancerous MRC-5 cells. 

However, Ptx and GP-Ptx caused toxicity at 400-500 ng/ml. On the other hand, 25.71 

µg/ml of GP-Cur in combination with IC20 (69.7 ng/ml) of Ptx was required to induce 

50% growth inhibition in MRC-5 cells compared to 13.24 µg/ml required for the 

cancerous A549 cells (Table 3). Similarly, 37.50 µg/ml of GP-Cur was required in  

Treatment 

(µg/ml) 

A549 MDA-MB-231 MRC-5 

Cur  17.83 ± 1.4 49.42 ± 1.3 > 200 

GP-Cur  96.13 ± 1.1 42.98 ± 1.4 > 200 

Ptx  0.1743 ± 0.0013 0.1174 ± 0.0016 0.5237 ± 0.0014 

GP-Ptx  0.0077 ± 0.0015 0.0148 ± 0.0016 0.4041 ± 0.0012 

GP  > 200 > 200 > 200 

S/no Cells IC20 doses of 

Ptx (ng/ml) 

Doses of GP-Cur that induced 50% 

growth inhibition in combination 

with IC20 dose of Ptx (µg/ml) 

CI 

1 A549 69.7 13.24 ± 1.8 0.54 

2 MDA 46.7 1.450 ± 1.9 0.43 

3 MRC-5 69.7 25.71 ± 1.2 - 

4 MRC-5 46.7 37.50 ± 1.2 - 
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combination with 46.7 ng/ml Ptx to induce 50% growth inhibition in MRC-5 cells 

compared to 1.450 µg/ml of GP-Cur required for MDA cells. This demonstrated that 

combined treatment conferred less toxicity on non-cancerous MRC-5 cells compared 

to A549 and MDA cell lines. 

 

3.7 Determination of ROS generation by GP-Cur-Ptx in A549 and MDA cells 

The cytotoxicity of the agents towards the cancer cells was further confirmed with 

determination of oxidative stress by a fluorometric assay. Upon incubation with cells, 

the generated ROS reacts with the fluorogenic component localized in the cytoplasm, 

resulting in red-fluorescent product, which is proportional to the amount of ROS 

present. 

In both of the cancerous cells, 10-fold GP-Cur-Ptx exuberantly elevated oxidative 

stress in the intracellular environment in a dose-dependent manner (Figure 16a, b). In 

case of A549 cells, by comparing all the 10-fold IC50 treatment groups, 10-fold Cur 

demonstrated the second highest ROS elevation followed by 10-fold GP-Cur, which 

suggests that the presence of a higher concentration of Cur has contributed to the 

amplified production of ROS. In addition, by comparing the hybrid systems i.e.     

GP-Cur and GP-Ptx, GP-Cur showed a significantly higher generation of ROS. It was 

reported that Cur could either potentiate the accumulation of ROS or stimulate the 

generation of ROS by other anticancer drugs [140]. Although Cur possesses good 

ROS scavenging ability, in the GP-Cur hybrid system, Cur acts as a pro-oxidant by 

bringing cellular redox changes resulting in the accumulation of ROS which 

consequently lead to cell death [141-143]. On the contrary, Ptx, is reported to induce 

only a small amount of ROS due to the presence of a negative regulator of a 

mitochondrial ROS called UCP-2 [144]. Hence, in the synergistic GP-Cur-Ptx system, 

Cur acts as an antioxidant which may have an adverse effect on the anticancer drug 

Ptx, which then acts on tumor cells by increasing the ROS level to induce cell death 

[145,146]. The findings of considerably higher ROS values as observed in the GP-

Cur-Ptx corroborate well with the highest cell killing in the previous cytotoxicity 

assay which indicates that the presence of both Cur and Ptx have effectively induced  
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toxicity to cancerous cells probably via a supplementary ROS-mediated mechanism. 

The significantly higher ROS generation as observed in MDA than in A549 cells, 

which substantiates with the higher potency of GP-Cur-Ptx for MDA as seen in 

cytotoxicity assay indicates the vulnerability of MDA to ROS assaults.   

Figure 17 shows the ROS images of GP-Cur-Ptx on A549 and MDA cells. The 

brighter red-fluorescence shows higher ROS generation and accumulation as 

compared to unstained images of un-treated cells as well as lightly stained cells 

observed in       GP-Cur and GP-Ptx (Fig. S2). The rod-like structure seen outside the 

cells shows the presence of GP which serves as a drug delivery vehicle and it 

corroborates with the hypothesis that only drugs were internalized by cells, leaving 

behind the GP cargo. 

The shape of the drug carrier which is rod-like is also advantageous for drug delivery 

as rod-like drug carriers are found to exhibit 4-times more rapid transvascular 

penetration [147]. This was observed mainly due to reduced steric hindrance with 

high aspect ratios and minimal regions of curvature with its worm-like particle or 

structure [148]. In addition, these rod-like structure of drug carriers is also reported to 

posses optimal transport properties as the rod-like drug carrier has long-circulating 

lifetimes compared with the spherical ones due to their tendency to align with blood 

flow [149-151]. 
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Figure 16 Percentages of ROS generation, loss of MMP and apoptosis. (A) Activity 

of ROS generation by the treatment groups on A549 and (B) MDA cell lines. (C) The 

loss of mitochondrial membrane potential (MMP) induced by treatment groups on 

A549 and (D) MDA cell lines. (E) Percentage of apoptosis induced by the treatment 

groups on A549 and (F) MDA cell lines. Plain media and GP served as untreated 

control (Ut) and negative control, respectively. Concentrations of the treatment groups 

are based on the respective IC50 and 10-fold IC50 values. Bars represent mean ± SEM, 



Extended abstract        
K. Muthoosamy   
 

40 
 

with n=3. *, ** and *** indicate significant difference when treated groups were 

compared with un-treated with P<0.5, P<0.01 and P<0.001, respectively using one-

way ANOVA with Dunnett’s t-test.  

 

 

Figure 17 Representative images of ROS generation in (A) A549 and (B) MDA cell 

lines after treatment with GP-Cur-Ptx for 120 min. Arrows indicate the rod-like 

structure as seen outside the cells, which are the GP cargo. Note: GP-Cur-Ptx: 

curcumin and paclitaxel co-loaded onto GP. 

 

3.8 Determination on the degree of MMP loss in A549 and MDA cells 

ROS assault on cells is often accompanied by mitochondrial malfunction, or 

sometimes both happening concurrently. Thus MMP was investigated on both A549 

and MDA cancer cells at the concentrations of IC50 and 10-fold IC50. JC-10, a 

cationic, lipophilic dye was used to monitor the MMP in term of permeability to JC-

10 quantitatively. JC-10 forms reversible red-fluorescent aggregates in healthy cells 

with polarized mitochondrial membrane, however upon the collapse of MMP, JC-10 

will return to its monomeric green-fluorescent form [146]. 

For both cancer cells, the highest dye permeability was observed in GP-Cur-Ptx 

(Figure 16c, d), corroborating with the findings in ROS, which also scored the 

highest. Loss of MMP was dose-dependent for GP-Cur-Ptx in A549 cells and 

followed by 10-fold GP-Cur and 10-fold Cur. This indicates that the presence of Cur 

in these treatment groups has played a major role in disrupting the cells’ 

mitochondria. In comparison, the current GP-Cur-Ptx combined treatments induced  
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significantly higher depolarization of MMP than other reports, such as cocktail drug 

containing an antioxidant apigenin and paclitaxel [152]. As for MDA cells, GP-Ptx 

was equally effective as 10-fold Ptx in causing MMP loss. Additionally, it was also 

observed that GP-Cur-Ptx is as effective as 10-fold GP-Ptx in causing perturbation to 

the mitochondria of MDA cells, proving that the integrated combination treatment 

allows the usage of reduced dosages to attain the same therapeutic effects. 

 

3.9 Determination on the induction of apoptosis by GP-Cur-Ptx on A549 and 

MDA cells 

In order to quantify living cells from apoptotic and necrotic cells, double staining 

method was employed using Annexin Cy3 and 6-CFDA. Annexin Cy3 stains red on 

necrotic cells, by binding to phosphatidylserine which is present outside of plasma 

membrane of cells undergoing apoptosis. On the other hand, upon entering living 

cells, the non-fluorescent 6-CFDA is hydrolyzed by esters producing a green 

fluorescent product. Cells in the early stages of apoptosis, however, will be stained 

yellowish-green [153].  

A549 and MDA cells treated with GP-Cur-Ptx showed the highest apoptosis 

percentage (Figure 16e, f), which was in accordance with the highest ROS and highest 

loss of MMP observed. The induction of apoptosis was also dose-dependent as the 10-

fold treatment groups showed higher cell death compared to their respective IC50 

values. The hybrid treatment agents, GP-Cur and GP-Ptx were more potent in 

inducing apoptosis compared to single treatment of Cur and Ptx, even at 10-fold the 

concentration of the IC50 values. In order to further comprehend the apoptotic trend, 

the cellular morphology of the cells upon treatment was also investigated under the 

microscope.  
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Figure 18 Merged images of A549 (upper panel) and MDA (lower panel) cells after 

staining with Annexin-Cy3 and 6-CFDA with (a) un-treated cells, and cells treated 

with: (b) Cur; (c) Ptx; (d) GP-Cur; (e) GP-Ptx and (f) GP-Cur-Ptx. Arrows labelled 

‘A’ are representation of typical features of cells undergoing apoptosis. Cells that are 

green but show blebbing, cell-rupture or condensed and fragmented are taken as early 

stages of apoptosis, along with cells stained yellow in the merged images. 

Comparatively, cells stained red are regarded as necrotic [97]. Note: Cur: curcumin; 

GP: polymer-functionalized reduced graphene oxide; GP-Cur: Cur loaded onto GP; 

Ptx: paclitaxel; GP-Ptx: Ptx loaded onto GP; GP-Cur-Ptx: Cur and Ptx co-loaded onto 

GP. 
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For the untreated A549 and MDA cell lines, healthy cellular morphology without any 

abnormalities was observed and the cells were growing in close proximity (Fig. S3, 

S4). Upon treatment, obvious separation from the neighbouring cells was seen with a 

higher separation constituting to higher apoptotic cell death. Both cancer cell lines 

that received treatment with Cur showed obvious signs of cell shrinkage (Figure 18) 

[154, 97]. A similar finding was also observed for treatment with GP-Cur, along with 

the presence of yellowish-green in the merged images showing cells underwent early 

stages of apoptosis. In addition, treatment with GP-Cur severed the attachment of 

apoptotic cells from the surroundings cells.  

On the other hand, treatment with Ptx induced the cells to undergo necrosis as more 

rampant red-stain was observed [153,155]. Similarly, GP-Ptx showed the presence of 

necrosis, with treatment in MDA showing more rounded-up cells compared to in 

A549 cells. This is in accordance with the higher loss of MMP seen in GP-Ptx for 

MDA cells. On the contrary, GP-Ptx treatment on A549 cells induced obvious cell 

swelling. A549 and MDA cell lines treated with Ptx and GP-Ptx showed extensive 

plasma membrane blebbing, which is one of the late apoptotic characteristics. 

However, this was not found in cells treated with Cur and GP-Cur.  

Prominent features of cell apoptosis (shown by arrow) can be clearly seen in the GP-

Cur-Ptx treatments (Figure 18f). Cellular shrinkage and pyknosis, which are the 

results of nuclear membrane condensation into more densely packed material, were 

observed in both treated cancer cells. Additionally, separation from the surrounding 

cells took place and protrusions from plasma membrane or blebs, appeared more 

prominently in MDA cells.  It was reported that blebbing shows the presence of 

caspase activation involving a group of proteins which are crucial for programmed 

cell death [156,157]. Following this, disintegration of the nucleus into similarly dense 

and smaller particles takes place, forming apoptotic bodies or karyorrhexis [158,159]. 

This observation was found more obviously in A549 cells. GP-Cur-Ptx treatment on 

MDA cells caused late stages of apoptosis and necrosis, whereas A549 cells showed 

the characteristics of early stages of apoptosis. This finding could be translated to the 

higher level of ROS observed in MDA compared to A549 cell lines.  

 



Extended abstract        
K. Muthoosamy   
 

44 
 

 

Based on these findings, it can be deduced that Ptx and GP-Ptx induced cell necrosis 

in A549 and MDA cells, which is unfavourable as the cells are passive victims due to 

the toxic process [159]. On the other hand, Cur and GP-Cur promotes cell apoptosis 

or programmed cell-death and with the introduction of Cur in the synergistic 

treatment, GP-Cur-Ptx, necrosis by Ptx has been completely suppressed, while 

promoting signal-dependent cell suicide, i.e. apoptosis.  

Based on the above findings, there is a consistent relationship between increased 

generations of ROS and increased loss of MMP that eventually lead to cell apoptosis 

and thus inhibition of cell proliferation. The sequence of these events is however, in 

need of further elucidation. Conceivably, it was reported that Cur and Ptx works 

synergistically in activating caspases, cleavage of Bid to tBid and mitochondrial 

release of cytochrome c, which consequently induce apoptosis by extrinsic and 

intrinsic pathways [160]. In addition, Cur promotes the down-regulation of Ptx 

activated-NFkB, which eventually contributes to Ptx-induced apoptosis on A549 and 

MDA cells [161]. 
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4.0 Conclusion and Recommendations 
 

An over the counter, commercial-grade mushroom powder was used to effectively 

reduce GO to RGO with a reaction time of approximately 1 h. This environmentally 

friendly method evades the use of chemicals and significantly reduces waste with the 

advantage of reusability of the extract as a reducing agent. The obtained RGO was 

readily dispersible in water and was reasonably small with the thickness of 1-2 nm 

and 181-500 nm in lateral dimension. The RGO obtained through this strategy is 

small as compared to other reported green-synthesis methods. In addition, solubility 

tests using various solvents showed that RGO is stable up one year. The synthesized 

RGO if highly biocompatible and has not shown any anti-proliferative effects towards 

colon and brain cancer as well as healthy cell lines. This makes the RGO suitable as a 

drug delivery carrier, especially for hydrophobic anticancer drugs. Polymer-

functionalization of RGO resulted in a GP cargo that further contributed to higher 

solubility and stability. Co-loading of Cur and Ptx onto the GP cargo has significantly 

increased the solubility of these 2 drugs and a remarkably high drug loading was also 

achieved, 678 wt.%, which to the best of our knowledge is the highest reported thus 

far for Cur. 

The synergistic system, GP-Cur-Ptx shows a dose dependent cytotoxicity against 

A549 and MDA cancer cells. For comparison, GP-Cur and GP-Ptx were also tested. 

GP-Cur and GP-Ptx were highly effective towards the inhibition of cancer cell 

growth, especially GP-Ptx, needing 8-23 fold lesser dose compared to Ptx alone. 

Upon introduction of only IC20 dose of Ptx to the GP-Cur system, a highly potent 

treatment system was created for both A549 and MDA cells with CI values <1, 

suggesting a synergistic system. The same concentration tested on normal cells shows 

no toxicity, demonstrating that the GP-Cur-Ptx system is cell-specific cytotoxic, 

especially to these two cancer cell lines.  Upon further elucidation, the highest ROS 

production was also observed in the GP-Cur-Ptx system, which was mainly due to the 

presence of Cur that acted as pro-oxidant and induced ROS accumulation in cells. 

ROS accumulation will eventually lead to polarization of the mitochondria and cell 

deaths, which is consistent to our findings. The percentage of apoptosis found after  
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treatment with GP-Cur, GP-Ptx and the combined GP-Cur-Ptx was significantly 

higher than treatments with one of the drugs, even with Cur and Ptx in 10-fold 

concentrations. Based on cell morphology, Ptx was found to induce late stages of 

apoptosis and necrosis in cells. However, in the combined treatment, cell necrosis by 

Ptx was significantly suppressed and the GP-Cur-Ptx majorly induced early stages of 

apoptosis. In addition, upon close examination, only the drugs were engulfed by cells, 

leaving behind the GP cargo. For future studies, further investigation is needed to 

determine the reaction pathways that are activated by the GP-Cur-Ptx system, other 

than the commonly reported for Cur and Ptx. The current findings seem promising for 

possibly future in vivo and clinical applications. 
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Supplementary Information 

 

Characterizations of Cur and Ptx loaded onto GP 

 

 

Fig. S1 Fluorescence spectra of Cur and Ptx loaded onto GP. 

Note: GP: polymer-functionalized RGO 
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Determination of ROS generation by treatment groups in A549 and MDA cells 

 

 

Fig. S2: ROS generation images of A549 (upper) and MDA-MB-231 (lower) of cells 

treated with media alone (Un-treated) and cells after treatment with GP-Cur, GP-Ptx 

and GP-Cur-Ptx for 120 min.  

Note: Cur: curcumin; GP: polymer-functionalized reduced graphene oxide; GP-Cur: 

Cur loaded onto GP; Ptx: paclitaxel; GP-Ptx: Ptx loaded onto GP; GP-Cur-Ptx:      

Cur and Ptx loaded onto GP.  
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Morphology of cells undergoing apoptosis in A549 cancer cells  

 

Fig. S3: Images of un-treated (Ut) A549 cells and A549 cells treated with Cur, Ptx, 

GP-Cur, GP-Ptx and GP-Cur-Ptx. The green fluorescent (left panel) represents the 

non-apoptotic cells. The red fluorescent (middle panel) represents necrotic cells and 

the yellowish-green fluorescent seen in the overlay images (right panel) represents 

early stages of apoptosis. Note: Cur: curcumin; GP: polymer-functionalized reduced 

graphene oxide; GP-Cur: Cur loaded onto GP; Ptx: paclitaxel; GP-Ptx: Ptx loaded 

onto GP; GP-Cur-Ptx: Cur and Ptx loaded onto GP. 
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Morphology of cells undergoing apoptosis in MDA cancer cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4: Images of un-treated (Ut) MDA-MB-231 cells and MDA-MB-231 cells 

treated with Cur, Ptx, GP-Cur, GP-Ptx and GP-Cur-Ptx. The green fluorescent (left 

panel) represents the non-apoptotic cells. The red fluorescent (middle panel) 

represents necrotic cells and the yellowish-green fluorescent seen in the overlay 

images (right panel) represents early stages of apoptosis. Note: Cur: curcumin; GP: 

polymer-functionalized reduced graphene oxide; GP-Cur: Cur loaded onto GP; Ptx: 

paclitaxel; GP-Ptx: Ptx loaded onto GP; GP-Cur-Ptx: Cur and Ptx loaded onto GP.  
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