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Abstract 

Sustainable intensification (SI) is defined and interpreted in terms of a framework to support 

production of farmed aquatic animals in Asia and their trade with Europe. A novel holistic perspective to 

value chain analysis, informed by a range of sustainability tools, is used to explain the dynamic in the trade 

that is having significant impacts on livelihoods in both regions. The origins of SI in agriculture are first 

described and their congruence with aquaculture clarified. Asian aquaculture systems, based on their 

emergent properties, are then located within a SI framework considering possible boundaries (enterprise, 

zone or whole value chain). The implications of conventional intensification, and alternatives are explored 

with reference to specific examples and impacts on the local and global environment, human and aquatic 

animal health and welfare. The challenges to sustainability of such value chains and implications for their 

governance, food culture and consumer habits are considered. Local consumption of seafood in Asia is 

found to be a major driver of growth and alternative markets for exports regionally and in Low and Medium 

income countries (LMIC) are likely to impact on employment and power in the value chain between Europe 

and Asia. The benefits of viewing farmed seafood as part of broader food landscapes are identified in the 

analysis, as is a shift in the focus from volume to value in terms of goal setting. More holistic perspectives 

of sustainability also emerge as necessary to describe and interpret global value chains rather than limited 

reductionist, production- orientated views.  A diversity of trends in the development of farmed seafood is 

identified in contrast to any simplistic move to intensification, likely informed by economic, environmental 

and social factors in producer and consumer countries. 

Statement of relevance 

Global imbalances in production and consumption of farmed seafood are stimulating trade 

between Asia and Europe. The dynamic of global value chains around this emergent trade and their 
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alignment with broader sustainability criteria, as applied to sustainable intensification of food production, 

are highly relevant to global food security. 

 

Highlights 

 The concept of  Sustainable Intensification is applied to the specific context of  the global 

value chains linking production of farmed seafood in Asia and consumption in Europe  

 Key sustainability issues are discussed that are currently not embraced by certifiers and 

other influential actors of farmed seafood governance 

 Understanding demand, for the main and by-products, is critical to enhancing sustainable 

and more intensive aquaculture systems 

 

 

Keywords:  Seafood, Asia, Europe, trade, Sustainable intensification, GVCs,  

 

1. Introduction 

Over the past decades, aquaculture in Asia has seen a rapid shift in focus from meeting local 

demand to it supporting global trade. Initially driven by the shrimp sector, the pattern is now repeating for 

lower-value white fish species such as pangasius and tilapia. The value of the overall international trade in 

seafood, of which the contribution of aquaculture continues to grow, now exceeds that of pork and poultry 

combined (Asche et al 2015). A key characteristic of this seafood trade is that there is a deficit between 

producer countries, that tend to be poorer, and consumer countries that are better off. The scale of this 

transformation has had impacts on production systems and markets in developing countries all around the 

world, and invites analysis of the implications for its sustainability in both producer countries and for the 

major destination markets. The European Union (EU) is dependent on imported seafood, with more than 

half its seafood consumed from imported sources (Eufuma, 2015). The EU-28 is the most valuable seafood 

market in the world but faced with limitations in increasing its own indigenous farmed and wild capture 

supplies.  

With a growing demand for aquaculture to meet food and nutritional security needs in Asia itself, 

there is a need to explore whether farmed seafood from Asia can also continue to supply Europe’s appetite. 

There is also a fast developing trade in seafood between Asia and other, emergent markets. For example 

Asia and Latin America now account for nearly half of pangasius exports from Vietnam, with China  

emerging as the single largest importer (Globefish, 2017). The movement of the sector towards various 

forms of market-based governance, such as certification and labelling schemes that promote ‘sustainable’ 

or responsible products has also emerged as an important consideration. Such measures have been 

criticized for increasing producers’ costs and for the loss of smallholder producers from global value chains 

(Lee et al, 2012; Bush et al, 2013) and could encourage targeting of alternative, less discriminating 

emergent markets in Asia and elsewhere. Such trends coincide with a general move to more feeding of 

aquaculture species (Tacon and Metian, 2015) and concomitant intensification of production systems in the 

key Asian producer countries (Table 1). An increasing dependence on imported feedstock risks potential 

negative impact on the environment, both locally and globally. This, together with the market dynamics 

mentioned, above suggest that the resilience of the entire value chain requires assessment; limiting 

sustainability analysis to the farm gate ignores the importance of consumption driving production trends 

and the roles of the, usually more numerous, value chain actors in delivering change. 
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This article therefore takes a value chain approach to the concept of sustainable intensification 

(Cook et al, 2015), the framework that is being increasingly used in terrestrial agriculture to frame analysis 

and guide policy towards ‘sustainable futures’. We first explain the background and major tenets of 

sustainable intensification and how the specific attributes of aquaculture pose particular challenges to its 

use before examining the major forms and alternatives to intensification of aquaculture production 

systems. The linkages between aquaculture and broader food landscapes are considered, as are its 

relationship with management of wild populations that still constitute an important part of direct human 

nutrition and remain important ingredients for feeds used in farming. Aquaculture is considered as part of 

food systems that go beyond production issues to encompass storage, distribution, trade, processing and 

consumption (Global Panel on Agriculture and Food Systems for Nutrition, 2016). Intrinsic to this is a need 

to consider the roles of aquaculture in the governance of food security i.e. the access to safe and nutritious 

food. 

 

 

2. Sustainable intensification-origins and learning from other sectors 

The concept of sustainable intensification (SI) has its roots in African smallholder agriculture (e.g. 

Pretty, 1997) but came to the fore with the food price hikes of 2008. Years of relative decline in interest 

and investment in the research and institutions supporting global food production were an undoubted 

stimulus but its resurgence coincided with the first World Development Report (2008) focusing on 

agriculture for two decades. The challenges in meeting global food security needs in the face of climate 

change and the rising aspirations of a growing population were acknowledged as ‘The Perfect Storm’ 

(Beddington, 2009) and the need for fresh thinking on ‘food futures’ recognized (e.g. The Royal Society, 

2009, Garnett and Godfrey, 2012a,b Bostock et al., 2010).  Producing more for less, whilst minimizing 

negative environmental impacts and optimizing societal benefit, has been a major objective of almost every 

development initiative in the sector in recent years. Indeed SI has since been promoted as a framework to 

focus on increasing yields as part of a broader approach to changes in the food system that meets the need 

of growing, urbanizing and globalizing markets.  

The initial focus of SI on production aspects of staple crop products has since been applied to the 

wider food basket but also to include more holistic attributes of food systems that include demand and 

other societal drivers (Cook et al, 2015). There is a realization that many of the issues relating to sustainable 

intensification of food systems occur outside the farm boundary.  Garnett et al (2013) articulate the four 

premises that underpin SI as (1) a need to increase production to meet greater demand for food (2) 

intensification to avoid further conversion of land/ water to food production thereby mitigating resultant 

environmental impacts 3) ensuring food security receives as much attention to increasing environmental 

sustainability as productivity gains and (4) SI as a goal rather than a specific a priori approach to achieving 

it. The authors also raise the need for SI to be complementary to other development goals regarding food 

systems and managing landscapes. These include conserving biodiversity, animal welfare, human welfare 

and nutrition and broader sustainable development (Figure 1). 

SI has been adopted by divergent ideologies in agricultural development. It has been viewed as 

both a ‘Trojan horse’ through which small-holder agriculture will be further undermined by ‘Big Ag’ as well 
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as an alternative agro-ecological or organic–led approach. Most proponents now acknowledge the 

importance of  both ecology and technology and the necessity for rigorous testing of innovations before 

being widely promoted. Understanding the preconditions and motivations for intensification by producers 

is also essential because interest in, and adoption of, more intensive practices is not inevitable but occurs in 

response to a range of factors. These include opportunities for off-farm employment, availability of 

mechanization, irrigation, fertilizers, supply and quality requirements of commodity-markets (Boserup, 

1965). The importance of governance and knowledge asymmetries has also become better understood   

(Pantazidou and Gaventa, 2016). 

The importance of the linked issue of sustainable consumption i.e. moderating demand for high 

value/ impact food, especially animal source foods of which aquatic products are often key in Asia, and 

reducing food waste has also been identified by Garnett et al (2013) as being a key component of SI. A 

‘farm to fork’ approach in which the value chain is central must be fundamental to SI. A combination of 

both life cycle assessment (LCA), assessing global impacts and understanding value chain dimensions 

through Global Value Chain Analysis (GVCA) present a unified approach to understanding SI in terms of the 

Asia-Europe trade in farmed seafood.  The GVCA conceptual framework of Bolwig et al (2010) integrates 

environmental and poverty concerns and has been used to assess farmed seafood value chains (Figure 2). 

In the following sections we first consider definitions of intensity for production systems before going on to 

consider the other nodes in value chains. These include processing, distribution, retail, food service,  

consumption and post-consumption.  

We first present the major drivers of the emerging trade before sketching a broad picture of Asian 

aquaculture as located within global food systems. The main issues for each of the four main SI premises 

and the interfacing policy and development goals are then addressed.  We finally discuss the implications 

for actualizing sustainable intensification and the policy options to stimulate SI of export oriented Asian 

aquaculture

3. Locating Asian aquaculture in an SI framework 

Global supplies of aquatic foods continue to move towards reliance on managed stocks and away 

from completely open-access fisheries. Such a trend might be classed as a form of sustainable 

intensification along a continuum from full life cycle controlled aquaculture through culture-based fisheries, 

to effective common property management of wild stocks. The complexities and uncertainties of managing 

wild ecosystems, complex over-lapping property rights and the associated interplay of technical innovation, 

politics and power make SI of many fisheries an elusive long term goal. In many cases fisheries 

management have led to an unsustainable ‘race to fish’ (Hilborn et al 2003). In contrast, preconditions for 

private-sector aquaculture development in Asia have permitted farmer-entrepreneurs to drive rapid 

innovation towards improved growth and efficiency. Aquaculture has spread from a spatially and 

economically limited traditional form of food production to an important sector in several countries in less 

than two decades. This transformation – led initially by carps for domestic markets, quickly evolved to 

higher unit value global export commodities especially shrimp in coastal areas followed by higher volumes 

of lower unit-value pangasius and tilapia from inland ponds. The speed of change has been driven by 

increasing demand in higher-value export markets (e.g. Europe North America, and Japan) and, more 

recently, emergent markets. In addition, regional trade within Asia has grown considerably, as has trade 

between Asia and Africa (Zhang et al. 2015). In contrast to some assessments (e.g. Golden et al, 2016), 

most aquaculture in Asia serves domestic markets and makes significant contributions to local food security 
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(Belton et al, 2016). Therefore, attempts to improve the sustainability of the sector need to address 

domestic value chains in addition to those operating internationally.  

Improving governance of food systems was identified by Garnett et al (2013) as a key need for SI. 

The roles and scalability of international certification in supporting the sector to intensify sustainably and 

enhance the environmental and social benefits of the activity have been questioned (e.g. Bush et al, 2013) 

but expansion of these systems continues to grow and, arguably, their influence has begun to stimulate 

endogenous change. Food safety concerns have been the critical driver in the emergence of domestic 

regulations in Asia, partly in response to bans on contaminated farmed seafood exports to developed 

country markets (principally the EU, the US and Japan),  but increasingly as a response to the concerns of 

domestic middle class consumers.  

The main current focus in aquaculture for environmentally-biased certification is the farm 

enterprise, where most direct impacts occur. This has circumvented the importance of the additive impact 

of geographical concentrations of production for which a zonal approach is required (Brummett, 2013; 

Immink and Clausen, 2017). Area-based management has been used to great effect in the UK and 

Norwegian salmon sectors for which such collective action has been a key part of managing sea lice 

problems (Berrill, 2013). Significant sector consolidation and strong regulatory capacity appear to have 

been key preconditions for fostering the necessary partnerships between the private-sector, government 

and other resource users, however. Identifying boundaries for such aquaculture zones is likely to be a 

major challenge, especially in contexts where management changes require collective action by large 

numbers of smaller, independent enterprises. Sustainable intensification of modern commercial 

aquaculture systems is challenged by their very openness, or porosity. Uncontrolled exposure to 

surrounding aquatic environments make farms, individually and collectively, both vulnerable to and a 

potential source of, a range of hazards. These include contaminants, excessive nutrients, exchange of pests 

and pathogens, genetic contamination and competition with wild species. Identifying the critical 

boundaries for any sustainability analysis will influence any interpretation and framing SI for aquaculture, 

but clearly within and near farm boundaries need consideration, as well as those delineated by value chain. 

Most LCAs (e.g. Pelletier et al, 2009, Newton and Little 2017) suggest that the majority of environmental 

impacts, probably in excess of 90%, are indirect, feed-related and thus occurring well away from the farm 

itself. The development of Asian aquaculture production systems is now considered together with their 

alignment with SI principles. 

4. Pillar 1 Increased production-differentiating SI from conventional intensification  

The rapid increases in both production of fish and its contribution, in both absolute and relative 

volumes, to total seafood consumed in Asia been achieved through both expansion in area and intensity of 

production over the last three decades. Aquaculture data was not even collected by the FAO until the early 

1980’s and the major wave of expansion in shrimp production didn’t begin until the mid-1980s in both 

China and SE Asia.  This has happened over different time lines in different countries in relation to a range 

of institutional factors; whereas farmed shrimp production exceeded wild by the late 1980’s in Thailand, it 

was the mid-1990s in Vietnam (Lebel et al, 2002). Moreover, whereas Thai shrimp had become uniformly 

intensive by 2002, in Vietnam a much wider range of production intensity continues to the present (Thanh, 

2015 ). Conventional intensification, i.e. more product output per unit area farmed has probably 

accelerated in the last decade across species as hatchery and formulated feed sectors have become 

established. This intensification has occurred without any overt focus on achieving the key tenets of 
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sustainable intensification (Figure 1), although these may have evolved in response to market or broader 

societal influences.  

The key components of intensification are the maintenance of elevated stocking densities of 

aquatic animals through supplying nutritionally complete feeds and maintaining water quality through 

aeration, filtration and/or water exchange. The key sustainability issues here are common to terrestrial 

livestock in that they relate to the source and impacts of the feed ingredients, including water 

consumption, land use,  and the implications of increased agricultural and  fossil fuel, water and, indirectly, 

land derived emissions for maintaining higher productivity (Herrero et al, 2010). Traditional intensive 

aquaculture was highly geographically limited to contexts with suitable feeds (trash fish, abattoir waste 

etc.), the availability of wild juveniles of high unit value species that could be sourced from the wild 

(typically carnivorous species) and opportunities to exchange water through natural flow/ exchange. In 

contrast the availability of formulated diets and hatchery-produced seed has allowed intensive aquaculture 

to spread far outside its geographical origins, across a wider range of species and culture technologies. This 

has inevitably resulted in many trade-offs in terms of both economic and social impacts. 

The key tenets to adopting an SI, as opposed to a ‘business as normal’ approach to intensification 

are based around regularizing and greater integration of aquaculture within food systems globally. Feed 

ingredients, and the diets that result, are under ever greater scrutiny regarding their ethical values and 

nutritional quality. Aquaculture value chains need to evolve towards meeting the nutritional and health 

demands of more informed, increasingly urbanised consumers that need assurance that their food has 

been produced in line with welfare of the key stakeholders involved, including the farmed animals 

themselves. The interaction between the farmed seafood sector and broader development, how it 

contributes to both local economies and enhancing global livelihoods through quality employment and 

nutrition need to become more explicit. Perceptions of aquaculture based on pioneering enterprises, often 

justifiably criticized for poor environmental and social outcomes, need to be re-orientated and informed by 

modern practice. Increasingly this will have to acknowledge the real environmental cost of producing 

seafood in comparison with alternatives, pushing the sector to compete with other animal source foods on 

every level in terms of key resource efficiencies (land, water, labor, energy). However ‘efficiency’ can be 

highly context specific (Garnet et al, 2015) and the emerging forms of intensification that result in greater 

productivity are now considered. 

5. Pillar 2 Increasing productivity – emerging forms of intensification  

Intensification can enhance productivity through optimizing individual health and growth, 

minimizing mortalities while controlling costs associated with capital investment and on-going production 

(Little et al. 2016, Little and Bunting, 2015). The key aspects of aquaculture intensification in Asia so far 

have been the use of improved nutrition through formulated diets for hatchery-produced and, increasingly, 

deployment of genetically improved, breeds. Such developments have resulted in rapid increases in yield 

compared to traditional systems.‘ Closing the yield gap’, whereby commercial yields are increased to meet 

that possible under more controlled conditions, has in general, lagged that achieved for arable crops and 

livestock. An exception is the salmonid sector and the mechanisms through which precision approaches- 

environmental and input control based on integrated monitoring and analysis (e.g. Foley et al, 2005; 

Banhazi and Black, 2009) that are increasingly applied in capital intensive food production generally can be 

developed and applied to aquaculture in Asia. Aquaculture species are especially susceptible to loss of 

performance through stress that may occur as a result of human intervention during normal husbandry 
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activities, such as sample weighing, grading vaccination etc. Reduced and/or more targeted interventions 

through remote monitoring techniques has potential to significantly increase efficiency through better 

resource use, both through empowering better management decisions and because fish perform better 

when less stressed. 

Most production on a global basis remains semi-intensive i.e. a significant level of nutrition is 

produced within the culture system. However the range in yield across semi-intensive systems is wide and 

there has been a rapid growth in ‘fed’ systems with a lower reliance on natural food production and 

concomitant dependence on given feed (FAO, 2016)   Earthen ponds remain the dominant culture unit but 

within that classification there is a wide range of variation in terms of design and management for water 

quality and control of pests, parasites and pathogens. A comparison of farmed, exported species (Table 1) 

for four countries in Asia suggest great variability in terms of importance of improved strains and feeds. 

While improved strains are now the norm for white legged shrimp (Penaeus vannamei) and Nile tilapia 

(Oreochromis niloticus), in both Thailand and China, freshwater prawn (Macrobrachium rosenbergii) in 

Bangladesh and striped catfish (Pangasiodon hypothalamus) in Vietnam are still reliant on wild and 

unimproved stocks respectively. Domestication and the scientific selective breeding that becomes possible 

is a key component of SI. 

Selective breeding to support faster growth, increased yields and improved feed efficiency and 

body composition traits is  most advanced for salmonids where the use of molecular marker technologies 

to accelerate conventional selective breeding trait-improvement rates has paid dividends (Gjedrem 2012; 

Gjedrem et al. 2012).The more rapid generation times however, give tropical species, both shrimp and 

tilapias, a key relative advantage. Moreover, the consequences of integrated selective breeding, health 

management and culture system design are recognized and being implemented, increasingly within the 

private sector. For example, Charoen Pokphand has carried out more than 16 generations of selected 

breeding for growth and disease resistance for white legged shrimp in Thailand. Together with innovative 

pond design and management, these investments are delivering sustained and high yields despite 

successive and complex pathogen epidemics (Macintosh, 2016). The relatively early stage of applying 

science to the intensification of all these species, and therefore expected returns from future investment, 

can be realized when the difference in published articles between farmed salmon is compared to Pangasius 

when feed or nutrit* is included against these species, salmon returns more than 2000 and Pangasius less 

than 100 articles (Web of Science, 2016).  

An emerging spectrum of intensification of culture systems suggests that differentiation between 

hyper-intensive systems, as defined by Welcome and Bartley (1998) as ‘open’ raceway and cage systems, 

be made with ‘closed’ super-intensive systems that emphasize biosecurity e.g. recirculating aquaculture 

systems (RAS). Closed systems potentially lead to a much lower risk of genetic contamination and 

pathogen–related health problems. Moreover, nutrients can be almost completely retained but these 

benefits come with significant energy consumption and costs. Mechanical failure and poor fail-safe, rather 

than disease, appear to be the main risks. The fallibility of ‘completely secure’ systems is however well 

known and impacts of highly improbable events are known to be particularly damaging (Taleb, 2008).  

The degree and extent of intensification in Asia is highly variable (Table 1). Movement towards 

consolidation of the industry, i.e. fewer, higher yielding farms differs between countries and species. Whilst 

Thai shrimp and Vietnamese pangasius industries have rapidly intensified and consolidated in the last 

decade this has not occurred to same extent with these species elsewhere. Shrimp production in Vietnam’s 
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Mekong Delta for example is still characterized by enormous diversity (Thanh, 2014). Culture systems range 

from highly extensive mixed-mangrove silviculture systems to intensive monoculture together with a 

variety of intermediate semi-intensive rice-shrimp systems. Here too there is a trend toward intensification, 

spurred by introduction of an exotic species (P. vannamei) more amenable to intensification than the native 

tiger shrimp (P. monodon).  

A common strategy in both fresh and brackish water systems has been for farmers to reduce risk 

through de-intensification (reducing inputs and yields) together with diversification, usually based on 

polyculture within the production system (For example, see Dabaddie this issue; Belton and Little, 2011, 

Edwards, 2014). This has often been in response to disease losses, or risk of loss, in systems where shrimp 

or prawns are the primary species and intensive monocultures have been unsuccessful. Intensive cage 

culture in rivers of pangasius catfish and tilapia, in Vietnam and Thailand respectively, have been 

increasingly replaced by (lower intensity) pond production. Pond production has greater scope for control 

of fish health and more consistent performance is generally possible (Belton et al 2009).  

 

6. Pillar 3 Environmental sustainability 

Food production systems, both for agriculture and aquaculture (including fisheries), have been 

criticized for their high usage of energy and resources as well as generating wastes along their product 

chains (Mungkung & Gheewala 2007). Aquaculture, however, appears to have attracted a particularly high 

level of public scrutiny for its environmental impact (De Silva 2012; Martinez-Porchas & Martinez-Cordova 

2012). The criticism attracted has led to this relatively new form of food production being labelled as a “soft 

target” compared with other sectors (New 2003) and a perception within the sector that it is developing  

under a burden of ethical and environmental constraints that did not restrict the formative period of 

agriculture (Shelton & Rothbard 2006).  

Rising dependence on conventional intensification can have both local and global environmental 

impacts. Disposal of aquaculture waste water into ‘receiving waters’ can lead to the capacity of natural 

processes to treat such water being overloaded, with consequent impacts on both water quality and the 

ecosystem through exceedance of the ‘carrying capacity’ of the system (Ross et al, 2013). Local 

environments can also be impacted by escapes of farmed fish (see below). Global impacts, hitherto less 

studied, are receiving increasing attention and are particularly associated with feed ingredients. LCA is a 

powerful environmental accounting approach that assesses global environmental impacts across a range of 

impact categories  from global warming linked to greenhouse gas emissions (GHG) to acidification and 

eutrophication (Huysweld et al , 2013,). Ideally, they are inclusive of the entire value chain, consider the 

entire life cycle of production and consumption, and identify points of disproportionate impact that need 

priority or remedial action. They allow impacts of different types to be considered from a balanced 

perspective. For example, LCA demonstrates that containerized sea freight of value added products and 

feed ingredients is only responsible for a minor component of the cumulative impacts of farmed seafood 

(Roberts et al 2015).  

A key issue in interpreting LCA data is the uncertainty attached to the data used (Henriksson et al, 

2014b), how boundaries are determined between systems and how environmental burdens are allocated. A 

good example of this is the problem of determining an appropriate functional unit – e.g. a kg of live fish or 
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shrimp produced or kg of fillet after processing as the basis for the comparison of impacts. Few aquaculture 

LCA studies compare the edible yields of different species (e.g. Roberts et al 2015). A major area of 

agreement however is  that aquafeeds are typically the major cause of overall impacts and that the type, 

source and form of feed ingredients used in aquafeeds determine their impact (Roberts et al 2015, Pelletier 

et al 2009, Pelletier and Tydemers 2010, Newton and Little 2017). There are major differences between and 

within ingredient types-fishmeal from Asia for example has much higher impacts than South American 

meals (Nhu et al, 2016; Henrikssson et al, 2015).  Such knowledge could be used to formulate lower impact 

feeds both on –farm or in the factory.  One key issue is the widening dichotomy between the overall 

performance and cost of factory produced feeds and those that can be made local to their use.  

 There is a considerable trade-off in the scale and location of impact as systems intensify. Extensive, 

non-fed systems tend to have large, shallow ponds with low yields (Table 1) resulting in large direct land 

use impacts but low indirect impacts elsewhere. As systems intensify, the direct impacts at the farm change 

and more indirect impacts occur where the feed is produced. Poor quality, farm-made feeds, with little 

formulation may have poorer food conversion efficiency (high FCRs), resulting in low digestibility and more 

waste per unit of fish produced. This in turn can lead to local eutrophication of receiving waters, depending 

on their size and capacity. Ingredients tend to be locally produced and minimally processed so energy 

inputs are low. Intensive aquaculture in many contexts is more reliant on imported ingredients (>70% in 

Scottish salmon feeds; Newton and Little, 2017) which are often highly processed. Global energy use is 

often considerably higher in intensive systems but land and water use may be lower than less intensive 

aquaculture overall. The cleanliness and efficiency of energy production, ingredient cultivation and 

processing dictates global environmental impact. However, well formulated feeds, delivered at optimum 

rates result in high feed efficiency with less waste. Greater feed efficiencies, in turn, lead to reduced, global 

and local emissions.  

A historic reliance on marine ingredients in the diets used in intensive aquaculture has been a 

major point of criticism by environmentalists (e.g.Naylor et al, 1998). Much of this criticism was linked to 

poorly regulated fisheries that have resulted in over exploitation, causing damage to marine ecosystems 

and biodiversity (see below). Ever increasing substitution with vegetable ingredients, more for economic 

reasons, than environmental, has been largely welcomed. However, the increase in vegetable ingredient 

use has increased pressures on other sensitive ecosystems, notably from soybean production in South 

America (Schmidt 2010, Roberts et al 2015, Newton and Little 2017). In LCA terms, marine ingredients 

perform comparably or better in most impact categories, but impacts on biodiversity between different 

ingredients are difficult to measure in LCA. The growing proportion of marine ingredients sourced from 

fishery and aquaculture byproducts or waste streams theoretically reduces overall impacts but this not 

always acknowledged in boundary setting and allocation decisions used in some LCA (Ayer et al 2007, 

Pelletier and Tydemers 2007 ). 

Super-intensification can reduce ongoing local environmental costs through (1) advanced feed 

formulation that improves feed efficiency and (2) better water quality management but at a cost of larger 

global impacts related to use of high levels of fossil fuels. Both these factors in well-designed systems will 

tend to reduce the amount of waste, both solid (‘sludge’) and dissolved (wastewater), and allow its 

concentration prior to disposal and /or reuse. Nhut (2016) has demonstrated opportunities for waste 

amelioration through composting and biogas production for RAS pangasius systems.  RAS systems allow for 

efficient and complete initial sanitation of production units to remove pests and pathogens and effective 
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control of their further entry are major control steps. Effective recycling of water to reduce the need for 

regular water exchange outside of the farm also reduces disease risks. Complete isolation from surrounding 

environments, both physically and hydrologically, is expensive. Intensive recirculating aquaculture systems 

(RAS), characterized by exceedingly low water replacement rates (<10% daily; Murray et al, 2014), are 

limited in their use for many species and contexts by high capital and operating costs, and although they 

limit direct interactions with the environment, tend to be energy intensive which underpin their high 

impacts demonstrated by LCA (d’Orbcastel et al 2009, Samuel-Fitiwi et al 2013, Badiola et al 2017). Use of 

renewable energy and more efficient filtration technology in such systems could greatly reduce their 

overall environmental impacts. In practice, approaches mirroring those developed for intensive poultry are 

being introduced i.e. integrating nutrition, improved system design with other measures such as selective 

breeding for enhanced tolerance to specific diseases. Super-intensive shrimp ponds typically take practical 

steps such as bird netting, water filtration and storage and recycling on farm but total exclusion is 

impossible. Improved sludge removal and disposal together with breeding for tolerance to specific 

challenges has been implemented in the Thai shrimp sector to control both the microsporidian parasite 

Enterocytozoon hepatopenaei (EHP) and toxin-related acute hepatopancreatic necrosis disease (AHPND) 

(McIntosh, 2016).  

 

7. Pillar 4 Diverse and variable approaches towards sustainable intensification 

The recent history of pond aquaculture development suggests that it has often occurred in areas 

with low agricultural opportunity. Sites that are flood prone or at risk of salinization have commonly been 

converted to ponds from other land use, often rice fields. There appears to be a difference between the 

success of incremental intensification, the gradual increases in yields and returns as inputs are stepped up,  

in fresh and saline water. Relatively successful in freshwater, the development of shrimp farming in saline 

water has been characterized by relative failure of semi-intensive systems; a common trajectory has been a 

move towards very intensive, more biosecure systems, or a return to extensive systems. 

Shrimp farming can be a major cause of direct local eutrophication. In contrast, extensive shrimp 

ponds offer environmental services as nutrient sinks and can contribute to maintaining water quality.  Such 

systems are the norm in Bangladesh and remain a sizeable part of other shrimp sectors (e.g. in Vietnam, 

Indonesia, the Philippines and to a lesser extent China). Rather than having ‘designed isolation’ from 

outside environments they remain intimately dependent on them with the regularity of (usually tidal) 

water exchange contingent on stocking levels and nutrient retention requirements. Such exchange ensures 

natural feed and seed enters the systems supporting polycultures and facilitates harvest often in tandem 

with lunar cycles. These systems are typically improved as a first step through additional stocking of 

hatchery juveniles. Disease remains a major cause of loss but certain management practices can improve 

performance (Karim at al., 2011). Assuming low land-rents / opportunity costs for alternative productive 

uses, even with such losses these systems can still represent low-risk options for small-holders. In contrast 

semi-intensive systems lack the biosecurity of more intensive systems but investment in feed, and risk of 

failure through disease is much higher. For shrimp, the ‘squeezed middle’ is an emerging phenomenon  i.e. 

semi-intensive systems that enjoy none of  the benefits of investments in biosecurity or pathogen control 

characteristics of intensive systems nor the low input/low risk/low output typical of extensive systems. In 

contrast low trophic species of finfish, which have more complex immune-systems than crustacea (Tort et 
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al, 2003, Arala-Chaves and Sequiera 2000) may be an optimal form of sustainable intensification in many 

contexts.  

The productivity of semi-intensive finfish culture is extremely variable; yields may increase by a 

factor of 5-20 (see Table 1) over background levels not receiving managed levels of fertilization.  Lower 

yielding ponds are typically managed to limit water exchange and thus impacts of effluents on surrounding 

ecosystems and ‘costs’ (both financial and environmental) of inputs are typically low compared to systems  

based on formulated diets. Farmers using supplementary feeding strategies can be less concerned about 

the specific nutrient levels or presentation of inputs as long as a balance is maintained with natural feed 

generated in situ within the pond. This flexibility means inputs can be opportunistically and locally sourced 

byproducts or wastes. In this way aquaculture can be a key part of a circular economy, obviating the 

opportunity cost and impacts of alternative means of disposal of such wastes. The need for water quality 

management (aeration, pumping) based on external energy is also typically low in such systems. 

A focus on the efficiency of the aquaculture system alone, therefore, rather than the broader food 

landscape may be misleading. Conventional intensification based on high-performance, formulated diets 

can lead to large improvements in food conversion efficiencies compared to lower input systems. But semi-

intensive systems based on low quality feeds and fertilizers can be more efficient with respect to overall 

food production if water and nutrients are shared with surrounding mixed farming systems (Little and 

Edwards, 2012, Phong et al 2011). Reuse of aquaculture nutrients (often >40% of those in feed) in 

surrounding agriculture, may reduce fertilizer requirements, and hence environmental impact, of these 

systems; although this is often constrained by physical design and site area limitations. A greater focus on 

the interrelationship and interfunctionality of aquaculture with other food production and processing is 

urgently required, particularly with regard to nutrient and water flows where evidence suggests further 

gains may be had and are likely to become all the more important in  future, more competitive, global value 

chains (Edwards 2015). 

   There are significant implications of these trends towards or away from intensification for the 

configuration of value chains. Increasingly development opportunities for semi-intensive pond aquaculture 

may also be constrained, with the postulated ‘ladder of intensification’ (Setboonsarng, 1993) for 

smallholders being overtaken by a rapid rise in entrepreneur-driven intensive systems. In contrast to the 

ladder metaphor, entrepreneurs take an elevator to a higher level of intensity that matches their 

investment and returns profile. This dichotomy in which diverse, relatively low input systems co-exist with 

intensive systems targeting commodity markets (Belton and Little, 2011; Belton et al. 2016) could be a key 

part of ensuring aquatic food systems are resilient in the face of climate change and other challenges. A 

similar case has been for supporting mixed crop-livestock systems, especially in more marginal 

agroecosystems (Herrero et al 2010) rather than a continued focus on conventional intensification of 

commodities produced in ‘high potential’ contexts. Promotion of smallholder, semi-intensive aquaculture 

as part of water and nutrient conservation in marginal agroecosystems may have more success than in high 

potential areas where opportunities for more attractive off farm livelihoods and alternative land uses exist. 

A range of interfacing issues around intensification are now considered such as land, water and nutrient 

sparing and implications for biodiversity. 

8. Towards other policy goals  

8.1 Biodiversity impacts 
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Growing aquaculture can impact on biodiversity both directly and indirectly. Expansion of the 

aquaculture sector and resulting distribution of domesticated stocks, both indigenous and non-native 

species, may directly impact on local fauna and flora. Indirectly, the feed demands of intensive aquaculture 

may affect biodiversity both through impacts of fisheries on aquatic ecosystems (Diana, 2009) and through 

production of terrestrial ingredients as for livestock more broadly (e.g. Stenfeld et al, 2006). The more 

direct effects of aquaculture on biodiversity are first considered before the concept of resource sharing and 

sparing are investigated.  

8.1.1 Aquaculture and biodiversity: introducing new species and strains 

The recent history of aquaculture compared to other forms of food production complicates any 

assessment of its impacts on biodiversity. Terrestrial livestock development has focused on a few mammals 

and birds targeted with very intense genetic selection to increase efficiency of production under farm 

conditions. In contrast, aquaculture’s rapid ascent has been characterized by a very large number of 

genetically distinct but ‘unimproved’ species drawn from a wide range of Phyla (Diana et al. 2013). Apart 

from a handful of species they have yet to benefit from selective breeding or modern genetic techniques; 

many are still depend on wild broodstock or juveniles (Asche & Khatun 2006), the exploitation of which can 

have direct biodiversity impacts on the target species and by-catch. In terms of value chains this very 

diversity in turn supports a greater range of environmental and social impacts than more industrialized 

food systems. Intensification of aquaculture also has an indirect impact on biodiversity through the 

sourcing of feeds from both marine and terrestrial agroecosystems, although aquaculture currently only 

uses an estimated 4% of total world feed ingredients (Troell et al, 2014), the proportion of marine protein 

and PUFAs is considerably higher. Depending on the production of volatile marine ingredient supplies, 

aquaculture consistently utilizes over 70% and 90% of fluctuating fishmeal and fish oil supplies respectively, 

with 35% of fishmeal sourced from fishery and aquaculture by-products (IFFO, 2015).  

The introduction of alien species for aquaculture has often been raised as a major threat to aquatic 

biodiversity causing declines in native species and modifying habitats and ecosystems (e.g. Herbert et al, 

2016) but the selective breeding and stocking of indigenous species raised within their natural range are as, 

if not more, important  (Bouro et al, 2016). Control of escapes from aquaculture systems has become a key 

part of emerging international standards. The level of escapes and type and level of interaction of farmed 

with wild stocks is likely to be strongly context specific however. Often these environments are already 

highly modified, impacted or indeed entirely man-made and the consequences of any species change may 

therefore have a different biological and societal value. In some cases escapes or purposeful stocking of 

alien species have resulted in naturalized populations that have increased the value of surrounding fisheries 

(Gozlan, 2008 ), but there have also been instances of catastrophic losses of indigenous species through 

predation, pathogen introduction or habitat modification. A precautionary approach has been advanced 

given such risks (Leprieur et al., 2009). The likelihood of more chronic impacts of an indigenous species that 

have been selectively improved for culture environments that, following escape, might introgress with, and 

affect the fitness of, wild populations remains a fertile area for debate (Lorenzen et al, 2012). 

Reduction of risks through reducing or preventing stock loss from aquaculture facilities is one 

component of best practice. Although absolute control of escapees is problematic, intensification and 

investment limits such losses considerably.  New tracing techniques linking escapees back to specific 

facilities are likely to improve best practice (Warren-Myers et al, 2015). The economic arguments i.e. that 

damage to the integrity of any holding system will cause comparatively higher loss in dense, high value 
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stocks and potential sanctions from certifiers are major incentives. Industry or market led standards aiming 

to reduce escapes caused by equipment failure linked to poor design, fabrication or maintenance show 

promise, although clearly need not be the only approach to the challenge. Such standards are likely to raise 

entry costs and accelerate smallholders exit from the sector however. Other methods which can prevent 

the genetic pollution of local strains include the use of sterile stock through triploidy, although competition 

with native species and welfare issues may still occur. 

8.1.2 Resource sharing or sparing? 

In comparison with terrestrial agriculture, the potential for aquaculture to expand into new areas 

without major environmental impacts has been considerable. Although many have given pessimistic 

forecasts of further growth for inland aquaculture based on limited freshwater (e.g. Sorgeloos, 2012) and 

heralded the open sea as the likely new frontier, growth of aquaculture in freshwater ponds continues to 

outpace all other environments (Edwards, 2015). Aquaculture can be a secondary and non-consumptive 

user of freshwater water stored primarily for other purposes and, depending on system design and 

intensity of production, can be a balanced part of aquatic ecosystems. Ponds may act as sinks to retain 

nutrients for reuse in surrounding food systems reducing the overall demand for fertilizers and the burden 

of their environmental impacts. Expansion of aquaculture into cleared or highly modified natural habitats 

can directly impact on biodiversity however. Degradation of both freshwater and coastal ecosystems has 

been historically linked to aquaculture although the extent compared to other factors has been long 

debated (Naylor et al, 1998, Beveridge et al 1997). The indirect impacts on biodiversity of both terrestrial 

and marine ecosystems through the sourcing of feed ingredients have had increased attention in recent 

decades. The efficiency and morality of catching fish for fishmeal in the aquaculture industry has been 

particularly under scrutiny (Naylor et al 2009; Alder et al., 2008), but the effects of deforestation on 

biodiversity for soybean and palm oil plantations have also received attention. It is estimated that around a 

third of agricultural land is dedicated to the production of animal feeds (Robinson et al 2013). 

Biodiversity can be enhanced through either land sharing or land-sparing (Garnett et al, 2013). For 

aquatic systems such thinking can usefully be extended to other key resources-especially water and 

nutrients. There are examples of both in Asian aquatic farming systems; low input shrimp and prawn 

culture variously integrated with combinations of whitefish, rice and dyke cash-crops, or mangroves 

exploited for timber and other products are examples of land, and broader resource, sharing; these have 

been characterized by Bush et al (2010) as ‘landscape’ systems, in contrast to ‘closed systems’ in their 

assessment of resilient shrimp production. In contrast, intensification of production on smaller areas has 

‘spared’ land and water at a local level. In Thailand for example intensification has led to farm area, no 

longer being used for production, being reconfigured for water and sludge storage. Such sludge ponds over 

time often develop high utility as wildlife refuges on-farm. Intensification has also led to some ponds being 

abandoned or converted to other uses (orchard, palm production (Banchun,   2012) with higher 

environmental functions.  

A general shift of shrimp production from tidal mangrove areas to more elevated lands better 

suited to more bio-secure closed/ production has occurred particularly in countries such as China and 

Thailand. The same concept has been modelled by Bunting et al (2015) for reconfigured upland mixed 

cropping systems in which rice production was intensified, supported by on-farm irrigation storage also 

used for fish culture. The integration of fish into such a system boosted profits by over 70% compared to 

only 9% with intensified rice alone over the baseline. Rates of return to capital and payback periods were 
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also improved. In a similar bio-economic modelling of Indonesian landscape shrimp production systems, 

Bunting et al (2013) found that low input systems in which stocked shrimp and fish together with naturally 

recruited species gave significantly better returns than traditional un-stocked systems, and had much lower 

risk compared to conventional semi-intensive systems or those based on integration with mangroves. 

Although prospective returns of integrated mangrove shrimp were relatively high, costs and management 

complexity were high and there were great uncertainties associated with risks. In Vietnam current 

management of rights in mangrove-shrimp systems appears to be undermining farmers from optimizing 

incomes and conserving forest resources (Ha et al, 2012), a problem exacerbated by a poor understanding 

of how their sustainable integration can be optimized for economic and environmental outcomes 

(Baumgartner et al, 2016). 

Understanding the value and impacts of landscape systems is challenging. The issue of using exotic 

or indigenous species in what are, or quickly become, polycultures has been discussed above but in reality a 

reliance on both stocked and naturally recruited juveniles in extant mangrove areas is a key factor in their 

overall value and resilience in Bangladesh (Mamun, 2016) and the Philippines  (Dabaddie et al , this volume  

). A core attribute of these systems is the co-production of species within ponds (polyculture) and the 

linkages between ponds and surrounding agriculture (Integrated agriculture aquaculture, IAA). Both are 

rational approaches to reducing risk and enhancing productivity and have implications for maintaining or 

enhancing biodiversity. Combinations of high and low value species may contribute to both local and global 

food security whilst stabilizing returns and reducing risk through diversification of production and market 

options. Polycultures may also reduce environmental impacts by reducing quantities and/or quality of 

required feeds. Whereas shrimp in intensive monoculture require complete formulated diets, no-feed or 

low feed strategies are often employed when stocked at lower densities in polyculture. The variety of 

species that have different spatial and feeding niches mean that overall ecological efficiency can be higher 

than monoculture (Milstein, 1992) The financial and nutritional returns of such polycultures and their 

implications for both local food security and value in export markets are discussed later.  

A further key strand in sustainable intensification of terrestrial livestock has been the issue of 
maintaining welfare outcomes for the animals themselves and people dependent on them which is now 
considered for aquatic animals. 

8.2 Welfare 

The welfare issues around fisheries,  and more recently aquaculture,  have been cast in a broader 

ethical framework that includes wellbeing, autonomy and justice applied to different interest groups 

(aquatic animals , humans and the environment; Pitcher and Lam, 2012, 2015) and most recently in terms 

of the sustainability of the natural resource base  (Lam,2016). 

 

8.2.1 Animal welfare:  

There has been relatively little attention to the welfare of farmed fish and other aquatic animals in 

developing countries, where ensuring the welfare of people has taken understandable precedence. 

Changes in the design and management of animal husbandry systems towards intensification can 

potentially have consequences for direct welfare outcomes (Dawkins, 2011, Fraser, 2006). Whereas smaller 

operations might benefit from greater traditional husbandry skills, larger and better capitalized operations 

should have greater capacity to invest in new technology. The development of animal welfare standards 
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may therefore indirectly impact on the scale and ownership of aquaculture production and processing 

enterprises and determine the nature and value of markets targeted. Ensuring the ‘five freedoms’ are met 

(i.e. freedom from thirst, hunger and malnutrition; discomfort; pain, injury and disease, to express normal 

behavior and from fear and distress) is likely as challenging under extensive as intensive conditions for 

terrestrial (Villalba and Manteca, 2016) and aquatic animals. 

There are a number of welfare issues facing farmed fish that differentiate them from husbandry 

and slaughter of long domesticated terrestrial livestock (Branson and Southgate, 2008). Finfish, as 

vertebrates, are now considered sentient, i.e. capable of feeling pain, and are increasingly subject to 

welfare standards as applied to conventional livestock. In contrast a large range of farmed aquatic animals 

are invertebrates for which there few regulations (Horvath et al. 2013) but for which there is clear evidence 

for their capacity to suffer. A comparative indifference to the welfare of aquatic animals may also stem 

from customary practices in harvesting wild stocks. Commercial fishing has typically offered little incentive 

to reduce stress during and after harvest, provided the eating quality or appearance of the product is 

unaffected. A focus on preventing death by asphyxiation for both wild and farmed stocks and use of some 

form of stunning prior to slaughter are generally recommended. Efforts to maintain value of both farmed 

and wild fish post-harvest through keeping them alive until slaughter prior to processing or retail can 

further exacerbate the challenge of maintaining high welfare. 

Welfare issues regarding terrestrial livestock are increasingly related to the negative impacts of 

selective breeding toward high productivity. Such concerns have been less relevant to aquatic animals 

although domestication and strain improvement are now beginning to have impacts on the productivity of 

major farmed aquatic species. The recent movement of the Scottish salmon industry towards higher 

welfare production has indicated how higher welfare and better returns can be mutually compatible. An 

export orientation may accelerate such change when there is little domestic interest; the improved 

slaughter processes being initiated in Vietnam for pangasius destined for EU markets   is an example of this. 

It is less easy to predict if such welfare initiatives will transfer to production intended for the domestic, or 

export to other Asian markets. However, it is worth noting that International retail multiples establishing 

themselves in Asian markets will remain exposed to reputational risks associated with their Western 

consumer-base. 

The use of some types of polycultures to improve system productivity may raise issues of welfare 

where competition for feeding and overlapping spatial niches occur (e.g. Rahman and Verdegem, 2010) but 

in general high performance polycultures result from compatible and complementary use of space and 

food. The use of cleaner fish in salmonid production has raised issues of how their welfare can be enhanced 

(Treasurer, 2012) that has led to the development of specific management and diets for the cleaner fish 

(Lerclerq et al, 2015). Polyculture, where one species is used as the food source of another raises a 

particular welfare issue, raising the issue of the equivalence of welfare standards for intensive versus more 

extensive and natural culture systems (Villalba and Manteca, 2016).   

The practice of eyestalk ablation, the industry norm for controlling shrimp maturation and post 

larvae production, is also coming under increasing scrutiny. Some European retailers have indicated their 

intention to exclude all ablation-derived stocks from their sourcing in order to improve welfare credentials 

and avoid media criticism. Any welfare-led changes in value-chains that require additional investment may 

further disadvantage small-scale actors, be they producers or traders of live juveniles or marketable fish. 
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8.2.2 Human welfare and nutrition 

Public health issues 

Both occupational and consumption related risks have been linked to the aquaculture sector. Few 

studies have been published on the occupational risks associated with farming and processing seafood but 

they are likely to be largely on par with terrestrial food products and less extreme than the fishing industry 

(Watterson et al.2012). Particular risks are raised through close involvement with water, particularly if 

electrical appliances are used; electrocution and drowning are hazardous to untrained employees and 

poorly managed facilities. Many risks are likely to be system specific - such as the manual removal of pond 

sludge by divers in deep (4-6m) pangasius ponds. In common with other forms of livestock production 

systems, a variety of chemical products are routinely used in aquaculture to control pathogens and 

optimize production and welfare of the stock (Rico et al. 2013; Ali et al,2016). The principles of SI suggest 

that any chemicals should be minimally toxic to both their users and non-targeted life forms, thus having 

minimal environmental impacts and no significant impacts on occupational and human health. Any review 

of the chain of custody of a farmed product shows that producers themselves may have only partial 

oversight of the issue for various reasons. Reliance on off-farm feeds or chemicals makes producers 

vulnerable. Such dependence on the practices of those manufacturing and marketing inputs gave rise to 

the sector-wide export ban on Bangladesh shrimp and prawn products linked to the use antibiotic 

contaminated ingredients for prawn-feed formulation.  Both feed ingredients and formulated diets are 

sensitive to both purposeful adulteration or accidental contamination through often lengthy and poorly 

governed supply chains. Recent evidence however suggests that there has been rapid change in use of 

chemicals in Asian aquaculture, particularly a move away from antibiotic use, and that the main 

environmental risks are minor to modest, and usually below comparable aquaculture elsewhere or 

terrestrial livestock (Rico et al, 2013). Improving capacity to support aquatic health management at the 

local level, especially among knowledge-deprived smallholder farmers, has been advocated as critical for 

improving safe and effective use of medicines. The rise in antimicrobial resistance as a public health threat, 

in addition to antimicrobial residues, has given significant  impetus for improved surveillance and control 

methods (Tuševljak et al 2013). 

The use of more extensive, integrated systems also presents a different set of challenges in that 

contamination of supply chains may be unrelated to management of the aquatic animals themselves but 

rather an outcome of shared water or other resource use. For example rice-fish culture, where both are 

produced in the same system at the same time, and for which chemical control of rice pests is required is a 

good example of this. An important issue ignored by many media polemics is the assessment of 

comparative risk (Murk et al., 2016). Many studies have indicated that the relative risk from infectious 

agents, or chemical contamination is many times higher in wild unmanaged stocks than farmed seafood  in 

Asia and this is borne out through the regular monitoring (RASFF) by the EU on imported seafood (Little et 

al. 2012). 

 

Human Nutrition-Sustainable Consumption 
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The globalisation of farmed seafood chains raises several issues relating to their role in food 

security, both local to production and in distant markets. These include the impacts of intensification on 

product nutritional quality and, if an export orientation, impacts on access to quality food locally. Golden et 

al (2016) raised the issue that poor management of wild stocks and export-orientated aquaculture 

threatened food security in fish dependent LDCs. Their analysis failed to recognize the domestic orientation 

of most aquaculture among the top-ranking producer LDCs (Belton et al, 2017). A concern regarding 

sustainable intensification is that food produced in industrialized systems has poorer nutritional profiles. In 

particular it has been claimed (Bogard et al, 2017) that micronutrient profile is being sacrificed for higher 

yields, i.e. that more is being simply equated with ‘better’. These concerns echo perceptions about modern 

food generally despite improvements in access to more diversified diets, of which food products derived 

from animals make up an increasing share (Speedy, 2003).  

Access to seafood, however, remains uneven in both poorer and richer countries. A major 

challenge to medium income countries is addressing the widening gaps between rich and poor (Iguacel et 

al, 2016). The role of seafood needs consideration in the modern era when malnutrition is as likely to result 

in obesity as stunting and starvation. This is particularly important given the continued failure to recognize 

the importance of  seafood in human diets (Bene et al, 2015) , as recently reflected in a lack of specific 

nutrition orientated indicators in the sustainable development goal related to managing aquatic resources 

(Sustainable Development Knowledge Platform, 2016 ). A recent high profile report on human nutrition 

failed to make any link between aquatic food and improving human nutritional outcomes because of this 

lack of interdisciplinarity (IFPRI, 2016) 

Seafood consumption in Europe is highly variable in term of both quantity and diversity consumed 

between, and even within, countries (Eufuma, 2015) whilst in Asian LDCs with significant levels of farmed 

seafood exports, variation can also be extreme (Needham and Funge-Smith, 2014).This study also 

suggested that both urbanization and the rising importance of aquaculture compared to wild capture 

fisheries generally leads to a reduction in dietary diversity.  Some research points to the substitution of a 

diet rich in diverse, often small, indigenous fish species by a more limited range of cultured fish could have 

poorer nutritional outcomes (Roos et al 2005, Bogard et al 2015). The promotion of polycultures in 

aquaculture systems as a mechanism to maintain or enhance both bio- and dietary diversity may therefore 

have implications above its importance to economic or environmental sustainability discussed above. 

Moreover such polycultures extend well beyond the pond boundary, with reuse of aquaculture effluents in 

surrounding agriculture becoming a component of more joined-up local foodscapes. This approach appears 

to match with a need to ensuring that production approaches address the overall dietary needs of local 

communities (Garnett et al., 2013). Knowledge and understanding of the mechanisms through which 

aquaculture, especially that with a commercial export focus, supports the food security of non-producers is 

limited. For example finfish and other aquatic co-products harvested from ‘shrimp’ ponds in Bangladesh are 

an important, often dominant, proportion by volume. Little research exists regarding their fate and 

nutritional impacts (Mamun, 2016).  Moreover as traditional diets and the food marketing systems 

influencing their availability themselves are in flux, understanding the contributions that aquatic animals 

currently and potentially make becomes ever more complex.  

Reviewing strategies for sustainable intensification needs a better understanding of demand-

especially those aspects driving change in aquaculture value chains (Tilman et al, 2011; Davis et al., 

2016).The likely impacts of political consumerism (e.g. levels of choice versus need) and sustainable 
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consumption also deserve consideration, albeit with a realistic perspective as to what one, comparatively 

small sector may achieve within the wider food marketing environment. Sustainable intensification of the 

farming enterprise considered in isolation of the sustainability of the value chain is neither feasible nor 

worthwhile. Just as improving the sourcing and use of key inputs-water, labour, energy, nutrients and seed 

is critical, so is the marketing of products and byproducts. In North America where over consumption 

compared to nutritional needs is common, eating smaller portions of fish would deliver sustainability 

benefits (Tlusty et al, 2011) as would choosing  products that are inherently low  trophic species rather than 

high level carnivores (Oita et al, 2016). Such behaviour may actually conflict with commercial incentives and 

may not necessarily be front of mind in most fish consumers’ purchase decisions but could be supported by 

better consumer information. We now consider aspects of intensified aquaculture that  add value to the 

sector and society more broadly through reducing waste streams and supporting sustainable development. 

8.3 Reducing waste  

A key component of sustainable intensification is increasing output yield, and its aggregate value, 

for a given level of inputs. Improving the efficiency of post-harvest processing operations and the 

profitability of principal products and related by-products can be an important contribution especially when 

the limited proportion of ‘prime’ product is considered. The production of fish fillet or shrimp tail results in 

by-products-i.e. heads, frames, skins, shells etc that can be a significant part of the harvested yield and, 

potentially, of overall value (Newton et al 2014). The value of products from various processing stages is 

dynamic, their relative values may change and so the harvested yield of the traditional main product may 

even become secondary to the value of a current by-product.  So, for example, fish gelatins, collagen, 

leather, various peptides, shrimp chitosan and glucosamine may have much greater unit value than the 

main product after further processing (Newton et al 2014). However encouraging reuse of agricultural and 

fishery by-products has become a contentious issue for several reasons. Many certification schemes 

support the use of fisheries by-products as marine ingredients in aquafeeds (GAA,2010, ASC, Global GAP, 

2011) and EU legislation has recently allowed the use of mono-gastric animal by-products in aquaculture 

(European Commission, 2013), but the LCA community remains divided on best approaches to accounting 

for such reuse and to where the impacts should be attributed. While some practitioners treat by-products 

as a waste, that should be utilized, using economic reasoning (Papatryphon et a, 2004; Guinee et al, 2004), 

others attach high environmental burdens to their usage using more biological based reasoning (Pelletier et 

al 2007, Pelletier et al, 2011). However, the latter often does not take into account the subsequent impacts 

of waste disposal if the by-product is not utilized and is in conflict with certification efforts. Other 

regulatory and commercial barriers exist to high value utilization efforts such as for human health 

supplements (Raghavan and Kristinsson, 2009; Thorkelsson and Kristinsson, 2009). Implications for the 

trade in products and by-products between nodes of production and consumption, and their impacts on 

broader development, are now considered. 

 

8.4. Rural Economy 

 

8.4.1 Impacts on employment through growth in farmed seafood value chains 

Sustainable intensification implies the strengthening of rural economies- and avoiding negative 

environmental as well as social consequences. Aquaculture has been subject to criticism on both counts but 

has been responsible for transformational as well as more incremental change in poorer parts of Asia. 
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Many of these changes have occurred through the poor being crucial, though often less visible, members of 

value chains rather than producers per se (Little et al, 2012). The impacts of intensification of aquaculture 

on people, both directly and indirectly are diverse and context dependent. Some studies have suggested 

(e.g. Toufique and Belton, 2014) that movement away from open access exploitation of aquatic resources 

to more intensified management can lead to erosion of rights and benefits to poorer groups and that 

consolidated intensive aquaculture in turn often results in a further narrowing of benefits (Armitage and 

Marschke, 2010). Such analyses rarely consider a full value chain approach which tend to indicate growth in 

employment elsewhere in the value chain. Faruque (2007) found that erstwhile fishers improved their 

social mobility through leasing and management of prawn culture ponds in Bangladesh and that manual 

agricultural wages increased with the boom in pangasius farming in the same country. There has been a 

steep rise in rural employment related to growth in the processing sector that is often a multiplier of gains 

compared to fish culture (Ibid). The development of wholesale auction markets close to production clusters 

in Bangladesh has been an important component in supporting farming and has led to significant 

employment generation as well as improving returns for producers (Pijl, 2014) .  

Poorer migrants have often been drawn to work in the aquaculture sector, a phenomenon that has led to 

the associated benefits and problems having far flung impacts. Inequalities in labor conditions in the sector 

have been heavily criticized particularly when extreme forms of abusive practice, child and bonded labor 

have come to light (Amaravathi  et al, 2016 ). In common with the garment trade and others, there is 

clearly an urgent need for an overhaul of governance structures and ensuring adherence to international 

norms; these might also be reinforced by the leverage of international trade, including responsible sourcing 

programmes and third-party certification systems, incorporating effective traceability systems. Pockets of 

bad and often illegal practice, however, should be considered in context and pragmatically. Aquaculture 

can support the livelihoods, directly and indirectly, of large numbers of very poor people with few other 

alternatives. Employment opportunities and diets in shrimp producing communities in Bangladesh had 

changed over time (Steinburg, 2012), but these also reflected household responses to broader 

development changes which are highly location specific (Dasgupta et al (2014).  Remittances from legal 

migrant workers in Thailand’s shrimp industry contribute to households throughout poorer parts of SE Asia. 

Aquaculture as a positive employment choice for migrants in terms of quality of life outcomes that often 

exceed international standards is reflected in recent studies of Thai shrimp farming (Satapornvanit-Nietes 

et al 2014).  

 In terms of employment in general, a global assessment (Hishamunda et al, 2017) has found that 

aquaculture tended to both improve socio-economic conditions and increased employment, particularly 

non-seasonal jobs. This had a positive outcome of allowing young people to remain in rural areas, 

supporting their economic viability. Moreover total benefits tended to exceed those in alternative sectors. 

A focus on employment in the farming sector alone greatly underestimates benefits. Alexander et al (2014) 

reported employment in processing within the Scottish salmon sector to exceed that on farms by a factor 

of 4  although this work is generally unskilled and poorly paid (Hishamunda et al 2014) . In areas of high 

unemployment a dualistic labor market is common, characterized by high paid professionals and low paid 

workers. The implications for sustainable intensification on employment benefits will be highly context 

specific but on principle concomitant improvements in peoples’ overall welfare should not be traded off 

against other productivity gains. Higher labour efficiencies in technologically advanced sectors such as 

Norwegian salmon can result in growth in quality jobs however. 
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Both the nature and location of processing of farmed seafood has profound implications for 

sustainable intensification and continuance of trade. The marketing of only value-added products to distant 

export markets such as the EU can enhance both sustainable production and consumption. Local processing 

ensures retention of ‘byproducts  where either they have more value as direct food- (e.g. swim bladders 

and fish heads) or can be most cost effectively further processed to more valuable products (e.g. leather, 

fishmeal, chitosan, collagen) (Newton et al 2014). Moving only the ‘finished’ ‘fillet’ or ‘tail’ reduces both 

transportation costs and any costs associated with disposal of low value waste, but if the unit value of 

associated byproducts alters, such tenets are unlikely to hold sway. Poorer producer countries often have 

better developed markets for by-products, perhaps because they are more widely accepted as direct food. 

GVCA suggests that a high proportion of end market value often results from further reprocessing of 

exported raw material within Europe and other developed country markets (Kelling, 2013). The linkages 

between consumption trends in export markets for Asian farmed seafood and implications for broader 

sustainable development are now considered. 

8.5 Broader sustainable development 

The challenge of feeding nutritious diets to a growing global population within planetary 

boundaries is a key objective of sustainable intensification of food systems in general (Foley et al, 2005; 

Roos et al 2017). This challenge also forces the issue of two opposing views: ‘not enough food’ and ‘too 

much greed’ (Garnett, 2015). The first focuses on production efficiency gains  to address environmental 

impacts whereas the latter proposes that dietary change is required, particularly curbing the consumption 

of animal source food. A third narrative around food and its place in sustainable development is that of 

inequality rather than either production or consumption. The imbalances in supply and demand, 

production and consumption reflect broader distributional challenges, some of which have been 

considered above. Balanced nutritious diets for Western Europe in which farmed seafood is an intrinsic 

component are possible within a scenario of reducing greenhouse gasses to sustainable levels (Roos et al, 

2016). Other research suggests that the footprint of imported seafood farmed in Asia can be significantly 

lower, even allowing for higher transportation related impacts than locally produced food (Roberts et al, 

2016).  The implications for the rapidly growing production and trade in farmed seafood on the broader 

food system is now discussed given the opportunities for sustainable intensification described above. 

 

8.5.1 Value Chains-consumption drivers for SI farmed seafood 

The competitive advantage of farmed Asian products compared to locally-produced, cultured and 

wild stocks, in both Europe and North America has been driven by cost and consistency of quality and 

supply. The importance of cost compared to other values,  i.e. credence qualities, is subject to speculation. 

The latter  could feasibly drive sustainable intensification practices in Asia if better understood by 

consumers and critically, seafood buyers and marketers. In recent history farmed seafood has found keen 

markets among consumers and become established, often initially through promotion in food service. This 

sector is, in the main, particularly cost-orientated and competitive in terms of offering new products and 

presentation. Novel species and related products first experienced away from home have led to regular 

home consumption. These trends have developed in parallel with a growth in interest for ‘local’ products in 

the same markets, undoubtedly spurred by a growing mistrust of industrial food production driven by 

widespread media attention on illegal practices (e.g. Gale et al, 2016).  A continued rise in the importance 
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of credence qualities of seafood is likely and products conforming to such values can be expected to gain 

value, possibly at the expense of food produced through conventional intensification.  

Confusion among consumers regarding seafood attributes remains common however. Consumers 

still perceive wild seafood as available and natural (FAO, 2016), and, given the choice, prefer it to farmed. 

However, aquaculture has advantages that it can be delivered fresher, direct from slaughter with good 

welfare standards, whereas wild product may take several days to reach market after capture with no 

welfare standards in place. There is some evidence that consumers prefer fish farmed more ‘naturally’ and 

are willing to pay for it (FAO, 2016). However, research elsewhere, (Chambers et al 2008) suggests that as 

long as food is safe, in most cases price is the key driver and attribute uppermost in most fish consumers’ 

purchase decisions. Other qualities such as convenience and perceived quality however appear to drive 

demand for the increasingly popular ready to eat seafood. Asian farmed seafood that can claim values that 

meet standards (Organic, Fairtrade etc), that are in line with credence qualities are likely to meet receptive 

markets and be able to more effectively differentiate from mass market products. However the extent of 

any price differential that can be consistently commandeered remains uncertain; for example such 

premium markets can be rapidly saturated by over-supply.  .  

Communicating broader, complex sustainability values to consumers is a major challenge and 

arguably one best achieved through trusted brands (Kim, 2012; Lassoued and Hobbs, 2015). Increasingly 

brands employ their own supply-chain assurance methods and/or demand third-party certification for their 

products. Such choice editors, as commercial entities, however will inevitably seek to compromise or trade 

–off some values over others, particularly in competitive environments. A key challenge to drive sustainable 

intensification by Asian producers is the development of brands based on reliable, traceable supply chains. 

Communicating the value and diversity  of sustainable farmed seafood, whether best practice intensive 

systems or well managed landscape systems is a major challenge. 

8.5.2. Barriers to international trade 

The EU seafood supply deficit is reflected in very low tariff barriers for unprocessed seafood, a fact 

that might be expected to support sustainable trade into the future. Such open markets provide 

opportunities for EU-based value chain actors to benefit but may constrain Asian actors to upgrade (Ponte 

et al, 2014). Trade of seafood farmed in Asia, especially for shrimp and pangasius has developed over a 

relatively short time period and has been fortuitous in being able to fill a gap in supplies emergent from a 

number of traditional sources, not least EU capture supplies.  However the growth of imports has also met 

with some resistance from other capture and fish farming sectors. In the US catfish farmers and producers 

fearing adverse impacts on their own markets (Schubert, 2012) lobbied for imposition of non–tariff barriers 

and capture whitefish interests attempted the same in Europe (Little et al, 2012). The significant price 

differentials between imported and locally produced seafood has exacerbated such trade conflicts and, on 

occasions, encouraged malpractice. Kulawik et al (2016) noted the variable quality of both imported 

pangasius and tilapia into various European markets and the common practice of fraudulent substitution 

for higher value species; in one study 20% of fish labelled as European plaice were in fact pangasius 

(Pappalardo and Ferrito, 2015).  

The seafood business appears to be particularly sensitive to disruption through non-tariff behavior 

compared to other traded commodities. International trade in many consumer goods and services, 

including many food products, are long standing and accepted (e.g. bananas, coffee) but farmed seafood 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

22 

 

remains the subject of consumer confusion, exacerbated by media suspicion and entrenched interests for 

some categories of seafood (Little et al.2012). Whilst some part of consumers’ confusion may be explained 

by lack of familiarity with these relatively recent and novel farmed seafood products, it still does not 

entirely explain market reactions. Critically, aspects of conventional production intensification have been 

used to undermine the perceptions of the intrinsic qualities of seafood farmed in Asia among European 

consumers. Such qualities include claims of contaminants in food and, abuses to local environments and 

people. In an era of ‘food scandals’, commercial interests have sought to protect their core brand values by 

reducing risk in their supply chains and ensuring standards and full traceability and regulators have funded 

research into assessing seafood specific risks (e.g. Marques et al, 2017). 

The challenge to communicate comprehensive sustainability and ethical values for products 

sourced from extended and complex international value chains can be daunting, but arguably it is a key 

step towards more sustainable consumption. This will undoubtedly lead to different messaging strategies 

and compromises. The use of a high welfare standard for farmed salmon in the UK, for example, has been 

used by one supermarket to communicate overall sustainability and trust to their customers. Another 

illustration of this need for compromise on detail was the recent withdrawal of carbon emission levels on 

product packaging by another large UK retailer (Quin, 2012). 

Potentially these investments towards more sustainable consumption in Europe will have positive 

impacts elsewhere, including Asian producer countries, as trade interconnectedness grows. Farmed Atlantic 

salmon exports to Asia from Europe have surged in recent years as the taste for exotic, and increasingly 

affordable, seafood has developed among a rapidly growing middleclass. This trend may have been fueled 

by fears among informed Asian consumers of weaker governance of local farmed seafood entering 

domestic markets (e.g. Zhou et al, 2014) and greater trust in imported products produced to international 

standards.  Growing sales of farmed salmon in Asia and reprocessing of seafood in Asia for local and 

European markets has increased the linkages between suppliers and markets. Increasing levels of cross 

investment are likely as lead companies from the North buy into the growth potential of Asian markets and 

Asian actors invest in downstream businesses in Europe.  

Finally, given that growth in both populations and consumer purchasing power in Asia is likely to 

outpace that in the EU and cultural value of seafood is greater, it is expected that a rise in local demand 

generally will place pressure on price. China, already a net seafood importer, exerts major influence on 

shrimp price and availability at certain times of year and there is a possibility that EU buyers will find low 

priced Asian seafood increasingly difficult to source. Enhancing productivity sustainably could ensure 

positive interdependence. The medium term trend suggests co-investment and a shared vision of 

sustainable intensification between the EU and Asia has mutual benefit. 

9. Policy options for stimulating SI of export orientated aquaculture   

The policy implications for stimulating a shift of the sector towards the principles of sustainable 

intensification are significant for stakeholders in both Asia and Europe. The EU, recognising the deficit 

between local production and consumption, currently supports the trade and has developed a system for 

health and safety quality assurance through its RAFFS system. Longer term, it also seeks to ensure that a 

level playing field for imported and locally produced food be developed within the EU (European 

Communities 2009). Currently a wide range of private sector actors are also involved in the governance of 

the trade including private standards organisations and seafood buyers representing retail and food service 
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operators. Arguably their participation has been a disruptive force that has accelerated the pace of change 

towards more market orientated governance; an opposing view is that they have caused consumer 

confusion and added unnecessary cost. Such diversity however could be interpreted as a component of 

multiple approaches that are a key pillar of SI, and the continued involvement of a variety of players likely 

to promote creative tension and positive competition between them.  

Ensuring that SI is better understood by choice editors and consumers is a clear priority for both 

Governments and other players. The complexity of the required messaging will, however, be a challenge 

especially given the continuum between ‘sustainable intensification’ and simple ‘intensification’. 

Determination of what trade-offs between the major pillars are acceptable, and which are not will require 

both local and validated scientific knowledge. For example, the strong and mainly positive links that 

characterise seafood exports and local nutrition and livelihoods need to be better understood and 

acknowledged. Support is required for the Asian aquaculture sector, in all its diversity, to develop and 

communicate its own narrative more effectively. Why are exotic species sometimes appropriate for 

farming, even in landscape systems? How can imported feed ingredients be used to enhance performance 

of low yielding systems and how are global impacts being reduced? 

Such information should feed into better consumer information and more accessible knowledge for 

choice editors. The diversity of systems, species and their management will require careful, but 

transparent, translation from an SI perspective. This could be informed by measures that already 

established especially if the EU further refined its Country of Origin labelling requirements and the RAFFS 

process, which currently has significant limitations (Newton et al in preparation). For example, it could also 

ensure that all imported farmed seafood had smart labelling through which location of production, 

production system and other SI descriptors can be identified by consumers and choice editors.  Such labels 

could feasibly be linked to web-based, accessible information for interested consumers. It could also 

expand the EU Protected Name Scheme, that encourages and supports food provenance in the EU, to Asian 

producers, that adopt and implement SI usually based on discrete, geographically clusters of production 

that are dependent on the same resource base. 

Considering aquaculture as part of the broader seafood system and integral to food systems is long 

overdue in policy terms. A focus on delivery of quality human nutrition would sharpen analysis of 

environmental costs, both locally and globally. This is beginning to develop for food systems in general at a 

strategic level following food futures dialogues over recent years and trends in academic research but with 

a few exceptions has usually ignored fish (e.g. Roos et al, 206, 2017).   A lack of nutrition-specific indicators 

for SDG14 (Life under water), in contrast to numerous environmental and social development indicators, 

has led to seafood being ignored in high profile global nutrition reporting. This state of affairs need to be 

urgently corrected by policy makers. 

Our analysis has suggested that SI cannot be assessed on the farm alone but requires a 

comprehensive value chain approach, preferably integrated and informed by Life Cycle Assessment and 

other approaches to assess overall environmental and social impacts. Although this has been recognised by 

certification and assessment organisations, standardisation has proved a challenge and these approaches 

have yet to be integrated into most sustainability metrics. LCA is a versatile tool which is used in many 

instances for which different approaches are required. However, if LCA is to be used to benchmark 

products, a set of standardised approaches is required beyond those offered by the usual ISO 14040 and 

14044 standards (ISO 2006a and 2006b). Some fundamental issues remain to be resolved, particularly 
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around the functional unit for livestock, allocation of impacts between co-products and a move to these 

being defined in terms of nutritional benefit would represent major progress. Different practitioners are a 

long way from agreeing on best approaches and clear consensus is required on a number of issues to direct 

best practice before LCA can be used as a benchmarking tool (e.g. Pelletier and Tydemers 2011, MacKenzie 

et al 2017, ANEC 2012) 

The multiple approaches inherent to making progress towards SI suggest that policy support for 

both resource sparing and sharing could be prioritised. Closing the yield gap remains a major challenge, 

particularly for small holder farmers that lack access to key technologies and knowledge. One study showed 

that average yields for smallholder polycultures could be more than doubled once farmers understood and 

invested in locally available nutrients (Karim et al, 2011). Recognising the value of landscape systems and 

incentivising their development through SI will be highly context specific. The integration of aquaculture 

within  natural aquatic ecosystems such has been demonstrated for mangrove-shrimp systems in the 

Mekong Delta (see above) is one example but also a precautionary tale of the challenge in terms of 

achieving both environmental benefits and livelihoods gains for local people. 

 

 

10. Conclusions  

SI is a useful lens for interpreting the challenges and opportunities for the trade in farmed seafood 

between Asia and Europe. Ensuring production and consumption of animal protein remains within 

sustainable limits will require a rapid movement towards incentives supporting SI rather than conventional 

intensification. Ensuring farmed seafood is positioned as part of broader food systems is a key part of this 

strategy. Farm-level SI could lead to higher value and more sustained trade demanding but profitable 

markets since key credence qualities could be protected or enhanced. It could also form the basis for 

standards developers wishing to embrace a more comprehensive view of sustainability since, necessarily,  it 

is not limited to the production enterprise but rather embraces both a community (zonal) and value chain 

approach.  

Pressures on water and land resources are forcing intensification and stimulating integration of 

aquaculture with other uses. The challenges of meeting energy and nutrient needs in the coming decades 

will stimulate emergence of ever more efficient systems but competitiveness with other sectors of food 

production will be critical as will differences in comparative advantage between the farmed seafood sectors 

in Asia and Europe. A key element in the evolution of current conventional intensive systems towards 

greater sustainability will be use of precision technology and management, complemented by selective 

breeding and closed-containment technology. Salmon and shrimp are furthest along this trajectory that 

would most likely favour larger operations. Lower cost models for precision approaches are required for 

smaller producers to remain competitive.    

The current bias among policy makers and planners towards production needs to shift towards 

demand, informed by farmed seafood being part of broader food systems and nutritionally balanced diets: 

production and consumption need to be considered in tandem. The dynamics of global seafood markets 

makes such SI thinking critical, especially as the Asia-Europe trade is likely to diminish in relative 
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importance as regional and global trade continue to expand. Purchasing power and comparative advantage 

of production and processing are likely to continue to evolve especially in fast growing economies where 

fish is a preferred animal source food and the value of the whole animal can be most efficiently exploited. 

Finally, communicating the stories around farmed seafood produced sustainably at distance from 

consumers is challenging but urgent. Developing authentic and appealing narratives of farming seafood, 

together with innovative and effective value chain governance, will support the sector moving towards SI. 
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Table 1 Intensification indicators for four pond-farmed aquatic commodity species groups across 

Asia 2010 

Indi

cator 

Co

untry 

Shrimp Prawn Tilapi

a 

Pangasius 

Prim

ary spp. 

Ba

ngladesh 

P. 

monodon (PM) 

M. 

rosenbergii 

O. 

niloticus 

P. 

hypophthalmus 

Vie

tnam 

P. 

vannamei / P. 

monodon  

M. 

rosenbergii 

O. 

niloticus 

P. 

hypophthalmus 

Chi

na 

P. 

vannamei/ P. 

japonicas (PJ) 

M. 

rosenbergii 

O. 

niloticus 

NA 

Th

ailand 

P. 

vannamei (PV) 

M. 

rosenbergii 

O. 

niloticus 

P.hypophth

almus 

Aver

age Pond 

Stocking 

Density 

(Seed, 

PL/m2) 

 

[STDEV, n] 

Ba

ngladesh 

3.9 [3.5, 

252] 

1.9 [1.3, 

240] 

7.6 

[3.9/ 5] 

4.4 [2.3/ 85] 

Vie

tnam 

PV: 83.7 

[20, 30] 

PM: 12.6 

[13/ 194] 

3-10 [0, 1] No 

data 

80.5 [18.2, 

201] 

Chi

na 

PV: 

179.6 [133, 164] 

PJ: 16.25 

[12.2/ 10] 

No data 2.7 

[1.2/ 201] 

NA 

Th

ailand 

62.8 

[29.5, 213] 

54.3 [6.6, 2] 17.2 

[58.2, 166] 

0.7 [0.7, 4] 

Pon

d 

Polyculture 

Ba

ngladesh 

carps, 

SIS, tilapia, 

prawn 

carps, SIS, 

shrimp 

carps, 

SIS, 

pangasius  

Carps, SIS, 

tilapia 

Vie

tnam 

PV: 

Mono 

PM: 

Mono/ mud-crab, 

SIS 

Mono No 

data 

Mono 

Chi

na 

PV: 

Mono/ tilapia, 

other spp. 

No data 2ndry 

sp. with carps 

NA 
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Th

ailand 

Mono No data Mono/ 

other spp. 

Other spp. 

Pro

duction 

Systems 

Ba

ngladesh 

Dyke 

ponds 

Dyke ponds Excav

ated ponds 

Excavated 

ponds 

Vie

tnam 

Dyke & 

excavated ponds 

Dyke & 

excavated ponds 

No 

data 

Deeper 

excavated ponds 

Chi

na 

Dyke & 

excavated ponds 

Dyke & 

excavated ponds 

Excav

ated ponds, 

cages, 

reservoirs 

NA 

Th

ailand 

Excavate

d ponds 

Excavated 

ponds 

Excav

ated ponds, 

cages 

Excavated 

ponds 

Aver

age Grow-

out Pond 

Area (Ha)  

[STDEV, n] 

Ba

ngladesh 

8.07 

[14.5/172] 

0.41 [0.34/ 

160] 

No 

data 

1.46 [3.05/ 

89] 

Vie

tnam 

PV: 0.46 

[0.53/ 22] 

PM: 1.07 

[0.8/ 36] 

0.75 [0/ 1] No 

data 

0.45 [0.4/ 

210] 

Chi

na 

0.41 

[0.35/ 166] 

No data 1.4 

[2.58/ 199] 

No data 

Th

ailand 

0.62 

[0.32/ 185] 

No data 1 

[0.87/ 155] 

0.26 [0.12/ 

2] 

Maxi

mum Pond 

Water 

Depth (m) 

Ba

ngladesh 

1.15 

[0.52/ 172] 

2 [0.74/ 

160] 

No 

data 

1.65 [0.53/ 

90] 

Vie

tnam 

1.33 

[0.39/ 164] 

1.2m [0/ 1] No 

data 

4.1 [0.76/ 

210] 

Chi

na 

1.9 [0.62/ 

165] 

No data 3.25 

[1.14/ 199] 

NA 

Th

ailand 

2 [0.5/ 

185] 

No data 1.86 

[0.54/ 191] 

No data 

Impr

oved Seed 

Ba

ngladesh 

Wild 

broodstock &/ or 

PLs 

Domesticat

ed and wild 

broodstock &/ or 

PLs 

Dome

sticated 

broodstock / 

sex reversal 

Domesticat

ed broodstock 

Vie

tnam 

PV: SPF 

& selected traits 

Domesticat

ed broodstock 

Dome

sticated 

broodstock / 

Domesticat

ed broodstock 
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PM: Wild 

broodstock 

sex reversal 

Chi

na 

PV: SPF 

& selected traits 

No data Dome

sticated/ sex 

reversed 

NA 

Th

ailand 

PV: SPF 

& selected traits 

Domesticat

ed 

Dome

sticated/ sex 

reversed 

Domesticat

ed 

Dise

ase control 

Ba

ngladesh 

Extensive 

to semi-intensive 

culture in low-

lying flood plains 

Extensive 

to semi-intensive 

culture in low-lying 

flood plains 

Low 

water 

exchange/ 

groundwater 

use 

Low water 

exchange/ 

groundwater, 

nursery ponds 

Vie

tnam 

PV: SPF 

& selected traits 

PM: 

lower stocking 

density 

Side lining 

of ponds 

Shift 

from river 

cages to 

ponds 

Shift from 

river cages to 

ponds, 

chemotherapeutants 

Chi

na 

‘Closed’ 

production in 

elevated ponds or 

lower stocking 

density in ‘low-

level ponds, 

predator nets 

No data Low 

water 

exchange/ 

use of 

groundwater 

NA 

Th

ailand 

‘Closed’ 

production in 

elevated ponds 

using with 

dedicated 

treatment ponds, 

predator nets 

No data Low 

water 

exchange, in-

situ water 

treatment, 

some nursery 

ponds 

No data 

Aera

tion 

Ba

ngladesh 

None None None None 

Vie

tnam 

PV: 

Permanent 

PM: 

None or partial 

None None Partial 

Chi

na 

PV: 

Permanent 

None None 

or partial 

NA 
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PJ: None 

Th

ailand 

Permane

nt 

None None None 

Fee

ds 

Ba

ngladesh 

None or 

on-farm 

Apple snail, 

formulated 

On-

farm, 

formulated 

On-farm & 

formulated 

Vie

tnam 

Mostly 

formulated 

Apple snail, 

formulated 

On-

farm, 

formulated 

Mostly 

formulated 

Chi

na 

Mostly 

formulated 

No data Low 

cost livestock 

feed 

NA 

Th

ailand 

Formulat

ed 

No data Low 

cost livestock 

feed 

No data 

Ferti

lisers 

Ba

ngladesh 

TSP, 

urea, cow dung 

TSP, Urea, 

Potash, NPK 

No 

data 

(Lime) 

Vie

tnam 

NPK, 

Urea & 

commercial 

organic 

(Lime, 

dolomite) 

No 

data 

(Lime) 

Chi

na 

NPK, 

Urea, TSP & 

commercial 

organic  

No data Pig 

poultry 

manure, night 

soil 

NA 

Th

ailand 

Urea, 

NPK & 

commercial 

organic 

No data Urea, 

poultry 

manure 

No data 

Prod

uction 

Scheduling 

Ba

ngladesh 

Staggere

d (stocking & 

harvest) 

Staggered 

(stocking & harvest) 

Batch Batch  

Vie

tnam 

PV: 

Batch 

PM: 

Batch & 

staggered 

Batch No 

data 

Batch 

Chi

na 

PV: 

Batch 

No data Batch NA 
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Th

ailand 

Batch No data Batch No data 

Cycl

e duration 

(Months) 

Ba

ngladesh 

PM: 214 

[86 172] 

230 

[35,160] 

No 

data 

237 [73, 77] 

Vie

tnam 

PV: 98 

[30,30] 

PM: 165 

[60, 200] 

190-210 

(0,1) 

No 

data 

214 

[43,212] 

Chi

na 

PV: 87 

[15,33] 

No data 215 

[76, 205] 

NA 

Th

ailand 

PV: 99 

[18,211] 

No data 254 

[74 153] 

246 [39, 5] 

Aver

age             

Yield Main 

Cycle 

(Kg/ha/cycle) 

[ST

DEV, n] 

Ba

ngladesh 

284 

[255,170] 

Other 

spp. 253 

[281,108 

217 [197, 

159] 

Other spp. 

360 [277, 156] 

No 

data 

37,891 

[25,937, 81] 

Other spp. 

5,517 [7119, 119]  

Vie

tnam 

PV: 

7,808 [5276, 29] 

PM: 

1,953 [3,367, 

185] 

1,000 [0,1] No 

data 

284,580 

[217,110, 208] 

Chi

na 

PV: 

13,437 

[12,375,31] 

No data 16,57

9 [14,579, 18] 

Carps

: 2,347 [2,318, 

4] 

NA 

Th

ailand 

12,747 

[112,69,180] 

No data 13,72

1 [66,450, 95] 

Carps

: 698 [452, 25] 

No data 

Notes: SIS: Small Indigenous species; SPF: Specific Pathogen free;TSP: TripleSuperPhosphate; 

NPK: compound Nitrogen, Phosphorous and Potassium fertiliser 
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Fig. 1 
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Fig. 2 
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Highlights 

 The concept of  Sustainable Intensification is applied to the specific context of  the global 

value chains linking production of farmed seafood in Asia and consumption in Europe  

 Key sustainability issues are discussed that are currently not embraced by certifiers and 

other influential actors of farmed seafood governance 

 Understanding demand, for the main and by-products, is critical to enhancing sustainable 

and more intensive aquaculture systems 
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