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Cover letter

Dear editors:

We would like to submit the enclosed manuscript entitled “Dynamic stress 

concentration and energy evolution of deep-buried tunnels under blasting loads” 

as an article for publication in International Journal of Rock Mechanics and Mining 

Sciences. This paper reports on an investigation into the dynamic stress concentration 

and energy evolution of underground tunnels subjected to blasting loads with the 

method of theoretical analysis and numerical simulation. This paper has not been 

published or partly published in any other journals. All authors agree to submit the 

paper to your journal.

Thank you very much for your attention and consideration. Please let me know if 

you have any questions. I'm looking forward to hearing from you soon.

Sincerely yours,

Chongjin Li

E-mail: lcj2015@csu.edu.cn
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Dear Editor,

Thank you for your letter and for the reviewer’s comments concerning our 

manuscript entitled “Dynamic stress concentration and energy evolution of deep-

buried tunnels under blasting loads” (ID: IJRMMS_2017_299). We would like to 

thank the reviewer for making many thoughtful comments which are valuable and 

helpful for revising and improving our paper. We have studied the comments 

carefully and have made corrections which we hope meet with approval.

We mark all the changes in red in the revised manuscript, and the point-to-point 

responses to the comments are as follows.

Responses to Editor’s suggestions

Suggestion 1: Please use 1.5-line spacing, indent the first line of each paragraph, and 

do not skip a line between paragraphs.

Response: The manuscript has been set as 1.5-line spacing without skipping a line 

between paragraphs, and each paragraph has been indented accordingly.

Suggestion 2: Please do not use dots to indicate multiplication within an equation.

Response: The dots in the equations have been deleted.

Suggestion 3: Please reduce the number of figures to no more than 12.

Response: The total number of figures has been limited to 12, and detailed 

modifications are as follows:

(1) The original Fig. 1 has been deleted, and the original section 2.1 has been 

incorporated into the original section 2.2 (i.e. section 2.1 in the new version).

(2) The original Fig. 3 has been deleted, because this figure is not very necessary 

in the paper.



(3) The original Figs. 8 and 9 have been substituted by Table 3, and the original 

section 4.1 has been deleted. The interpretations corresponding to Table 3 have 

been added to section 4.2 in the new version (lines from 478 to 485).

Suggestion 4: Please do not embed the figures and tables in the text. Each figure and 

table should be uploaded as a separate file.

Response: The figures and tables in the manuscript have been separated as a separate 

file entitled ‘Figures and tables’.

Responses to reviewer #1

Comment 1: I don’t see a close connection between theoretical analysis from 

theoretical formulation and numerical modeling with PFC. I assume the authors 

would like to simulate dynamic responses around an underground tunnel with PFC2D 

based on the theoretical formulation.

Response: Thanks very much for the comment. The main purpose of this paper is to 

investigate the dynamic stress concentration and energy evolution law around an 

underground tunnel under blasting load, and the authors believe that the strain energy 

accumulating around the tunnel is related to the stress concentration. Based on this 

purpose, we firstly derive a theoretical formulation to study the dynamic stress 

concentration factor around the tunnel only subjected to blasting load, and the 

theoretical results validate that the blasting load can induce noticeable dynamic 

effects at tunnel boundary. However, the underground tunnel has been naturally pre-

stressed before subjected to blasting load, the dynamic response of an underground 

tunnel under coupled static-dynamic stress remains unclear. Therefore, based on the 

theoretical results, we establish a numerical model using PFC2D to simulate the 

dynamic response of an underground tunnel under coupled static-dynamic stress, and 

to further investigate the dynamic failure characteristics of the underground tunnel 

from the perspective of energy dissipation. The above illustrations of the connection 



between theoretical analysis and numerical simulation are shown in section 3 (the first 

paragraph).

In addition, in order to further illuminate the connection between theoretical analysis 

and numerical simulation, a comparison between theoretical and numerical results 

was added to section 4.1 ( the original section 4.2). The comparison between 

theoretical analysis and numerical simulation indicates that the numerical results are 

generally consistent with the theoretical results, i.e. under blasting stress wave 

incidence, the compressive stress at θ = π/2 is much larger than that at θ = 0 and π. 

However, there are also some differences between theoretical and numerical results, 

because the theoretical solutions are based on elastodynamics, in which the rock mass 

is considered as homogeneous, isotropic and perfectly elastic medium, while the 

numerical model composes of a large number of discrete particles. Besides, the 

average stress in a measurement circle cannot completely represent the stress on 

tunnel surface.

Comment 2: Literature review is weak, especially for the review of numerical 

modeling on dynamic responses around an underground tunnel subjected to blasting 

load (only three sentences from lines 58 to 63).

Response: Thank you for this comment. To cope with this comment, we tried our best 

to improve the literature review. Firstly, a review on the dynamic responses of 

underground structures subjected to blast-induced stress waves was added to the 

literature review in section 1. Besides, more numerical studies on the dynamic 

responses of underground structures under blasting load were reviewed, which 

involved various numerical methods such as the boundary element method (BEM), 

the finite element method (FEM), the finite difference method (FDM), and so on.

Detailed modifications are shown in section 1.
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underground tunnel subjected to blasting load, for example:
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3) Dhakal, R.P. and T.-C. Pan, Response characteristics of structures subjected to 

blasting-induced ground motion. International Journal of Impact Engineering, 
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from large‐scale underground explosion. International journal for numerical and 
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5) Wang, Z.-L., Y.-C. Li, and R. Shen, Numerical simulation of tensile damage and 

blast crater in brittle rock due to underground explosion. International Journal of 
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6) Wang, Z., H. Konietzky, and R. Shen, Coupled finite element and discrete 

element method for underground blast in faulted rock masses. Soil Dynamics and 

Earthquake Engineering, 2009. 29(6): p. 939-945.

7) Chen, H., et al., Dynamic responses of underground arch structures subjected to 

conventional blast loads: Curvature effects. Archives of Civil and Mechanical 

Engineering, 2013. 13(3): p. 322-333.

Response: Thank you for recommending these excellent works. All of the 

recommended studies have been included in the references in the revised manuscript. 

Besides, we also added some other studies on dynamic responses around an 

underground tunnel subjected to blasting load to improve the literature review.

Detailed modifications are shown in section 1 and references.

Comment 4: Too much self-citation, up to 40 percent of the 13 references by authors 

out of 35 references in total.



Response: After Reviewer’s comment, self-citations which are not quite relevant to 

the topic were substituted by more classical literature, and only the most relevant 

literatures by authors were reserved (7 references by the authors out of 51 references 

in total).

Comment 5: A comparison between numerical results and laboratory tests (complete 

stress – strain curve and final failure mode) on uniaxial compressive tests of rock 

from Kaiyang Phosphate Mine as shown in Fig. 6 should be provided.

Response: Thank you for this comment. The complete stress-strain curve and final 

failure mode of the laboratory test were added to Fig. 4 (the original Fig. 6 has been 

changed to Fig. 4 in the new version). It can be seen from Fig. 4 that the uniaxial 

compressive strength and Young’s modulus of numerical model are approximately 

equal to those obtained by experiment test, and the numerical model exhibits the same 

failure mode as the physical model. However, the peak strain of the experimental 

stress-strain curve is larger than that of the numerical result, because the real rock 

specimen usually contains many natural micro-fractures while the numerical model 

consists of a compacted assembly of rigid particles.

The comparisons between numerical and laboratory results have been add to section 

3.1 (lines from 308 to 317).

Comment 6: Line 652. “The conclusions of this study are consistent with their 

results …”. What’s their results?

Response: Thank you for this comment. The results of Li and Weng are “the strain 

energy distribution in tunnel boundary is related to the lateral pressure coefficient, and 

the strain energy is mainly stored in compressive stress concentration zone under 

static stress” and “when the lateral pressure coefficient is less than 1.0, two sidewalls 

of the opening are subjected to high compressive stress, which results in high strain 

energy intensity near the sidewalls. But when the lateral pressure coefficient is larger 

than 1.0, the strain energy mainly intensifies at the roof and floor”. In our paper, the 

conclusions from section 4.2 are consistent with their results.



Detailed explanations of the previous results are shown in section 5 (lines from 582 to 

587).

Comment 7: A list of symbols should be provided to make it clear.

Response: We agree with Reviewer that a list of symbols can make the paper easier 

to understand. However, we are uncertain that whether this is essential for the journal, 

because we have consulted the “Guide for Authors” of this journal and a lot of papers 

published in this journal, we did not find any information on the list of symbols. So 

we provide a list of symbols only in this letter (not included in the manuscript). If 

approved, we will add the list of symbols to the paper.

A list of symbols

An and Bn        Expansion coefficients of incident wave function

a              Tunnel radius

BEM           Boundary element method

cp and cs        P wave velocity and S wave velocity

D&B           Drill and blast method

DAF           Dynamic amplification factor

DDA           Discontinuous deformation analysis

DEM           Discrete Element Method

DSCF          Dynamic stress concentration factor

Ec and Epb       Strain energy stored in contact and parallel-bond

EDZ           Excavation damaged zone

Ek             Kinetic energy

FDM           Finite difference method

FEM           Finite element method

FEM-DEM      Finite-discrete element method

Fi              Force applied to each boundary particle

          First type of Hankel function
(1) ( )nH x



Jn (x)           First type of Bessel function

k              Lateral pressure coefficient

Pb(t)           Blasting load time history

Pbm             Peak pressure of the blasting load

R(ω) and I(ω)    Real and imaginary parts of the frequency response

SED           Strain energy density

t              Time

tr and ts         Rising time and total time of the blasting load

UCS           Uniaxial compressive strength

α and β         P wave number and S wave number

            Contributions of various waves to the stress( )k
ij

κ              Ratio of P to S wave velocity

λ and μ         Lamé constants

σrr, σθθ and σrθ   Radial stress, tangential stress and shear stress around tunnel

σv and σh       Vertical and horizontal in situ stress

           Dimensionless tangential stress

φ(i)            Incident wave

φ(r) and ψ(r)      Reflected P wave and S wave

φ0             Amplitude of incident wave

ω             Circular frequency

ρ             Rock mass density
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1) Lines 15, 242, 685 & 686. Change “large” to “larger”.

2) Line 48. Change “are focused on” to “focus on”.

3) Line 280. Change “dimentional” to “dimensional”.

4) Line 296. Change “Uniaxial” to “uniaxial”.



5) Line 324. Change “modell” to “model”.

6) Line 673. Change “Howere” to “However”.

Response: We are sorry for our negligence. We have checked the manuscript 

thoroughly and corrected the grammar errors. All grammar corrections in the 

manuscript are marked in red.

We tried our best to improve the manuscript and made some changes in the 

manuscript. These changes will not influence the content and framework of the paper. 

Here we did not list the changes but marked them in red in the revised manuscript. 

We appreciate the Editor’s and Reviewer’s constructive comments, and hope that the 

correction will meet with approval. Once again, thank you very much for your 

comments and suggestions.
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36 1. Introduction

37 In recent years, the exhaustion of mineral resources in shallow depths, and the rapid development of 

38 tunneling and hydropower engineering, have considerably motivated the tunnel excavations to extend to 

39 depth. However, due to the complicated geological environment in which deep excavations are carried out, 

40 a large number of unconventional rock failure phenomena such as spalling,1, 2 zonal disintegration 

41 phenomenon3, 4 and rockburst hazards5, 6 have been observed during underground excavations. These 

42 accidents or hazards will bring about damages to equipment and delays of excavation operation, and even 

43 pose great threats to the safety of construction personnel. Therefore, it is an urgent issue to figure out the 

44 mechanism of the engineering disasters occurring in deep excavations.

45 In practice, underground rocks and ores are naturally stressed by gravitational and tectonic stress. 

46 When an underground tunnel is excavated, the previous stress states existing in rock mass are disturbed, 

47 with the radial principal stress being released and tangential principal stress concentrating in the periphery 

48 of the tunnel.7-9 In this process, the strain energy releases at some locations while accumulating at other 

49 locations, which leads to different mechanical responses of underground tunnels under dynamic 

50 disturbance.10, 11 In addition, during the underground excavation process, the excavation damaged zone 

51 (EDZ) is formed in the proximity of the excavated tunnel. To date, considerable research efforts were 

52 devoted to investigating the formation of EDZ and the fracture mechanisms of surrounding rock during 

53 underground excavations.12-17 For instance, a series of studies have been carried out at the Underground 

54 Research Laboratory (URL) since 1983 to study excavation responses when underground openings were 

55 excavated.13, 14 Findings of these works showed that various factors such as the near-field stress history, 

56 geological variability, excavation method, tunnel geometry, and confining pressure are responsible for the 

57 excavation damage and instability of underground openings. The presence of the EDZ around an 

58 underground opening in turn has a great influence on the mechanical, hydraulic, and thermal 

59 characteristics of surrounding rock masses. However, previous research works on the instability of 

60 underground openings focus on static and quasi-static conditions, and few reports have considered the 

61 effect of dynamic disturbance. Many evidences showed that, during underground excavations, dynamic 

62 disturbance such as explosion-induced vibrations from adjacent tunnel and stress impact from neighboring 

63 rockbursts have a significant influence on existing tunnels.18-20 Therefore, the dynamic disturbance is an 

64 important factor to be considered when studying the stability of deep-buried tunnel.
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65 The drill and blast (D&B) method is extensively used in mining and tunneling engineering, because 

66 it is still an economical and efficient excavation approach for rock fracture and fragmentation.21 When the 

67 drill and blast method is used in underground excavations, the blasting vibration is generated and 

68 propagates to the deep of surrounding rock mass in the form of stress waves, which may cause damage to 

69 not only the surrounding rock mass but also nearby structures.22, 23 Therefore, many researchers have 

70 conducted a lot of studies on the dynamic responses of structures subjected to blast-induced stress waves, 

71 aiming at putting forward more reasonable and effective support schemes. For instance, Malmgren and 

72 Nordlund24 analyzed the dynamic behaviors of shotcrete supported rock wedges subjected to blast-

73 induced vibrations based on field measurement data in the Kiirunavaara mine, and indicated that a wedge 

74 can be ejected by a dynamic load even if the static safety factor is larger than 10. Therefore, the support 

75 system was suggested to be able to consume energy in order to support the rock wedges subjected to 

76 blasting loads. In addition, Dhakal and Pan25 carried out numerical parametric analyses to investigate the 

77 response characteristics of structures subjected to blasting-induced ground motion characterized by short 

78 duration, large amplitude and high frequency. Chen et al.26 theoretically investigated the dynamic 

79 responses of underground arch structures subjected to conventional blasting loads, with considering the 

80 influence of the curvature of structure surface and the arrival time difference. Their results indicated that 

81 the protective structures are better to be constructed in a site with smaller acoustic impedance and larger 

82 attenuation factor. Moreover, Mitelman and Elmo27 pointed out that when the blast-induced stress waves 

83 arrive at the tunnel boundary, they are reflected and converted into tensile stress waves, which can cause 

84 rock fragments to fly into the tunnel (i.e. spall failure). Based on the modeling results, the authors 

85 proposed a new approach for tunnel support designs to withstand spalling induced by blasting loads.

86 With rapid development of computer technology, numerical simulation techniques have become 

87 economical and powerful tools for modeling rock mechanics and rock engineering.28, 29 Using numerical 

88 analysis methods, many researchers have carried out various studies on the dynamic response of rock 

89 mass and underground structures under dynamic disturbance. The boundary element method (BEM) was 

90 used by Stamos and Beskos30 to determine the dynamic response of large three-dimensional underground 

91 structures subjected to dynamic loads or seismic waves. Wang et al.31 analyzed dynamic fracture 

92 behaviors of rock in tension due to blast loading using a finite element method (FEM) code LS-DYNA. 

93 Ning et al.32, 33 implemented the discontinuous deformation analysis (DDA) to simulate the rock mass 
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94 failures by the blast-induced high pressure expansion. In their numerical model, the whole process of the 

95 blast chamber expansion, explosion gas penetration, rock mass failure and cast, and the formation of the 

96 final blasting pile can be wholly reproduced. In addition, the finite difference method (FDM) based 

97 program FLAC3D was used by Wang et al.34 to study the dynamic response of underground gas storage 

98 salt cavern under seismic loads. As for dynamic responses of underground tunnels under dynamic 

99 disturbance, Zhu et al.35 used a finite element code RFPA-Dynamics to simulate the rockburst of 

100 underground opening triggered by dynamic disturbance; Li and Weng36 investigated the fracturing 

101 behaviors of deep-buried opening subjected to dynamic disturbance using LS-DYNA; Wang and Cai37 

102 used the SPECFEM2D, a software package based on the spectral element method (SEM), to study the 

103 effect of the wavelength-to-excavation span ratio on ground motion near excavation boundaries induced 

104 by seismic waves. By making full use of the advantages of various numerical methods, the hybrid finite-

105 discrete element method (FEM-DEM) becomes an alternative numerical method to model blast-induced 

106 crack evolution and stress wave propagation in rock mass.38, 39 Recently, the discrete element method 

107 (DEM) code PFC2D was used to study the dynamic features of stress wave propagating through rock 

108 joints40, 41 and to simulate the excavation unloading process of underground tunnel in high stress rock 

109 mass. 42, 43 These works validated the feasibility and accuracy of PFC2D to simulate the dynamic process 

110 of rock. However, few numerical models were established by PFC2D to simulate the dynamic failure 

111 characteristics of underground tunnels subjected to blasting load.

112 This paper reports on an investigation into the dynamic stress concentration and energy evolution of 

113 an underground tunnel during blasting loading process. A two-dimensional mathematical physical model 

114 with a circular hole was first established to determine the dynamic stress concentration factor (DSCF) 

115 around tunnel boundary under blasting stress wave incidence. Using the theoretical formulations, DSCF 

116 and dynamic effects at tunnel boundary was obtained. Then a two-dimensional numerical simulation 

117 model established by PFC2D was introduced to verify against the theoretical solution. Based on the 

118 numerical model, the distributions of tangential stress and strain energy around a circular tunnel under 

119 different in situ stress states were first discussed, and then parametric analyses were carried out to 

120 investigate the evolution and dissipation of strain energy around an underground tunnel under different in 

121 situ stress environments and various waveforms of blasting stress wave. Findings of the present study 

122 indicated that dynamic disturbance and high in situ stress are two important factors to trigger dynamic 
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123 failure around an underground tunnel. This paper provides an insight into the mechanism of rockbursts in 

124 the periphery of underground tunnels, as well as guidance for the design and support of deep-buried 

125 tunnels.

126

127 2. Theoretical formulation of the dynamic response of a circular hole

128 2.1. Dynamic response behaviors of circular hole under harmonic wave incidence

129 In theoretical analysis, it is assumed that a circular tunnel is excavated along the direction parallel to 

130 the principal stress, so the problem can be approximately regarded as a plane strain case. For an 

131 underground tunnel subjected to dynamic stress waves, according to the superposition principle,44 the 

132 stress, displacement and velocity components of the rock mass around the tunnel can be obtained by 

133 superimposing the static component induced by in situ stress with the dynamic component induced by 

134 incident plane wave under unstressed condition. However, due to the stress and deformation induced by in 

135 situ stress are time-independent, the dynamic stress wave is only considered when theoretically 

136 investigating the dynamic response of underground tunnel. In the view of wave mechanics, the problem of 

137 the interactions between stress wave and underground opening can be regard as the initial-boundary value 

138 problem of wave equation. In this section, we focus on the dynamic responses of underground tunnel 

139 subjected to blasting load, which can be simplified as an analysis of circular hole subjected to a plane P 

140 wave as shown in Fig. 1, where x and y are the Cartesian coordinate system, θ and r are the Polar 

141 coordinate system, and a is the radius of tunnel. As the transient response induced by any form of 

142 transient loading can be determined by superposing harmonic waves of all frequencies, it is necessary to 

143 first determine a theoretical formulation under harmonic wave excitation, which was described in detail 

144 by Mow and Pao.45 

145 As shown in Fig. 1, a harmonically time-varying incident plane P wave propagates along the positive 

146 direction of axis x, and the incident wave can be expressed as:

147                                          (1)( ) ( )
0

i i x te    

148 where α = ω/cp is the P wave number, φ0 is the amplitude, ω is the circular frequency, and cp is the P 

149 wave velocity.

150 In terms of the wave function expansion method, the incident wave function can be expanded as:

151                              (2)( )
0

0
( ) cos( )i n i t

n n
n

i J r n e     






 
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152 where Jn (x) is the first type of Bessel function, and .
1      n=0
2      n 1n


  

153 When an incident plane P-wave propagates through a circular hole, a compressional wave (P wave) 

154 and a shear wave (SV wave) arise from the circular hole boundary, because the reflecting surface is not 

155 perpendicular to the direction of P wave incidence. The SH wave is not generated because it causes rock 

156 particles to oscillate perpendicular to the analyzed plane.44 P and SV waves can be expressed as:

157                              (3)( ) (1)

0
( ) cos( )r i t

n n
n

A H r n e   






 

158                              (4)( ) (1)

0
( )sin( )r i t

n n
n

B H r n e   






 

159 where  and  are the reflected P wave and the reflected S wave, respectively, which represent ( )r ( )r

160 waves diverging from the origin, β = ω/cs is the S wave number, cs is the S wave velocity,  is the (1) ( )nH x

161 first type of Hankel function, An and Bn are coefficients of the expressions that can be determined from the 

162 appropriate boundary conditions.

163 The total wave in rock mass can be obtained by adding the reflected wave to the incident wave:

164                       (5)( ) ( ) (1)
0

0
[ ( ) ( ) cos( )]i r n i t

n n n n
n

i J r A H r n e        






   

165                                        (6)( ) (1)

0
( )sin( )r i t

n n
n

B H r n e    






  

166 Radial stress , tangential stress  and shear stress  can be described in terms of rr  r

167 displacement potential:

168                             (7)
2

2
2

12rr r rr
    


             

169                   (8)
2 2

2
2 2 2 2

1 1 1 12
r r rr r r

      
 

     
             

170                  (9)
2 2

2 2 2

1 1 1 12r r
r r r r rr r

    
  

                             

171 where λ and μ are Lamé constants.

172 By substituting Eqs. (5) and (6) into Eqs. (7), (8) and (9), we obtain:

173                    (10)   (1) (3) (3)
0 11 11 122

0

2 cosn i t
rr n n n

n
i A B n e

r
      






  

174                    (11)   (1) (3) (3)
0 41 41 422

0

2 sinn i t
r n n n

n
i A B n e

r



      






  
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175                    (12)   (1) (3) (3)
0 21 21 222

0

2 cosn i t
n n n

n
i A B n e

r



      






  

176 where  etc. are defined as a part of the contributions to the stresses due to various waves, (1) (3) (1)
11 11 21, ,   

177 and the superscripts represent the type of Bessel function.45

178 The boundary condition at r = a is , thus An and Bn can be obtained from the 0,  0rr rr a r a 
 

 

179 boundary condition:

180                              (13)

(1) (3)
11 12
(1) (3)
41 42

0 (3) (3)
11 12
(3) (3)
41 42

n
n n

E E
E E

A i
E E
E E

  

181                              (14)

(3) (1)
11 11
(3) (1)
41 41

0 (3) (3)
11 12
(3) (3)
41 42

n
n n

E E
E E

B i
E E
E E

  

182 where  is the value of  evaluated at r = a.(3)
11E  (3)

11 

183 The stress field around the tunnel can be determined once the coefficients An and Bn are known. In 

184 this paper, we are interested in the dynamic responses at tunnel boundary, in which the tangential stress 

185 only exists. By substituting Eqs. (13) and (14) into Eq. (12), and letting r = a, we obtain the tangential 

186 stress at tunnel boundary:

187                        (15)2 1
0 2

0

4 11 cos( )n i t
r a n n

n
i s n e 

    
 


 




   
 



188 where κ is the ratio of P to S wave velocity, , and
2p

s

c
c

  
 


  

189                                     (16)n
n

n

N
S

D


190                    (17)2 (1) 3 2 2 (1)
1

1( 1) ( ) ( ) ( )
2n n nN n aH a n n a H a       

191         (18)(1) (1) 3 2 2 (1) 2 2 2 (1)
1 1

1 1( ) ( ) ( ) ( ) ( ) ( )
2 4n n n n n nD aH a N H a n n a aH a n n a H a        

         

192 When an incident P-wave propagates in the intact rock medium, the stress intensity of the P wave in 

193 the propagation direction is given by . This can serve as the normalized factor, and then the 2
0 0  

194 dynamic stress concentration factor (DSCF) at tunnel boundary can be defined as the ratio of  to : 0
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195                         (19)1
2

00

4 11 cos( )n i t
r a n n

n
i s n e 




  
  


 




    
 



196

197 2.2. Dynamic responses of a circular hole under transient wave incidence

198 The steady-state responses of a circular tunnel under a harmonic P-wave have been obtained in 

199 section 2.1. In practice, we are more interested in the transient responses of the tunnel under an aperiodic 

200 disturbance such as blasting load. In order to obtain the transient responses of the tunnel induced by 

201 blasting load, it is necessary to first determine the blast load variation applied to the model boundary.

202 In blasting process, the explosion-induced load variation is extremely complex in time domain, 

203 especially if several deferred-time detonation segments are adopted in the excavations. Therefore, it is 

204 necessary to seek a relatively simple equivalent blast loading curve in theoretical and numerical analysis. 

205 Based on previous publications relating to blasting procedures,11, 36, 46 the blasting load can be simplified 

206 as a triangular load. The entire blasting processes can be reduced to linear loading and linear unloading 

207 process, which can be expressed as:

208                            (20)

0                        ,  0 

                 ,  0
( )

           ,  

0                         ,  

bm r
r

b
s

bm r s
s r

s

t
t P t t
t

P t
t t

P t t t
t t

t t



  
    
 




209 where Pb(t) represents the blasting load time history, Pbm is the peak pressure of the blasting load, tr and ts 

210 are the rising time and total time of the blasting load, respectively. Therefore, the blasting load is regarded 

211 as a triangular loading curve to study the transient response of the underground tunnel in the following 

212 sections of this paper.

213 In the model, time begins when the incident wave arrives at the tunnel boundary (i.e., time is zero at 

214 x = -a). The elapsed time t is normalized by the time required to travel through the length of a radius:

215                                          (21)pc t
a

 

216 The Fourier transform technique bridges the gap between the steady-state and transient response. For 

217 any input function , the transient response of the system can be given by:( )f t

218                         (22)
1( , ) ( , ) ( )
2

i t
i ig x t x F e d   



 


 

219 where  is the admittance function, which is defined as the steady-state response of the system ( , )ix 
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220 when the force source has a magnitude of unit, and  is the Fourier transformed form of input ( )F 

221 function .( )f t

222 In this paper, we are mainly concerned about the transient stress behaviors at the tunnel boundary, 

223 and then the frequency response part of Eq. (19) is precisely the admittance function that we need for the 

224 problem. Thus, we first take the Fourier transform of  and substitute it together with Eq. (19) into ( )f t

225 Eq. (22), and then we can obtain the formal expression for the transient behavior of  at tunnel 

226 boundary. However, as long as we know the transient response due to a Heaviside step function, we can 

227 easily determine the transient response induced by any input function using the Duhamel integral.45

228 The Fourier transform of the Heaviside step function input along the tunnel boundary is given by:

229                              (23)( )  ,        Im >0
2
iF  




230 where . By substituting Eqs. (19) and (23) into Eq. (22), we obtain the DSCF at r = a induced Re a 

231 by a Heaviside step input:

232                      (24)1
2 2

0

2 1( ) 1 cos( )
i tin n

n ir a n

S eit i n d





   
 

 




   
 

 

233 Theoretically, we can obtain the transient stress behaviors at the tunnel boundary induced by any 

234 form of input function from Eq. (22), and this theoretical solution can be solved by using a contour 

235 integral, which is an extremely complex integral method. For instance, it is intractable and time-

236 consuming to obtain numerical solutions from Eq. (24) due to the complex integral paths and 

237 mathematical difficulties. Accordingly, an approximate method referred to as Trapezoidal 

238 Approximation47 was employed to obtain the numerical transient wave excitation results.

239 The admittance function of system can be simplified as:

240                                    (25)( , ) ( ) ( )ix R iI    

241 where R(ω) and I(ω) are the real and imaginary parts of the frequency response.

242 For a causal function, the transient response can be expressed alternatively in terms of sine or cosine 

243 transforms. When the input is an impulse function, the impulse response can be expressed by:

244                               (26)
0

2( , ) ( ) cosig x t R td   



 

245 Then the response due to a Heaviside step input can be obtained from the integral of the impulse response:

246                                   (27)
0

( , ) ( , )
t

h i ig x t g x d   

247 By substituting Eq. (26) into (27), we obtain:
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248                     (28)
0 0 0

2 2 ( )sin( , ) cos ( )
t

h i
R tg x t d R d d     

  
 

   

249 According to the Duhamel integral, responses to an arbitrary input function can be derived from:( )f 

250                                 (29)'

0
( , ) ( ) ( )

t

i hg x t f g t d   

251 After integrating by parts, we obtain:

252                         (30)'

0
( , ) (0) ( ) ( ) ( )

t

i h hg x t f g t f g t d    

253 In this paper, we focus on the transient responses induced by blasting load, so the input function can be 

254 described as:

255                             (31)

0                        ,  0 

                      ,  0
( )

                ,  

0                        ,  

r
r

s
r s

s r

s

t
t t t
t

f t
t t

t t t
t t

t t



  
    
 




256 When , we have:0 rt t 

257                   (32a)20 0 0

1 2 ( )sin ( ) 2 ( )(1 cos )( , )
t

i
r r

R t R tg x t d d d
t t

      
   

  
   

258 When , we have:r st t t 

259       (32b)
0 0 0

2 20 0

1 2 ( )sin ( ) 1 2 ( )sin ( )( , ) +

( )[cos ( ) cos ] ( )[1 cos ( )]2 2
( )

r

r

t t

i t
r s r

r r

r s r

R t R tg x t d d d d
t t t

R t t t R t td d
t t t

        
   
    

 
  

 

 

  



   

 


   

 

260 When , we have:st t

261        
0 0 0

2 20 0

1 2 ( )sin ( ) 1 2 ( )sin ( )( , ) +

( )[cos ( ) cos ( )]( )[cos ( ) cos ]2 2
( )

r s

r

t t

i t
r s r

s rr

r s r

R t R tg x t d d d d
t t t

R t t t tR t t t d d
t t t

        
   

    
 

  

 

 

  



   

 


   

 

262 (32c)

263 Now we can determine the transient stress behaviors of the tunnel under blasting load using Eq. (32). 

264 However, it is also cumbersome to take a direct integration of Eq. (32) due to the difficulties associated 

265 with obtaining analytical expression of R(ω). In this paper, R(ω) is precisely the real part of Eq. (19), 

266 which can be obtained by determining the relationship between  and all wave numbers using Eq. (19). 

267 Once we have the numerical results of R(ω) with all wave numbers, we can substitute them with a sum of 

268 trapezoid functions. In turn, the sum of the simple responses can yield the total dynamic responses.47 This 

269 approach has proved to be an effective way to determine dynamic responses of tunnel subjected to 
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270 transient loads.44, 48 The numerical integration mentioned above can be calculated by a MATLAB code.

271

272 2.3. Numerical results and analysis

273 In this section, the physical properties of the rock specimen extracted from the Kaiyang Phosphate 

274 Mine were employed to calculate the dynamic responses mentioned above. The density, Yong’s modulus 

275 and Poisson’s ratio of the rock specimen are 2750 kg/m3, 18.73 GPa and 0.206, respectively. The 

276 numerical results of the DSCF variations at the tunnel boundary are presented in Fig. 2, where is the r

277 normalized rising time of the blasting load, and ts/tr is the ratio of the total time to the rising time, which 

278 characterizes the unloading speed during blasting load. The smaller the ts/tr ratio is, the faster the 

279 unloading speed it means. When ts/tr = 1, it means instantaneous unloading of blasting load. As the 

280 dynamic responses are related to the observation locations and loading parameters, DSCF variations at θ 

281 = 0, π/2 and π with ts/tr = 5 and 10 are shown in Fig. 2.

282 Numerical results in Fig. 2 indicate that obvious dynamic stress concentration generated at tunnel 

283 boundary during blasting loading process, which is characterized by compressive stress concentration at θ 

284 = π/2 and tensile stress concentration at θ = 0 and π. The DSCF at θ = π/2 is much larger than that at θ = 0 

285 and π. The DSCF time-history curves at θ = 0 and π have approximately the same shapes. In loading 

286 process, DSCF increases rapidly to the first positive peak value and then declines to the minimum value; 

287 in unloading process, DSCF increases from the minimum value to the secondary positive peak value and 

288 then decreases to zero. While the DSCF curves at θ = π/2 have different shapes, only one positive peak 

289 value and one negative peak value appear during loading and unloading process. In the entire processes, 

290 the loading effect can be represented by the minimum value at θ = 0 and π and maximum value at θ = π/2, 

291 and the unloading effect can be represented by the secondary positive peak value at θ = 0 and π and 

292 negative peak value at θ = π/2. It is found that the unloading effect is more dramatic when ts/tr = 5 than 

293 that when ts/tr = 10. For the same ts/tr ratio, the shorter the τr is, the more dramatic unloading effect is. It 

294 indicates that shorter duration of blasting load induces more obvious unloading effect. When the duration 

295 of blasting load increases to τs = 200, the unloading effect becomes virtually unnoticeable. With the 

296 increase of τr, the loading effect converges to the static stress concentration factor, which is given by:45

297                             (33) * 2
2

2 1 2cos 2  


    

298 where κ is the ratio of P to S wave velocity.
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299 Equation (33) is the limit of Eq. (19) when , which is equivalent to the static solution for 0 

300 biaxial loadings. The static stress concentration factor is 2.74 at θ = π/2 and -0.22 at θ = 0 and π. The 

301 dynamic amplification factor (DAF) is introduced to analyze the dynamic effect induced by blasting load, 

302 which is defined as:

303                               (34)
*

m
*

( )
DAF = 100% 



 





304 where  is the minimum value of DSCF at θ = 0 and π and the maximum value at θ = π/2, and  m( ) *


305 is the static stress concentration factor.

306 The correlations between dynamic amplification factor and loading parameters at θ = 0, π/2 and π are 

307 shown in Fig. 3, where only the positive values represent the dynamic effect. It is found that DAF 

308 increases first and then decreases with the increase of τr, and tends to zero when τr approaches infinity, 

309 which denotes that the dynamic response converges towards static response when τr approaches infinity. 

310 The maximum DAF at θ = π/2 and π are 5.19% and 65.98% when ts/tr = 20, while the maximum DAF at θ 

311 = 0 is 107.36% when ts/tr = 2. It is worthwhile noting that the DAF is much larger at θ = 0 and π than that 

312 at θ = π/2, which is contrary to the DSCF.

313

314 3. Numerical model descriptions

315 The DSCF at tunnel boundary induced by blasting load was investigated in terms of theoretical 

316 formulation in the above section, and the theoretical results indicated that the blasting load can induce 

317 noticeable dynamic effects at tunnel boundary. However, only the dynamic part was taken into 

318 consideration when defining the DSCF in the above theoretical computation without considering in situ 

319 stress. Actually, the underground tunnel has been naturally pre-stressed before subjected to dynamic 

320 disturbance, and the deeper the tunnel locates, the higher the stress level becomes. If coupled static-

321 dynamic stress is considered in this analysis, the quantitative influence of dynamic effect remains unclear. 

322 In order to get a further insight into the dynamic effects of underground tunnel under coupled static-

323 dynamic stress, a two-dimensional numerical model established by the discrete element code PFC2D was 

324 employed to simulate the dynamic responses of an underground tunnel, and to further investigate dynamic 

325 failure characteristics of underground tunnels from the perspective of energy dissipation.

326
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327 3.1. Calibration of particle parameters and PFC model setup

328 In PFC2D model, the rock material is represented by an assembly of rigid circular disks bonded 

329 together at their contact points. Two basic bond models are provided in PFC2D: the contact-bond model 

330 and the parallel-bond model. The parallel-bond has a finite size that acts over either circular or rectangular 

331 cross section between the particles, whereas the contact-bond acts only at the contact point due to its 

332 vanishingly small size. Therefore, the contact-bond can only resist the force acting at the contact, while 

333 the parallel-bond can resist both the force and moment. The parallel-bond model is proved to be a more 

334 realistic bond model for rock-like materials,49 which was used in our PFC model.

335 The parallel-bond model is characterized by two sets of primary microscopic parameters. One set 

336 consists of the microscopic deformation parameters, namely the contact normal and shear stiffness, kn and 

337 ks, and the parallel-bond normal and shear stiffness,  and , which account for the macroscopic nk sk

338 deformation behavior. The other set of microscopic strength parameters consists of the contact normal and 

339 shear strength, σ and τ, and the parallel-bond normal and shear strength,  and , which dominate the  

340 macroscopic strength characteristics and failure modes along with the microscopic deformation 

341 parameters. These microscopic parameters should be adjusted to reproduce the macroscopic properties of 

342 the real specimen under uniaxial compression such as Young’s modulus, uniaxial compressive strength 

343 (UCS) and Poisson’s ratio, and this adjustment is done by a calibration process associated with a series of 

344 trial and error tests. The rock mass in the Kaiyang Phosphate Mine in China was tested, and the 

345 corresponding numerical uniaxial compression test model was established for the calibration. The 

346 comparisons between experimental and numerical results of the rock specimen under uniaxial 

347 compression are shown in Fig. 4 and Table 1, and the calibrated microscopic parameters of the parallel-

348 bond model are presented in Table 2. It can be seen from Fig. 4 and Table 1 that the uniaxial compressive 

349 strength and Young’s modulus of numerical model are approximately equal to those obtained by 

350 experiment test, and the numerical model exhibits the same failure mode as the physical model. These 

351 comparisons indicate the reasonability of the calibrated microscopic parameters in Table 2. It is worth 

352 noting that the peak strain of the experimental stress-strain curve is larger than that of the numerical result, 

353 because the real rock specimen usually contains many natural micro-fractures while the numerical model 

354 consists of a compacted assembly of rigid particles.

355 A 10 m 10 m rectangular numerical model containing 32,538 particles was established in PFC2D, 
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356 as shown in Fig. 5a. The radii of the particles ranged from 0.02 to 0.04 m and followed a uniform 

357 distribution. The particles were regarded as a series of circular disks with unit thickness, and the linear 

358 contact model was adopted at the contact of two particles. Particles with less than three contacts were 

359 eliminated via the floater-elimination procedure, and then the parallel-bond model was set at the contact 

360 of two particles. An undamped system was adopted for the sake of comparison against the theoretical 

361 solution and energy calculation. The in situ stress field of the Kaiyang Phosphate Mine was employed in 

362 this simulation, and the fitting equations of the vertical principal stress, maximum horizontal principal 

363 stress and minimum horizontal principal stress are presented, respectively, as follows:44

364                                  (35)0.74 0.014v h  

365                               (36)max 2.76 0.028H h  

366                               (37)min 1.83 0.017H h  

367 The numerical modeling processes in the current study involve two parts: in situ stress initialization 

368 and dynamic loading. In this paper, we are only concerned about the dynamic responses induced by 

369 blasting load without considering the excavation effect, so a circular tunnel with radius 1.0 m was 

370 excavated before static stress initialization, and then the in situ stress was applied to the model boundary 

371 with a low loading rate. Finally, a series of blasting stress waves were applied to the left boundary of the 

372 model to investigate the dynamic responses of an underground tunnel.

373 In order to investigate the stress and energy evolution of the deep-buried tunnel during blasting 

374 loading process, three stress measurement circles (A1, B1, C1) and three energy measurement circles (A2, 

375 B2, C2) were set at left sidewall, roof and right sidewall of the tunnel as shown in Fig. 5b. The radii of 

376 stress measurement circles and energy measurement circles are 0.2 m and 0.5 m, respectively. It is 

377 unworkable to measure stress at PFC2D model boundary, so the center of the stress measurement circle 

378 was set at r = 1.2 m. The center of energy measurement circle was set at r = 1.0 m to monitor the 

379 evolution of strain energy and kinetic energy during blasting stress waves propagating through the tunnel.

380

381 3.2. Model boundary conditions

382 In numerical simulation, the model boundary condition is a very important factor for simulation 

383 results, especially in dynamic numerical simulation. PFC2D provides both the wall and particle 

384 boundaries, and the latter was adopted in the present study so that various boundary conditions can be 
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385 applied.40 A strip of particles is identified as boundary particles at model boundary as shown in Fig. 5c. 

386 The width of the strip is defined with enough size to leave no part of the model unbounded.

387 In the DEM-based code PFC2D, external loads applied to the model boundary must be translated 

388 into forces that are applied to the particles centers since stress is a concept valid only in continuous 

389 material. If a stress value σ0 is to be applied at a cylindrical particle with unitary thickness, the equivalent 

390 force applied to the particle must take into account the transversal area of the particle:

391                               (38)0 0=2ball ball ballF A r 

392 where rball is the radius of the particle.

393 If a static stress value σs is applied to the model boundary, the resultant force applied to the boundary 

394 particles is:

395                           (39)boundary s boundary sF A L  

396 where L is the length of the particle boundary.

397 In order to convert boundary force into particle force, the border width must be taken into 

398 consideration. Supposing the force applied to each boundary particle is proportional to the transversal area 

399 of the particle, thus the force applied to every boundary particle can be expressed as:

400                            (40)
1 1

2

2
b b

i s i
i boundary N N

j j
j j

r Lr
F F

r r



 

 

 

401 where Fi and ri are the applied force and radius of the ith particle of the boundary particles, and Nb is the 

402 number of the boundary particle.

403 If a time-varying dynamic stress  is applied to the model boundary together with a static stress ( )t

404 value σs, the coupled static-dynamic loading boundary condition is given by:

405                                   (41)
1

( ( ) )
b

i
i s N

j
j

Lr
F t

r
 



 



406 During dynamic loading process, when a compressive stress wave arrives at the model boundary, a 

407 compressive or tensile stress wave will be reflected back from the fixed or free boundary. To 

408 tremendously reduce or even eliminate the influence of reflected waves on simulation results, the viscous 

409 boundary condition proposed by Lysmer and Kuhlemeyer50 was employed to the model boundary. The 

410 basic theory of the viscous boundary is that the boundary generates a symmetric stress wave to cancel the 

411 incoming one when a wave impinges on the viscous boundary. According to the relation between velocity 
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412 and stress, the symmetric stress wave can be given by:

413                                       (42)cv  

414 where ρ and c are the medium’s density and wave velocity, respectively, and v is the particle velocity.

415 Similarly, the width of the particle boundary must be taken into account when translating the 

416 dynamic stress into particle forces, so the force applied to every particle of viscous boundary can be 

417 expressed as:

418                                   (43)
1

b

i
i i N

j
j

Lr
F cv

r




 



419 In general, the model boundaries are mixed boundaries in which the viscous boundary coexists with 

420 the static or dynamic loading. Therefore, if the viscous boundary condition is taken into consideration, the 

421 mixed boundary condition of static stress and viscous boundary is given by:

422                                 (44)
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423 If a dynamic load and the viscous boundary are considered simultaneously, the dynamic load 

424 magnitude must be doubled; because half of the load will be absorbed by the viscous boundary.40 Thus the 

425 mixed boundary condition of coupled static-dynamic loading and viscous boundary is given by:

426                              (45)
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427 It is worth noting that the density of the boundary particles must be set to half of its real value when 

428 the viscous boundary is considered, because only half of the particle is represented, the other half of the 

429 mass belongs to the absent particle.40 In PFC2D, the mixed boundary conditions mentioned above can be 

430 realized using the Fish programming language. In the present study, the mixed boundary condition of 

431 coupled static-dynamic loading and viscous boundary was applied to the left boundary of the model, and 

432 the mixed boundary condition of static stress and viscous boundary was applied to the right, top and 

433 bottom boundary of the model, as illustrated in Fig. 5a.

434

435 3.3. Stress measurement and energy tracing in PFC2D

436 Stress is a quantity usually used in continuum mechanics and does not exist at each point in a 

437 discrete particle assembly. Stress tensors in discrete media are obtained by averaging procedures. In 
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438 PFC2D, this is realized by the stress measurement logic using a measurement circle, which was discussed 

439 in detail by Potyondy and Cundall.49 The final expression used in PFC2D to compute the average stress 

440 tensor within a measurement circle is given by:

441                           (46)( ) ( ) ( , ) ( )
( )

1

p c

p

c p c p c
ij i i i jp

N N
N

n x x n F
V



 
 

   
 
 



442 where the summations are taken over the Np particles with centers contained within the measurement 

443 region and the Nc contacts of these particles; n is the porosity within the measurement region,  is the ( )pV

444 volume of particle (p);  and  are the locations of a particle center and its contact, respectively, ( )p
ix ( )c

ix

445  is the unit normal vector directed from a particle center to its contact location, and  is the ( , )c p
in ( )c

jF

446 force acting at contact (c) arising from both particle contact and parallel bonds.

447 In PFC2D, the energy in the entire particle assembly can be tracked using the history energy 

448 command, and can also be accessed by the Fish variables that begin with e_. Nevertheless, PFC2D does 

449 not provide the source code to trace the energy within a specific region. If we want to trace the energy 

450 evolution in a specified domain, the energy measurement circle, the same as the stress measurement circle, 

451 must be applied. In the present study, we are interested in the kinetic energy and strain energy evolution 

452 around the tunnel during dynamic loading. The total kinetic energy of all particles with centers contained 

453 within the measurement circle domain can be expressed as:

454                                    (47)
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455 where Np is the number of particles with centers contained within the measurement region, M(i) and v(i) are 

456 the generalized mass and velocity of the particles, respectively, which can be given by:

457                                (48)
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458 where m and I are the mass and the moment of inertia of the particles, respectively,  and  are the ( )ix ( )i

459 translational and rotational velocity of the particles.

460 In PFC2D, the strain energy of the material is stored in the contact and parallel-bond model. The 

461 total strain energy stored in all contacts with centers contained within the measurement circle domain can 

462 be expressed as:
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463                               (49) 2 21 / /
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464 where Nc is the number of contacts with centers contained within the measurement circle region; and n
iF

465 are the magnitudes of the normal and shear components of the contact force; and kn and ks are the s
iF

466 normal and shear contact stiffness.

467 And the total strain energy stored in all parallel bonds with centers contained within the measurement 

468 circle domain can be expressed as:

469                        (50)
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470 where Npb is the number of parallel bonds with centers contained within the measurement circle region; 

471  and  are the magnitudes of the normal and shear components of the parallel bond force, and 
n
iF

s
iF

472  is the magnitude of the moment of the parallel bond;  and  are the normal and shear 3M n
k

s
k

473 stiffness of the parallel bond; A and I are the area and the moment of inertia of the parallel bond, 

474 respectively.

475

476 4. Numerical simulations and results

477 4.1 Dynamic responses of underground tunnel induced by blasting load

478 In this section, a series of waveforms of blasting load with different rising time (i.e., tr = 1 ms, 2 ms, 

479 3 ms, 4 ms and 5 ms) and a constant ts/tr ratio of 5 were applied to investigate the dynamic responses of 

480 the tunnel subjected to coupled static-dynamic loading, the corresponding durations of blasting load are 5 

481 ms, 10 ms, 15 ms, 20 ms and 25 ms. The peak value of blasting load is 15 MPa, and the vertical and 

482 horizontal in situ stress is 10 MPa. The numerical simulation results are shown in Fig. 6.

483 Figure 6a-c presents the tangential stress evolutional curves in different monitoring points at tunnel 

484 boundary during dynamic loading, and the positive value indicates the compressive stress. Time begins 

485 when dynamic loading was applied to the model boundary. Before dynamic stress wave arrives at tunnel 

486 boundary, stress at tunnel boundary remains constant. At t = 1.33 ms, dynamic stress wave arrives at the 

487 left sidewall of the tunnel, tangential stress at θ = π increases immediately, and then the incident 

488 compressive stress wave leads to a reduction of tangential stress at the left sidewall of the tunnel as shown 

489 in Fig. 6c. The greater the rising time of blasting load is, the larger the extent of reduction is, but when tr 
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490 exceeds 4 ms, the extent of reduction hardly increases. Because of the existence of compressive stress 

491 induced by static stress, the reduction of tangential stress does not give rise to tensile stress at left sidewall. 

492 After the dynamic stress wave passes through, tangential stress at the left sidewall returns to initial value. 

493 When t = 1.67 ms, dynamic stress wave arrives at the roof and floor of the tunnel, tangential stress at θ = 

494 π/2 increases rapidly as shown in Fig. 6b, and a larger rising time of blasting load brings about a higher 

495 peak value of tangential stress. When t = 2 ms, dynamic stress wave arrives at the right sidewall of the 

496 tunnel. As shown in Fig. 6a, the tangential stress evolutional curves at θ = 0 are approximately the same 

497 as the curves at θ = π. It can be found from the comparisons between Fig. 6a-c and Fig. 2 that the 

498 numerical results are generally consistent with the theoretical results, i.e. under blasting stress wave 

499 incidence, the compressive stress at θ = π/2 is much larger than that at θ = 0 and π. However, there are 

500 also some differences between theoretical and numerical results, because the theoretical solutions are 

501 based on elastodynamics, in which the rock mass is considered as homogeneous, isotropic and perfectly 

502 elastic medium, while the numerical model composes of a large number of discrete particles. Besides, the 

503 average stress in a measurement circle cannot completely represent the stress on tunnel surface.

504 Figure 6d-f presents the strain energy evolutional curves in different monitoring points at tunnel 

505 boundary during dynamic loading. Comparing Fig. 6a-c with Fig. 6d-f, it can be found that the strain 

506 energy evolutional curves are similar to the tangential stress evolutional curves at the same monitoring 

507 location. It denotes that the accumulation of strain energy around tunnel boundary is the result of the 

508 stress redistribution during dynamic loading. The maximum values of strain energy at θ = 0 and π are 5.85 

509 kJ and 6.65 kJ respectively, while it is 24.35 kJ at θ = π/2. The maximum value of strain energy at θ = π/2 

510 is considerably larger than that at θ = 0 and π, and the greater the tr is, the larger the value of the 

511 maximum strain energy is. It indicates that a dynamic stress wave with high rising time induces a large 

512 amount of strain energy accumulating at the roof and floor of the tunnel.

513 Figure 6g-i presents the kinetic energy evolutional curves in different monitoring points at tunnel 

514 boundary during dynamic loading. When dynamic stress wave arrives at the left sidewall of the tunnel, the 

515 kinetic energy at θ = π increases rapidly to a peak value as shown in Fig. 6i, the peak value of kinetic 

516 energy decreases with the increase of tr, and the maximum kinetic energy is 5.62 kJ when tr = 1 ms. It can 

517 be observed from Fig. 6g and h that the peak value of kinetic energy at θ = 0 and π/2 increases with the 

518 increase of tr, and the maximum values of kinetic energy at θ = 0 and π/2 are 2.66 kJ and 2.99 kJ when tr 
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519 = 5 ms, which are smaller than that at θ = π.

520

521 4.2 Influence of lateral pressure coefficient

522 In this section, the dynamic responses of an underground tunnel at a burial depth of 1000 m were 

523 examined. The vertical in situ stress is 14.74 MPa, four lateral pressure coefficients of k = 0.5, 1.0, 1.5, 

524 and 2.0 were specified to investigate the influence of lateral pressure coefficient on the dynamic responses. 

525 The rising time and total time of the blasting stress wave are 2 ms and 10 ms respectively, and the peak 

526 value of the blasting stress wave is 25 MPa. According to the analysis presented in section 4.1, the 

527 tangential stress and the strain energy have nearly the same evolution law at the same position, so only the 

528 strain energy and kinetic energy are discussed in this section. The numerical simulation results are 

529 depicted in Fig. 7.

530 The strain energy evolutions at different monitoring points for various lateral pressure coefficients 

531 are presented in Fig. 7a-c. Before a dynamic stress wave arrives at the tunnel boundary, the strain energy 

532 accumulated under in situ stress is related to the lateral pressure coefficient. The tangential stress derived 

533 from the Kirsch’s formula51 under in situ stress and the associated strain energy are listed in Table 3. The 

534 tangential stress and strain energy at θ = 0 and π under in situ stress decrease with the increase of the 

535 lateral pressure coefficient, while those at θ = π/2 are the opposite. It is found that the strain energy is 

536 positively related to the tangential stress accumulation. When the lateral pressure coefficient is less than 

537 1.0, the tangential stress is mainly concentrated and thus substantial strain energy is accumulated at two 

538 sidewalls of the tunnel (θ = 0 and π). But when the lateral pressure coefficient is larger than 1.0, the strain 

539 energy is mainly stored in the roof and floor. During dynamic loading process, the strain energy at θ = 0 

540 has the same evolution law as that at θ = π as shown in Fig. 7a and c. When the dynamic stress wave 

541 arrives at the roof and floor of the tunnel, the strain energy at θ = π/2 goes to a peak value in a short time 

542 and then drop rapidly as shown in Fig. 7b. The greater the lateral pressure coefficient is, the higher the 

543 peak value of the strain energy is. After the dynamic stress wave passes through, the strain energy returns 

544 to the initial value for the cases of k = 0.5 and 1.0 but reduces for the cases of k = 1.5 and 2.0. It indicates 

545 that the strain energy stored in rock mass has a critical value. When the strain energy stored in rock mass 

546 exceeds its critical value, the rapid release of the strain energy occurs, accompanying with the occurrence 

547 of severe rockburst.
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548 As presents in Fig. 7f, the lateral pressure coefficient has little influence on kinetic energy evolution 

549 at θ = π, but it has a significant influence on kinetic energy evolution at θ = π/2 as shown in Fig. 7e. The 

550 peak value of kinetic energy at θ = π/2 increases with the increase of lateral pressure coefficient. After the 

551 dynamic stress wave passes through, the kinetic energy returns to zero for the case of k = 0.5, indicating 

552 that dynamic failure does not occur in this case; for other cases, the kinetic energy remains a constant 

553 value, indicating that the dynamic failures occur at the roof in these cases. As shown in Fig. 7d, for the 

554 cases of k = 1.5 and 2.0, the peak value of the kinetic energy at θ = 0 are smaller than that when k = 0.5 

555 and 1.0, and obvious oscillation occurs in these cases. It indicates that severe dynamic failures occur for 

556 the cases of k = 1.5 and 2.0, and a portion of incident energy are dissipated during dynamic failure.

557 The micro-crack distributions in the surrounding rock for different lateral pressure coefficients are 

558 presented in Fig. 8, the micro tensile cracks and shear cracks are respectively colored in black and red in 

559 the figure. It can be seen from the figure, a majority of micro cracks distribute at the roof and floor of the 

560 tunnel. The micro crack numbers increase with the increase of the lateral pressure coefficient. For the case 

561 of k = 0.5, only 5 micro cracks emerge around the tunnel. The micro cracks increase to 3061 when k = 2.0, 

562 and the damaged zone extends to the right side in this case.

563 In this study, the strain energy reduction is the difference between the initial value and final value of 

564 the strain energy evolutional curve, which denotes the release of strain energy during dynamic loading. In 

565 addition, the residual kinetic energy is defined as the final value of the kinetic energy evolutional curve, 

566 which denotes the energy carried by the ejected rock fragments during dynamic failure process of the 

567 tunnel. Therefore, the residual kinetic energy can be served as an index of the intensity of rockburst. The 

568 larger the residual kinetic energy is, the more violent the rockburst is. In order to further investigate the 

569 strain energy release law, the strain energy reduction and the residual kinetic energy at θ = π/2 are 

570 summarized in Fig. 9. The strain energy reduction and residual kinetic energy at θ = π/2 increase with the 

571 increase of the lateral pressure coefficient. Because no failure occurs for the case of k = 0.5, the strain 

572 energy reduction and residual kinetic energy are zero. When k = 2.0, the strain energy reduction and 

573 residual kinetic energy reach to 28.63 kJ and 78.66 kJ, and the strain energy reduction accounts for 

574 98.52% of the initial strain energy (the initial value is 29.06 kJ as presented in Fig. 7b). It denotes that the 

575 majority of the strain energy stored in the roof of the tunnel released after dynamic loading, and serious 

576 damages generated at the roof of the tunnel, which is consistent with Fig. 8. It can also be seen from Fig. 9 
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577 that the residual kinetic energy is far larger than the strain energy reduction for the same condition if 

578 dynamic failure occurs at tunnel boundary, because the residual kinetic energy derives not only from 

579 strain energy release but also from incident stress wave. In this regard, it can be inferred that the rockburst 

580 hazard triggered by dynamic loading is more violent than that induced by in situ stress unloading, in 

581 which the residual kinetic energy only comes from strain energy release.

582 Simulation results discussed in this section suggest that the in situ stress dominates the strain energy 

583 distribution around the tunnel, and the dynamic stress wave is an external factor to trigger dynamic 

584 failures in the periphery of the tunnel. The roof and floor of the tunnel are more vulnerable to dynamic 

585 failures in this condition. With small lateral pressure coefficient, dynamic failures rarely emerge at the 

586 roof and floor of the tunnel due to a little amount of strain energy is accumulated under static stress. With 

587 the increase of lateral pressure coefficient, more strain energy is stored in the roof and floor and it may 

588 reach the critical level. In this case, dynamic loading can trigger violent dynamic failures associated with 

589 the release of substantial strain energy. Therefore, it is very significant to consider the influence of lateral 

590 pressure coefficient in order to investigate the dynamic behaviors induced by blasting load.

591

592 4.3 Influence of the burial depth of tunnel and the amplitude of the blasting load

593 As the excavated depth of the underground tunnel goes deeper, the tunnel will be positioned at a 

594 higher in situ stress level, leading to more strain energy to accumulate at the periphery of the tunnel. 

595 Therefore, in situ stress levels have a significant influence on the stability of the underground tunnel. In 

596 addition, the amplitude of the blasting load is also an important factor to trigger dynamic failure of the 

597 underground tunnel. In this section, four burial depths (i.e. depth = 0 m, 500 m, 1000 m, 1500 m) and 

598 three amplitudes of the blasting load (i.e. Pbm = 20 MPa, 30 MPa, 40 MPa) were considered to investigate 

599 the effects of in situ stress levels and amplitudes of the blasting load on the stability of the underground 

600 tunnel. According to section 4.2, it is easier to induce failure by dynamic loading under the condition of 

601 high lateral pressure coefficient, so the axial direction of the tunnel was assumed to extend along the 

602 maximum horizontal principle. In this case, the vertical and horizontal in situ stress for different burial 

603 depths can be determined from Eqs. (35) - (37), i.e. σv = σh = 0 MPa at 0 m; σv = 7.74 MPa, σh = 10.33 

604 MPa at 500 m; σv = 14.74 MPa, σh = 18.83 MPa at 1000 m; σv = 21.74 MPa, σh = 27.33 MPa at 1500 m. 

605 The rising time and total time of the blasting load are 2 ms and 10 ms, respectively. According to the 
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606 analysis results mentioned above, dynamic failure is more likely to occur at the roof and floor of the 

607 tunnel, so only the strain energy evolutional curves at θ = π/2 of the tunnel are discussed in this section.

608 Figure 10 presents the strain energy evolutional curves at θ = π/2 of the tunnel at different depths. 

609 The higher in situ stress results in more strain energy accumulating at the roof of the tunnel. Under 

610 dynamic loading, the strain energy at θ = π/2 increases rapidly, and the peak value of the strain energy 

611 increases with the increase of the amplitude for a specified burial depth. During dynamic loading process, 

612 if the strain energy stored in the measuring domain reaches the critical level, the strain energy evolutional 

613 curve will oscillate and drop in a short time, and the shorter dropping time denotes the rapider release of 

614 the strain energy.

615 Figure 11 presents the strain energy reduction and residual kinetic energy at θ = π/2 of the tunnel. 

616 The strain energy reduction and residual kinetic energy increase with the increase of the burial depth. For 

617 a specified depth, the increase of the amplitude of the blasting load results in more strain energy reduction 

618 and residual kinetic energy. But the strain energy reduction is zero when the depth of the tunnel is 0 m, as 

619 none of strain energy is stored in the surrounding rock before dynamic loading. In this case, the residual 

620 kinetic energy only comes from the blasting load. When the burial depth of the tunnel exceeds 1000 m, a 

621 smaller amplitude of blasting load (Pbm = 30 MPa) is sufficient to trigger complete failures at the roof of 

622 the tunnel. It can also be found from Fig. 11 that the residual kinetic energy is far larger than the strain 

623 energy reduction under the same condition.

624 Figure 12 illustrates the crack distributions in the surrounding rock at different depths and under 

625 blasting load with different amplitudes, the micro tensile cracks and shear cracks are respectively colored 

626 in black and red. It can be seen from Fig. 12 that, if the dynamic loading is only considered, the tensile 

627 cracks appear in two sidewalls of the tunnel when Pbm = 40 MPa, as well as a few micro cracks distribute 

628 at the roof and floor. When the burial depth of the tunnel goes to 500 m, the tensile crack only emerges in 

629 the left sidewall and more micro cracks distribute at the roof and floor. At the depth of 1000 m and 1500 

630 m, the tensile crack disappears, and the evident damaged zones occur at the roof and floor, which extend 

631 to the right sidewall of the tunnel for the cases of Pbm = 40 MPa. For a specified burial depth, the extent of 

632 damaged zone increases with the increase of the amplitude of the blasting load, because the blasting load 

633 with larger amplitude contains more incident energy and can trigger more violent dynamic failures around 

634 the tunnel. For an underground tunnel subjected to the blasting load with specified amplitude, the extent 
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635 of the damaged zone increases with the increase of the burial depth of the tunnel. In particular, for the 

636 tunnel at the depth of 1500 m, the dynamic loading with lower amplitude (Pbm = 20 MPa) is sufficient to 

637 trigger dramatic dynamic failures at the roof and floor of the tunnel.

638

639 5 Discussion

640 In the present study, the theoretical formulations were obtained to accurately assess the dynamic 

641 stress concentration factor around a circular tunnel subjected to blasting stress wave, and the entire 

642 process of stress wave propagating through an underground tunnel was modeled using a numerical model. 

643 The numerical results showed that the in situ stress environment has a significant effect on the dynamic 

644 responses of the underground tunnel. The blasting load can induce dramatic dynamic effects around the 

645 underground tunnel and is likely to trigger severe rockbursts in tunnel surface. As stated by Li and Weng36 

646 that the strain energy distribution in tunnel boundary is related to the lateral pressure coefficient, and the 

647 strain energy is mainly stored in compressive stress concentration zone under static stress. Their results 

648 indicated that when the lateral pressure coefficient is less than 1.0, two sidewalls of the opening are 

649 subjected to high compressive stress, which results in high strain energy intensity near the sidewalls. But 

650 when the lateral pressure coefficient is larger than 1.0, the strain energy mainly intensifies at the roof and 

651 floor. In the present study, the conclusions from section 4.2 are consistent with their results. Besides, the 

652 numerical results shown in Figs. 9 and 11 further indicate that the strain energy release is positively 

653 related to the lateral pressure coefficient and the burial depth of the tunnel. However, when a non-circular 

654 cross section is used in an underground tunnel, the strain energy distribution is more complicated. In this 

655 case, the strain energy release is also related to the in situ stress orientation46 and the incident direction of 

656 the blasting stress wave,35, 36 and different conclusions can be drawn when the blasting stress wave was 

657 applied to the model boundary from different directions.

658 In addition, numerical simulation results of Li and Weng36 and Zhu et al. 35 showed that the dynamic 

659 failures mainly emerge in the incident side of the opening under dynamic disturbance. The dynamic 

660 failures in the present model mainly emerged in the positions perpendicular to the incident direction of 

661 blasting stress wave (i.e. the roof and floor of the tunnel, as shown in Figs. 8 and 12), it seems that our 

662 findings are inconsistent with the their results. However, as proposed by Wang and Cai37 that the ratio of 

663 incident wavelength to excavation span (λ/D) has a large effect on ground motion around excavations, and 
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664 the stress field near excavation boundary becomes very complex as the λ/D ratio decreases. Therefore, the 

665 incident waves with different wavelengths may lead to different failure modes around underground tunnel. 

666 When a high-frequency stress wave propagates through a circular tunnel, the circular boundary appears to 

667 be a plane boundary. In this case, the incident compressive stress wave is reflected back as the tensile one, 

668 which will lead to the spalling failures in the incident side. If the incident stress wave is a low-frequency 

669 one, the stress states around the tunnel approach to the static loading conditions. In this case, the positions 

670 perpendicular to the incident direction are more prone to failures.

671 In the present analysis, the equivalent wavelength of a triangular wave can be calculated by λ = tscp, 

672 where ts is the duration of blasting load and cp is the longitudinal wave velocity, which is 3000 m/s in this 

673 study. Previous studies35, 36 on stability of underground tunnels induced by dynamic disturbance focused 

674 on a small λ/D ratio (λ/D < 1), in this case, dynamic failures mainly occurred in the incident side. In this 

675 study, the duration of blasting load used in sections 4.2 and 4.3 is 10 ms, and the corresponding λ/D ratio 

676 is 15. In this case, the dynamic failures mainly occurred in the roof and floor. However, because of the 

677 diversities of blasting parameters and tunnel dimensions, the λ/D ratio may vary in a wide range. 

678 Therefore, it is necessary to discuss the stability of underground tunnels under conditions of different λ/D 

679 ratios. The ratio of incident wavelength to excavation span may have a significant influence on the failure 

680 characteristics of the tunnel, especially complicated geological environments and tunnel cross-section 

681 shapes are considered at the same time. In our future study, we plan to take the stress wave propagation 

682 and attenuation into consideration and further investigate the influence of the incident wavelength and the 

683 tunnel cross-section shape on fracturing characteristics of the deep-buried tunnel. These will be further 

684 introduced in our following paper.

685

686 6. Conclusions

687 In this paper, a two-dimensional mathematical physics model was first presented to investigate the 

688 dynamic response around a circular tunnel subjected to blasting stress wave excitation. Based on the 

689 steady state solution of the wave expansion approach, transient solutions subjected to different incident 

690 waveforms were obtained. Theoretical results indicated that the DSCF at the roof and floor of the tunnel is 

691 much larger than that at two sidewalls when blasting stress wave was applied to left model boundary, but 

692 the dynamic amplification factor at two sidewalls is much larger than that at the roof and floor. A two-
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693 dimensional numerical model established by the discrete element program PFC2D was then introduced to 

694 verify the theoretical analysis, and to further explore the energy evolution law around the underground 

695 tunnel subjected to coupled static-dynamic loading. The numerical results indicated that, for an 

696 underground tunnel only subjected to in situ stress, high compressive stress concentration around the 

697 tunnel leads to the accumulation of massive strain energy at the same location. During dynamic loading 

698 process, the roof and floor of the tunnel are more vulnerable to dynamic failures. The larger the lateral 

699 pressure coefficient is, the more strain energy and kinetic energy release during dynamic failures. In 

700 addition, the residual kinetic energy is much larger than the strain energy release under the same condition. 

701 Furthermore, for an underground tunnel subjected to high in situ stress, the dynamic loading with lower 

702 amplitude is sufficient to trigger severe dynamic failures. Therefore, the effect of the dynamic blasting 

703 stress wave induced by adjacent tunnel excavations should be taken into consideration when the support 

704 and reinforcement systems of an underground tunnel are designed, especially for the tunnel subjected to 

705 high in situ stress.
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Fig. 1. Simplified model of interactions between incident P wave and underground tunnel.
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Fig. 2. Numerical results of the DSCF at tunnel boundary.
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Fig. 3. Dynamic amplification factors at tunnel boundary.
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Fig. 6. Stress and energy evolutional curves at different monitoring points under various waveforms of blasting 

load ((a)、(b)、(c): tangential stress evolution, (d)、(e)、(f): strain energy evolution, (g)、(h)、(i): kinetic energy 

evolution).
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Fig. 7. Energy evolutional curves at different monitoring points for various lateral pressure coefficients ((a)、(b)、

(c): strain energy evolution, (d)、(e)、(f): kinetic energy evolution).

Cracks: 5 Cracks: 111 Cracks: 1113 Cracks: 3061

 (a) k = 0.5           (b) k = 1.0           (c) k= 1.5           (d) k = 2.0

Fig. 8. Crack distributions in the surrounding rock for various lateral pressure coefficients (black and red denote 

tensile and shear cracks).
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Fig. 9. Energy dissipations at θ = π/2 of the tunnel for various lateral pressure coefficients.
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Fig. 10. Strain energy evolutional curves at θ = π/2 of the tunnel at different depths and under blasting load with 

different amplitudes.
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Fig. 11. Energy dissipations at θ = π/2 of the tunnel at different depths and under blasting load with different 

amplitudes: (a) strain energy reduction and (b) residual kinetic energy.
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Fig. 12. Crack distributions in the surrounding rock at different depths and under blasting load with different 

amplitudes.

Table 1

Comparison between the experimental and numerical mechanical parameters for rock specimen.

Mechanical parameters Physical model Numerical results Error (±%)

Density, ρ (kg/m3) 2750 2989 -

Uniaxial compressive 

Strength, UCS (MPa)
55.32 54.77 0.99

Young’s modulus, E (GPa) 18.73 18.84 0.59

Poisson’s ratio, ν 0.206 0.204 0.97

Table 2

The microscopic parameters of the PFC model.

Particle basic parameters value

Particle density, ρ (kg/m3) 2989

Particle minimum radius, rmin (m) 2  10-4

Particle radius ratio, rmax/rmin 2

Particle contact module, Ec (GPa) 15.87

Particle Stiffness ratio, kn/ks 2.0



Particle friction coefficient, μ 0.5

Parallel-bond parameters

Parallel-bond radius multiplier,  1

Parallel-bond modulus, cE (GPa) 15.87

Parallel-bond stiffness ratio, /n sk k 2.0

Mean normal strength,  (MPa) 45.27

Std.dev. of normal strength, s (MPa) 9.05

Mean shear strength,  (MPa) 45.27

Std.dev. of shear strength, s (MPa) 9.05

Table 3
Tangential stress and strain energy induced by in situ stress for various lateral pressure coefficients.

θ = 0 θ = π/2 θ = πk

Tangential 

stress (MPa)

Strain 

energy (kJ)

Tangential 

stress (MPa)

Strain 

energy (kJ)

Tangential 

stress (MPa)

Strain 

energy (kJ)

0.5 36.85 9.04 7.37 2.13 36.85 10.71

1.0 29.48 7.59 29.48 6.66 29.48 8.75

1.5 22.11 6.37 51.59 15.58 22.11 7.29

2.0 14.74 5.43 73.70 29.05 14.74 6.22


