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ABSTRACT

Next generation radio experiments such as LOFAR, HERA and SKA are expected
to probe the Epoch of Reionization and claim a first direct detection of the cosmic
21cm signal within the next decade. Data volumes will be enormous and can thus
potentially revolutionize our understanding of the early Universe and galaxy forma-
tion. However, numerical modelling of the Epoch of Reionization can be prohibitively
expensive for Bayesian parameter inference and how to optimally extract information
from incoming data is currently unclear. Emulation techniques for fast model evalua-
tions have recently been proposed as a way to bypass costly simulations. We consider
the use of artificial neural networks as a blind emulation technique. We study the im-
pact of training duration and training set size on the quality of the network prediction
and the resulting best fit values of a parameter search. A direct comparison is drawn
between our emulation technique and an equivalent analysis using 21CMMC. We find
good predictive capabilities of our network using training sets of as low as 100 model
evaluations, which is within the capabilities of fully numerical radiative transfer codes.
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1 INTRODUCTION

Observations of the redshifted 21cm line of neutral hydrogen
from the Epoch of Reionization (EoR) promise new insights
into our understanding of the astrophysics of the first galax-
ies. Data is now becoming available from instruments such
as LOFAR (Patil et al. 2017), MWA (Dillon et al. 2015),
PAPER (Ali et al. 2015), and HERA (DeBoer et al. 2017)
such that increasingly stringent upper limits can be placed
on reionization scenarios. Data sensitivity and volume are
bound to increase with SKA taking its first data in the
early 2020s. One of the challenges all these observations face
is how to infer astrophysical parameters from 21cm obser-
vations. A common approach is to attempt Bayesian infer-
ence, typically implemented using MCMC techniques (Greig
& Mesinger 2015, 2017; Harker et al. 2012; Hassan et al.
2017). Such methods require an evaluation of the reioniza-
tion model, typically a computationally expensive numeri-
cal simulation, many thousands of times. This can be pro-
hibitively expensive for the use of fully numeric simulations,
and in order to make the inference tractable, one typically
uses approximate semi-numerical simulations (Mesinger &
Furlanetto 2007; Santos et al. 2010; Mesinger et al. 2011; Fi-
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alkov et al. 2012). These models sacrifice accuracy in favour
of speed and thus limit the physics that can be included in
the model. Therefore, alternative techniques for speeding up
the inference using fully numerical models are desirable.

Shimabukuro & Semelin (2017) recently proposed the
use of artifical neural networks (ANN) for parameter esti-
mation from 21cm observations. In that work, a training set
of semi-numerical simulations was used to train an ANN so
that from the shape of the 21cm power spectrum the net-
work could predict the corresponding set of parameters. In
this paper, we consider the opposite problem, i.e. to predict
the power spectrum from a set of parameters. This technique
promises to speed up the parameter inference significantly
by needing to run a full model simulation only a small num-
ber of times for a training set that the ANN can train on and
subsequently use the ANN prediction for the model evalua-
tion.

MCMC techniques typically require evaluation of many
closely spaced points in parameter space to fully sample
from the posterior. This is computationally wasteful, since
in many cases the simulation output varies smoothly and
courser sampling would be sufficient to map the shape of the
output, e.g. the 21cm power spectrum. We therefore explore
the possibility of emulating the output of the simulation. If
we have a simulation y = f(x), where f is expensive to cal-
culate, we can seek some approximate calculation ỹ = f̃(x),
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2 C.J.Schmit and J.R.Pritchard

where f̃ is a fast emulation of the true simulation and the
difference between y and ỹ can be made as small as desired.
For our purposes, we seek to emulate the calculation of the
21cm power spectrum in a number of specified k bins i.e.
y = {P (ki|θ)}, where the subscript specifies the bin, for a
restricted set of astrophysics parameters θ = (ζ, Tvir, Rmfp).
We can then use our emulation P̃ (ki|θ) to make rapid eval-
uations of the likelihood,

lnL =
∑
i

[Pobs(ki)− P (ki|θ)]2

2PN (ki)
, (1)

where Pobs is an observed or mock data set, and PN is
the noise power spectrum associated with a specified instru-
ment.

Emulation techniques have been used in cosmology be-
fore. For example, Heitmann et al. (2009, 2014, 2016) made
use of Latin hypercube sampling (LHS) coupled to gaussian
processes for regression to accurately emulate the numeri-
cal output of N-body simulations for the non-linear density
power spectrum. Latin hypercube sampling techniques sam-
ple all parameters uniquely in all dimensions, this prevents
wasteful model evaluations at already sampled parameter
values. Alternatively, Agarwal et al. (2012) have made use
of neural networks for the same purpose in their PKANN
simulations. As this paper was being completed, Kern et al.
(2017) suggested emulation and the use of gaussian processes
for the field of 21cm cosmology. In their paper they find a
significant speed up for parameter searches while retaining
a high degree of precision as compared to the brute force
MCMC evaluation of Greig & Mesinger (2017).

In this paper, we make use of neural networks to em-
ulate the output of 21cmFast1 and study the effect of the
training set size on the predictive power of the emulator. We
aim to directly compare the performance of our emulator to
the results of Greig & Mesinger (2015), and therefore utilize
the same ΛCDM parameter set. We fix the cosmology with
(ΩM , ΩΛ, Ωb, nS , σ8, H0) = (0.27, 0.73, 0.046, 0.96, 0.82,
70 km s−1 Mpc−1). An updated set of parameters, conform-
ing with the latest Planck Collaboration et al. (2016) results
could and should be used for future analyses. We introduce
the general theory of neural networks in Section 2 and our
physical model in Section 3. We then test our network and
compare it to the model in Section 4. Our main aim is a com-
parison of a Bayesian parameter search, which we introduce
is Section 5, between our emulation technique and a brute-
force MCMC search. We present our findings in Section 6
and finally conclude in Section 7.

2 NEURAL NETWORKS

In this section we give a general outline of the neural network
used in our simulations (eg. Cheng & Titterington (1994)).

2.1 Architecture

In this work we use a multilayer perceptron (MLP) as our
neural network design. MLPs use the supervised learning

1 Publically available at

https://github.com/andreimesinger/21cmFAST.

paradigm, where a set of training data T ⊂ X × Y , where
X denotes the input or parameter space and Y denotes the
output space, is provided and upon which the neural net-
work tries to fit a mapping f : X → Y . This is to say that
the neural network is finding a mapping between input and
output data, which is sensitive to the key features of the
training set. This mapping can then be used on unknown
data where the neural network uses its acquired knowledge
of the system to infer an output, either in form of a classifi-
cation or a number.

A neural network consists of three types of layers each
consisting of a set of nodes or neurons, illustrated in Figure
1. The input layer takes Ni data points into Ni input nodes
from which we want to predict some output. Each node in
the input layer is connected to all of Nj nodes in the first

of L hidden layers via some weight w
(1)
ij . The input to the

nodes in the hidden layer is a linear combination of the input
data and the weights,

s
(1)
j =

Ni∑
i=1

xiw
(1)
ij . (2)

A neuron is then activated by some activation function
g : IR → IR. We use a sigmoid activation function, g(s) =
1/(1 + e−s), as this non-linear function allows us to fit to
any function in principle (Cybenko 1989). This activation
step can be interpreted as each neuron having specialised
on a certain feature in the system (Bishop 2006; Gal 2016)
and when the data reflects this feature the neuron will be
activated. The output from the neuron activation is then fed
into the next hidden layer as input, such that the jth neuron
in the lth hidden layer computes,

t
(l)
j = g

(
s

(l)
j

)
, (3)

where, for 1 < l 6 L,

s
(l)
j =

Nj∑
i=1

t
(l−1)
i w

(l)
ij . (4)

Finally, the output layer combines the outputs from the final
hidden layer into Nk desired output values,

yk =

Nj∑
i=1

t
(L)
i w

(L+1)
ik . (5)

The weights between neurons w
(l)
ij are obtained during

the training of the network, where we apply the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm (Press 2007) to minimize the mean-square error be-
tween the true value provided by the training data and the
value predicted by the network. This training algorithm is
ideal for sparse training sets and a low dimensional param-
eter space (Le et al. 2011), and will be discussed in the
following section.

2.2 Supervised learning

A popular training algorithm for machine learning prob-
lems is back-propagation via gradient descent (Rumelhart
et al. 1986; Cheng & Titterington 1994; Abu-Mostafa 2012;
Shimabukuro & Semelin 2017). However, back-propagation
requires the user to manually set a learning rate which must
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Figure 1. Multilayer perceptron layout.

fall within a finite range, too small and each training itera-
tion produces vanishingly small changes, too large and the
training steps overshoot. An arbitrary learning rate does
therefore not guarantee that the network will converge to
a point with vanishing gradient and second order optimiza-
tion methods can be used to guarantee convergence (Battiti
1992).

Suppose we have Ntrain training sets consisting of Ni
input parameters and Nout output data. These training sets
are fed into a neural network as described in the previous
section. Training an ANN can then be viewed as an op-
timization problem where one seeks to minimize the total
cost function E(w), which is the sum-squared error over the
training sets.

E(w) =

Ntrain∑
n=1

En(w) =

Ntrain∑
n=1

[
1

2

Nout∑
i=1

(yi,n(w)− di,n)2

]
,

(6)
where yi,n is the prediction made by the neural network in
the ith neuron of the output layer, using the nth parameter
set of all training inputs, di,n is the true result for the ith

neuron in the output layer corresponding to the nth param-
eter set, and thus En is the cost function associated with
the nth input parameter set.

We can expand the cost function around some particu-
lar set of weights w0 using a Taylor series,

E(w) =E(w0) + (w −w0)Tg0

+
1

2
(w −w0)TH0(w −w0) + ...,

(7)

where g0 is the vector of gradients and H0 denotes the Hes-
sian matrix with elements,

hij =
∂2E

∂wi∂wj
. (8)

Whereas back-propagation is based on a linear approxima-
tion to the error surface, better performance can be expected

when using a quadratic error model,

E(w) ≈E(w0) + (w −w0)Tg0

+
1

2
(w −w0)TH0(w −w0).

(9)

Provided H0 is positive definite, this approximation to the
error surface has a minimum, ∂E/∂w = 0, at

w = w0 −H−1
0 g0. (10)

Given that a quadratic approximation to the actual cost
function is used, an iterative approach needs to be taken in
order to find an estimate of the true minimum. Similar to
back-propagation where g is used as the search direction,
second order methods use −H−1g as the search direction.
Thus the search direction during training iteration k is given
by,

∆k = −H−1
k gk. (11)

Solving this system of equations requires precise knowledge
of the Hessian, as well as a well-conditioned Hessian, which
in is not always guaranteed. Instead of computing the Hes-
sian and inverting it, the BFGS scheme seeks to estimate
H−1
k directly from the previous iteration. Mcloone et al.

(2002) give the basic algorithmic structure as follows;

• Set the search direction ∆k−1 equal to −Mk−1gk−1,

where Mk−1 is the approximation to H−1
k−1 at the (k − 1)th

iteration.
• Use a line search to find the weights which yield the

minimum error along ∆k−1,

wk = wk−1 + ηopt∆k−1, (12)

ηopt = min
η

(E(wk−1 + η∆k−1)). (13)

• Compute the new gradient gk.
• Update the approximation to Mk using the new weights

and gradient information.

sk = wk −wk−1 and tk = gk − gk−1, (14)

Ak =

(
1 +

tTkMk−1tk
sTk tk

)
sks

T
k

sTk tk
, (15)

Bk =
skt

T
kMk−1 +Mk−1tksk

sTk tk
, (16)

Mk = Mk−1 +Ak −Bk. (17)

The scheme initializes by taking a step in the direction of
steepest descent by setting, M0 = I.

The limited-memory BFGS scheme we are using, recog-
nizes the memory intensity of storing large matrix estimates
of the inverse Hessian, and resets Mk−1 to the identity ma-
trix in equation (17) at each iteration and multiplies through
by −gk to obtain a matrix free expression for ∆k.

• The LBFGS thus uses the following update formula
(Asirvadam et al. 2004),

∆k = −gk + aksk + bktk, (18)

MNRAS 000, 000–000 (0000)



4 C.J.Schmit and J.R.Pritchard

with,

ak = −
(

1 +
tTk tk
sTk tk

)
bk +

tTk gk
sTk tk

and bk =
sTk gk
sTk tk

. (19)

3 REIONISATION MODEL

In order to produce the training sets upon which our neural
network is ultimately trained, we need to model the EoR
and the 21cm power spectrum as a function of some tangible
model parameters.

The main observable of 21cm studies is the 21cm
brightness temperature, defined by (Pritchard & Loeb 2012;
Furlanetto et al. 2006),

δTb(ν) =
TS − Tγ

1 + z
(1− e−τν0 )

≈ 27xHI(1 + δb)

(
Ωbh

2

0.023

)(
0.15

ΩMh2

1 + z

10

)1/2

×
(

1− Tγ(z)

TS

)[
∂rvr

(1 + z)H(z)

]−1

mK,

(20)

where xHI denotes the neutral fraction of hydrogen, δb is the
fractional overdensity of baryons, Ωb and ΩM are the baryon
and total matter density in units of the critical density, H(z)
is the Hubble parameter and Tγ(z) is the CMB temperature
at redshift z, TS is the spin temperature of neutral hydrogen,
and ∂rvr is the velocity gradient along the line of sight. One
can define the 21cm power spectrum from the fluctuations
in the brightness temperature relative to the mean,

δ21(x, z) ≡ δTb(x)− 〈δTb〉
〈δTb〉

, (21)

where 〈...〉 takes the ensemble average. The dimensionless
21cm power spectrum, ∆2

21(k), is then defined as,

∆2
21(k) =

k3

2π2
P21(k), (22)

where P21(k) is given through,〈
δ̃21(k)δ̃21(k′)

〉
= (2π)3δD(k − k′)P21(k). (23)

Here, δ̃21(k) denotes the Fourier transform of the fluctua-
tions in the signal and δD denotes the 3D Dirac delta func-
tion.

The 21cm power spectrum is the most promising ob-
servable for a first detection of the signal (Furlanetto et al.
2006), and encodes information about the state of reioniza-
tion throughout cosmic history. For the evaluation of the
21cm power spectrum we utilize the streamlined version of
21cmFast, which was used in the MCMC parameter study
of Greig & Mesinger (2015). This version of 21cmFast is
optimized for astrophysical parameter searches.

The astrophysical parameters that we allow to vary in
our model are three-fold.

Ionizing efficiency, ζ: The ionization efficiency combines
a number of reionization parameters into one. We define
ζ = AHef∗fescNion, where AHe = 1.22 is a correction fac-
tor to account for the presence of helium and converts the
number of ionizing photons to the number of ionized hy-
drogen atoms, f∗ is the star formation efficiency, fesc is the
escape fraction for UV radiation to escape the host galaxy,

and Nion is the number of ionizing photons per baryons pro-
duced. These parameters are poorly constrained at high red-
shifts. As Nion depends on the metallicity and the initial
mass function of the stellar population, we can approximate
Nion ≈ 4000 for Population II stars with present day ini-
tial mass function, and Nion < 104 for Population III stars.
The value for the star formation efficiency f∗ at high red-
shifts is extremely uncertained due to the lack of collapsed
gas. Therefore, although f∗ ≈ 0.1 is reasonable for the lo-
cal Universe it is uncertain how this relates to the value at
high redshifts. Additionally a constant star formation rate
has been disfavoured by recent studies (Mason et al. 2015;
Mashian et al. 2016; Furlanetto et al. 2017). For our purpose
however, a simplistic constant star formation model is suf-
ficient. Similarly, the UV escape fraction fesc observed for
local galaxies only provides a loose constraint for the high
redshift value. Although fesc < 0.05 is reasonable for local
galaxies, large variations within the local galaxy population
is observed for this parameter. We thus allow the ionization
efficiency to vary significantly in our model to reflect the
uncertainty on the limits of this parameter, and consider
5 6 ζ 6 100.

Maximal distance travelled by ionizing photons, Rmfp:
As structure formation progresses, dense pockets of neutral
hydrogen gas emerge where the recombination rate for ion-
ized proton - electron pairs is much higher than the average
IGM. These regions of dense hydrogen gas are called Ly-
man limit systems (LLS) and effectively absorb all ionizing
radiation at high redshifts. This effectively limits the bub-
ble size of ionized bubbles during reionization. EoR models
include the effect of these absorption systems as a mean
free path of the ionizing photons. However, due to the lim-
ited resolution of 21cmFAST, this sub-grid physics is mod-
elled as a hard cut-off for the distance travelled by ionizing
photons. As our allowed range for this parameter we use,
2 Mpc 6 Rmfp 6 20 Mpc.

Minimum virial temperature for halos to produce ion-
izing radiation, Tvir: Star formation is ultimately regulated
by balancing thermal pressure and gravitational infall of gas
in virialized halos. Molecular hydrogen allows gas to cool
rapidly, on timescales lower than the dynamical timescale
of the system, such that an unbalance of the two oppos-
ing forces occurs and the gas collapses which triggers a
star to form. Although initial bursts of population III stars
are thought to be able to occur briefly in halos virialized
at Tvir ∼ 103 K, these stars produce a strong Lyman-
Werner background which leads to a higher dissociation
of H2 molecules. Star formation then moves to halos with
Tvir > 104 K, where HI is ionized by virial shocks and atomic
cooling is efficient. Tvir thus sets the threshold for star for-
mation and we consider 104 K < Tvir < 2× 105 K.

4 PREDICTING THE 21CM POWER
SPECTRUM

We use two different approaches to emulate the 21cm power
spectrum. First, we use a simple two-layer MLP, as described
in Section 2, with 30 nodes in each layer, as we require
the network to be sufficiently complex to map our set of
3 parameters to 21 power spectrum k-bins. This NN is then
trained on a variety of training sets, see 4.1 and 4.2, obtained
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21cm Emulation and Parameter Inference 5

from 21cmFast simulations. Then, for comparison we use tri-
linear interpolation of the training set, simply interpolating
the power spectrum on a parameter grid.

4.1 Grid-based approch

In order to study the impact of the choice of training set
on the predicting power of the ANN we prepared a variety
of training sets. The most basic approach is to distribute
parameter values regularly in parameter space and obtaining
the power spectrum for each point on a grid. We vary our
parameters as per Section 3, 5 6 ζ 6 100, 104 K 6 Tvir 6
105K and 2 Mpc 6 Rmfp 6 20 Mpc, as these reflect our
prior on the likely parameter ranges (see Section 3). Each
training set then consists of the power spectrum evaluated
in 21 k-bins, set by the box size of 250 Mpc, upon which the
ANN is trained. We compare 5 different training sets at 2
different redshift bins, z = 8 and z = 9. These training sets
consist of 3, 5, 10, 15 and 30 points per parameter, which
leads to training sets of total size 27, 125, 1000, 3375 and
27000 respectively.

This approach is the most basic and certainly the most
straight forward to implement, however it comes with a num-
ber of drawbacks. Projected down, a gridded set of param-
eter values has multiple points which occupy the same pa-
rameter values. This implies that the simulation is evaluated
multiple times at the same values for some parameter at each
point in any given row in the grid, see Figure 2. Furthermore,
if the observable is varying slowly in some parameter, few
points are needed to model its behaviour and thus valuable
simulation time is wasted on producing points in the grid
that add very little information.

Another important limitation is the exponential scaling
of the total number of points with the number of parame-
ters in the grid. In the simple three dimensional case which
we are studying here, N evaluations per parameter lead to
a total of N3 points on the grid. Ultimately, it is desirable
to allow the model cosmology to vary and include at least 6
cosmological parameters into the search as well as additional
astrophysical parameters, such as the X-ray efficiency, fX ,
obscuring frequency, νmin, and the X-ray spectral slope, αX .
One is then looking at a total of 12 or more parameter di-
mensions for which evaluations on the grid are prohibitively
expensive and other techniques are needed. A further prob-
lem is presented by the proportion of volume in the corners
of a hyper-cubic parameter space2. High dimensional param-
eter spaces thus profit greatly by using hyperspherical priors
which decrease the number of model evaluations in the low
likelihood corner regions of parameter space drastically.

4.2 Latin Hypercube approach

A second approch is to use the latin hypercube sampling
(LHS) technique, shown in Figure 2. Here, the parame-
ter space is divided more finely, such that no two assigned
samples share any parameter value. In two dimensions this
method is equivalent to filling a chess board with rooks in

2 In 12 dimensions the proportion of the volume in the corners
of a hypercube is ∼ 99.96%. That is the difference between the
volume of the hypercube and that of an n-ball.

Figure 2. Visualization of the two training techniques. The pa-

rameter space is projected down to two dimensions in each plot.
Top right: 27 regularly gridded parameters. Bottom left: 9 samples

which are obtained using the latin hypercube sampling technique.
Note that the number of samples are chosen such that the same

number of projected samples are visible.

such a way that no two of them threaten each other. Imme-
diately, one of the shortcomings of the gridded parameter
space is dealt with, in that the simulation need never be run
at the same parameter value twice. The other main advan-
tage of the LH is that its size does not increase exponentially
with the dimension of parameter space. This property makes
the LH the only feasible way of exploring high dimensional
parameter spaces with ANNs (Urban & Fricker 2010).

We use a maximin distance design for our latin hyper-
cube samples (Morris & Mitchell 1995). These designs try to
simultaneously maximize the distance between all site pairs
while minimizing the number of pairs which are separated
by the same distance (Johnson et al. 1990). This maximin
design for LHS prevents highly clustered sample regions and
ensures homogeneous sampling. Prior knowledge of the be-
haviour of the power spectrum could also be used to identify
the regions of parameter space where the power spectrum
varies most rapidly and thus a higher concentration of sam-
ples should be imposed on such a region. Additionally, us-
ing a spherical prior region may help reducing the number
of model evaluations used in the corners of parameter space
where the likelihood is low (Kern et al. 2017).

For our training set comparisons we use 3 different LH
training sets of size 100, 1000 and 10000 respectively.

4.3 Power Spectrum Predictions

We now test the predictive power of our trained ANN. First,
we define the mean square error between the true value of
the power spectrum and an estimate given by the ANN,

MSE =
1

NpNk

Np∑
i=1

Nk∑
j=1

(
P true
i (kj)− P estimate

i (kj)

P true
i (kj)

)2

, (24)

where Np is the number of parameter combinations we esti-
mate and compare, and Nk the number of k-bins used in the

MNRAS 000, 000–000 (0000)



6 C.J.Schmit and J.R.Pritchard

Figure 3. Mean square error of the neural network prediction

compared to a fixed test set of 50 points at z = 9 as a function
of the training iterations. At each number of training iterations,

the training is repeated 10 times and we show the mean value of

each resulting MSE and the variance on the mean as error bars.
Shown are the behaviours for neural networks using 100 (blue),

1000 (orange) and 10000 (green) latin hypercube samples in the

training set.

comparison. We produced a test set of 50 21cmFast power
spectra at z = 9, sampled from a LH design to ensure a
homogeneous spread in parameter space. This test set was
then compared to a prediction from our ANN trained on
three sizes of training sets, using 100, 1000 and 10000 sam-
ples distributed again using a LH design. We vary the train-
ing duration on each set and compare the predictions to the
true values of the test set in Figure 3. The error bars are
obtained by selecting 75% of the total points in the train-
ing set at random for the network regression. The network
is then trained on this subset and a value for the MSE is
obtained. A new training sample is then selected at random
and the process is repeated 10 times. The error bars thus
signify the expected error from any given latin hypercube
sampled training set of comparable size.

In the case of 103 and 104 samples in the training
set, the neural network quickly approaches a relative mean
square error of less than 1%. With more than 103 train-
ing iterations, both training sets show a clear reduction in
the training efficiency. The 100 LHS curve is dominated at
high training iterations by outlier parameter points which
are particularly poorly constrained. We find that these out-
liers can affect the MSE heavily while having a relatively
small effect on the final parameter inference. We define an
outlier to be any k-bin whose square error is larger than 1,
meaning a relative error of over 100%. For a training set
of 100 points, one should then expect up to ∼ 2% of all
k-bins to be outliers at any given training iteration. This
unexpected behaviour may indicate an insufficient coverage
of the training set, or that our neural network retains a high
degree of flexibility even after regressing over 100 training
samples. For our training set of 1000 points, the fraction
of outliers produced reduces to less than ∼ 1%, when the

Figure 4. Comparison between the mean square error of in-

terpolation on a grid (red solid line), the neural network using
gridded training sets (blue dot-dashed line), interpolation (green

solid line) and the neural network using LHC training sets (or-
ange dashed line). Neural networks are trained using 104 training

iterations. Plotted are the mean values after the NN is retrained

10 times, and the standard deviation to the mean is shown as
error bars.

training iterations are low, and we cease to find any outliers
at more than 100 training iterations. This indicates a sig-
nificant reduction in the freedom of the neural network and
an increase of the confidence in our prediction. Of note is
that some outliers have a greater impact than others and
we find some whose square error ∼ 10, indicating a com-
plete failure to predict the power in that particular k-bin.
One should thus be cautious when using small training sets
that may not sufficiently constrain the freedom of the neu-
ral network. Based on the results for our two larger training
sets, we proceed by using 104 training iterations in all our
neural network training.

Further, we compare the mean square error between our
training techniques against the training set size and sam-
pling technique. In Figure 4, we compare the mean square
error in the prediction when the gridded parameter values
are interpolated (red), or used to train our neural network
(blue), with the predictions obtained when using a Latin
hypercube sampled training set (green and orange). Similar
to Figure 3, we compute the mean and variance of the MSE
over 10 separately trained networks by selecting 75% of the
samples in the training set at random at a time.

As expected, when using a finer grid of parameters to
interpolate the power spectrum, the accuracy of the pre-
diction increases. Although the neural network predictions
increase in accuracy for both the grid and the LHC, a clear
plateauing in the addition of information by a larger training
set can be observed. We thus observe a fundamental limit to
the relative mean square error for the neural network design.
This limit depends on the design parameters of the neural
network and can be optimized via k-fold validation of the
networks design or hyper-parameters. Varying the design pa-
rameters, such as the number of hidden layers or number of
nodes per layer, and minimizing the mean square error for

MNRAS 000, 000–000 (0000)



21cm Emulation and Parameter Inference 7

a power spectrum prediction over k iterations can reduce
networks error bound. Our network design limits errors at
∼ 1%, which is sufficiently below any confidence limit associ-
ated with our model, that optimizing design parameters is of
limited use. Optimisation via k-fold validation may be nec-
essary when using fully numerical simulations which reflect a
higher degree of physical accuracy than fast semi-numerical
methods. No clear difference of the MSE can be seen com-
paring the latin hypercube sampled training sets and those
produced on the grid in 3 dimensions. We expect a more
significant discrepancy in higher dimensions of parameter
space as discussed in Section 4.2. As such it is instructive
to compare the performance of the interpolation on the grid
to that on the LH. The ANN manages to capture the infor-
mation of the unstructured training data much better than
simple interpolation does, whereas this is not necessarily the
case for large gridded training sets.

Figures 5 to 7 show the predictions of a trained neu-
ral network (solid lines) and the true values of the power
spectrum at the same point in parameter space (dashed
lines). In order to determine the dependence of the accu-
racy of the predictions on the particular training set used,
a subset of the training set is again randomly selected and
used as the training set. Similar to before, the network is re-
trained 10 times while the predictions are averaged. The
variance on the mean prediction in each k-bin is added
as the expected error on the predicted mean value of the
power spectrum. The power spectrum is dominated on small
scales (k > 1 Mpc−1) by shot noise and by foregrounds on
large scales (k < 0.15 Mpc−1). We therefore apply cuts at
these scales in our analysis and indicate the noise dominated
ranges by the grey shaded regions in figures 5, 6 and 7.

We observe that the network produces a good fit to
the true values within the region of interest. The size of the
error bars indicates a very low dependence on the training
subset used for training such that we conclude that the exact
distribution of training sets in parameter space has little
influence as long as it is homogeneously sampled. We also
observe that the network manages to fit Tvir particularly
well at large scales compared to the other two parameters
whose error bars noticeably increase as k approaches the
foreground cut-off. This shows that a sampling scheme that
varies according to the dependence of the power spectrum
on the input parameters may be advantageous to achieve
some desired accuracy.

In the context of outliers, discussed earlier in this sec-
tion, we see that the prediction for the power spectrum at
(ζ, Rmfp, log Tvir) = (30, 2, 4.48), in Figure 7, overestimates
the power at k ≈ 0.5 Mpc−1 by a factor of ∼ 2. This point
would have a relatively large impact on the MSE as recorded
in Figure 3, even though the network is very well behaved
for most regions in parameter space.

5 BAYESIAN INFERENCE OF
ASTROPHYSICAL PARAMETERS.

In Bayesian parameter inference one is interested in the pos-
terior distribution of the parameters θ within some model
M. That is the probability distribution of the parameters

Figure 5. Comparison between neural network prediction of the

21cm power spectrum (solid line) and the 21cmFast power spec-
trum (dashed line). We vary ζ at z = 9 from ζ = 10 to ζ = 80,

and use 1000 training iterations on 75% of the 1000 LHS training
set selected at random. This process is repeated 10 times and the

mean values are shown with the variance on the mean as error

bars.

Figure 6. Comparison between neural network prediction of the

21cm power spectrum (solid line) and the 21cmFast power spec-
trum (dashed line). We vary Tvir at z = 9 from Tvir = 104 K to

Tvir = 105 K, similar to Figure 5.

given some data set x. We can then write Bayes’ Theorem,

Pr(θ|x,M) =
Pr(x|θ,M)π(θ|M)

Pr(x|M)
, (25)

to relate the posterior distribution Pr(θ|x,M) to the Like-
lihood, L ≡ Pr(x|θ,M), the prior, π(θ|M), and a normal-
isation factor called the evidence, Pr(x|M). This expres-
sion parametrises the probability distribution of the model
parameters as a function of the likelihood, which, given a
model and a data set, can be readily evaluated under the
assumption that the data points are independent and carry
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8 C.J.Schmit and J.R.Pritchard

Figure 7. Comparison between neural network prediction of the

21cm power spectrum (solid line) and the 21cmFast power spec-
trum (dashed line). We vary Rmfp at z = 9 from Rmfp = 2 Mpc

to Rmfp = 20 Mpc, similar to Figure 5.

gaussian errors,

lnL = − [x− µ(θ)]2

2σ2
x

+ C, (26)

where C denotes a normalisation constant. In our case, the
data will be a mock observation of the 21cm power spectrum,
x = {Pobs(ki)}, evaluated in 21 k-bins, the expectation value
of the data will be the theoretical model prediction of the
power spectrum, µ(θ) = P (k,θ), and for the variance on the
data we assume that instrumental noise is the sole contribu-
tor characterised by a noise power spectrum, σ2

x = PNoise(k).

5.1 Experimental Design

We use 21cmSense3 (Pober et al. 2013, 2014) to compute
the noise power spectrum for HERA331, with experimental
details outlined in Beardsley et al. (2015) and summarized
below. The noise power spectrum used is given by (Parsons
et al. 2012),

PNoise(k) ≈ X2Y
k3

2π2

Ω′

2t
Tsys, (27)

where X2Y denotes a conversion factor for transforming
from the angles on the sky and frequency to comoving dis-
tance, Ω′ is the ratio of the square of the solid angle of the
primary beam and the solid angle of the square of the pri-
mary beam, t is the integration time per mode, and Tsys is
the system temperature of the antenna, which is given by
the receiver temperature of 100 K plus the sky temperature
Tsky = 60 (ν/300 MHz)−2.55 K.

As our experiment design, we assume a HERA design
with 331 dishes distributed in a compact hexagonal array to
maximize the number of redundant baselines, as HERA is
optimized for 21cm power spectrum observations (DeBoer

3 Publically available at https://github.com/jpober/21cmSense.

et al. 2017; Liu & Parsons 2016). Each dish has a diam-
eter of 14 m, which translates into a total collecting area
of ∼ 50950 m2. HERA antennas are not steered and thus
use the rotation of the Earth to drift scan the sky. An op-
eration time of 6 hours per night is assumed for a total of
1000 hours of integration time per redshift. We consider both
single redshift and multiple redshift observations assuming a
bandwidth of 8 MHz. Although experiments like HERA and
the SKA will cover large frequency ranges ∼ 50− 250MHz,
foregrounds can limit the bandpass to narrower instanta-
neous bandwidths.

5.2 MCMC

We aim to compare our parameter estimation runs to those
of Greig & Mesinger (2015) by using the same mock and
noise power spectrum for HERA331 as input for our Neural
Network parameter search. Our fiducial parameter values
are ζ = 30, Rmfp = 15 Mpc and Tvir = 30000 K.

First, we perform an independent parameter search in
two redshift bins, z = 8 and z = 9, the latter comparing di-
rectly to Figure 3 in Greig & Mesinger (2015). The fiducial
values for the average neutral fraction at these redshifts are
x̄HI(z = 8) = 0.48 and x̄HI(z = 9) = 0.71. For both the em-
ulation and the 21CMMC runs we produce 2.1× 105 points
in the MCMC chain for a like-for-like comparison between
the two techniques.

Then, we analyse observations at redshifts z = 8, 9 and
10 by combining the information in these redshift bins. We
take a linear combination of the χ2 statistics in each redshift
bin. Three separate ANNs are used for each redshift and
are trained on the same training sets as for the individual
redshift searches at z = 8 and 9. The fiducial neutral fraction
for our final mock observation is x̄HI(z = 10) = 0.84. A total
of 2.1 × 105 are again obtained both in the neural network
search and the equivalent 21CMMC run.

6 DISCUSSION

Similar to Kern et al. (2017), we see a significant speed-up
for the parameter estimation. For our fiducial chain size,
we observe a speed up by 3 orders of magnitude for the
sampling of the likelihood by emulation over the brute-force
method. Our 21CMMC runtime of 2.5 days on 6 cores for a
single redshift is reduced to 4 minutes using the emulator.
In addition to the sampling, the Neural Network training
requires on the order of ∼ 1 minute for 100 training samples
to ∼ 1 hour for 104 training samples, which is not needed
when evaluating the model at each point. Compared to the
total runtime of 21CMMC the training time presents a minor
factor.

6.1 Single Redshift Parameter Constraints

Figures 8 to 11 show the comparison between the brute-
force parameter estimation as the red dashed contours and
our ANN emulation using a variety of training set sizes at
redshift z = 9 and z = 8 as the solid blue contours. For both
redshifts, we show the one and two sigma contours obtained
for 100 and 1000 LH samples as well as the marginalized
posteriors convolved with a gaussian smoothing kernel. As
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Table 1. Median values and 68% confidence interval found in the

parameter search via the brute-force method (21CMMC) and our
ANN emulation at z = 9 and z = 8. The fiducial parameter values

for both redshifts are given by (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

Code - Training Set z ζ Rmfp log Tvir

21CMMC 9 41.28+24.85
−13.43 13.38+4.28

−5.15 4.59+0.37
−0.32

ANN - 100 LHS 9 45.47+25.19
−17.18 12.13+5.71

−5.05 4.54+0.47
−0.28

ANN - 1000 LHS 9 42.52+26.18
−13.74 12.89+4.63

−5.29 4.57+0.40
−0.31

ANN - 10000 LHS 9 42.21+25.42
−14.12 13.18+4.46

−5.14 4.58+0.39
−0.31

21CMMC 8 39.64+31.90
−16.11 14.99+2.98

−3.64 4.61+0.21
−0.23

ANN - 100 LHS 8 43.06+26.16
−17.38 14.58+3.47

−3.90 4.64+0.19
−0.25

ANN - 1000 LHS 8 42.71+31.30
−18.67 14.67+3.19

−4.26 4.62+0.21
−0.23

ANN - 10000 LHS 8 39.78+31.68
−16.22 14.61+3.15

−4.05 4.60+0.22
−0.23

21CMMC 8,9,10 31.08+8.70
−6.04 15.15+2.86

−3.21 4.51+0.17
−0.17

ANN - 100 LHS 8,9,10 31.51+8.57
−6.32 15.86+2.47

−3.62 4.49+0.16
−0.19

ANN - 1000 LHS 8,9,10 31.18+8.47
−6.08 14.97+2.91

−3.78 4.51+0.16
−0.17

ANN - 64 gridded 8,9,10 32.46+13.90
−5.72 12.52+3.47

−6.13 4.61+0.11
−0.13

ANN - 125 gridded 8,9,10 30.17+6.78
−5.04 12.97+4.09

−3.69 4.50+0.15
−0.16

ANN - 1000 gridded 8,9,10 31.32+7.52
−5.20 13.94+3.80

−4.68 4.50+0.16
−0.16

our posterior 1D marginalized parameter distributions are
not found to be gaussian, we compute the median and the
68% confidence interval defined by the region between the
16th and 84th percentile as our summary statistics in Table
1. We find excellent agreement between our method and
21CMMC for training sets of 103 and 104 samples at both
redshifts, and good agreement with 100 samples.

We observe that errors retrieved by our network can
be smaller than those obtained by 21CMMC, this is due
to systematics. During the training period, our ANN con-
structs a model which approximates the 21cmFAST model
and we proceed to sample the likelihood of the approxima-
tion. Therefore, assuming convergence of the chains, any dif-
ference between the recovered 68% confidence intervals are
most likely due to systematic difference between the two
models that are sampled. We estimate that we are subject
to these systematic effects on the 1% - 10% level for large
to small training sets, as per Figures 3 and 4.

The ζ − log Tvir panels in Figures 8 and 9 show that
the neural network is sensitive to the same multi-modality
found by 21CMMC, which is illustrated by the stripe fea-
ture at low Tvir and high ζ. This region represents a less
massive galaxies with a brighter stellar population, which
can mimic our fiducial observation. Such a galaxy popula-
tion would ionize the IGM earlier and thus by combining
multiple redshifts and adding information about the evolu-
tion of the ionization process, this degeneracy ought to be
lifted. Similarly, the Rmfp − log Tvir panel shows a clear bi-
modal feature for both 21CMMC and our neural network.
Comparing to the results at z = 8 in Figures 10 and 11, we

Figure 8. Comparison between the recovered 1σ and 2σ confi-
dence regions of 21CMMC (red dashed lines) and the ANN emu-

lator (blue solid lines) at z = 9. The ANN uses 1000 LHS for the

training set and a 104 training iterations. The dotted lines indi-
cate the true parameter values (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

see this multi-modal behaviour disappearing, which suggest
that this degeneracy can be lifted by adding information in
multiple redshift bins. Despite a clear downgrade of the fit
to the brute-force method in the shape of both the 2D con-
tours and the 1D marginalized posteriors, the training set
using 100 samples still encloses the true parameter values of
the observation in the 68% confidence interval as indicated
in Table 1.

6.2 Multiple Redshift Parameter Constraints

Figures 12 and 13 show the contraints obtained when com-
bining observations in three redshift bins at z = 8, 9 and 10
for training sets of 1000 and 100 samples per redshift respec-
tively. As noted in the previous section, adding information
about the evolution of the reionization process lifts some
of the degeneracies in our recovered parameter constraints
and both multi-modal features in the ζ − log Tvir and the
Rmfp − log Tvir panels could be lifted. Of note is that com-
bining multiple redshift bins highly improves the fit of the
neural network trained on only 100 samples per redshift. We
find that all our fiducial parameter values are well within the
68% confidence interval set our by the median and it’s 16th
and 84th percentile for even this sparse training set.

Additionally, we compare the inference of a network
trained on gridded training sets with similar sizes to our LH
sampled training sets. Both 53 and 103 training sets recover
similar constrains as the 100 LHS and 1000 LHS training
sets, consistent with our findings in Section 4. However, we
observe a clear deterioration of the predictive power as we re-
duce the number of gridded training parameters to 4 points
per parameter. Although the fiducial parameter values are
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Figure 9. Comparison between the recovered 1σ and 2σ confi-
dence regions of 21CMMC (red dashed lines) and the ANN emu-

lator (blue solid lines) at z = 9. The ANN uses 100 LHS for the

training set and a 104 training iterations. The dotted lines indi-
cate the true parameter values (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

Figure 10. Comparison between the recovered 1σ and 2σ confi-
dence regions of 21CMMC (red dashed lines) and the ANN emu-
lator (blue solid lines) at z = 8. The ANN uses 1000 LHS for the
training set and a 104 training iterations. The dotted lines indi-

cate the true parameter values (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

Figure 11. Comparison between the recovered 1σ and 2σ confi-
dence regions of 21CMMC (red dashed lines) and the ANN emu-

lator (blue solid lines) at z = 8. The ANN uses 100 LHS for the

training set and a 104 training iterations. The dotted lines indi-
cate the true parameter values (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

recovered within the 16th to 84th percentile in Table 1, we
fail to recover the fiducial values within the 2σ contours for
43 points.

6.3 Applications

With a speed-up of ∼ 3 orders of magnitude, 21cm power
spectrum emulation can be used for a variety of new or ex-
isting analyses, and we aim here to highlight some potential
uses:

(i) 21cm experimental design studies (eg. Greig et al.
(2015)) use much the same principle as our model param-
eter inference outlined above. By varying the experimental
layout or survey strategy, we effectively vary the noise power
spectrum PN (k) in Equation 1, and can thus fit the optimal
layout or survey strategy. These studies require fast model
evaluations in order to be able to compare a multitude of
survey strategies and experimental design.

(ii) We find that using small training sets of 100 model
evaluations, our emulation recovers parameter constraints to
a similar degree of accuracy as those obtained when evalu-
ating the model at each point in the chain. This may open
up the possibility to move away from semi-numerical models
such as 21cmFast and for the first time use radiative transfer
codes (Ciardi et al. 2003; Iliev et al. 2006; Baek et al. 2009,
2010) in EoR parameter searches. Semelin et al. (2017) have
recently produced a first database of 45 evaluations of their
radiative transfer code to provide 21cm brightness temper-
ature lightcones evaluated on a 3D grid. The power spectra
extracted from this database could be used as a training set
for an ANN emulator. However, our analysis suggests that
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Figure 12. Comparison between the recovered 1σ and 2σ confi-
dence regions of 21CMMC (red dashed lines) and the ANN em-

ulator (blue solid lines) combining redshifts z = 8, z = 9, and

z = 10. The ANN uses 1000 LHS for the training set at each
redshift and a 104 training iterations. The dotted lines indicate

the true parameter values (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

Figure 13. Comparison between the recovered 1σ and 2σ confi-
dence regions of 21CMMC (red dashed lines) and the ANN em-
ulator (blue solid lines) combining redshifts z = 8, z = 9, and

z = 10. The ANN uses 100 LHS for the training set at each red-
shift and a 104 training iterations. The dotted lines indicate the
true parameter values (ζ,Rmfp, log Tvir) = (30, 15, 4.48).

training sets with lower than 100 samples should be used
with caution.

(iii) In addition to determining the best fit parameters
of any given model, we would like to quantify the degree
of belief in our model in the first place. Future data will
be abundant, and as such we would like to be able to use
it to inform us about the choice of model that best fits the
data. Here too, the computational speed that emulation pro-
vides can be of use. Bayesian model comparison requires the
computation of the evidence as the integral of the likelihood
times the prior over all of parameter space. Nested sampling
algorithms such as MultiNest (Feroz et al. 2009) provide an
estimate for the evidence of a particular model together with
the evaluation of the posterior, and thus benefits greatly
from fast power spectrum computations.

(iv) The output nodes of the neural network treats each
k-bin of the 21cm power spectrum separately. The weights
of the trained network thus act to correlate the values in
each k-bin according to the training set. There is therefore
no restriction to predict other observables that are corre-
lated to the 21cm power spectrum using the same emulator.
The same network could thus encode the skewness or bis-
pectrum of the 21cm fluctuations at the same time assuming
the inclusion of these functions in the training sets.

7 CONCLUSION

With the advent of next generation telescopes such as MWA,
HERA and the SKA, a first detection of the cosmic 21cm sig-
nal from the Epoch of Reionization is expected to be made
within the next few years. In order to infer EoR param-
eters from these observations, expensive model evaluations
are needed to compare to the data. One avenue to reduce the
computational cost of model evaluations is by using machine
learning techniques to emulate the model. We show that em-
ulating the models using artificial neural networks can speed
up the model evaluations significantly, while maintaining a
high degree of accuracy. We use our ANN to train on a series
of training sets which consist of 21cm power spectrum eval-
uations produced by the semi-numerical code 21cmFast. As
the limiting factor now becomes the creation of the training
set, we study the evolution of the error on the power spec-
trum predictions as a function of the training size and find
that as few as 100 model evaluations may be sufficient to
recover reasonable constraints on the parameters, especially
when combining information across multiple redshift bins.
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