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Global environmental change has implications for the spatial and temporal 22	
distribution of water resources, but quantifying its effects remains a challenge. 23	
The impact of vegetation responses to increasing atmospheric CO2 24	
concentrations on the hydrological cycle is particularly poorly constrained1–3. 25	
Here we combine remotely sensed normalized difference vegetation index 26	
(NDVI) data and long-term water-balance evapotranspiration (ET) 27	
measurements from 190 unimpaired river basins across Australia during 1982-28	
2010 to show (a) that the precipitation threshold for water limitation of 29	
vegetation cover has significantly declined during the past three decades, 30	
while (b) sub-humid and semi-arid basins are not only ‘greening’ but also 31	
consuming more water, leading to significant (24–28%) reductions in 32	
streamflow. In contrast, wet and arid basins show non-significant changes in 33	
NDVI and reductions in ET. These observations are consistent with expected 34	
effects of elevated CO2 on vegetation. They suggest that projected future 35	
decreases in precipitation4

 will likely be compounded by increased vegetation 36	
water use, further reducing streamflow in water-stressed regions. 37	
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 1	
Experiments have shown that elevated atmospheric CO2 affects vegetation 2	
productivity and water use5. CO2 is the substrate for photosynthesis and 3	
concentrations above current ambient levels stimulate carbon assimilation by plants. 4	
This CO2 fertilisation effect should in principle lead to increased biomass and green 5	
vegetation cover (‘greening’). Simultaneously, increasing CO2 lowers stomatal 6	
conductance, reducing water loss through leaves. Reduced stomatal conductance 7	
and/or stimulated photosynthesis lead to enhanced water use efficiency, the amount 8	
of water required to produce a unit of biomass. The effect of CO2 on vegetation is 9	
commonly expected to manifest most strongly in water-limited environments6,7, 10	
where moisture is the main limitation on plant growth. However, not all studies show 11	
a strong link between aridity and the strength of the CO2 effect8 and the magnitude of 12	
associated greening and water savings are generally not well constrained across 13	
species and ecosystems9–11. 14	
 15	
CO2-induced structural and physiological changes in vegetation potentially have 16	
consequences for water resources. CO2 fertilisation and associated greening tends 17	
to increase vegetation water consumption by increasing the amount of transpiring 18	
leaf area, whereas reduced stomatal conductance tends to decrease transpiration 19	
per unit leaf area –two effects with opposing consequences for streamflow2. 20	
Furthermore, increased vegetation cover can change the partitioning of rainfall into 21	
rainfall interception, infiltration and runoff, while shading by increased foliage cover 22	
may lead to reductions in soil evaporation by decreasing the amount of radiation 23	
reaching the ground surface12. It remains unresolved whether these various 24	
processes in combination have led to a detectable imprint in ET or streamflow. At the 25	
global scale, both decreases and increases in ET due to CO2 have been reported1,2 26	
and the results appear to be data- and model-dependent3. The direction and 27	
magnitude of the CO2 effect on ET and streamflow thus remains poorly understood at 28	
catchment and regional scales. This situation is compounded by difficulties in 29	
estimating ET at large scales13,14. 30	
 31	
We investigated the correlates and potential causes of long-term changes in 32	
vegetation across Australia using remotely sensed NDVI. NDVI has been found to 33	
relate to primary productivity15, foliage cover16 and biomass17 and has been widely 34	
employed to quantify vegetation trends6,18,19 and processes20. We also examined 35	
long-term changes in ET and streamflow in unregulated, unimpaired Australian river 36	
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basins in climates of varying aridity. ET was assessed by the water balance method, 1	
which relies directly on observations of precipitation and streamflow. 2	
 3	
We first investigated the spatial distribution of long-term changes in NDVI across 4	
Australia. Large areas of Australia have undergone greening during 1982-2010 5	
(Figure 1a); precipitation explained about 50% of these trends (calculated as the 6	
coefficient of determination from a linear regression of NDVI and precipitation 7	
trends). Strong greening was observed particularly in water-limited areas (marked by 8	
positive NDVI-precipitation correlation; Figure 1b), where 65% of significant (P ≤ 9	
0.05) NDVI trends were positive (excluding areas of significant precipitation 10	
increase). 11	
 12	
We then quantified changes in the vegetation-precipitation relationship in areas of 13	
natural and semi-natural vegetation across Australia. By examining temporal 14	
changes in the upper 95th percentile bound for the spatial relationship between 15	
annual precipitation and NDVI (Figure 2, see Methods) we identified long-term 16	
changes in i) the maximum NDVI attainable for a given amount of precipitation, and 17	
ii) the extent of vegetation water limitation. We found that the maximum NDVI 18	
attainable for a given precipitation level has increased over time in water-limited 19	
areas (Figure 3a) (P = 0.059). This implies that a given amount of precipitation has 20	
sustained greater levels of plant production over time, which is consistent with CO2 21	
fertilisation. In addition, the breakpoint marking the precipitation limit where 22	
vegetation ceases to be water-limited decreased over time (P = 0.039) (Figure 3b). 23	
This trend indicates a relaxation of vegetation water limitation, consistent with the 24	
increased water use efficiency that is expected to accompany rising CO2. 25	
 26	
To analyse long-term changes in vegetation and hydrology at the river basin scale, 27	
we calculated CO2 sensitivity coefficients for NDVI and ET across basins grouped 28	
into four aridity categories (wet, sub-humid, semi-arid and arid), as theory would 29	
predict that a CO2 effect should differ systematically between the categories. The 30	
sensitivity coefficients express the fractional change in ET and NDVI per unit 31	
fractional change in CO2 concentration (after correcting ET and NDVI for precipitation 32	
and potential evapotranspiration (PET) variations, as detailed in Methods). A positive 33	
sensitivity coefficient of ET to CO2 of comparable magnitude to that of NDVI would 34	
indicate that a CO2 stimulation of vegetation cover dominates over a reduction in 35	
stomatal conductance with rising CO2, due to an increased surface area of leaves for 36	
transpiration and rainfall interception. A negative sensitivity coefficient of ET to CO2 37	
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(which can be of magnitude up to −1 at high CO2 concentrations) indicates that the 1	
reduction in stomatal conductance with rising CO2 dominates over the CO2 2	
stimulation of vegetation cover. We predict theoretical sensitivities around −0.6 in wet 3	
climates and −0.4 in arid climates due to the effect of a reduction in stomatal 4	
conductance with rising CO2 on ET (see Methods). 5	
 6	
In sub-humid and semi-arid basins, the data show a significant positive sensitivity 7	
coefficient of ET and NDVI to CO2 (0.44 ± 0.14 and 0.18 ± 0.08 for ET, 0.10 ± 0.04 8	
and 0.18 ± 0.11 for NDVI, respectively; Figure 4a). In sub-humid basins, the 9	
sensitivity coefficient of ET to CO2 is similar to the sensitivity coefficient of ET to 10	
precipitation (0.64 ± 0.05, calculated from uncorrected data; Supplementary Figure 11	
2a and Supplementary Table 2). In semi-arid basins, the sensitivity coefficient of ET 12	
to CO2 is about a fifth of its sensitivity coefficient to precipitation (0.86 ± 0.02). The 13	
CO2 concentration increased by 48 ppm during the period 1982-2010. Based on the 14	
sensitivity coefficients the CO2-induced ET increases during this time period amount 15	
to 43 mm in sub-humid and 14 mm in semi-arid basins, on average. These translate 16	
to a 6% and 2% increase, respectively, in mean annual ET (Figure 4b). The relative 17	
changes in mean annual ET due to CO2 are similar to those due to precipitation (-6% 18	
and 1%, respectively; Supplementary Figure 2b and Supplementary Table 5) and 19	
significantly larger than those due to PET (-1% and 0%, respectively; Supplementary 20	
Figure 2b and Supplementary Table 6). Together with significant positive NDVI 21	
sensitivity coefficients to CO2 (Figure 4a), this finding suggests an effect of rising CO2 22	
on both NDVI and ET, and that the fertilisation effect dominates over stomatal 23	
closure. 24	
 25	
In wet basins, the sensitivity coefficient of ET to CO2 was found to be negative 26	
(−0.42), consistent with theoretical predictions (see Methods), but this value was not 27	
statistically distinguishable from zero (Figure 4a). No greening was detected. In wet 28	
environments, vegetation cover is nearly complete and expected to be limited by light 29	
and nutrients rather than water. Thus limited greening should occur, and the principal 30	
effect of CO2 on ET would be a decline due to reduced stomatal conductance. 31	
 32	
We also found negative but non-significant CO2 coefficients on ET (–0.33 ± 0.55) and 33	
NDVI (–0.11 ± 0.34) in arid basins (Figure 4a). This finding runs counter to the 34	
common expectation that CO2 effects should be most pronounced in the most 35	
strongly water-limited environments. However, it is consistent with field experimental 36	
evidence showing no long-term change in biomass or water use efficiency under 37	
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elevated CO2 in a desert environment8. This lack of a detectable response has been 1	
attributed to a high frequency of years with very low precipitation, inhibiting any 2	
sustained increase in vegetation biomass8. Warm arid areas also tend to harbour a 3	
larger proportion of C4 grasses, which we estimate to cover 43% of the area in arid 4	
basins on average (further discussed in Supplementary Section 1). C4 plants show 5	
reduced stomatal conductance under elevated CO2, consistent with the observed 6	
reduction in ET, but the stimulation of photosynthesis in C4 plants is limited compared 7	
to C3 plants that dominate in cooler and wetter regions5,21 and only occurs under 8	
drought conditions5. The high proportion of C4 vegetation may thus further contribute 9	
to the lack of a CO2 fertilisation effect in arid basins. 10	
 11	
We investigated the implications of the long-term ET changes for streamflow. Where 12	
ET exceeds streamflow, changes in ET are magnified in streamflow. This was 13	
apparent in sub-humid and semi-arid basins, where a small (2-6%) increase in ET 14	
led to substantial percentage reductions in streamflow. Calculated streamflow 15	
(factoring out precipitation effects) declined during 1982-2010 by 24% in sub-humid 16	
basins and by 28% in semi-arid basins (Figure 4b), which, considering the CO2 17	
sensitivities for these regions, is consistent with a response to CO2. Given the actual 18	
observed declining trend in precipitation in the sub-humid basins (−3 mm/yr2, P < 19	
0.001; Supplementary Figure 4), increasing CO2 is likely to have aggravated the 20	
pressure on water resources in these basins. In arid basins, a 4% decrease in ET 21	
would have led to a 132% increase in streamflow and in wet basins a 5% ET 22	
decrease would have led to a 5% increase in streamflow. However, neither effect is 23	
statistically significant, so we cannot detect a CO2 effect on streamflow in either the 24	
wettest or the driest regions on the basis of these measurements. 25	
 26	
Our results provide evidence that rising atmospheric CO2 has led to observable 27	
changes in terrestrial ecosystems and hydrology across a large part of Australia, with 28	
implications for carbon and water cycling at regional to global scales. Terrestrial 29	
ecosystems worldwide currently withdraw about a quarter of all anthropogenically 30	
emitted CO2 when averaged over a decade22. A recent study23 showed that semi-arid 31	
areas, particularly in Australia, play a major regional and even global role in 32	
modulating interannual variations in the rate of terrestrial carbon uptake. Increased 33	
carbon sequestration rates due to CO2-induced greening in these semi-arid regions 34	
may lead to enhanced uptake of CO2 from the atmosphere in the future. 35	
Furthermore, the response to rising CO2 has the potential to either magnify or 36	
counteract future changes in precipitation. Precipitation is projected to decline in 37	
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semi-arid and arid Australia during the 21st century4 and increasing CO2 is thus likely 1	
to put further pressure on water resources in already water-stressed regions. Our 2	
results may have similar implications for other water-limited subtropical regions in the 3	
Mediterranean, southern Africa and the Americas where precipitation is also 4	
projected to decline with increasing global temperature4. We conclude that increasing 5	
atmospheric CO2 has likely left a detectable imprint on Australian ecosystems and 6	
hydrology, and such responses should be taken into account in future projections of 7	
water resources. 8	
 9	
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Methods 1	
 2	
Core datasets 3	
 4	
Normalised Difference Vegetation Index. We obtained a time series of third-5	
generation NDVI (NDVI3g) from the Global Inventory Modelling and Mapping Studies 6	
(GIMMS)24. This dataset is gridded at 0.083° spatial resolution and was averaged 7	
from biweekly to annual time steps. The annual average for a given grid cell was 8	
determined only if >80% of biweekly values were available and was set to missing 9	
otherwise. Similarly, pixel trends were only calculated for pixels with annual time 10	
series >80% complete. Basin-specific NDVI values were obtained by averaging 11	
gridded data over basin areas.  12	
 13	
Climatic variables. Monthly climatic fields (precipitation, minimum and maximum air 14	
temperature and shortwave radiation) were obtained from the ANUCLIM archive25. 15	
The Australia-wide data are gridded at 0.05° spatial resolution and were produced by 16	
the ANUSPLIN software package25,26 from meteorological station data using a thin-17	
plate smoothing spline.  18	
 19	
Annual time series of atmospheric CO2 concentrations was obtained from National 20	
Oceanic & Atmospheric Administration Earth System Research Laboratory (NOAA 21	
ESRL; www.esrl.noaa.gov/gmd/ccgg/trends/). The data report the mean annual CO2 22	
concentration measured at Mauna Loa observatory in parts per million. We ignored 23	
latitudinal differences in CO2 concentration as these are small compared to the signal 24	
of interest. 25	
 26	
Potential evapotranspiration (PET) was calculated using the Priestley-Taylor method 27	
as in Gallego-Sala et al. (2010)27, using inputs of shortwave radiation and the mean 28	
of minimum and maximum air temperature from the ANUCLIM archive. The 29	
Priestley-Taylor method has been shown to be appropriate for estimating large-scale 30	
PET28,29 and has been adopted in other basin-scale studies14,30,31.  31	
 32	
Water-balance evapotranspiration. Water-balance evapotranspiration was 33	
calculated as the difference of observed annual precipitation and streamflow 34	
integrated over the river basin area. The water-balance method remains the most 35	
firmly observationally-based estimator of ET, but assumes negligible changes in soil 36	
water storage at annual to decadal time scales (see Supplementary Section 1 for 37	
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further discussion). Streamflow time series were acquired from the Zhang et al. 1	
(2013)32 streamflow collation for unregulated catchments across Australia. Gaps in 2	
the water-balance ET time series (accounting for <5% of monthly records) were filled 3	
using simulations from the Australian Water Availability Project33, further detailed in 4	
Supplementary Section 1. 5	
 6	
Study basins. The 190 study basins were chosen based on the completeness of 7	
streamflow records (> 95%) and the extent of irrigated and farmed land (< 5% of 8	
basin area). The basins were classified into wet, sub-humid, semi-arid and arid using 9	
the climatological aridity index A (A = PET/P, where PET = annual mean potential ET 10	
and P = annual mean precipitation) (see Supplementary Figure 1 for basin locations 11	
and aridity classification). River basins with mean annual aridity index <1 were 12	
classified as wet, 1-2 as sub-humid, 2-5 as semi-arid and >5 as arid (adapted from 13	
UNEP (1997)34). See Supplementary Section 1 for further details on basin selection 14	
and classification criteria. 15	
 16	
Breakpoint regression  17	
 18	
Five-year running mean NDVI values were binned according to their corresponding 19	
precipitation values. Following Donohue et al. (2013)6, the 95th percentile value was 20	
determined for each 20 mm wide precipitation bin separately for each running mean. 21	
Breakpoint regression was applied to the 95th percentile values to calculate the first 22	
regression slope marking the maximum NDVI attainable for a given precipitation and 23	
the breakpoint where the vegetation-precipitation relationship plateaus and 24	
vegetation ceases to be water-limited. We then constructed time series of the slopes 25	
and breakpoints (Figure 3) and determined linear trends for both variables. As 26	
running means were used to construct the time series, degrees of freedom were 27	
adjusted when determining the significance of trends. Farmlands, irrigated areas and 28	
wetlands were excluded from this analysis using the Dynamic Land Cover Dataset of 29	
Australia35 (see Supplementary Section 1).  30	
 31	
CO2 sensitivity coefficients 32	
 33	
Estimation of observed CO2 coefficients. Dimensionless CO2 sensitivity 34	
coefficients were calculated from NDVI and ET corrected for precipitation and PET (a 35	
function of temperature and shortwave radiation). Precipitation and PET present the 36	
main climatic constraints on plant growth36 and are the two first-order controls on 37	
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ET37. The effects of precipitation and PET were removed using linear regression: 1	
separately for each basin, annual ET (E) and NDVI were regressed against 2	
precipitation and PET and the annual corrected values were calculated as the sum of 3	
regression residual and the 1982-2010 mean of the variable. The corrected annual 4	
variables were then log-transformed and regressed against log-transformed annual 5	
CO2 concentrations (Ca) to derive the CO2 sensitivity coefficients σET = ∂lnE/∂lnCa 6	
and σNDVI = ∂lnNDVI/∂lnCa. The sensitivity coefficients represent the fractional 7	
change in the relevant variable per unit fractional change in CO2, so that a change in 8	
ET (mm) due to CO2 is well approximated by ΔE/E ≈ σE.ΔCa/Ca for ΔΕ << Ε and ΔCa 9	
<< Ca (as in this study). ET and NDVI sensitivities to precipitation were calculated 10	
from uncorrected data using the same principles (further detailed in Supplementary 11	
Section 2). 12	
 13	
Prediction of theoretical ET sensitivity to CO2. Theoretical sensitivity of ET (E) to 14	

CO2 concentration (Ca) for C3 photosynthesis on a unit leaf area basis can be 15	

calculated by writing the CO2 assimilation rate (A) and E in the form of diffusion 16	

equations: 17	

A  =  gs Ca (1 – χ)         (1) 18	

and 19	

E  =  1.6 gs D          (2) 20	

where gs is the stomatal conductance to CO2, χ is the ratio of internal CO2 
21	

concentration (Ci) to Ca, and D is the vapour pressure deficit. χ is a function of D and 22	

leaf temperature38,39 and typically takes values from 0.4-0.5 in arid climates to 0.8-0.9 23	

in wet climates. Substitution of gs from equation (1) into equation (2) yields 24	

E  =  1.6 (D/Ca) A/(1 – χ)        (3) 25	

Differentiating with respect to Ca, holding D and χ constant, gives: 26	

σΕΤ  =  (Ca/E) ∂E/∂Ca  =   σΑ – 1       (4) 27	

where σA is the sensitivity of A to Ca: 
28	

σA  =  (Ca/A) ∂A/∂Ca         (5) 29	
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Equation (4) implies that the sensitivity of E to Ca approaches –1 as the CO2 
1	

fertilization effect on A saturates. However, so long as A is increasing with Ca, the 2	

sensitivity is smaller in magnitude than –1. The sensitivity of A to Ca can be 3	

calculated conservatively by invoking the co-ordination hypothesis (approximate 4	

equality of the carboxylation- and electron transport-limited rates of photosynthesis 5	

under field conditions: see e.g. Maire et al. (2012)40). With the further assumption 6	

that limitation by the maximum rate of electron transport (Jmax) is not relevant in the 7	

field (because Rubisco limitation takes over at the highest light levels), we can 8	

express the assimilation rate as 9	

A  =  φ0 Iabs (Ci – Γ*/Ca)/(Ci + 2Γ*/Ca)       (6) 10	

where φ0 is the intrinsic quantum efficiency of C3 photosynthesis, Iabs is the absorbed 11	

photosynthetic photon flux density and Γ* is the photorespiratory compensation point. 12	

Differentiating A with respect to Ca, holding χ constant, gives: 13	

σΑ  =  Γ*/Ca [1/(χ – Γ*/Ca) + 2/(χ + 2Γ*/Ca)]      (7) 14	

Evaluating equations (7) and then (4) at 25˚C, Ca = 370 ppm for illustration gives σE = 15	

–0.61 for χ = 0.8 and –0.38 for χ = 0.5. 16	

 17	

 18	
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Figures 9	
 10	

 11	

Figure 1 | Spatial patterns of vegetation greening. a, Pixel-by-pixel linear trends in 12	
annual NDVI. b, Areas of water-limited vegetation, determined as pixels with 13	
significant (P ≤ 0.10) positive annual NDVI-precipitation correlations. Non-significant 14	
or negative correlations were masked out from panel b. Farmlands, irrigated areas 15	
and wetlands have been masked out from both panels. 16	

 17	
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 1	
Figure 2 | Illustration of the breakpoint regression method. The first regression 2	
line represents the maximum NDVI attainable for a given amount of precipitation, 3	
under water-limited conditions. The breakpoint signifies the threshold where 4	
vegetation ceases to be water-limited. The data are the running mean 1983-1987. 5	
The coloured bands show the different percentiles. 6	
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	1	
Figure 3 | Trends in water limitation threshold characteristics. a, the initial slope 2	
of maximum NDVI versus precipitation. b, the breakpoint (the precipitation level 3	
above which vegetation is no longer water-limited). Error bars are 95% confidence 4	
intervals. The black dashed lines show fitted linear trends. 5	
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	1	
Figure 4 | CO2 effects on ET, NDVI and runoff. a, Mean CO2 sensitivity coefficients 2	
for each group of basins. The error bars are 95% confidence intervals. b, Relative 3	
change in ET and runoff due to CO2 increase during 1982-2010. Non-significant (ns) 4	
changes in wet and arid basins were not shown. 5	
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