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ABSTRACT 
Data quality is fundamentally important to ensure 

the reliability of data for stakeholders to make 
decisions.   In real world applications, such as scientific 
exploration of extreme environments, it is unrealistic 
to require raw data collected to be perfect. As data 
miners, when it is infeasible to physically know the 
why and the how in order to clean up the data, we 
propose to seek the intrinsic structure of the signal to 
identify the common factors of multivariate data. 
Using our new data-driven learning method—the 
common-factor data cleaning approach, we address an 
interdisciplinary challenge on multivariate data 
cleaning when complex external impacts appear to 
interfere with multiple data measurements. Existing 
data analyses typically process one signal 
measurement at a time without considering the 
associations among all signals. We analyze all signal 
measurements simultaneously to find the hidden 
common factors that drive all measurements to vary 
together, but not as a result of the true data 
measurements. We use common factors to reduce the 
variations in the data without changing the base mean 
level of the data to avoid altering the physical meaning.  

We have reanalyzed the NASA Mars Phoenix 
mission data used in the leading effort by Kounaves’s 
team (lead scientist for the wet chemistry experiment 
on the Phoenix) [1, 2] with our proposed method to 

show the resulting differences. We demonstrate that 
this new common-factor method successfully helps 
reducing systematic noises without definitive 
understanding of the source and without degrading the 
physical meaning of the signal. 
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1. INTRODUCTION 
 

Data quality is fundamentally important for 
domain scientists. In real world applications, such as 
scientific exploration of extreme environments, it is 
unrealistic to require data collection to be perfect. Our 
motivating application is to recover the true chemical 
analysis data from the Wet Chemistry Laboratory 
(WCL) on the 2008 Phoenix Mars Lander (Fig. 1 & 
[1]). The WCL collected over three-million data points 
and performed the first comprehensive wet chemical 
analysis of the soil on Mars. The initial data has 
provided new scientific insights into the history of 
Mars, its potential for supporting microbial life, and 
even its atmospheric chemistry, with resulting 
publications in Science [4]. Six years later less than 1% 
of the WCL data has been manually studied [2]. The 
main reason for this is the noise introduced by 
unexpected instrumental and environmental factors on 
Mars make data interpretation an ill-posed problem if 
data cleaning solely relies on the chemical and physical 
models understood on Earth.  
 

  
As data miners, when it is infeasible to physically 

know the why and the how in order to clean up the data, 
we propose to seek the intrinsic structure of the signal 
to identify the common factors of multivariate data. 
The existing state-of-the-art denoising methods, 
including Fourier filtering [8], Kalman smoothing [9] 
[12], Gaussian smoothing [10], and Hidden Markov 
Model denoising [11], do not work well for this type of 
problem because they are designed to cope with a 

single data measurement, ignoring the associated 
shared behavior among multiple datasets. In [13-16], 
the principles of identifying common-mode 
regularities were discussed to identify a simplifying 
structure, shared trends in financial data and co-
variance selection in biological data, but not for the 
data cleaning using common external factors which is 
a quite different problem.   

We study the intrinsic characteristics of the data and 
propose a new common-factor removal method that 
utilizes multiple sensor measurements simultaneously 
to find the hidden shared factors which drive all 
measurements to vary simultaneously. These common 
factors represent the errors and variations caused by the 
combined and complicated influence of common 
varying external factors. We iteratively estimate the 
common factors by minimizing the sum of squared 
errors of all the sensor data. We then clean the data by 
removing the effects of these common factors (details 
in Section 2). We compare our proposed method with 
state-of-the-art data denoising methods (details in 
Section 3).  We reanalyze the WCL data used in the 
leading effort by Kounaves et al. [2] with our proposed 
method to show the data quality improvement (details 
in Section 4).  

The contribution of this paper is that we address an 
interdisciplinary challenge to provide a new and 
physically meaningful data cleaning method to 
improve data quality in scientific data. The proposed 
common-factor data cleaning approach is designed for 
a scenario when multiple data measurements are 
impacted together by an unknown and hard-to-
reproduce real-world environment. In the Martian data 
analysis, we demonstrate that this new common-factor 
method can help reduce systematic noise without 
definitive understanding of the source and without 
degrading the physical meaning of the signal. Our 
results successfully lead to a more accurate 
measurement of the soil chemistry on. Though the idea 
of common factors is used in many fields [5, 13 – 16], 
to the best of our knowledge, we are the first research 
team to use the idea of common hidden factors on data 
cleaning. 
 

 
 

Figure 1. Left: Schematic diagram of the 
WCL interior with various components (not 
to scale); Right: The WCL on Mars after the 
first analysis [2]. 
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2. METHODOLOGY  
Let us assume that there are I signal sensors to collect 
data simultaneously. In the WCL data, these are I Ion 
Selective Electrode (ISE) sensors in the same beaker 
measuring various ions of interest. Let 𝐸𝐸𝑡𝑡

(𝑖𝑖) denote the 
measured value for signal 𝑖𝑖 ∈ {1, … , 𝐼𝐼} at time 𝑡𝑡 ∈
{𝑡𝑡1, … , 𝑡𝑡𝑛𝑛}. So the observed data are 

�𝑡𝑡,𝐸𝐸𝑡𝑡
(1), … ,𝐸𝐸𝑡𝑡

(𝐼𝐼)�
𝑡𝑡=𝑡𝑡1

𝑡𝑡𝑛𝑛
. In an ideal world of data 

collection, each signal data measurements over time 

should be a constant plus a random measurement error, 
i.e.  

                 𝐸𝐸𝑡𝑡
(𝑖𝑖) = 𝜇𝜇(𝑖𝑖) + 𝜀𝜀𝑡𝑡

(𝑖𝑖),                                   (1) 

where 𝜀𝜀𝑡𝑡
(𝑖𝑖) denotes the measurement error for signal i 

at time t, 𝜇𝜇(𝑖𝑖) denotes the constant representing real 
potential for signal i. The 𝜇𝜇(𝑖𝑖) does not change with 
time, and 𝜀𝜀𝑡𝑡

(𝑖𝑖) is a random white noise so its value at 
different times or for different signals are independent, 
it follows  

 
corr �𝜀𝜀𝑡𝑡1

(𝑖𝑖1), 𝜀𝜀𝑡𝑡2
(𝑖𝑖2)� = 0   for  𝑖𝑖1 ≠ 𝑖𝑖2  or  𝑡𝑡1 ≠ 𝑡𝑡2

𝑉𝑉𝑉𝑉𝑉𝑉 �𝜀𝜀𝑡𝑡
(𝑖𝑖)� = 𝜎𝜎𝑖𝑖2 > 0

        

(2) 
 

If this is the case, the estimated measurement and 
associated error would simply be data mean �̂�𝜇(𝑖𝑖) =
𝐸𝐸(𝚤𝚤)����� = 1

𝑛𝑛
∑ 𝐸𝐸𝑡𝑡𝑘𝑘

(𝑖𝑖)𝑛𝑛
𝑘𝑘=1  and standard deviation of mean 

 𝜎𝜎�𝑖𝑖�
1
𝑛𝑛
 where 𝜎𝜎�𝑖𝑖2 = 1

𝑛𝑛−1
∑ (𝐸𝐸𝑡𝑡𝑘𝑘

(𝑖𝑖) − 𝐸𝐸(𝚤𝚤)�����)2𝑛𝑛
𝑘𝑘=1 .  

But in reality when complex external impacts 
appear to interfere with multiple data measurement, we 
will observe deviations from the ideal case. For 
example, as illustrated in Fig.2 of Martian soil data, 
different signal measurements were correlated, 
exhibiting systematic fluctuations.   

Our data-cleaning goal, formally speaking, is to 
remove the deviations to regain the forms of Eqs. (1) 
and (2).  
Formulation and Algorithm. Let K denotes the 
number of common factors, 𝑭𝑭𝒌𝒌𝒌𝒌 the kth common factor 
at time t. The observed data can be modeled as  
 

         𝑬𝑬𝒌𝒌
(𝒊𝒊) = 𝝁𝝁(𝒊𝒊) + 𝜷𝜷𝟏𝟏

(𝒊𝒊)𝑭𝑭𝟏𝟏𝒌𝒌 +⋯+ 𝜷𝜷𝑲𝑲
(𝒊𝒊)𝑭𝑭𝑲𝑲𝒌𝒌 + 𝜺𝜺𝒌𝒌

(𝒊𝒊)     
(3) 
 

where 𝛽𝛽1
(𝑖𝑖), … ,𝛽𝛽𝐾𝐾

(𝑖𝑖) are the coefficients of the K 
common factors for signal i, and 𝜀𝜀𝑡𝑡

(𝑖𝑖) are random noise 
as in Eq. (2). Notice that the common factors are the 
same for all multivariate data, but their influences on 
each signal may be different due to its different 
physical properties which is reflected in the 
coefficients 𝛽𝛽(𝑖𝑖)𝑠𝑠 for that signal. We want to use 
common factors to help us reduce the variations in the 
data without changing the base mean level of the data. 
So we require the base mean of factors to be zero.  

 

 
 

Figure 2. K+, Na+, Mg2+, Ca2+, NH4
+, Cl-, and 

CIO4
- sensor data (better viewed in color). 

The two solid vertical lines indicate the 
addition of the calibrant crucible and the soil 
sample. First pair of dashed vertical lines 
marks the Calibrant Interval and second pair 
marks the Soil Sample Interval. Data in these 
two intervals will be used to do further 
analyses. Time is spacecraft clock (SCLK) 
time in seconds. Top: Cell 0 data on Martian 
Solar Day sol 30, Middle: Cell 1 data on sol 
41, Bottom: Cell 2 data on sol 107. 
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The cleaned data to be calculated are 

        𝐸𝐸𝑡𝑡
∗(𝑖𝑖) = 𝐸𝐸𝑡𝑡

(𝑖𝑖) − 𝛽𝛽1
(𝑖𝑖)𝐹𝐹1𝑡𝑡 − ⋯− 𝛽𝛽𝐾𝐾

(𝑖𝑖)𝐹𝐹𝐾𝐾𝑡𝑡 = 𝜇𝜇(𝑖𝑖) +
𝜀𝜀𝑡𝑡

(𝑖𝑖)    (4) 
 
Parameter Estimation. Let observed data matrix of 
ISE sensor measurements be 

𝔼𝔼𝑛𝑛×𝐼𝐼 = �
𝐸𝐸𝑡𝑡1

(1) … 𝐸𝐸𝑡𝑡1
(𝐼𝐼)

⋮ ⋱ ⋮
𝐸𝐸𝑡𝑡𝑛𝑛

(1) … 𝐸𝐸𝑡𝑡𝑛𝑛
(𝐼𝐼)
� = �

𝑬𝑬′𝑡𝑡1
⋮

𝑬𝑬′𝑡𝑡𝑛𝑛
� =

�𝑬𝑬(1), … ,𝑬𝑬(𝐼𝐼)�,  

where 𝑬𝑬′𝑡𝑡𝑙𝑙 , 𝑬𝑬
(𝑖𝑖) are the lth row and ith column vectors 

of 𝔼𝔼. 
The model parameters are  

𝔹𝔹𝐼𝐼×𝐾𝐾 = �
𝛽𝛽1

(1) … 𝛽𝛽𝐾𝐾
(1)

⋮ ⋱ ⋮
𝛽𝛽1

(𝐼𝐼) … 𝛽𝛽𝐾𝐾
(𝐼𝐼)
� = (𝜷𝜷1, … ,𝜷𝜷𝐾𝐾), 

𝔽𝔽𝑛𝑛×𝐾𝐾 = �
𝐹𝐹1𝑡𝑡1 ⋯ 𝐹𝐹𝐾𝐾𝑡𝑡1
⋮ ⋱ ⋮

𝐹𝐹1𝑡𝑡𝑛𝑛 ⋯ 𝐹𝐹𝐾𝐾𝑡𝑡𝑛𝑛
� = (𝑭𝑭1, … ,𝑭𝑭𝐾𝐾), 

𝝁𝝁 = (𝜇𝜇(1), … , 𝜇𝜇(𝐼𝐼))′, Σ = diag(𝜎𝜎12, … ,𝜎𝜎𝐼𝐼2), 
where  𝜷𝜷𝑘𝑘 and 𝑭𝑭𝑘𝑘 are the kth column vector of 
coefficient matrix 𝔹𝔹  and factor matrix 𝔽𝔽 respectively 
and Σ is the diagonal variance matrix.  

Given observed data 𝔼𝔼, our goal here is estimate 𝔹𝔹, 
𝔽𝔽, 𝝁𝝁  and Σ by minimizing sum of squared errors in Eq. 
(5) 

 𝑆𝑆 = ∑ ∑ �𝐸𝐸𝑡𝑡
(𝑖𝑖) − 𝐸𝐸�𝑡𝑡

(𝑖𝑖)�
2

𝑡𝑡
𝐼𝐼
𝑖𝑖=1 = ∑ 𝑠𝑠𝑡𝑡𝑡𝑡 = ∑ 𝑆𝑆(𝑖𝑖)𝐼𝐼

𝑖𝑖=1         
(5)                  

 

where 𝐸𝐸�𝑡𝑡
(𝑖𝑖) = 𝜇𝜇(𝑖𝑖) + 𝛽𝛽1

(𝑖𝑖)𝐹𝐹1𝑡𝑡 + ⋯+ 𝛽𝛽𝐾𝐾
(𝑖𝑖)𝐹𝐹𝐾𝐾𝑡𝑡, and 

                         𝑠𝑠𝑡𝑡 = ∑ �𝐸𝐸𝑡𝑡
(𝑖𝑖) − 𝐸𝐸�𝑡𝑡

(𝑖𝑖)�
2𝐼𝐼

𝑖𝑖=1                     
(6) 

                         𝑆𝑆(𝑖𝑖) = ∑ �𝐸𝐸𝑡𝑡
(𝑖𝑖) − 𝐸𝐸�𝑡𝑡

(𝑖𝑖)�
2

𝑡𝑡                      
(7) 

Starting from an initial value of 𝜽𝜽 = (𝔹𝔹,𝝁𝝁, Σ), we will 
do the minimization by alternately performing estimate 
factors 𝔽𝔽 given model parameters 𝜽𝜽, and 
estimate 𝜽𝜽 given 𝔽𝔽. Algorithm 1 describes the common 
factor approach.  
 

Algorithm 1 Common-factor Learning with Least 
Square Regression 

Step I. Initialization.  
Apply statistical factor analysis to get initial 
estimates for 𝔹𝔹, 𝝁𝝁, and diagonal variance matrix Σ. 
 

Step II. Iteration: repeat 1 and 2 until converge.  
1. Estimate 𝔽𝔽 for a given 𝜽𝜽 = (𝔹𝔹,𝝁𝝁, Σ).  

a) For each t, perform weighted least square 
regression of (𝑬𝑬𝑡𝑡 − 𝝁𝝁) on 𝜷𝜷1, … ,𝜷𝜷𝐾𝐾 to 
get new estimates of common factors. 
This gives 
  
𝔽𝔽′ = (𝔹𝔹′Σ−1𝔹𝔹)−1𝔹𝔹′Σ−1(𝔼𝔼 − 𝕌𝕌)′,  
 

where 𝕌𝕌 = �
𝜇𝜇(1) ⋯ 𝜇𝜇(𝐼𝐼)

⋮ ⋱ ⋮
𝜇𝜇(1) ⋯ 𝜇𝜇(𝐼𝐼)

�. 

b) Set trimmed mean of each factor to zero.  
For each factor, let 

𝑭𝑭𝑘𝑘 ← 𝑭𝑭𝑘𝑘 −𝑚𝑚𝑘𝑘, 
where 𝑚𝑚𝑘𝑘 is the trimmed mean of kth 
factor calculated by  
𝑚𝑚𝑘𝑘 = mean{𝐹𝐹𝑡𝑡𝑘𝑘: |𝐹𝐹𝑡𝑡𝑘𝑘 − mean(𝑭𝑭𝑘𝑘)|

≤ 𝑐𝑐 ∙ 𝜎𝜎(𝑭𝑭𝑘𝑘)} 
 
Therein 𝜎𝜎(𝑭𝑭𝑘𝑘) is the standard deviation 
of 𝑭𝑭𝑘𝑘, and c is a constant.  
 

2. Estimate 𝜽𝜽 for given 𝔽𝔽.  
For given 𝔽𝔽, fit the model in Eq. (3) for each 
ion i by least square linear regression, i.e. 
regress 𝑬𝑬(𝑖𝑖) on 𝑭𝑭1, … ,𝑭𝑭𝐾𝐾. This step gives the 
new estimates for 𝜽𝜽 = (𝔹𝔹,𝝁𝝁, Σ). 

 
Step I initializes the algorithm by the statistical 

factor analysis [5]. It produces reasonably good initial 
values for 𝔹𝔹 before our search starts, but it doesn’t 
minimize the sum of squared errors for the ISE signals 
and thus cannot fulfill our goal. We need step II to 
iteratively perform the minimization.  

Step II.1 uses estimated coefficients as known to 
estimate factor scores by minimizing 𝑠𝑠𝑡𝑡 in Eq. (6) for 
each t, which results in the ordinary least square 
regression. Since each signal may have different 
variance we modify this step using weighted least 
square regression instead of the ordinary least square 
regression.  Step II.2 uses estimated factors as knowns 
to get a new estimate of coefficients by minimizing 𝑆𝑆(𝑖𝑖) 
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in Eq. (7) for each signal i. We alternately use Step II.1 
and Step II.2 until the sum of squared error stops 
decreasing.  

Step II.1.b) makes sure the trimmed mean of each 
factor is zero to serve the goal of cleaning up the 
variation part but not the base mean level part of the 
data. Without a good reason, the data base mean level 
should not be altered by any data cleaning method 
because it would change the physical meaning of the 
data. Common factors are capable of finding spikes 
(see factor plots in Fig. 7). We set the trimmed mean, 
instead of the regular mean, to be zero to reduce the 
influence of large outliers (spikes) on the base mean 
level of factors and in turn on the base mean of the data. 
In our calculation of the trimmed mean we suggest to 
statistically choose c = 2.326 which corresponds to 
99%-percentile of standard normal distribution. 

 
Determination of Number of Common Factors. 

When the number of factors increases, the total sum 
squared error in Eq. (5) will decrease. In the extreme 
case, the errors would decrease to zero if the number of 
factors is greater than or equal to the number of 
variables in the observed data. Our purpose is to use 
common factors to clean the data by removing 
influences that are believed common to variations of all 
ISE measurements, not the random intrinsic 
measurement error,  𝜺𝜺𝒌𝒌

(𝒊𝒊) in Eq. (1), which every device 
independently has. The key word here is common. So 
if adding a factor only decreases error of a single ISE 
measurement, this is not considered a common factor 
and is not used in the method. Our strategy is to try a 
range of number of factors starting from 0 factors, and 
stop when no significant multiple error decreases are 
observed. For example, the search will stop if the 
decrease of 𝝈𝝈𝒊𝒊𝟐𝟐 is bigger than some critical value only 
in one ion. 
 

3. COMPARATIVE STUDIES USING 
SYNTHETIC DATA 
Our goal of multivariate data cleaning is to identify the 
common variation part in the multiple series and regain 
the original data distribution in the forms of Eqs. (1) 
and (2). It leaves the measurement errors (white noise) 
alone while providing good estimates of the true mean 
and standard deviation of the estimates. In order to 
evaluate the performance the common-factor cleaning 
method, we compare it with commonly used methods 
of data cleaning for scientific applications including 
the Fourier filtering approach and Kalman smoother 

approach. The Fourier filtering method gives the 
estimate of the underlying mean but no associated 
errors. The Kalman smoother gives both mean and 
associated errors but needs a model, if the model is Eq. 
(1), the Kalman smoother just estimates the mean and 
prediction error by the data mean and standard 
deviation of the mean. 

In the existing Marian soil data analysis, Kounaves 
et al. [2] used Fourier filtering method to get rid of the 
high frequency variations in WCL data. Toner et al. [3] 
used Kalman smoothing method with random walk 
plus noise model: 𝐸𝐸𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡   &  𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝜂𝜂𝑡𝑡  . In 
our comparative studies, we keep the same settings for 
both methods. 

 
Data Generation and Distribution. In our 

experiments, we simulate three independent series 
from model 𝜇𝜇 + 𝜀𝜀𝑡𝑡 with 𝜀𝜀𝑡𝑡 following a standard normal 
distribution 𝜀𝜀𝑡𝑡~𝑁𝑁(0,1) and 𝜇𝜇 = 1, 5 & 10 respectively 
for the three series, each with 100 data points (Fig. 3a). 
We then add 1 common factor 𝐹𝐹𝑡𝑡 (Fig. 3b) to 
contaminate series 1 to 3 in increasing degree (𝐹𝐹𝑡𝑡, 1.5𝐹𝐹𝑡𝑡 
& 2𝐹𝐹𝑡𝑡) to simulate the observed series (Fig. 3c). We 
then apply on the contaminated series the Fourier 
filtering (Fig. 3d), Kalman smoother (Fig. 3e) and 
common-factor method (Fig. 3f) to clean the data. Fig. 
3 clearly shows the difference of the common-factor 
cleaning method from the other methods, the white 
noises are still in after common-factor cleaning. Figs. 
3a and 3f illustrate the strong similarity between the 
common-factor cleaned data and the original 
uncontaminated data, while Fourier filter and Kalman 
smoother (Figs. 3d and 3e) fail to recover the true data 
distribution. 

 
Mean and Associated Error. Kalman smoother 

gives both mean and associated prediction error, we 
compare the common-factor cleaning method and the 
Kalman smoother method in terms of finding the mean 
and associated error. To do this, we perform the above 
mentioned simulation 1,000 times and apply the 
cleaning methods and then calculate the mean and 
associated error for each method. Hence we have 1,000 
estimated means and standard errors (distribution of 
these 1000 estimated means and standard errors are in 
Figs 4 & 5). For simplicity, the associated error for 
Kalman smoother here is taken as the square root of the 
mean Kalman variance which is smaller than that used 
in Toner et al. [3] because they also included the 
variation in mean estimates at different time points.  
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Estimation of Mean. For the three uncontaminated 
series, their true means are 1, 5 &10 respectively. 
Figure 4 shows that the Kalman smoother cleaned 
series (Fig. 4c) is very similar to that of the 
contaminated series (Fig. 4b) instead of the 
uncontaminated series (Fig. 4a). On the other hand, the 
common-factor cleaned series is more like the 
uncontaminated series: both centered on the same true 
mean (Figs. 4a & 4d). This shows the common-factor 
cleaning method’s ability to remove systematic 
deviations while leaving the true mean unaffected.  

 
Estimation of Standard Deviation. For the three 

uncontaminated series, the true standard deviations of 
100 data point means are 0.1. Figure 5 shows the 
distribution of the standard deviation of the mean. The 
contaminated series (Fig. 5b) and the Kalman smoother 
cleaned series (Fig. 5c) are both centered on similar 
values which are much larger than the true value. The 
common-factor cleaned data (Fig. 5d) have a standard 
error much closer to the true value (Fig. 5a), but it 
underestimates the error in series with larger 
variations. 

 
 

4. ANALYSIS OF MARTIAN SOIL 
DATA 
Our evaluation using the simulated data are consistent 
with the assumption that the common variations 
between the individual data sets can be isolated and 
removed by analyzing the behavior of the data sets as 
a unit. In this section, we apply the common-factor 
cleaning method to the Wet Chemistry Laboratory 
(WCL) data from Phoenix lander mission.  

 
 

 
Figure 3. (a) uncontaminated series, (b) 
common-factor series,  (c) contaminated series, 
(d) Fourier filtering, (e) Kalman smoother,  
and (f) common-factor cleaned series 

 
 

Figure 4. Histograms of series mean. (a) 
uncontaminated, (b) contaminated, (c) Kalman 
smoother cleaned, and (d) common-factor 
cleaned series. Top to bottom: series 1 to 3. Red 
vertical line is the true mean. 
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4.1 WCL data from Phoenix lander 

The Wet Chemistry experiments used four identical 
WCL cells, Cells 0, 1, 2 and 3, to analyze the soluble 
contents of the Martian regolith.  The analyses sampled 
Martian regolith from four separate locations on four 
separate Martian solar days (sols).  Cell 0 analyzed the 
sample “Rosy Red” taken from the surface of the Burn 
Alive trench; and Cells 1 and 2 analyzed samples 
“Sorceress 1” and “Sorceress 2”, respectively, both 
taken from adjacent locations at a depth of ~5cm, in 
contact with the ice table of the Snow White trench.  
Sample delivery to Cell 3 failed, and the data returned 
was used as an in situ blank against which the 
remaining three analyses could be compared. Figure 1 
shows a schematic diagram of the WCL cell and how 
the four cells looked outside after the first-day analysis 
on Mars. Each cell consisted of (1) an upper actuator 
assembly with a drawer for adding soil, ‘‘leaching 
solution’’, five crucibles with reagents used for the 
WCL calibration, and a stirrer; and (2) a lower beaker 
lined with an array of sensors including ion selective 
electrodes (ISE) for measuring K+, Na+, Mg2+, Ca2+, 
NH4

+, Ba2+ (for SO4
2-), Cl-, Br-, I-, NO3

-/ClO4
-, H+(pH), 

Li+; and electrodes for measuring conductivity, redox 
potential, cyclic voltammetry (CV), 

chronopotentiometry (CP), and an IrO2 pH electrode. 
These data are publicly available at the NASA 
Planetary Data System [6, 7]. 
In this paper we only use the potential readings from 
the ISEs for Na+, K+, Ca2+, Mg2+, Cl-, ClO4

-, and Li+ 
obtained from the analyses performed in Cell 0 on sol 
30 (the 30th Martian solar day of the 152-sol Phoenix 
surface mission), Cell 1 on sol 41, and Cell 2 on sol 
107.   The data, prior to application of our common-
factor algorithm, from these cells is displayed in Fig. 2.  
The time intervals chosen for analysis correspond to 
the originally analyzed time-series as these represent 
the most stable and reliable portions of the data, and 
provide us the ability to compare our results with the 
originally published values.  For each Cell two regions, 
confined between each set of vertical dashed lines in 
Fig. 2, were treated with our common-factor algorithm.  
The first region represents the calibration interval 
during which the ISEs were calibrated using a solution 
of known concentration, described in more detail 
elsewhere [2].  The second interval represents the 
sample interval and was taken after the addition of the 
~1cm3 of Martian regolith to the WCL cells.  
Previous analysis of the WCL data has employed 
Fourier filtering [2] and Kalman smoothing [3] 
techniques to reduce the noise associated with the data 
sets, under the assumption that the associated noise is 
mostly random in nature.  However, through inspection 
of the data, we observe that for much of the data, the 
potential readings of the different ISEs vary 
simultaneously and in a similar manner, although to 
varying degrees. This apparently systematic variation 
among sensors within the same beaker, and therefore 
subject to the same environmental conditions, lead us 
to believe that these deviations could be isolated and 
removed from the true signal in order to reduce the 
uncertainty in the measured concentration of each ion 
and provide meaningful quantitative results from the 
WCL ISE analyses. 
 
4.2 Number of Common Factors  

The appropriate number of common factors to use in 
our algorithm is determined by considering the 
reduction in the standard error associated with the 
introduction of an additional common factor (strategy 
is described in Section 2). Fig. 6 displays the standard 
error for each ISE on each sol as a function of the 
number of common factors applied.   

An overall reduction in standard error occurs for the 
majority of ISEs across all three sols with the addition 
of the first two common factors.  Yet, upon the addition 

 
 

Figure 5. Histograms of standard deviation of 
the estimated mean. (a) uncontaminated, (b) 
contaminated, (c) Kalman smoother cleaned, 
and (d) common-factor cleaned series. Top to 
bottom: series 1 to 3. Red line marks the true 
standard deviation of the mean 
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of the third common factor only one ISE error 
reduction is observed, suggesting the use of two 
common factors in our method.    

The use of two common factors also make intuitive 
sense if we consider that the common variations are 
likely produced through two primary sources: 
electronic factors due to instrument malfunction, and 
physical factors relating to the combined effects of the 
physical environment inside the beaker.  Therefore, we 
employ a two-common-factor algorithm to the WCL 
ISE data. 

 

 

 
4.3 Common-factor Data Cleaning  

The two-common-factor algorithm was applied to 
the calibration and sample intervals of the WCL ISE 
data from cells 0, 1, and 2.  The unprocessed data, the 
common-factor cleaned data, and the extracted 
common factors for each cell are displayed in Figures 
7-9.  The two-common-factor algorithm application to 
the WCL ISE measurements resulted in: 

a) A reduction in variation compared to the 
original data. 

b) Automated removal of spikes in the signal that 
occur simultaneously in multiple sensors. 

c) Minimal deviation in mean potential from the 
original analysis, except for measurements in which 
large common variations significantly impact the 
mean.  
 

 

 
 

Figure 6. Standard error vs. number of 
factors. 

 
 

Figure 7. For Cell 0 sol 30 data (better viewed in 
color). Top: ISE measured potential vs Time 
(SCLK) for original data; middle: ISE measured 
potential vs Time for common-factor cleaned 
data; bottom: the two common factors found. 
From left to right: for calibrant data, sample 
data. 
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Using the common-factor cleaned data, the total 
ion concentrations and associated uncertainty are 
calculated (Table 1 and Figure 10) and compared with 
concentration estimates from previous studies using 
Fourier filtering by Kounaves et al [2] and Kalman 
smoothing by Toner et al [3]. The new ion 
concentrations are determined using the mean of the 
common-factor cleaned data and the uncertainty was 
generated from the standard deviations for the newly 
cleaned data and the error values given by the original 
interpretation using the standard error propagation 
equation 

σ2(f(x, y, … )) =  �∂f
∂x
σx�

2
+ �∂f

∂y
σy�

2
+ ⋯        

(8). 
The highlighted values are the estimated total 

concentrations that are outside of the previously 
calculated concentration ranges. Highlights in red are 
ion concentrations outside Kounaves et al.’s estimated 
range [2], and blue highlighted values are outside 
Toner et al.’s estimated range [3].  The original 
analysis of the WCL data by Kounaves et al. used 
asymmetric errors to address the apparent bias in the 
signal noise. We report a symmetric error for our 
analysis, as our common-factor algorithm 
automatically accounts for this bias allowing the use of 
the standard error as an estimate of the uncertainty. 

The concentration ranges estimated by our 
common-factor method overlap with the ranges 
estimated by the original Fourier filtering method for 
most ions in Cell 0 and Cell 1. The notable exception 
is the case of the Ca2+ ISE which is reported by our 
common-factor method to be significantly less than 
originally determined for all analyses.  This extreme 
deviation is due to the effect of the presence of ClO4

- on 
the Ca2+ sensor. As described in [2], the potential used 
to determine the concentration of Ca2+ is calculated 
based not only on the potential measured by the Ca2+ 
sensor, but also the concentration of ClO4

- and the 
resulting changes in the reported Ca2+ concentration is 
affected by altered values for both measurements. For 
Cell 0, all three estimates agree primarily except Ca2+. 
For Cell 1, while our results are primarily in agreement 
with those reported by Kounaves et al., they differ 
dramatically from those reported by Toner et al.  This 
is likely due to the handling of complications that arose 
during the initial calibration period where it is believe 
that the calibrant crucible intended to deliver a known 
concentration of ions to the leaching solution did not 
fully dissolve [2].   

 
 

Figure 8. For Cell 1 sol 41 data. Same 
description as in Figure 7. 

 
 

Figure 9. For Cell 2 sol 107 data. Same 
description as in Figure 7. 
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The analysis conducted in Cell 2 (Sorceress 2), 
shows the opposite trend, wherein our new 
concentration estimates vary significantly from 
Kounaves et al, yet agree with Toner et al.  Deviation 
from the originally reported values in this case is not 
unexpected as the data returned from the Sorceress 2 
analysis exhibited the largest degree of noise.  That our 
newly reported values agree with the results published 
by Toner, suggests that these values are reasonable 
recalculations based on the denoised data set.  

 
 

 
 

Table 1: Estimated total ion concentrations with 
associated errors calculated with our common-
factor method, with Fourier filtering (from the 
original analysis), and using Kalman smoothing (as 
in Toner et al).  Highlighted cells fall outside of the 
error range reported in the initial analysis.  
 

5. CONCLUSION AND FUTURE 
DEVELOPMENT 
 

In this paper, we present a new common-factor 
method for reducing unwanted variations from 

common interferences in data signals. The method is 
easy to use, intuitive and effective as a more unified 
approach for cleaning data.  Our method eliminates the 
need for special handling of data in complicated 
scenarios where the origin of the noise is difficult to 
understand. 

To date this common-factor algorithm has been 
successfully applied to the WCL experiments, as 
demonstrated, and would likely prove successful in 
other cases of data interpretation where the results are 
linked together in a sensor array and subject to 
extensive but unknown systematic noise. Sensor arrays 
are commonly employed in the field of environmental 
monitoring, wherein several different measurements 
are obtained simultaneously and the combination of 
data is used to obtain otherwise inaccessible 
information about the system. 

When these sensor arrays are employed in extreme 
and remote environments, the data obtained may 
exhibit extensive noise that, while unknown in source, 
affects all individual sensors to varying degrees.  This 
new common-factor method can aid in reducing this 
systematic noise without a definitive understanding of 
the source and without degrading the physical meaning 
of the signal. 

This work is important to scientific discoveries 
because of the following. 

• A method of removing common systematic error 
of unknown source can be implemented in data 
analysis for similar missions. This is paramount for 
analyses performed in extreme and extraterrestrial 
environments as unanticipated and unknown 
factors affecting data measurements are common. 

• The ability to analyze the data output from a sensor 
array for common variations that are independent 
of the chemistry provides the opportunity for 
gathering future data in complex samples where 
many unknown contributions to the signal exist. 

• A cleaner data set for the WCL analysis provides 
reduced uncertainty in the soluble chemistry of the 
Martian regolith.  This will allow for more accurate 
geochemical models to be constructed and lead to 
a greater degree of certainty in the interpretations 
of the data. 
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average ± average + - average ±
Na+ 1.50E-03 8.93E-05 1.44E-03 6.50E-04 4.80E-04 1.46E-03 3.30E-04
K+ 3.58E-04 2.29E-05 3.55E-04 2.90E-04 1.70E-04 3.30E-04 5.00E-05

Ca2+ 1.42E-04 1.04E-06 5.53E-04 7.50E-04 3.40E-04 1.60E-04 7.00E-05
Mg2+ 2.80E-03 9.87E-05 2.93E-03 1.90E-03 1.20E-03 2.91E-03 8.50E-04

Cl- 6.00E-04 5.30E-06 6.05E-04 1.40E-04 1.20E-04 3.90E-04 4.00E-05
ClO4- 2.70E-03 2.82E-04 2.64E-03 1.40E-03 9.50E-04 2.89E-03 5.40E-04
NH4+ 5.02E-05 2.49E-06 4.30E-05 4.20E-05 3.20E-05

average ± average + - average ±
Na+ 1.10E-03 4.40E-05 1.10E-03 6.00E-04 3.80E-04 3.52E-03 4.50E-04
K+ 1.49E-04 8.23E-06 1.65E-04 2.00E-04 9.80E-05 5.00E-04 1.70E-04

Ca2+ 1.15E-04 7.30E-07 4.28E-04 7.60E-04 3.10E-04 4.50E-04 1.80E-04
Mg2+ 2.20E-03 1.16E-04 2.24E-03 2.00E-03 1.10E-03 6.22E-03 2.23E-03

Cl- 2.66E-04 1.85E-06 2.41E-04 1.30E-04 1.10E-04 7.90E-04 1.40E-04
ClO4- 2.10E-03 2.17E-04 2.06E-03 1.20E-03 8.60E-04 2.11E-03 5.00E-04
NH4+ 5.75E-05 2.66E-06 ND

average ± average + - average ±
Na+ 1.20E-03 6.59E-05 1.44E-03 1.00E-03 6.10E-04 9.90E-04 2.80E-04
K+ 2.07E-04 4.42E-06 3.87E-04 3.20E-04 1.70E-04 1.70E-04 3.00E-05

Ca2+ 1.51E-04 1.74E-07 6.03E-04 7.90E-04 3.40E-04 9.00E-05 4.00E-05
Mg2+ 1.60E-03 3.87E-05 3.70E-03 3.00E-03 1.70E-03 1.31E-03 4.20E-04

Cl- 4.64E-04 2.27E-06 4.63E-04 2.10E-04 1.10E-04 2.40E-04 3.00E-05
ClO4- 2.50E-03 1.16E-04 2.15E-03 2.20E-03 8.10E-04 2.72E-03 5.70E-04
NH4+ 2.99E-05 6.19E-07 2.60E-05 6.00E-05 3.20E-05

Fourier Filtering

JGR

JGR

Concentration (M)
Kalman Smoothing

Toner 

Toner 

Cell 0

Cell 1

Cell 2

Common Factor

CF

CF
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Figure 10. Estimated total ion concentrations and their associated 
error bars.  

(Cell 0 sol 30) 

(Cell 1 sol 41) 

(Cell 2 sol 107) 
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