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Abstract

Macroscopic magnetic properties are analyzed using Valence Bond theory. Com-

monly the critical temperature TC for magnetic systems is associated with a maximum

in the energy-based heat capacity Cp(T ). Here a more broadly applicable definition of

the magnetic transition temperature TC is described using spin moment expectation

value (i.e. applying the spin exchange density operator) instead of energy. Namely,

the magnetic capacity Cs(T ) reflects variation in the spin multiplicity as a function of

temperature, which is shown to be related to ∂[χT (T )]/∂T . Magnetic capacity Cs(T )

depends on long-range spin interactions that are not relevant in the energy-based heat

capacity Cp(T ). Differences between Cs(T ) and Cp(T ) are shown to be due to spin

order/disorder within the crystal, that can be monitored via a Valence Bond analysis

of the corresponding magnetic wavefunction. Indeed the concept of the Boltzmann

spin-alignment order is used to provide information about the spin correlation between

magnetic units. As a final illustration, the critical temperature is derived from the

magnetic capacity for several molecular magnets presenting different magnetic topolo-

gies that have been experimentally studied. A systematic shift between the transition

temperatures associated with Cs(T ) and Cp(T ) is observed. It is demonstrated that

this shift can be attributed to the loss of long-range spin correlation. This suggests

that the magnetic capacity Cs(T ) can be used as a predictive tool for the magnetic

topology, and thus for the synthetic chemists.
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Introduction

The first attempts to understand magnetism at the atomic level were carried out by Langevin

and Weiss using semiempirical theories. In 1905, Langevin1,2 provided a good description

of paramagnetism for an atom or molecular magnet that carried a permanent magnetic

moment, whose spatial distribution was to be given by the Boltzmann factor. In 1907,

Weiss3 predicted the existence of the Curie point (TC) below which ferromagnetism sets in by

means of introducing the effect of an internal or molecular field proportional to the intensity

of magnetization. Later on, in 1913, the angular momentum was quantized and, hence, the

magnetic moment of an atom or a molecule-based magnet using Bohr’s quantum theory,4

which employed classical mechanics combined with quantum conditions. This resulting in

the definition of the magnetic susceptibility expressed by the Langevin-Debye formula,

χ(T ) =
NAµ

2
B

3kBT
µ2
eff (1)

where µeff and µB is the effective magnetic moment and Bohr magneton respectively, NA

is the Avogadro number, kB is the Boltzmann constant, and T the temperature of the

system. In 1927, Van Vleck5 established the general formula for the magnetic susceptibility

using quantum mechanics for the zero external magnetic field limiting case. Van Vleck also

introduced the temperature dependence of the magnetic moment (µ).5 For the computation

of µ it was necessary to know the energy of all stationary states of the system, En, to compute

the magnetic susceptibility. With the quantum derivation of Van Vleck, the magnetism of

many atoms, molecules and compounds could be well described and their magnetic behavior

could be also characterized as antiferromagnetic (AFM), ferromagnetic (FM) or diamagnetic,

as a function of the microscopic magnetic interaction (Jij) between the spins i and j. The

Jij values are obtained from fitting the magnetic susceptibility curve to a given model6 or

computed using quantum chemistry tools.7,8

The magnetic behavior of a molecule-based crystal depends on the relative arrangement of
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the spin-carrying units within the crystal. The relative alignment of two interacting S = 1/2

radicals generates three cases: (1) a FM interaction, when the spins of both radicals are

coupled parallel to generate a triplet; (2) an AFM interaction, when the adjacent spins are

coupled antiparallel to form a singlet; and (3) a paramagnetic behavior, when the unpaired

spins show no magnetic interaction between them. In the case of many centers, the FM

and AFM cases give rise to two limiting cases: (1) all adjacent spins are parallel to each

other (which generates a bulk ferromagnet, when the FM interactions extend over the three

directions of space), and (2) all adjacent spins are antiparallel (which results in a bulk

antiferromagnet, when the AFM interactions extend over the three directions of space).

Note that a particular case of antiferromagnetism is diamagnetism. Diamagnetism results

from antiparallel spin-pairing with no net spin momentum. In between these two extreme

cases, there are other possible combinations, which include dominant FM or AFM behavior,

such as metamagnetism, change in magnetic dimensionality, or spin-canting6

The formulation of the macroscopic magnetic properties including magnetic susceptibil-

ity χ(T ), magnetization M(H), and heat capacity Cp(T ) can be formulated with quantum

mechanics using statistical mechanics.5 However, the definition of the critical temperature

TC below which the magnetic systems order and behave as FM, AFM, etc. is not completely

clear. A maximum in the heat capacity Cp(T ) is usually taken to indicate a second order

phase transition.9,10 However, this transition does not correspond to the appropriate mag-

netic order/disorder physical transition, since it is associated with changes in energy, and not

with changes in spin. Thus it is not the most suitable critical temperature for magnetism.

In 1962, Fisher11 suggested that there was a correlation between a Cp(T ) and ∂[χT (T )]/∂T ,

implying that both had a similar physical interpretation.12–15 In this paper, we propose a

definition of the magnetic critical temperature derived in the same way as Cp(T ), but using

the spin moment rather than the energy. We shall refer to this as the magnetic capacity

Cs(T ). Cs(T ) is defined so that it accounts for the variation of the mean value of the spin

multiplicity, for the overall system, as a function of temperature. The quantity ∂[χT (T )]/∂T
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can be obtained directly from experimental data and is proportional to the magnetic capacity,

Cs(T ). With these definitions we can identify long-range order or the lack of it with those

cases where TC obtained from either ∂[χT (T )]/∂T or Cs(T ) agrees or not with TC defined

in terms of Cp(T ).

In order to develop the main ideas related to the magnetic capacity Cs(T ), we will present

the mathematical expressions for macroscopic magnetic properties using Valence Bond the-

ory. We show that the spin exchange density matrix operator in Valence Bond theory, which

describes the bonding interaction, is also useful for the microscopic interpretation of the

different magnetic observables. The expressions of Cs(T ) and Cp(T ) will be given using spin

exchange density matrix elements, Pij.16,17 It will be shown that the heat capacity Cp(T )

involves the derivative of the energy, whereas Cs(T ) involves changes on the spin moment.

The theoretical development and discussion of this paper is structured as follows. We start

with the usual derivation of the macroscopic magnetic properties from statistical mechan-

ics, and then present these very same magnetic properties using the spin exchange density

matrix elements Pij. This gives rise to the definition of the magnetic capacity, Cs(T ). The

physical insight from this reformulation will then be discussed. Next we will discuss the in-

terpretation of the magnetic capacity, in terms of the Valence Bond magnetic wavefunction,

using the exchange density matrix (Pij terms). This reformulation allows the interpretation

of magnetic phenomena in terms of short- and long-range spin couplings.18 Such short- and

long-range effects explain the differences between Cp(T ) and ∂[χT (T )]/∂T . Finally, we will

illustrate the application of the definition of TC defined in terms of Cs(T ) for the description

of magnetic critical temperatures of some molecular magnets that have been characterized

experimentally.
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Theory

In this section, we first derive the magnetic properties χ(T ), Cp(T ) and Cs(T ) using a

description of the magnetic wavefunction obtained from Valence Bond theory. This in turn

allows the definition of the Boltzmann magnetic spin-alignment order (µ̃ij), which describes

the temperature dependent spin-correlation between two radical centers (i and j). Then, an

illustrative example is presented using a model linear system consisting in 4 spin-carrying S =

1/2 radicals with nearest-neighbor magnetic interactions (hereafter 4s model). In general, a

’ns’ model stands for the number ’n’ of radicals in the model and for ’s’ S = 1/2 unpaired

spins.

Within the framework of molecule-based magnets, the magnetic susceptibility, χ, and

heat capacity, Cp, are the macroscopic magnetic properties defining the temperature at which

the magnetic second order phase transition occurs, i.e. the magnetic transition temperature.

Equations (2) and (3) show the theoretical expressions for the magnetic susceptibility χ(T ),

and heat capacity Cp(T ) in absence of orbital angular momentum, developed by Van Vleck

in terms of the properties of each microstate,

χ(T ) =
NAg

2µ2
B

3kBT

∑
n

Sn(Sn + 1)(2Sn + 1)e−En/kBT∑
n′(2Sn′ + 1)e−En′/kBT

(2)

Cp(T ) =
NA

kBT 2

{∑
nE

2
n(2Sn + 1)e−En/kBT∑

n′(2Sn′ + 1)e−En′/kBT
−
[∑

nEn(2Sn + 1)e−En/kBT
]2[∑

n′(2Sn′ + 1)e−En′/kBT
]2 } (3)

where g and µB are the gyromagnetic constant and Bohr magneton respectively, and En and

Sn are the energy and spin multiplicity of the n microstate. From these expressions, we can

see that the energy and spin multiplicity of the n microstates are the only quantities that

depend directly on the system and give the magnetic properties in equations (2) and (3).

In previous work, we have shown that these magnetic microstates can be obtained by

solving an algebraic eigenvalue problem associated with a Heisenberg Hamiltonian for spin

1/2 particles,19
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Ĥ = −2
∑
i,j

JijŜiŜj (4)

where Ŝi is the spin operator acting on center i, and Jij is the microscopic magnetic inter-

action between spin centers i and j. As written, the Hamiltonian acts on a space of neutral

covalent Slater determinants where each orbital i occurs only once with either α or β spin.

Thus the operators Ŝi operate on the spin of orbital i. The Jij are the exchange integrals of

Heitler-London Valence Bond theory (for a model two-electron system with orbitals i and j).

The Jij can be obtained from ab initio computations on a pair of radicals.20 See Supporting

Information Section 1 for a discussion on the working strategy followed to bring together Jij

and macroscopic magnetic properties.

Equation (4) corresponds to a model Hamiltonian with computed parameters that reduces

the problem of chemical binding to coupling of electron spins. Anderson21 was the first

to recognize that Heisenberg Hamiltonians might be understood as effective Hamiltonians

computed from an exact full configuration interaction (CI) Hamiltonian using a model space

of neutral Valence Bond determinants formed from n electrons in n atomic orbitals. The

use of such spaces in quantum chemistry was first proposed in this context by Malrieu and

co-workers.16,22–25

Our implementation of a Heisenberg Hamiltonian model has been used to study mag-

netic interactions in many problems.26–32 In order to keep this paper self-contained, before

reformulating equations (2) and (3), we will briefly review some essential aspects of the

Heisenberg spin Hamiltonian (equation 4) and how it can be used to study magnetic prop-

erties of molecule-based magnets.

Traditionally, Valence Bond theory, formulated as a Heisenberg Spin Hamiltonian, is

based on the use of localized active orbitals. One uses a neutral covalent determinant basis

[ΦK , ...,ΦL] in which each orbital occurs at most once with α or β spin (see Supporting

Information Section 2 for an example of the construction of a basis set consisting in 4
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electrons). The orbitals are assumed to be non-orthogonal of the Coulson-Fischer type.33,34

However, the orthogonality is reflected on the parametrization of the Jij and the orbitals are

never treated explicitly.35

Lets now define the spin-exchange operator P̂ij as permutation operator that interchange

the spin coordinate of two electrons. For example, the application of the spin-exchange

operator over four 2 electrons spin primitive functions, leads to:

P̂12α(1)α(2) = α(1)α(2)

P̂12α(1)β(2) = β(1)α(2)

P̂12β(1)α(2) = α(1)β(2)

P̂12β(1)β(2) = β(1)β(2)

(5)

Then, we can construct a certain operator using the spin permutation that has the same

effect as the spin operator product (Ŝi · Ŝj) presents in the Heisenberg Hamiltonian (equation

4). This is the so called Dirac identity,17 which in the case of two spins is

[Ŝ(1)Ŝ(2)]Θ(1, 2) = −
(1

2
P̂12 −

1

4
Î
)

Θ(1, 2) (6)

i.e.

P12 =
〈
−
(

2[Ŝ(1)Ŝ(2)] +
1

2
Î

)〉
(7)

where Θ(1, 2) is any two-electron spin function, and Î is the identity operator. The spin-

exchange density matrix Pij is a useful analytic concept, which matrix elements are computed

as the expectation values of P̂ij (equation 7). These can be defined, using the general

expression of a two electron operator in second quantization,36 as

〈Ψ|P̂ij|Ψ〉 = −
∑
i,j,k,l

〈i(1)j(2)|Ŝ(1)Ŝ(2) +
1

4
Î(1, 2)|k(1)l(2)〉 × 〈Ψ|a†ia

†
jalak|Ψ〉 (8)

where a†i , ai are the creation and annihilation operator acting over the i spin-orbital. The
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integration of the spatial part gives Kronecker-δ terms, and by resolving the spin operator

using step-up and step-down operators, we obtain the final expression:37

Pij = Pαβ
ij − Pαα

ij (9a)

Pαβ
ij =

1

2
〈Ψ|a†iαajαa

†
jβaiβ + a†iβajβa

†
jαaiα|Ψ〉 (9b)

Pαα
ij =

1

2
〈Ψ|a†iαa

†
jαajαaiα + a†iβa

†
jβajβaiβ|Ψ〉 (9c)

One can see that the exchange density matrix Pij elements are the difference between

exchange terms for electrons of different Pαβ
ij and same Pαα

ij spin, respectively. In general

Pij can be obtained in terms of the coefficients of the expansion of the multiconfigurational

magnetic wavefunction, as:

Pαβ
ij =

1

2

∑
K,L

cKcL〈ΦK |a†iαajαa
†
jβaiβ|ΦL〉 (10a)

Pαα
ij =

1

2

∑
K

c2K〈ΦK |a†iαa
†
jαajαaiα|ΦK〉 (10b)

The Pij terms are just a two-particle density matrix elements that can be obtained from

any CI computation.37 For wavefunctions composed of several Valence Bond structures, the

values of Pij give a quantitative measure of the bonding, as suggested early by Penney and

Moffitt.38 Further, the spin-exchange density matrix elements are related to the total spin

by:17

S(S + 1) = −N(N − 4)

4
−
∑
i<j

Pij, (11)

where N is the number of unpaired electrons. Notice that equation (11) can be used to com-

pute the spin multiplicity of each of the multiconfigurational eigenfunctions of the Heisenberg

Hamiltonian.

Then, the general spin-exchange Heisenberg Hamiltonian (equation 4) can now be written
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as:18

Ĥ = −
∑
ij

Jij(2ŜiŜj +
1

2
Î) =

∑
ij

JijP̂ij (12)

where the expectation values of both Hamiltonians (equations 4 and 12) are related by a

shift due to the identity operator. Further, one can see that the energy spectrum can be also

obtained using,

∆En =
∑
i<j

Jij∆P
n
ij, (13)

where ∆En = En −E0 and ∆P n
ij refer to the differences of the energy values and Pij matrix

elements between the nth excited state and the ground state, respectively.

As mentioned above, the exchange density matrix elements Pij are related to the relative

alignment of the spin of electrons in magnetic centers i and j. For a two-electron system (N =

2, 2s model) with spins either coupled antiparallel or parallel or uncoupled, the reference

Pij values are given in Figure 1. For S = 0 (Figure 1a), 〈Ŝ(i)Ŝ(j)〉 = −3/4 and the Pij

element has a value of +1.0 , while if coupled parallel S = 1 (Figure 1b), 〈Ŝ(i)Ŝ(j)〉 = +1/4

and the Pij will be -1.0 . In addition, for uncoupled spins, 〈S2〉 = 2[1
2
(1
2

+ 1)] = +3/2 and

〈Ŝ(i)Ŝ(j)〉 = 0, the value of the corresponding Pij element is -0.5 (see Figure 1c). For that

reason, from a VB perspective, Pij can be suitably denoted as magnetic bond-order (µ-

BO). We have given some discussion of physical interpretation of the spin exchange density

matrix elements in the Supporting Information Section 3. There we give the Pij for the

Kekulé and Dewar VB structures of the π-electrons of the benzene molecule.

We now discuss the temperature dependence into the magnetic properties using statistical

mechanics of the canonical ensemble. In such scheme, the population of each microstate (n)

is defined by the Boltzmann distribution function, fnB(T ) = (2Sn+1)
Z

e−En/kBT , where Z stands

for the canonical partition function and the numerator stands for the spin degeneracy of
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(a) antiparallel
spin alignment
Pij = +1

(b) parallel
spin alignment
Pij = -1

(c) non-ordered
spin alignment
Pij = -0.5

Figure 1: Relative alignment of the spin of electrons in magnetic centers i and j for a two-
electron system (2s): (a) antiparallel, (b) parallel, and (c) non-ordered or uncoupled. The
Pij values are also given from equation (11).

the microstate n. Therefore, the temperature dependent expectation values of the spin

multiplicity and energy can now be expressed in terms of the eigenvalues of the Heisenberg

Hamiltonian equation (12), i.e. the spin multiplicity and energy of each microstate. Using

equations (11) and (13), these 〈E〉T and 〈S2〉T expectation values can be expressed in terms

of the spin exchange density matrix elements,

〈E〉T =
∑
n

∆En · fnB(T ) =
∑
n

∑
i<j

Jij∆P
n
ij · fnB(T ), (14)

〈S2〉T =
∑
n

Sn(Sn + 1) · fnB(T ) = −N/(N − 4)

4
−
∑
n

∑
i<j

P n
ij · fnB(T ), (15)

Now we can define the temperature dependent spin-alignment order matrix, µ̃(T ) . The

elements of µ̃(T ) between two spin carrying units i and j are defined as the Boltzmann

weighted spin exchange density matrix element,

µ̃ij(T ) =
∑
n

P n
ij · fnB(T ). (16)

This Boltzmann weighted magnetic bond-order matrix carries information about the

correlated alignment between all the spin units and its temperature behavior. We shall refer

to µ̃(T ) (equation 16) as Boltzmann magnetic µ-bond order. The macroscopic magnetic

properties, in terms of the spin exchange density matrix elements, Pij , of each microstate

now arise as follows. In order to obtain the expression for the heat capacity Cp(T ) as a
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function of the temperature, we differentiate 〈E〉T (equation 14) with respect to temperature.

Thus the magnetic capacity, Cs(T ), is obtained by differentiating 〈S2〉T (equation 15) with

respect to temperature,

Cp(T ) =
∂〈E〉T
∂T

=
NA

kBT

{∑
n

[(∑
i<j

(Jij · P n
ij(J))

)
fnB(T )

[∑
m

(Em − En)fmB (T )

]]}
, (17)

Cs(T ) =
∂〈S2〉T
∂T

=
NA

kBT

{∑
n

[(∑
i<j

(P n
ij(J) + P n

ij(0))

)
fnB(T )

[∑
m

(Em − En)fmB (T )

]]}
.

(18)

In equations (17) and (18), we have identified two types of spin-exchange density ma-

trix elements, Pij(J) and Pij(0), which occur in the Heisenberg spin Hamiltonian energy

expression (equation 12). Pij(J) corresponds to a Pij where the value of Jij is finite,

while Pij(0) corresponds to a Pij where the value of Jij is vanishingly small (in previous

calculations it was defined to be < |0.05|cm−1).19,39 Thus Pij(0) corresponds to the long-

range spin coupling that has no energetic effect in the Heisenberg Hamiltonian. Thus the

Pij(J) (and µ̃ij(J, T )) elements are those where magnetic interaction Jij has a non-negligible

value, i.e. a connected/short-range spin alignment is present, while the terms labeled Pij(0)

(and µ̃ij(0, T )) have Jij = 0 (hence it does not appear in equation (17)), and show a non-

bonded/long-range spin alignment. This classification turns out to be useful for understand-

ing the physical phenomena that take place upon magnetic transition.

We now discuss some conceptual aspects of the two magnetic properties defined in equa-

tions (17) and (18). The heat capacity Cp(T ) involves a change in the energy of the whole

system, and depends on the spin-alignment between the magnetic centers with non-negligible

magnetic interactions, Pij(J). The magnetic capacity Cs(T ) involves a change of the spin

moment of the whole system, and depends on the spin-alignment between all pairs of mag-

netic centers, including those for which Jij is zero. This latter term includes the effect of

long-range spin ordering, as experimentally40,41 and theoretically18,42 suggested. The role

of the Boltzmann magnetic µ-bond order and its relation with the spin-exchange density
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matrix values Pij in equations (17) and (18) allows a simple relationship between structure

and magnetism. In addition, the maximum of the magnetic capacity function indicates an

inflection point at which the long-range spin pairs start to be ordered when cooling from

high to low temperature. In contrast, the maximum of the heat capacity describes the tran-

sition at which the nearest-spins become correlated, i.e. the existence of a short-range spin

ordering.

Results and Discussion

Conceptual Development

In this section we shall give some physical insight into the concepts presented in the previous

section. This discussion has two facets. On the one hand we wish to demonstrate the effect

of Pij(J) and Pij(0) on Cs(T ) and Cp(T ) for a model 4 electron system (4s). Then we

shall discuss the relationship of the experimental quantity (∂[χT (T )]/∂T ) to either Cs(T ) or

Cp(T ), and analyze the effect of the magnetic topology.

We now illustrate the theoretical ideas just discussed using the Boltzmann magnetic µ-

bond order for a four S = 1/2 radical system whose four unpaired electrons interact linearly

(4s). The simplest magnetic model results from the interaction between two radical centers

with one unpaired electron each (hereafter 2s model). However, this model is not adequate

to illustrate the different physical meaning of the heat and the magnetic capacities since it

does not have any long-range order Pij(0). Thus the simplest model we can use is formed

by four S = 1/2 magnetic units linearly interacting (4s). We also choose J = −50cm−1. We

now illustrate the application of the magnetic wave function analysis in terms of Pij using the

4s AFM linear model (see Figure 2a for magnetic topology; and Figures 2b,c for short- and

long-range spin alignment, respectively). As we will see bellow, the physical interpretation

does not depend on the value of the magnetic interaction, but on the magnetic topology.

The construction and diagonalization of the Heisenberg Hamiltonian (equation 12) al-
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(a) (b) (c)

Figure 2: (a) Magnetic topology for a four-spin center 4s antiferromagnetic AFM linear
model (J = −50cm−1 represented as straight red lines). (b) Schematic representation of the
short-range spin exchange density matrix elements Pij(J) (solid blue lines). (c) Schematic
representation of the long-range spin exchange density matrix elements Pij(0) (dashed brown
lines).

lows one to obtain the multiconfigurational magnetic wavefunctions of the ground and ex-

cited states of our system (the authors strongly encourage interested readers to address to

Supporting Information Section 4 for further details on the chemical analysis of the spin

interactions using VB theory). Then, by applying equation (10), the magnetic bond order

(µ-BO) for each spin-pair in each magnetic state can be computed. The individual computed

Pij will differ from the ideal values shown in Figure 1 due to the multiconfigurational nature

of the magnetic wave function.

The µ-BO (i.e. the exchange density matrix element Pij) is indicative of the nature of the

relative alignment of the spin of electrons in magnetic centers i and j (see Figure 1 for a two-

electron system). Then extending this idea by applying the corresponding Boltzmann factor,

we can visualize the temperature evolution of the magnetic µ-bonds as shown in Figure 3a.

In other words, the Boltzmann weighted Pij elements enable one to study the temperature

dependence of the magnetic µ-bond order, µ̃ij(T ). Note that parallel spin alignment has

been assigned to Pij values ranging from -0.5 to -1.0, which are displayed in blue in Figure

3a. The antiparallel spins are attributed to Pij from -0.5 to +1.0 (shown in red in Figure

3a). The strength of the µ̃ij(T ) representation increases (indicated by line thickness) as

the temperature decreases. This directly translates into an increase of the spin alignment

correlation. Between 53-100 K it is possible to observe that the short-range spin ordering

µ̃ij(J, T ) (i.e. 〈Pij(J)〉T ) contribution is stronger, as shown by the thickness of the lines in
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(a)

(b)

Figure 3: (a) Representation of µ̃ij(J, T ) (upper) and µ̃ij(0, T ) (lower) contributions at a
temperature of interest for the 4s linear AFM system. Notice that parallel (antiparallel) spin
alignment is displayed in blue (red). (b) Representation of the magnetic capacity (Cs(T ),
red line) and heat capacity (Cp(T ), blue line). All results refer to the 4s linear AFM system.
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Figure 3a. This in turn correlates with the maximum in Cp(T ) shown in Figure 3b. For the

long-range spin ordering or correlation µ̃ij(0, T ) (i.e. 〈Pij(0)〉T ), the actual strengthening

takes place between 36.5-53K, leading to the maximum in Cs(T ) shown in Figure 3b. From

Figure 3b one can see that, when cooling the system from high temperatures, the heat

capacity Cp begins to increase at higher temperatures than the magnetic capacity Cs. If

one continues lowering the temperature, the maximum of the heat capacity can be observed

around 53K. The magnetic capacity curve however displays its maximum value at ca. 36.5K.

The central idea here is that the largest change of the spin moment of the whole system

is accomplished at lower temperatures than the largest change of the energy of the whole

system. In the following, we will explain the reason for this shift by simply using the

definition of the µ̃ij(T ), i.e. the fact that the new reformulation (equations 17 and 18)

implies Boltzmann factor weighted Pij terms.

0 50 100 150 200 250

Eigenstate Energy (cm−1)

∑
ij P

n
ij(0)

∑
ij P

n
ij(J)

Figure 4: Variation of the sum of spin-exchange density matrix elements (Pij) as a function
of the energy level for a 4s linear AFM chain. The different trend of all long-range Pij(0)
terms (red, sum over the Pij(0) elements) and short-range Pij(J) terms (blue, sum over the
Pij(J) elements) is represented for the six possible eigenstates.

From expressions (17) and (18), it is apparent that the different behavior of Cs(T ) and

Cp(T ) is directly related to the different Pij contributions (summation over the i, j spin

pairs). Figure 4 shows the variation of the sum of the Pij(0) and Pij(J) elements for each

magnetic microstate (red and blue lines, respectively). As expected from equation (13),
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we see that the sum of all short-range Pij(J) values linearly decreases as the energy of the

eigenstates increases, with slope equal to the magnetic interaction, Jij. In contrast, the sum

of all long-range Pij(0) terms changes/fluctuates between different states. Now, let us take

a look at equations (17) and (18). We can see that Cp(T ) is proportional to the sum of the

J-scaled Pij(J) elements while Cs(T ) is proportional to the sum of all raw Pij elements. This

is the key-factor that governs the two different magnetic phase transitions.

The physical interpretation of this fact is easy to explain. By increasing the temperature,

the magnetic excited states start to be populated and, in turn, all of the Pij values of each

state contribute on the magnetic ordering/disordering (see Supporting Information Section 4

for magnetic states). Since the long-range µ-bond orders, Pij(0), differ significantly between

excited states (Figure 4), the global long-range spin ordering tends to cancel out at lower

temperatures. In other words, this description enables us to identify two physical processes:

while Cp(T ) measures the short-range spin correlation, Cs(T ) will give information about

long-range correlation. As we shall presently discuss, when the above Boltzmann µ-bond

order study is extended to real molecular magnets the conclusions reached were the same as

for the 4s AFM chain model (see discussion on KAXHAS in Supporting Information Section

5).

Both Cp(T ) and Cs(T ) macroscopic properties allow the identification of a characteristic

temperature (TC) at which the system rapidly changes its behavior. In other words, for both

descriptions there exists a temperature at which the derivative of the energy or spin moment

becomes zero, revealing critical phenomena. We have illustrated the different nature of the

transition signaled by the heat capacity and magnetic capacity, Cp(T ) and Cs(T ) respectively.

Equations (17) and (18) show that the heat capacity Cp(T ) depends on the variation of the

Pij(J) (short-range spin alignment), while the variation of both Pij(J) and Pij(0) (short-

and long- range spin alignment, respectively) terms play an important role in determining

the magnetic capacity Cs(T ) (see Figure 5). Note that all the analyses here performed have

been done using |0.05|cm−1 as cut-off for Jij to differentiate between Pij(J) and Pij(0). Our
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conclusions are however not sensitive to the selected cut-off: (i) Cs(T ) would not be affected,

since it already considers all spin correlations; and (ii) Cp(T ) would be the property affected,

but since it is scaled by Jij itself it already accounts for the threshold chosen.

Figure 5: Flowchart connecting the heat capacity Cp(T ) with its source, which is the energy
distribution. Similarly, the magnetic capacity Cs(T ) is related to the spin moment.

As reported above, the magnetic capacity always reflects a critical temperature (T µC)

which is lower to the one found by the heat capacity (T hC). This is due to the fact that,

for extended systems, and due to a thermal mixture of the magnetic microstates, the long-

range magnetic ordering is always lost at lower temperatures than the short-range magnetic

ordering. This statement demonstrates the complementarity role of both properties in order

to properly characterize a magnetic material. Therefore, we can conclude that TC calculated

from either Cp(T ) or Cs(T ) will be nearly equal only in those molecule-based systems in

which the long- range spin correlation can be neglected, or there is no 3D propagation of the

spin coupling.

Usually the magnetic transition is characterized following measurements of the heat ca-

pacity.10,12–15 However, it is often seen that this magnetic critical temperature can also be

obtained measuring the first derivative of the magnetic susceptibility times the temperature

(∂[χT (T )]/∂T ), which is known as Fisher’s heat capacity.12–15 This name is adopted in refer-
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ence to the direct proportionality suggested by Fisher,11 and used to determine the magnetic

ordering.43,44

We now discuss the relationship with Fisher’s heat capacity. If we compare the new

magnetic capacity Cs(T ), formulated in equation (18), with the well-known expression (1)

for the magnetic susceptibility χ(T ), we notice that the effective magnetic moment µ2
eff can

be replaced by:

χ(T ) =
NAµ

2
B

3kBT
µ2
eff =

NAg
2µ2

B

3kBT
〈S2〉T (19)

Notice that for a non-interacting spin system, whose simplest realization would involve a large

energy separation between ground state and first excited states, the Boltzmann distribution

can be neglected, and the effective magnetic moment (µeff ) can be considered temperature

independent. However, equation (19) shows that temperature dependence has to be taken

into account for general cases.

In this context it is clear that what we have defined as magnetic capacity Cs(T )) (equation

18) is directly proportional to the derivative of the magnetic susceptibility or Fisher’s heat

capacity,
∂[χT (T )]

∂T
=
NAg

2µ2
B

3kB
Cs(T ) (20)

As we have mentioned above, M.E. Fisher suggested a direct proportionality between

Cp(T ) and χ(T ) observables, giving rise to the fact that both properties should exhibit the

same transition temperature. However, our derivation indicates that this proportionality is

only accomplished when the magnetic crystal acts as a sum of isolated spin-pairs. In other

words, for magnetic materials that can present long-range spin ordering, the critical temper-

ature is no longer correlated with the maximum in Cp(T ) . Thus the magnetic capacity is

capable of identifying short- or long-range magnetic (µ-) bond order or magnetic correlation,

which can easily be experimentally measured with the maximum in ∂[χT (T )]/∂T . There-

fore, one can look in detail at the results of the calculations and understand the nature of

the long/short range magnetic order in the crystal.
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Computed TC for several examples using Cs(T ) and Cp(T ) and com-

parison with experimental maximum in (∂[χT (T )]/∂T ).

We now test the validity of the µ-bond order concept in magnetic structure calculations

via the computation of TC for several examples using Cs(T ) and Cp(T ) and comparison

with experimental maximum in (∂[χT (T )]/∂T ). For simplicity we will use magnetic units

carrying spin 1/2 on a number of key prototypical molecular magnets (see column 1 in

Table 1).19,45–50 The analyzed molecular magnets are made by Cu(II)-based radicals, except

for UBUBIC and KAXHAS, whose magnetism is due to purely organic radicals.51 For all

these molecule-based magnets, good agreement between computed and experimental data

was obtained for χ(T ) magnetic susceptibility and Cp(T ) heat capacity temperature response

curves using expressions (2) and (3), respectively (see Supporting Information Section 1 for

more details on the first principles simulation working strategy). A variety of real magnetic

topologies have been examined (column 2 in Table 1), including regular and alternating

1D chains, strong-rail and strong-rung spin-ladders, 2D AFM layer, 3D AFM interacting

honeycomb layers and 3D FM diamond-type (see column 3 in Table 1 for most significant

calculated Jij values).19,45–50

The maximum of ∂[χT (T )]/∂T , the so called Fisher’s heat capacity, has also been ob-

tained by numerical differentiation from experimental data (see column 4 for T ∂[χT (T )]/∂TC in

Table 1). The critical temperature of the magnetic capacity Cs(T ), namely T µC , of seven

real systems has been calculated applying equation (18) (see column 5 in Table 1). Finally,

simulated and experimental values for the critical temperature T hC referring to Cp(T ), i.e.

the temperature at which the magnetic property exhibits a maximum, are compared (see

column 6 for T hC).

The value of the maximum in ∂[χT (T )]/∂T is the experimental reference point. The value

of TC computed from Cs(T ) is in acceptable agreement with this value ( T µC ≈ T
∂[χT (T )]/∂T
C ),
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Table 1: Comparison between computed characteristic temperatures for seven
studied prototypical crystals. CCDC name is given in column 1. Magnetic
topology and significant Jij values (in cm−1 are given in columns 2 and 3. Char-
acteristic temperatures (in K) extracted from ∂[χT (T )]/∂T , magnetic capacity,
and heat capacity are given in columns 4-6. a % computed at calculated TC
as [T hC(Cp) − T µC(Cs)]/T

h
C(Cp) ∗ 100 . Note that Alt=Alternating; SP=spin-ladder;

exp=experimental; calc=calculated.

CCDC
name

magnetic
topology

Jij/cm
−1

(calc)
T
∂[χT ]/∂T
c

(exp)
T µc (Cs)
(calc)

T ec (Cp)
(exp/calc)

%(Cs/Cp)
(calc)a

CUPYAR45 1D Chain -5.23 4.31 5.60 5.22/6.85 18.2
UBUBIC46 1D Alt Chain -54.43/-55.97 74 60.20 –/72.60 17.1
TEXDEG47 Strong-rail SP -7.79/-3.49 6.50 6.35 –/9.20 31.0
XANKED48 Strong-rung SP -13.82/-10.26 35.92 47.70 –/50.10 4.8
CUPYZP49 2D Layer -5.62 8.4 11.65 –/15.30 23.9
GIVZOB50 3D Honeycomb -8.21,-4.91/-2.44 6.1 6.40 –/7.75 17.4
KAXHAS19 3D Bulk FM +0.68/+0.18 - 0.23 0.60/0.70 67.1

as expected from their direct relationship (see equation 20). The transition temperature T µC

is thus the most meaningful TC because it results from a magnetic spin transition, i.e. from

the thermal variation of the spin multiplicity of the system. T µC reflects the importance of

the non-connected spin alignment and the dominant effect of long-range spin correlation.

The difference between experimental and computed values has been demonstrated to be

mainly due to the variation of the crystal structure owed to the temperature at which it

has been determined.52 Further, if experimental T ∂[χT (T )]/∂TC and calculated T µC values are

very different it could also be an indication of the presence of impurities in the sample,

the existence of different crystal phases, or the simple presence of unanticipated magnetic

interactions because we make no assumptions in the simulation of χ(T ).

The non-constancy of the ratio between calculated Cs magnetic capacity and calculated

Cp heat capacity (see column 7 in Table 1) supports that there is no direct proportionality

between ∂[χT (T )]/∂T and Cp(T ). Therefore, Fisher’s suggestion is not applicable on real

molecular magnets. Interestingly, the difference between transition temperatures appears
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to be extremely dependent on the magnetic topology of each molecular material. There-

fore, although this dependence is not the focus of this paper, this fact can be useful for

the experimental material science community to predict the magnetic dimensionality of a

molecule-based magnet of interest, and then use the appropriate analytical expressions to

obtain a fitted J parameter. The calculation of T µC(Cs) will thus enable one to estimate the

magnetic topology, and hence predict which is the best procedure to perform measurements

as a function of the working temperature range, etc.

Finally, comparison between TC computed from Cs(T ) and Cp(T ) (both calculated theo-

retically) should give an indication of the effects of long-range order (indicated numerically

(%) in column 7, Table 1). KAXHAS, which is a 3D bulk ferromagnet, has the largest

(% TC Cs/Cp) value. This can be expected, since there are multiple ”short-range” paths to

connect long-range spin carrying units. Then a small fluctuation of the short-range align-

ments (Pij(J)) will produce a small deviation on the total energy, but a large deviation of

the long-range spin correlation. In line with this argument, XANKED has the smallest (%

TC Cs/Cp) value, which is also compatible with its magnetic topology being a strong rung

spin ladder. Since the spin-ladder has largest J(rung) interaction than J(rail), short-range

spin correlation within a rung (i.e. between a 2 spin-carrying radicals, 2s model) has similar

behavior as a 2s quasi-isolated topology. We can thus conclude that the discrepancy between

TC computed from magnetic Cs(T ) and heat Cp(T ) capacities can be explained in terms of

the order in the crystal. It must be further emphasized that the systematic shift of the

transition temperature computed from Cs(T ) and Cp(T ) (i.e. T µC(Cs) < T hC(Cp))), which

was observed for the 4s model, is also realized for the seven real molecule-based magnets

here analyzed due to the different behavior of both short- and long-range spin correlations.

Note also that, even if the difference between T µC(Cs) and T hC(Cp) critical temperatures is

not very large, it can be of crucial importance when studying physical properties around the

critical point.
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Conclusions

In this paper it is established that the heat capacity Cp(T ) measures the energy variation due

to the 3D propagation of the interaction of two magnetically connected spins, i.e. to short-

range ordering. The magnetic capacity Cs(T ), in turn, is a measure of the thermal variation

of the spin multiplicity of the system, and reflects the importance of magnetically non-

connected spin alignment and how the dominant effect of long-range spin correlation governs

the magnetic behavior of molecule-based crystals (and in general of magnetic compounds).

We show that the current definition of the critical temperature TC for magnetic systems,

which is associated with a maximum in the heat capacity Cp(T ), does not capture the

magnetic nature because it excludes long-range magnetic order. Instead, a maximum in

∂[χT (T )]/∂T , that is related to the magnetic capacity Cs(T ) which in turn includes changes

in short- and long- range spin order/disorder, is a more broadly applicable definition of the

magnetic transition temperature.

The magnetic capacity Cs(T ) is also useful because it can be interpreted in terms of

the molecular structure of the crystal using the magnetic wavefunction for each magnetic

microstate. For this interpretation, we have used a Valence Bond analysis of the mag-

netic wavefunction. This analysis uses the concept of the Boltzmann magnetic bond order

(µ̃(T )), which is in turn defined using the exchange density matrix Pij. Whereas the lat-

ter provides information about the spin correlation between magnetic units, the Boltzmann

magnetic µ-bond order elements, µ̃(J, T ) and µ̃(0, T ), are a very powerful tool to visualize

the temperature-dependence of the magnetic correlation between all spin units.

After analysis of seven experimental magnetic systems, we demonstrate the existence of a

systematic shift between the transition temperatures associated with Cs(T ) and Cp(T ) which

we demonstrate can be attributed to the loss of long-range spin correlation. We conclude

that TC calculated from either Cp(T ) or Cs(T ) will be nearly equal only in those molecule-

based systems in which the long-range spin correlation can be neglected, or there is no 3D

propagation of the spin coupling. This suggests that the magnetic capacity Cs(T ) can be
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used as a predictive tool for the magnetic topology, and thus for the synthetic chemists. In

addition, this type of analysis will enable further research to promote better understanding

about what happens in the region close to the magnetic transition regime as a function of

the magnetic topology.
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