
Identifying attack and support argumentative relations using deep learning

Oana Cocarascu and Francesca Toni
Department of Computing
Imperial College London

Abstract

We propose a deep learning architecture to
capture argumentative relations of attack
and support from one piece of text to an-
other, of the kind that naturally occur in
a debate. The architecture uses two (uni-
directional or bidirectional) Long Short-
Term Memory networks and (trained or
non-trained) word embeddings, and al-
lows to considerably improve upon exist-
ing techniques that use syntactic features
and supervised classifiers for the same
form of (relation-based) argument mining.

1 Introduction

Argument Mining (AM) is a relatively new re-
search area which involves, amongst others, the
automatic detection in text of arguments, ar-
gument components, and relations between ar-
guments (see (Lippi and Torroni, 2016) for an
overview). We focus on a specific type of AM,
referred to as Relation-based AM (Carstens and
Toni, 2015), which has recently received atten-
tion by several researchers (e.g. see (Bosc et al.,
2016; Carstens and Toni, 2017)). This type of AM
aims at identifying argumentative relations of at-
tack and support between natural language argu-
ments in text, by classifying pairs of pieces of text
as belonging to attack, support or neither attack
nor support relations. For example, consider the
three texts taken from Carstens and Toni (2015):

t1: ‘We should grant politicians immunity from
prosecution’

t2: ‘Giving politicians immunity allows them to
focus on performing their duties’

t3: ‘The ability to prosecute politicians is the ul-
timate protection against abuse of power’

Here t2 supports t1, t3 attacks t1, and t2 and t3
neither attack nor support one another.

Relation-based AM is useful, for example, to
pave the way towards identifying accepted opin-
ions (Bosc et al., 2016) or divisive issues (Konat
et al., 2016) within debates.

We propose a deep learning architecture
for Relation-based AM based on Long-Short
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997).
Within the architecture, each input text is fed, as
a (trained or non-trained) 100-dimensional GloVe
embedding (Pennington et al., 2014), into a (unidi-
rectional or bidirectional) LSTM which produces
a vector representation of the text independently of
the other text being analysed. The two vectors are
then merged (using element-wise sum or concate-
nation) and the resulting vector is fed to a softmax
classifier which predicts whether the pair of input
texts belongs to the attack, support or neither re-
lations. The input texts may be at most 50 words
long, but are not restricted to single sentences.

We experimented with several instances of the
architecture and achieved 89.53% accuracy and
89.07% F1 using unidirectional LSTMs and con-
catenation as the merge layer, considerably outper-
forming feature-based supervised classifiers used
in the studies which presented the corpus we also
use (Carstens and Toni, 2015, 2017).

The remainder of the paper is organised as fol-
lows. In Section 2 we discuss related work and the
corpus we use. In Section 3 we describe our deep
learning architecture and report experiments and
results in Section 4. We conclude the paper and
propose directions for future work in Section 5.



2 Background

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (Elman,
1990; Mikolov et al., 2010) are a type of neural
networks in which the hidden layer is connected
to itself so that the previous hidden state is used
along with the input at the current step. RNNs
tend to suffer from the vanishing gradients prob-
lem (Bengio et al., 1994) while trying to capture
long-term dependencies.

LSTM models (Hochreiter and Schmidhuber,
1997), a type of RNNs, address this problem by
introducing memory cells and gates into networks.
LSTMs use memory cells to store contextual in-
formation and three types of gates (input, forget,
and output gates) that determine which informa-
tion needs to be added or removed to learn long-
term dependencies within a sequence.

One problem with RNNs/LSTMs in natu-
ral language processing is that they do not
make use of the information of future words.
Bidirectional RNNs/LSTMs (BiRNNs/BiLSTMs)
(Schuster and Paliwal, 1997) solve this problem by
using both previous and future words while pro-
cessing the input sequence with two RNNs: one
in the forward and one in the backward direction,
resulting in two vectors for each input.

2.2 Related work

Identifying relations between texts has recently re-
ceived a great deal of attention, e.g. in Argument
Mining (AM) (see (Lippi and Torroni, 2016) for
a recent overview). In particular, Relation-based
AM (Carstens and Toni, 2015) aims to automat-
ically identify argumentative relations to create
Bipolar Argumentation Frameworks (BAFs) (Cay-
rol and Lagasquie-Schiex, 2005).

BAFs are triples 〈AR, attacks, supports〉 con-
sisting of a set of arguments AR and two binary re-
lations attacks and supports between arguments.

The example texts introduced in Section 1 form
a BAF with AR = {t1, t2, t3} and attacks,
supports given graphically (as -, + respectively)
as follows:

t2 t3

t1+ −

Carstens and Toni (2017) obtained 61.8% accu-
racy and 62.1% F1 on a news articles using Sup-
port Vector Machines (SVMs) and features such as

distance measures, word overlap, sentence metrics
and occurences of sentiment words.

Bosc et al. (2016) used a corpus consisting of
tweets to determine attack and support relations
between tweets. Using an encoder-decoder ar-
chitecture and two LSTMs (the second LSTM
initialised with the last hidden state of the first
LSTM), they obtained negative results (0.2 F1 for
support and 0.16 F1 for attack).

Other works in AM use deep learning models
to determine relations between arguments, but of a
different kind than in our work. Notably, Habernal
and Gurevych (2016) experimented with LSTM
models extended with an attention mechanism and
a convolution layer over the input pairs to deter-
mine whether an input argument is more convinc-
ing than the other input argument. Thus, their fo-
cus is on determining a “more convincing than”
relation, rather than attack and support argumen-
tative relations, between arguments.

Several authors used neural network models for
tasks related to the form of AM we consider. Yin
et al. (2016) proposed three attention mechanisms
for Convolutional Neural Networks to model pairs
of sentences in tasks such as textual entailment
and answer selection, whereas dos Santos et al.
(2016) proposed a two-way attention mechanism
to jointly learn the representation of two inputs in
an answer selection setting.

Bowman et al. (2015) used stacked LSTMs
to determine entailment, neutral and contradic-
tion relations amongst sentence pairs using the
SNLI (Stanford Natural Language Inference) cor-
pus, with the bottom layer taking as input the
concatenation of the input sentences. Recognis-
ing textual entailment between two sentences was
also addressed in (Rocktäschel et al., 2015) which
used LSTMs and a word-by-word neural attention
mechanism on the SNLI corpus.

Liu et al. (2016) proposed two models captur-
ing the interdependencies between the two paral-
lel LSTMs encoding two input sentences for the
tasks of recognising textual entailment and match-
ing questions and answers. Further, Koreeda et al.
(2016) used a BiRNN with a word-embedding-
based attention model to determine whether a
piece of an evidence supports a claim that a phrase
promotes or suppresses a value, using a dataset of
1000 pairs.



2.3 Dataset
Determining relations between any texts can be
seen as a three-class problem, with labels L =
{attack, support, neither}. We used a dataset
covering various topics such as movies, technol-
ogy and politics1, where attack relations repre-
sent 31% of the dataset, support relations repre-
sent 32% of the dataset and neither relations rep-
resent 37% of the dataset.

We have also explored the use of other corpora
(e.g. the SNLI corpus (Bowman et al., 2015) and
Araucaria in AIFdb2) that we ultimately decided
not to include due to their structure not being di-
rectly amenable to our analysis.

3 Architecture

Figure 1 summarises the deep learning architec-
ture that we use for predicting which relation from
L = {attack, support, neither} holds between
the first and the second texts in any input pair.

We do not limit input texts to be single sen-
tences, but limit them to 50 words (as this is the
average text length in our corpus): inputs whose
size is smaller than this threshold are padded with
zeros at the end to give sequences of exactly 50
words. The input texts are (separately) embed-
ded as 100-dimensional GloVe vectors (Penning-
ton et al., 2014), with the words that do not ap-
pear in the vectors being treated as unknown. As
we will see in Section 4, we experimented with
the pre-trained word representations (freezing the
weights during learning) as well as learning the
weights.

The architecture relies upon two parallel
LSTMs to model the two texts separately. We ex-
perimented with both unidirectional and bidirec-
tional LSTMs (see Section 4). In both cases, we
set the LSTM dimension to 32, as this proved to be
the best, amongst alternatives (64, 100, 128), for
mitigating overfitting. In addition, our LSTMs use
a Rectified Linear Unit (ReLU) activation, each re-
turning a vector of dimension 32.

Each LSTM network produces a vector repre-
sentation of the input text, independently of the
other text being analysed. The two vectors are then
merged and the resulting vector fed to a softmax
classifier which predicts the label for the relation
between the first and the second input texts. As
we will see in Section 4, we experimented with

1https://www.doc.ic.ac.uk/˜lc1310/
2https://corpora.aifdb.org

text 1

100d embed

(Bi)LSTM 32

text 2

100d embed

(Bi)LSTM 32

merge

Dense 32 ReLU

softmax

Figure 1: Our architecture: two (unidirectional or
bidirectional) LSTMs are run with one text each.
The dashed layer (Dense 32 ReLU) is optional.

Hyper- Value Hyper- Valueparameter parameter
Dropout 0.2 LSTM size 32
Embedding size 100 Dense size 32
Sequence length 50 Batch size 128

Table 1: Hyper-parameters for our (Bi)LSTMs.

two types of merge layer: sum, which performs
element-wise sum, and concat, which performs
tensor concatenation.

After the merge layer, our architecture incorpo-
rates an optional dense feedforward layer. Our ex-
periments (see Section 4) included testing whether
the inclusion of this layer has an impact on the re-
sults. Again, we chose the dimension (32) as it
proved better for mitigating overfitting than alter-
natives that we tried (64).

The values for the hyper-parameters used in our
experiments (see Section 4) are summarised in Ta-
ble 1. We used a mini-batch size of 128 and
cross-entropy loss. To avoid overfitting, we ap-
plied dropout before the merge layer with prob-
ability 0.2, but not on the recurrent units. The
hyper-parameters were optimised using the Adam
method (Kingma and Ba, 2014) with learning rate
0.001, which turned out to give better perfor-
mances than alternative optimisers we tried (Ada-
grad, Adadelta and RMSprop).

https://www.doc.ic.ac.uk/~lc1310/
https://corpora.aifdb.org


4 Results

We trained for 50 epochs or until the performance
on the development set stopped improving, in or-
der to avoid overfitting. The development set was
20% of the training dataset in the 10-fold cross-
validation setup. In more detail, we run 10 strati-
fied fold cross-validation for 5 times (so that each
fold is a good representative of the whole). We
report the average results of the 5x10 fold cross-
validation in Table 2. As baseline, we used Logis-
tic Regression (LR) and unigrams obtained from
concatenating the two input texts.

We experimented with using BiLSTMs and uni-
directional LSTMs with the two types of merge
layers and using non-trained embeddings, namely
pre-trained word representations (freezing the
weights during learning), or trained embeddings,
learning the weights during training.

We achieved 89.53% accuracy and 89.07% F1

by concatenating the output of the two sepa-
rate LSTMs. Unexpectedly, BiLSTMs performed
worse than LSTMs (Table 2 only includes the best
performing BiLSTM instance of the architecture,
using concatenation and the feedforward layer).
We believe this is because of the size of the dataset
and that this effect could be diminished by acquir-
ing more data. For the LSTM model with trained
embeddings, the accuracy varied between 84.84%
and 90.02%. Concatenating the LSTMs’ output
vectors yields better performance than performing
element-wise sum of the vectors. We believe this
is because this allows the system to encode more
features, allowing the network to use more infor-
mation.

Using the default, pre-trained word embeddings
yields worse results compared to the baseline. We
believe this is because the quality of word embed-
dings is dependent on the training corpora.3 Train-
ing the word embeddings results in better perfor-
mance compared to the baseline with improve-
ments of up to 12% in accuracy and up to 11.5%
in F1.

In all cases, training the word embeddings re-
sults in dramatic improvements compared to freez-
ing the embedding weights during learning, vary-
ing from 9.9% to 21.3% increase in accuracy and
up to 25% in F1. We also report the standard de-
viation of our models with trained embeddings.

3Pennington et al. (2014) computed the 100-dimensional
GloVe embeddings on a a dump of English Wikipedia pages
from 2014 consisting of 400k words.

This shows that our best models (LSTMs with a
concatenation layer) are stable and perform con-
sistently on the task considered. Using One-Way
ANOVA, the result is significant at p < 0.05
(the f-ratio value is 145.45159, the p-value is <
0.00001).

5 Conclusion

We proposed a deep learning architecture based
on Long Short-Term Memory (LSTM) networks
to capture the argumentative relation of attack and
support between any two texts. Our architecture
uses two (unidirectional or bidirectional) LSTMs
to analyse separately two 100-dimensional (non-
trained or trained) GloVe vectors representing the
two input texts. The outputs of the two LSTMs are
then concatenated and fed to a softmax classifier to
predict the relation between the input texts.

Our unidirectional LSTM model with trained
embeddings and a concatenation layer achieved
89.53% accuracy and 89.07% F1. The results indi-
cate that LSTMs may be better suited for Relation-
based Argument Mining at least for non-micro
texts (Bosc et al., 2016) than standard classifiers as
used in e.g. Carstens and Toni (2017), as LSTMs
are better at capturing long-term dependencies be-
tween words and they operate over sequences, as
found in text.

In future work, we plan to test our model on
corpora such as the Language of Opposition from
AIFdb4 (by converting the finer-grained relation
types used in this corpus to argumentative rela-
tions of the kind we considered), on datasets pro-
posed for different tasks (e.g. identifying tex-
tual entailment could be seen as identifying sup-
port) and thus possibly use the corpus proposed by
Bowman et al. (2015), as well as the twitter dataset
of Bosc et al. (2016) once it becomes publicly
available. Also, attack and support relations of
the kind we have considered in this paper may be
seen as special types of discourse relations (Teufel
et al., 1999; Lin et al., 2009). It would be inter-
esting to see whether any corpora for identifying
discourse relations could be useful for furthering
our experimentation. Finally, we plan to incorpo-
rate an attention-based mechanism as well as ad-
ditional features (e.g. extracted through sentiment
analysis) to determine which parts of the texts are
most relevant in identifying attack and support.

4https://corpora.aifdb.org

https://corpora.aifdb.org


Baseline A% P% R% F1%
LR (unigrams) 77.87 78.02 77.87 77.89
Model/ Non-trained embeddings Trained embeddings
Merge/Dense A% P% R% F1% A% P% R% F1% A std F1 std
BiLSTM/c/T 60.72 64.36 52.64 57.36 70.66 73.18 62.96 66.93 2.06 4.60
LSTM/c/F 68.25 72.39 59.07 64.38 89.53 90.80 87.67 89.07 0.47 0.73
LSTM/c/T 68.68 72.77 58.21 63.49 90.02 90.89 88.26 89.41 2.09 2.92
LSTM/s/T 64.21 69.18 51.07 57.09 84.84 86.75 79.98 82.35 5.02 9.26

Table 2: 5x10 fold cross-validation results, using c(oncat) or s(um) for merging the output of the two
(Bi)LSTMs, with (non-)trained embeddings; T (True)/F (False) represent inclusion/omission, respec-
tively, of the Dense 32 ReLU layer. std represents standard deviation of 5x10 fold cross-validation.

References
Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

1994. Learning long-term dependencies with gra-
dient descent is difficult. Transactions on Neural
Networks, 5(2):157–166.

Tom Bosc, Elena Cabrio, and Serena Villata. 2016.
Tweeties squabbling: Positive and negative results
in applying argument mining on social media. In
Computational Models of Argument COMMA, pages
21–32.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large an-
notated corpus for learning natural language infer-
ence. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Lucas Carstens and Francesca Toni. 2015. Towards
relation based argumentation mining. In Proceed-
ings of the 2nd Workshop on Argumentation Mining,
pages 29–34.

Lucas Carstens and Francesca Toni. 2017. Using ar-
gumentation to improve classification in natural lan-
guage problems. ACM Transactions on Embedded
Computing Systems. Forthcoming.

Claudette Cayrol and Marie-Christine Lagasquie-
Schiex. 2005. On the acceptability of arguments in
bipolar argumentation frameworks. In Symbolic and
Quantitative Approaches to Reasoning with Uncer-
tainty: 8th European Conference, pages 378–389.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Ivan Habernal and Iryna Gurevych. 2016. What makes
a convincing argument? Empirical analysis and de-
tecting attributes of convincingness in web argumen-
tation. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1214–1223.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Barbara Konat, John Lawrence, Joonsuk Park,
Katarzyna Budzynska, and Chris Reed. 2016. A
corpus of argument networks: Using graph prop-
erties to analyse divisive issues. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC).

Yuta Koreeda, Toshihiko Yanase, Kohsuke Yanai, Misa
Sato, and Yoshiki Niwa. 2016. Neural attention
model for classification of sentences that support
promoting/suppressing relationship. In Proceedings
of the Third Workshop on Argument Mining.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the penn
discourse treebank. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 343–351.

Marco Lippi and Paolo Torroni. 2016. Argumentation
mining: State of the art and emerging trends. ACM
Transactions on Internet Technology, 16(2):10.

Pengfei Liu, Xipeng Qiu, Yaqian Zhou, Jifan Chen, and
Xuanjing Huang. 2016. Modelling interaction of
sentence pair with coupled-lstms. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1703–
1712.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH, pages 1045–1048.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
CoRR, abs/1509.06664.

http://www.doc.ic.ac.uk/~ft/PAPERS/TOIT17.pdf
http://www.doc.ic.ac.uk/~ft/PAPERS/TOIT17.pdf
http://www.doc.ic.ac.uk/~ft/PAPERS/TOIT17.pdf


Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang,
and Bowen Zhou. 2016. Attentive pooling net-
works. CoRR, abs/1602.03609.

Mike Schuster and K. Kuldip Paliwal. 1997. Bidirec-
tional recurrent neural networks. Transactions on
Signal Processing, 45(11):2673–2681.

Simone Teufel, Jean Carletta, and Marc Moens. 1999.
An annotation scheme for discourse-level argumen-
tation in research articles. In EACL 9th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 110–117.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and
Bowen Zhou. 2016. ABCNN: attention-based con-
volutional neural network for modeling sentence
pairs. TACL, 4:259–272.


