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Abstract: In the case of a metastable electroweak vacuum the quantum corrected effective

potential plays a crucial role in the potential instability of the Standard Model. In the Early

Universe, in particular during inflation and reheating, this instability can be triggered

leading to catastrophic vacuum decay. We discuss how the large spacetime curvature of

the Early Universe can be incorporated in the calculation and in many cases significantly

modify the flat space prediction. The two key new elements are the unavoidable generation

of the non-minimal coupling between the Higgs field and the scalar curvature of gravity

and a curvature induced contribution to the running of the constants. For the minimal

set up of the Standard Model and a decoupled inflation sector we show how a metastable

vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a

novel and very much related dark matter generation mechanism.
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1 Introduction

The discovery of the Higgs boson has been the most significant discovery of the LHC and

marks the verification of the last constituent of the Standard Model of particle physics.

However, the Standard Model does not seem to provide explanations for some of the deep

mysteries in physics such as baryon asymmetry, neutrino masses or dark matter. Un-

fortunately, there has been little experimental results from particle accelerators to guide

theoretical work.

One of the most surprising realizations of recent years has been the potential instability

of the electroweak vacuum [1, 2]: the current best fit observations imply the striking

feature that the Standard Model effective potential of the Higgs field will at large scales

generate a second minimum, sometimes referred as the true vacuum, with substantially

negative energy-density. The generation of a second minimum is ultimately a quantum

effect resulting from the energy scale dependence, or running, of the parameters. The

most accurate calculations [1–3] are converging towards the result that the energy scale ΛI
at which the effective, or quantum corrected, potential turns over to negative values lies

between 1010 – 1012GeV , with an absolutely stable potential located within the 3σ bound

around the central values. The emergence of a second minimum unavoidably implies that

the current electroweak vacuum has a finite lifetime and thus will eventually decay. If the

lifetime of the current vacuum is sufficiently long, this not a contradiction with current

observations, however crucially, during and epoch of cosmological inflation the situation

can change: fluctuations of the Higgs field are amplified by the expansion of space during

inflation, in many ways analogously to a thermal bath, and for large enough fluctuations
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there in fact exists a dangerously large probability that the electroweak vacuum decays

during inflation [4, 5]1.

From the non-observation of primordial tensor modes the combined BICEP2/Keck and

Planck data points the bound of the scale of inflation to be H ∼ 1014GeV or lower [7].

As an order of magnitude leading approximation, the probability density of vacuum decay

during inflation scales as

P ∼ exp

{
−8π2Vmax

3H4

}
, (1.1)

where Vmax refers to the maximum of the effective potential. This then leads to the

approximate criterion

Vmax & H , (1.2)

for the survival for the electroweak vacuum during inflation assuming a metastable Stan-

dard Model. Any theory with a decay to the true vacuum would likely not give rise to the

Universe we observe and as such the requirement of inflationary vacuum stability results

in a consistency constraint linking cosmological history to particle physics: the prediction

of vacuum decay in the Early Universe would be a cosmological verification for the need of

beyond the Standard Model physics. From (1.1) one may also see that any mechanism in-

creasing the barrier between the electroweak and the true vacuum exponentially decreases

the vacuum decay probability.

In [8, 9] it was realized that gravitys presence in the quantum dynamics of the Early

Universe cannot be neglected: when consistently including the backreaction of gravity, a

metastable electroweak vacuum can be compatible with large scale inflation, as long as the

non-minimal coupling of the Higgs boson to gravity is of a sufficient size. In this work

we review the details of the derivation in [8, 9] and furthermore discuss how a related

mechanism can lead to an efficient production of dark matter [10].

2 Random walk during inflation

If inflation is given by some yet unknown physics and not the Higgs field itself as in [11], on

an exponentially expanding background the Higgs field φ behaves as a stochastic spectator

field, whose probability distribution P (t, φ) may be calculated from the Fokker-Planck

equation [12]

Ṗ (t, φ) =
1

3H

∂

∂φ

[
P (t, φ)V ′(φ)

]
+
H3

8π2

∂2

∂φ2
P (t, φ) , (2.1)

where V (φ) is the classical potential. The essential assumption that leads to the stochastic

description is treating the ultraviolet physics as a white noise contribution which induces

”random walk” in the long wave length modes.

By only invoking the stochastic approach for the vacuum stability/instability analysis

we are neglecting the bubble nucleation transition ”through the barrier” via the Coleman–

de Luccia instanton. However, vacuum decay via bubble nucleation is subdominant with

respect to the stochastic fluctuations and because of this to a leading approximation can be

1See [6] for a more complete list of related work
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Table 1. The effective potential (3.1) with W±, Z0, top quark t, Higgs φ and the Goldstone bosons

χ1,2,3. The non-trivial nature of the curvature corrections is apparent in the coefficients θi.

Φ i ni κi κ′i θi ci

1 2 g2/4 0 1/12 3/2

W± 2 6 g2/4 0 1/12 5/6

3 −2 g2/4 0 −1/6 3/2

4 1 (g2 + g′2)/4 0 1/12 3/2

Z0 5 3 (g2 + g′2)/4 0 1/12 5/6

6 −1 (g2 + g′2)/4 0 −1/6 3/2

t 7 −12 y2
t /2 0 1/12 3/2

φ 8 1 3λ m2 ξ − 1/6 3/2

χi 9 3 λ m2 ξ − 1/6 3/2

neglected [4]. The approximation in (1.1) follows from (2.1) by solving for the stationary

case Ṗ (t, φ) = 0 and determining the probability of a ”jump” high enough to reach the top

of the potential.

If the scale of inflation H is large one may solve the variance of a light self-interacting

scalar field with V (φ) ∼ λφ4, such as the Higgs to acquire substantial long wave length

fluctuations as

〈φ2〉 ∼ H2

√
λ
, (2.2)

indicating that a dangerous fluctuation may be generated for a sufficiently large H. But

however convenient the stochastic approach may be, when studying the cosmological im-

plications from the electroweak vacuum instability we must introduce an important mod-

ification to the above prescription: since the reason why the Standard Model vacuum is

unstable is intimately linked to renormalization and hence ultraviolet physics, it is not

visible when using the classical potential V (φ) in equation (2.1). Hence, we need to replace

V (φ) with the effective potential that is sensitive to the quantum effects, which we denote

with Veff(φ), in (2.1). The important point here is that the infra-red modes are correctly

taken into account by the Fokker-Planck equation (2.1) so Veff(φ) should include only the

ultraviolet physics. Furthermore, since we are interested in physics during inflation with a

large scale H � ΛI , the curvature of the background must be included in the computation

of Veff(φ).

3 Effective potential in curved space

The calculation for the quantum corrected effective potential at the ultraviolet limit is

surprisingly simple when compared to what one usually encounters when deriving an ef-

fective potential on a curved background. The reason for this is that at the ultraviolet
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limit all well-behaved field theories must have universal behaviour, which translates as the

fact that the divergences that are generated are independent of the state in which they are

calculated. Hence, at very high momenta even with a background with large curvature the

effective potential resembles very much the well-known flat space results. Another way of

understanding the simplification arising at short wave-length modes is realizing that any

smooth surface when magnified enough will approach flat space.

The effective potential in the high ultraviolet on an arbitrary curved background we

can very conveniently derive via the resummed Heat Kernel method [13]. This includes the

essential curvature terms. We point out that this derivation is completely semi-classical or

that gravity is not quantized. Since ΛI/Mpl � 1 this is an accurate approximation when

the Higgs is not the dominant energy component, as was recently rigorously shown to be

true in [6].

In what follows we have chosen a minimal set-up where there are no direct couplings

between the inflaton sector and the Standard Model. In terms of radiative stability this is

consistent: no couplings will be generated by renormalization group running if the tree-level

values vanish. Having a direct coupling to the inflaton sector as many reheating models

require would have an impact on the vacuum stability. In such cases the results become very

much model dependent. However, our main arguments related to the necessary generation

of a non-minimal coupling to gravity are independent of possible couplings to the inflaton

sector.

In strict de Sitter space to 1-loop order the result in the ’t Hooft-Landau gauge includ-

ing only the relevant degrees of freedom for the quantum corrected, or effective, potential

was first derived in [8]

Veff(φ) = −1

2
m2φ2 +

1

2
ξRφ2 +

1

4
λφ4 +

9∑
i=1

ni
64π2

M4
i (φ)

[
log

∣∣M2
i (φ)

∣∣
µ2

− ci

]
; (3.1)

M2
i (φ) = κiφ

2 − κ′i + θiR , (3.2)

with R = 12H2 and where the ni represent the various degrees of freedom described in

table 1 with Mi(φ) as their effective masses. To be specific, the field φ is precisely the

scalar degree of freedom of the Higgs doublet which by developing an expectation value at

low energies gives rise to the masses for the Standard Model constituents.

When deriving (3.1) we have not included all contributions from curvature: generically

at the level of the action divergences proportional to RµνR
µν and RµνηρR

µνηρ are also

generated [14]. This however does not result into any new φ-dependence at tree-level and

only a mild φ-dependence will be generated through φ-dependent logarithms, which here

we neglect.

The potential in (3.1) can be seen to resemble very much the 1-loop flat space result

[15] for the reasons given at the beginning of this section. Precisely as in the flat space

derivation, (3.1) is not applicable for the scales that are relevant for the vacuum instability

φ ≥ ΛI . The reason for this lies in µ, the renormalization scale: the parameters are matched

to observables at scales several oders of magnitude smaller than ΛI , which at high energies

leads to large logrithms and indicates a breakdown of the perturbative expansion. The
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well-known technique of renormalization group improvement may then be used to rectify

the situation, which gives a potential where coupling constants run according to the energy

scale one is probing. At its core, renormalization group improvement is a statement of the

independence of physics to the renormalization scale, so the improved result must satisfy

dVeff/dµ = 0. For a perturbative result however, the truncated higher order contributions

always contain some left-over µ-dependence, and one should make a choice for µ such that

the convergence of the improved effective potential is optimized [16], essentially this comes

about by making sure that the logarithms remain small. In flat space for φ � m a good

and frequently used choice is µ = φ, which as its leading approximation gives the frequently

used result

Veff(φ) ≈ λ(φ)

4
φ4 ; H = 0 . (3.3)

When the background is strongly curved the same prescription of keeping the loga-

rithms under control forces one to make a distinctively different choice. As one may see

from the effective potential (3.1), in de Sitter space all effective masses contain curvature

contributions, remembering that the scalar curvature in de Sitter space is R = 12H2. A

well-behaved choice in curved space can then be obtained from

µ2 = φ2 +R . (3.4)

The fact that the renormalization group running scale µ gets a contribution from R leads

to an important result: curvature can influence the running of couplings.

A related and equally important curved space effect to curvature induced running is

the generation of the non-minimal term which couples the scalar curvature to the Higgs

field ∼ ξRφ2. The expression for the effective potential (3.1) shows that we chose a non-

minimal term to be present already at tree-level, but from the quantum correction one may

see that this is in fact required by renormalization group running: the β-function for ξ can

be determined from the coefficients of the logarithms to be

16π2βξ =
(
ξ − 1

6

)(
12λ+ 6y2

t −
3

2
g′2 − 9

2
g2

)
, (3.5)

from which it is apparent that ξ = 0 is not an fixed point of the renormalization group

flow. From this we can conclude that a non-zero ξ will always be generated by a change in

the energy scale, if from nothing else than from the inevitable change of the Hubble rate

H during the evolution of the Universe.

The two modifications introduced by background curvature are most clearly visible

when using the approximation to the 1-loop renormalization group improved effective po-

tential at a large scale (φ� m) with a tree-level potential but with running couplings

Veff =
ξ(µ)

2
Rφ2 +

λ(µ)

4
φ4 , (3.6)

where we have chosen µ as in (3.4). The effects can be easily understood by comparing the

flat space result (3.3) to (3.6) and we list them here once more for clarity:
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Figure 1. The behaviour of the renormalization group improved 1-loop effective potential, with

the Hubble rate H = 1010GeV and the choice ξ = 0 at the electroweak scale. The normalization

scale Λmax refers to the scale at which the flat space maximum is reached. Due to the generation

of a negative curvature mass term the potential is monotonically decreasing.

(1) Spacetime curvature induces running of couplings.

(2) A non-zero ξ is unavoidable.

4 Stability during inflation

We now have everything we need for studying the stability of the electroweak vacuum

during inflation. The main features may be understood from the tree-level improved result

(3.6).

Due to the curvature induced running we discussed in the previous section, the four-

point coupling for the Higgs field λ(µ) is negative from the very onset of inflation, even if

φ = 0, if the scale of inflation H is larger than the instability scale ΛI . From this we can

deduce that for large inflationary scales the only means of having a positive potential is

a large non-minimal term (1/2)ξRφ2 that counteracts the negative contribution from the

quartic term in (3.6). If ξ is renormalized to have a vanishing value at the electroweak

scale it generates a negative value when evaluated at a high scale [8], which is shown in

figure 1. However, as we explained in the previous section, since ξ is not a fixed point

in the renormalization group running ξ = 0 is not radiatively stable. Furthermore the

current observable bound for ξ is for all practical purposes non-existent [17] so most non-

zero choices for ξ are equally motivated physically. Already when making relatively modest

choices for ξ, for example ∼ 0.1 at electroweak scales, the non-minimal term runs to give

a large positive contribution at high energies as visible in figure 2.
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Figure 2. The behaviour of the renormalization group improved 1-loop effective potential, with

the Hubble rate H = 1010GeV and the choice ξ = 0.1 at the electroweak scale. The normalization

scale Λmax refers to the scale at which the flat space maximum is reached, indicating that here the

peak occurs at a significantly higher scale.

As a first approximation since the couplings run quite weakly at large scales, we can

roughly find the maximum of the potential when λ is negative but ξ positive by using (3.6):

Λ2
max ≈ −

ξ(µ)

λ(µ)
R , Vmax ≈ −

[ξ(µ)R]2

4λ(µ)
; µ2 ≈ R , (4.1)

which are represented by the dashed lines in figure 2. This verifies the statement that for

ξ that is O(1) or less at electroweak scales we already have Vmax ≥ H4 and the scaling in

(1.1) shows that the probability of vacuum decay is diminished significantly. This can also

be seen in figure 2, where we plot the full RG improved potential in curved space to 1-loop

accuracy. In figure 2 we have also normalized the x-axis with respect to the field value

at which the flat space potential reaches its maximum, Λmax. As the representative scale

for inflation we have chosen H ∼ 1010GeV, since in the 1-loop approximation λ runs to

negative values at much smaller scales than in a the state-of-the-art results [1], roughly at

ΛI ∼ 108GeV. Hence our choice corresponds to H � ΛI with respect to the 1-loop result.

Clearly, from figure 2 we see that the peak of the potential is reached at a scale that is ∼
103-times larger than Λmax. Importantly, the maximum of the potential is correspondingly

increased and from (4.1) we see it scaling roughly as V
1/4

max ∼ 2H. Formula (1.1) then gives

the order of magnitude estimate for the transition probability to the unstable vacuum as

P < e−400, showing that for ξ & 0.1 fixed at the electroweak scale the potential is stable

at high energies.

All values for ξ that are larger than some threshold will lead to a similar stabilizing

result. A special point is reached at ξ = 1/6 after which the Higgs starts behaving as a

non-fluctuating massive field and the instability problem is completely removed. As the

order of magnitude criteria for stability we can use (1.2) and for the instability the point
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Figure 3. The regions I (blue, top) for which V
1/4
max & H leading to a suppressed transition

probability to the true vacuum, and II (red, bottom), where the EW vacuum is unstable due to a

monotonically decreasing potential from a negative curvature contribution.

when the potential becomes monotonically decreasing. The results for various initial values

of ξ at the electroweak scale may be found in figure 3, which show that the Standard Model

is compatible with large scale inflation as long as ξ & 10−2 at the electroweak scale.

5 Stability after inflation

The fact that the Standard Model may be stable during inflation even when H is as large

as allowed by the tensor bound does not mean that a vacuum decay is completely avoided

in the Early Universe. This is due to the explosive and non-perturbative dynamics which

often occur after inflation has ended and the thermal plasma of the hot Big Bang becomes

the dominant energy component of the Universe. This is of course what happens during

the reheating epoch.

After the end of inflation a generic feature of many inflationary models is the coherently

oscillating inflaton field around the minimum of its potential. This can give rise to a very

potent non-perturbative amplification of resonant quantum modes dubbed preheating [18].

Right after inflation before any notable thermalization has occurred there is a significant

possibility that a large enough fluctuation is generated by preheating to induce vacuum

decay, which was first noticed in [9]. The decay, quite surprisingly, does not require a direct

coupling between the Higgs field and the inflaton but can result from the non-minimal term

∼ ξRφ2.

Let us consider a generic inflaton potential Vinf(Φ) during the coherent oscillations of

an inflaton field Φ around the origin of Vinf(Φ). By our assumptions, Φ is the dominant

energy component and we can solve the behaviour of R by taking the trace of the Einstein
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Figure 4. The behaviour of the scalar curvature R for m2
ΦΦ2-inflation. Due to the expansion of

space the first oscillation gives rise to the largest tachyonic amplification. ε ≡ −Ḣ/H2 = 1 signals

the end of inflation

equation

M2
plGµν = Tµν ⇒ R =

1

M2
pl

[
4Vinf(Φ)− Φ̇2

]
. (5.1)

Assuming further that the minimum of Vinf(Φ) is at Φ = 0, when a coherently oscillating

Φ crosses the minimum of its potential from equation (5.1) we see that R < 0. This means

that periodically the non-minimal term ∼ ξRφ2 gives rise to an imaginary mass term for

the Higgs field. A negative mass squared will in turn give rise to extremely efficient particle

creation [19] where the particle number increases much faster than from the resonant effects

usually encountered in preheating. Because of this even during the first half of the first

oscillation a significant fluctuation for the Higgs field can be generated. In figure 4 we show

this effect for inflation with the potential Vinf(Φ) ∼ m2
ΦΦ2.

Since the effective mass is periodically imaginary, the amplification from the ξR-term

may be viewed as tachyonic amplification, which was first discussed in [20, 21]. By making

the canonical reheating approximation where we assume the oscillations of the inflaton to

be sinusoidal, the amplification of a quantum mode f(t) of the Higgs field

φ̂ =

∫
d3k√
(2π)3

[
âkf(t) e−ik·x + H.C

]
(5.2)

for m2
ΦΦ2-inflation can be expressed as the Mathieu equation [9, 20]

d2f(t)

dz2
+

[
Ak − 2q cos(2z)

]
f(t) = 0, z = mΦt , (5.3)

Ak =
k2

a2m2
Φ

+ ξ
Φ2

2M2
pl

, q =
3Φ2

4M2
pl

(
1

4
− ξ
)
.

With the help of the analysis of [19] we can derive a lower bound for the occupation number

after the first oscillation

n1
k = e2Xk , Xk ≈

√
ξ

Φ

Mpl
, (5.4)
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which is directly related to the generation of a variance and hence a large fluctuation as

〈φ̂2〉 ∼
∫
d3k|f(t)|2 n1

k , (5.5)

where to be conservative we have only included the superhorizon modes. Hence the am-

plification is exponential with the opposite behaviour to the inflationary case discussed in

the previous section i.e. the larger the ξ the stronger the effect leading to a larger vacuum

decay probability for ξ � 1.

Before we can claim that the non-minimal coupling for the Higgs field can give rise to

vacuum decay during reheating, we must analyse how the backreaction from the created

particles modifies the tachyonic resonance. Indeed, it is a generic feature of preheating that

once the particle density resulting from the resonance becomes significant its backreaction

will lead to the switching off of the resonance [18]. However, the main backreaction for the

Higgs field results from the generation of an effective mass due to the self-interaction term

∼ λ〈φ2〉, which in fact amplifies the effect since λ < 0 due to curvature induced running

if the scale of reheating is large enough, as we explained in the previous section. As an

estimate of the significance of the backreaction from the generation of an effective mass

from interactions we obtain by using

λ(H) ' λ0 sign(ΛI −H) , with λ0 ≈ 0.01 , (5.6)

with the choice µ = H. Another backreaction mechanism is given by the potential grav-

itational significance of the generated particle density. But since the fluctuations scale as

〈φ2〉 ∼ H2 so for the Higgs field we have V (φ) ∼ H4 � H2M2
pl, which indicates that

gravitational backreaction becomes relevant only for very large variances and hence ξ’s.

In figure 5 we plot the region where a dangerously large fluctuation is generated for

the Higgs field after inflation. We see that for a large scale of inflation/reheating H ∼ ΛI
even after the first oscillation a vacuum decay can become likely. Here again the crucial

ingredient is the curvature induced running of the four-point coupling of the Higgs field,

which results in the vanishing of the main backreaction effect, the generation of an effective

mass term via the self-interactions. As figure 5 shows already for ξ & 10 a vacuum decay

becomes likely.

From the analyses of this and the previous section we can draw the important con-

clusion that a large scale of inflation is compatible with the Standard Model only in a

relatively narrow range for the non-minimal coupling

10−2 . ξ . 10 , (5.7)

which is significantly tighter than the current bound from colliders |ξ| . 1015 [17]. From

a broader perspective our results indicate that in some instances cosmological consistency

can be used as a means for obtaining unprecedented accuracy in bounding parameters of

particle physics.
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6 Resonant dark matter generation

The tachyonic particle production for a non-minimally coupled scalar field as described in

the previous section is of course a generic effect not specific to the Standard Model Higgs

field. Since after reheating has completed the Universe is dominated by radiation, due to

approximate conformal symmetry of the evolution the scalar curvature vanishes, R = 0.

This means that for any scalar field that has no direct coupling to the Standard Model,

in the Early Universe there potentially is a mechanism for producing a significant energy-

density which quickly after it has been generated becomes decoupled from the evolution of

the Universe. Such a behaviour would of course be ideal for a dark matter candidate, as

was first discovered in [10].

The requirement for a dark matter particle is that it should currently have only weak

interactions with the known fields. Another important but less obvious condition is that the

dark matter density should consist of only adiabatic perturbations during the formation of

the Cosmic Microwave Background. For the dark matter perturbations to be adiabatic, we

require that fluctuations in its number density nχ exactly match those of the background

photons nγ

δ

(
nχ
nγ

)
= 0 . (6.1)

For a non-minimally coupled scalar field with ξ & 1 one may easily understand (6.1) to

hold since during inflation the term ∼ ξRχ2 provides the field a mass and because of this it
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Figure 6. The dark matter abundance resulting from tachyonic amplification due to a non-minimal

coupling of a decoupled scalar singlet. We have modelled inflation with ∼ m2
ΦΦ2 and assumed that

reheating after inflation is instantaneous. H0 and m denote the Hubble rate after the end on

inflation and the dark matter mass. Evidently, via this mechanism one may easily generate all of

the observed dark matter abundance.

does not generate a spectrum of long wavelength perturbations unlike the inflaton. During

reheating when R oscillates those regions of space that contain a slight over-density of

inflatons will also contain a slightly larger R resulting in a greater number of produced

dark matter particles. In a way in this mechanism the perturbations in the inflaton field

are inherited by the dark matter candidate during reheating. Hence, the dark matter

perturbations from tachyonic amplification during reheating are adiabatic, as required.

In a simple model where the dark sector contains only the scalar singlet χ that pos-

sesses only a mass term and the non-minimal coupling, an estimate for the produced dark

matter abundance can be obtained by duplicating the derivation of the previous section, in

particular a lower bound for the number of produced particles can be derived from (5.4).

By using quadratic inflation as a representative model and furthermore assuming re-

heating to be instantaneous, as shown in [10] one may write for the dark matter abundance

today

Ωχh
2

0.12
' ξ3/8

( m

10GeV

)( g∗,reh

106.75

)3/2
(

Treh

1015GeV

)3( H0

Hreh

)3/4

exp

(
2
√
ξΦ0

Mpl

)
, (6.2)

where g∗,reh denotes the effective number of relativistic degrees of freedom at the time of

reheating, Treh is the temperature of reheating and H0 and Φ0 denote the Hubble rate and

inflaton amplitude after the end on inflation when the coherent oscillations of Φ start.

In figure 6 we show the generated dark matter density as a function of the non-minimal

coupling and the mass of the scalar singlet. To be conservative we have only included

particle creation resulting from the first oscillation. Even with this restriction figure 6

shows that the tachyonic amplification from the non-minimal term can easily generate all

the dark matter abundance as required by experiments.
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To conclude we emphasize a further desirable feature of the presented dark matter

generation mechanism: since there is no direct coupling to the inflaton-sector, spoiling the

flatness of the inflationary potential is not an issue.

7 Discussion

The possibility of a metastable vacuum of the Standard Model can have drastic conse-

quences when the current understanding of the cosmological evolution of the Universe is

included in the picture: in the Early Universe where the gravitational dynamics are large

a fatal transition to the true vacuum can occur when the scale of inflation is high. The

gravitational dynamics during cosmological inflation is not the only dangerous epoch but

also during the reheating phase after inflation the instability can materialize.

It is an observable fact that currently the Higgs field sits firmly in the electroweak

vacuum. Since it is unlikely that in the case when the vacuum decay is triggered in the

Early Universe the current situation would follow, we can conclude that some stabilizing

mechanism, potentially new physics, must exist in order to stabilize the electroweak vacuum

if the scale of inflation is high. In this manner the Standard Model vacuum instability in

combination with cosmology leads to an indirect probe of beyond the Standard Model

physics.

As the works [8, 9] demonstrated, gravity must be incorporated in the quantum dy-

namics of the Early Universe when calcuating the implications from the vacuum instability.

The two effects that are visible only when the curvature of the backround is not neglected

are the generation of the non-minimal coupling for the Higgs field and the running of the

constants induced by the background curvature. The main conclusion of [8, 9] was that

the non-minimal parameter ξ can result in a stabilizing mechanism during inflation and

reheating. Choosing ξ to be non-zero is well-motivated from the field theory point-of-view

since ξ = 0 is not a fixed point of the renormalization group flow.

During inflation requiring stability gives rise to a lower bound for ξ. However interest-

ingly, in the reheating phase having a large ξ results in the formation of a large fluctuation,

which indicates that stability during reheating gives rise to an upper bound for ξ. When

both the inflationary and reheating stability limits are combined one gets that the safe

parameter range when stability during inflation and reheating may take place is centered

around the conformal point ξ = 1/6 [8, 9]

O(10−2) . ξ . O(10) . (7.1)

The vacuum instability during reheating is the consequence of a tachyonic amplification

due to the presence of the non-minimal coupling to gravity. This effect is generic and

occurs for any non-minimally coupled scalar singlet. For a completely decoupled scalar

singlet with a non-zero ξ-coupling such a tachyonic amplification can act as a viable dark

matter generation mechanism [10], showing the richness of effects resulting from classical

gravity in the Early Universe.
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