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ABSTRACT 

Lipid rafts are dynamic membrane micro-domains that orchestrate molecular interactions, and 

are implicated in cancer development. To understand the functions of lipid rafts in cancer we 

performed an integrated analysis of quantitative lipid raft proteomics datasets modeling 

progression in breast cancer, melanoma and renal cell carcinoma. This analysis revealed that 

cancer development is associated with increased membrane raft-cytoskeleton interactions, with 

around 40% of elevated lipid raft proteins being cytoskeletal components. Previous studies 

suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor 

suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft 

proteome modulation by an unrelated tumor suppressor Opioid Binding Protein Cell-adhesion 

Molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model 

systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are 

cytoskeletal components, with microfilaments and intermediate filaments specifically down-

regulated. Furthermore, protein-protein interaction network and simulation analysis showed 

significantly higher interactions among cancer raft proteins compared to general human raft 

proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of 

lipid raft domains with greater molecular interactions as a common, functional and reversible 

feature of cancer cells.   
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INTRODUCTION 

All cancers share a list of common ‘hallmarks’,1 suggesting a convergence of cellular 

mechanisms of malignant transformation. Similarly, metastatic progression involves universal 

phenotypic changes including epithelial mesenchymal plasticity, anchorage-independent 

survival, and the ability to establish pre-metastatic niche.2 Common properties develop 

regardless of the causal oncogene or tumor suppressor gene or the tissue of origin, implying 

alteration of fundamental cellular mechanisms. A potential unifying mechanism may involve 

modulation of cholesterol and sphingolipid-rich membrane microdomains, commonly referred 

to as lipid rafts.3 Raft localization is known to regulate molecular interactions, and hence the 

function, of signaling proteins involved in carcinogenesis, such as RAS, EGFR and HER2.4-6 

Membrane rafts have been implicated in the development and progression of several cancers 

including prostate,7 breast,8 lung9 and colon cancer.10 However, it is unclear whether lipid rafts 

share cross-cancer similarities in their protein expression profiles, and how lipid raft alterations 

promote cancer. To this end, we performed an integrative analysis of publicly available 

quantitative proteomics datasets which evaluated cancer-associated lipid raft proteome from 

breast cancer,11 melanoma12 and renal cell carcinoma (RCC).13 Conversely, we also examined 

lipid raft proteome during the reversal of tumorigenic potential of cell, based on recent studies 

reporting lipid raft proteome alterations associated with tumor suppressors Polymerase I and 

Transcript Release Factor (PTRF)14,15 and Merlin.16 Here, we further investigated the 

universality of this phenomenon by applying a quantitative subcellular raft proteomics 

approach to the ovarian cancer tumor suppressor OPCML.  

OPCML is a GPI-anchored protein localized to membrane rafts under normal physiological 

condition.17 A comprehensive loss of heterozygosity analysis of 118 epithelial ovarian cancer 

(EOC) cases has identified inactivation of OPCML at 11q25 either due to CpG island 

methylation or due to allelic loss.18 A recent independent TCGA study also confirms this 
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finding, where 92% of 489 high-grade serous ovarian cancers reported loss of OPCML 

expression.19, 20 OPCML promoter methylation is proposed to be a diagnostic as well as 

prognostic marker in EOC.21 OPCML inactivation appears to be crucial for EOC because 

recombinant OPCML therapy demonstrated inhibitory effect on tumor growth in vivo.22 As a 

GPI anchored-protein, OPCML is entirely on the exo-facial leaflet of the plasma membrane, 

hence it is unable to directly mediate signal transduction. We recently found that OPCML 

negatively regulates a subset of receptor tyrosine kinases (RTKs) by altering their recycling 

and ubiquitin-mediated degradation via sequestration to lipid rafts.20 However, the molecular 

mechanism linking OPCML tumor suppressor expression to altered RTK trafficking remains 

unclear. Here, we performed a quantitative lipid raft proteomics study to dissect raft-mediated 

mechanism of OPCML regulated tumor suppression. We also examined raft-associated 

mechanism of OPCML P95R, a common mutation resulting in substitution of Proline to 

Arginine at position 95, mediated regulation of adhesion potential of tumors.18 Furthermore, to 

evaluate the connectedness of proteins in cancer rafts compared to general raft and total human 

proteome, we compared the topological properties of simulated protein-protein interaction 

networks.  

MATERIALS AND METHODS 

Comparison of lipid raft changes during cancer progression in various cancer types 

To evaluate common changes in the lipid raft proteome during cancer progression, two 

publications reporting changes in lipid raft protein composition in breast cancer11 and 

melanoma12 development were identified from RaftProt.23 RaftProt is a mammalian lipid raft 

proteome database which is a comprehensive collection of 117 raft proteomes derived from 69 

cell and tissue types of 6 mammals.23 Specifically, experiments utilizing quantitative 

proteomics strategy to understand raft changes during cancer progression were selected. A 

more recent renal cell carcinoma raft proteomics study,13 which was not present in the current 
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version of RaftProt was also included in the analysis. Data from these three studies were pre-

processed for an integrative analysis, including mapping to UniProt accessions as required, 

removing single peptide identifications, generating the same fold-change characterization 

(aggressive/less aggressive) and applying the same cut-off criteria for significant quantitative 

changes. Fold change criteria was set to > ± 1.5 for each of the three datasets. Protein abundance 

ratios for melanoma and breast cancer datasets were reversed to maintain consistency in the 

directionality of protein expression change with RCC raft proteomics datasets. We then carried 

out an overlap analysis on two distinct sets: up-regulated and down-regulated proteins from 

membrane rafts during malignant progression to define a set of ‘core cancer lipid raft 

proteome’. 

 Cytoskeletal proteins enrichment analysis 

Human proteins with gene ontology annotations for biological process, molecular function 

or cellular compartment having the keyword “Cytoskeleton” in Amigo 2.2.024 (accessed on 

May 12, 2015) were fetched. This yielded a set comprised of 8432 annotations mapping to 

4393 unique cytoskeleton associated proteins out of 48293 human UniProtKB entries 

annotated by GO terms (Supplemental Table S1). This set was designated “cytoskeleton 

associated proteins” of the human proteome. A subset was created from above dataset by 

filtering lipid raft localized cytoskeletal proteins (684 proteins) mentioned in the “RaftProt”.23 

The Pearson’s X2-square goodness of fit test was performed to characterize enrichment of 

cytoskeletal elements in our ovarian lipid raft proteomics data and in ovarian lipid raft localized 

protein-protein interaction network (methods described below) against above mentioned 

background sets.  

Cell culture and Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) 

SKOV3 cells were stably transfected with empty control vector, WT OPCML or P95R 

OPCML as described previously.18 Cells were grown under 5% CO2 at 37°C in RPMI/L-Glut 
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with 10% fetal calf serum and 125g/mL Zeocin. For Stable Isotope Labeling by Amino Acids 

in Cell Culture (SILAC) experiments, cells were grown in media lacking lysine and arginine 

with 10% dialyzed fetal calf serum and supplemented with the following amino acids: Control 

SKOV3 cells, normal isotopic Lys and Arg (“0/0”) designated as “Light”; P95R mutant 

expressing SKOV3 cells, 2H4-Lys and 13C6
14N4-Arg ("4/6"), designated as “Medium” and WT 

OPCML expressing SKOV3 cells, 13C6
15N2-Lys and 13C6

15N4-Arg (“8/10”) designated as 

“Heavy”. Cells were grown for more than 200 doublings in the SILAC media to achieve >99% 

label incorporation as confirmed by liquid chromatography-tandem mass spectrometry (LC-

MS/MS).  

Isolation of lipid raft fraction  

Lipid rafts were prepared using the detergent resistant membrane (DRM) extraction method 

as previously described.14, 25-30 Equal amount of DRM proteins prepared from each cell line 

was combined to make a Triplex SILAC mixed sample. Three biological replicates were 

independently prepared using different passage cells. DRM proteins (30 g of mixed sample) 

were separated by SDS-PAGE to eight fractions and in-gel tryptic digest was performed using 

a liquid handler as previously described.26  

LC-MS/MS, Database Searching, SILAC Quantitation and Statistical Analysis 

Digested samples were analyzed using a 1200 Series nano HPLC and Chip-Cube Q-TOF 

6510 (Agilent Technologies). Peptides were separated on a 160 nl (75 mm * 150 μm) high 

capacity C18 reverse phase chip by a 55 min gradient from 0 to 45% acetonitrile with the Vcap 

1850 V, fragmentor 175 V. Precursor ions were selected in the range of 100–3200 m/z and 

fragment ions at 59–3200 m/z; reference ion mix was applied. Triplex SILAC samples were 

analyzed in auto MS/MS mode, with 8 MS and 4 MS/MS per second. Mass spectra extraction, 

database searching, and relative abundance were performed using Spectrum Mill software 

(Agilent, B.04.00) against Human SwissProt database (release-2014_11 containing 20194 
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entries). Cysteine carbamidomethylation and SILAC amino acids N-Lys, 2H4-Lys, 13C6
15N2-

Lys, N-Arg, 13C6
14N4-Arg and 13C6

15N4-Arg were used as fixed/mix modifications and oxidized 

methionine was selected as variable modification. Other parameters were: up to 2 missed 

cleavages for trypsin; minimum of 4 detected peaks; ±20 ppm and ±50 ppm threshold for MS 

and MS/MS measurements respectively. Positive identification required a peptide score >10 

and >60% scored peak intensity. The global peptide level FDR was kept at 0.5% for generating 

peptide summary from Spectrum Mill. Two SILAC ratios namely, L/H and L/M, were 

considered for peptide quantitation, representing protein expression changes upon ectopic 

expression of WT OPCML (H) and P95R OPCML (M), respectively, in the empty vector 

transfected SKOV3 cells (L).  

Peptides representing known protein contaminants according to common Repository of 

Adventitious Proteins (cRAP version 2012.01.01)31 were manually removed. At the same time, 

only proteins identified by two or more unique peptides were filtered and considered for the 

downstream statistical analysis. We then used this peptide level data against Quantitative 

Proteomics p-value Calculator (QPPC)32 server to catalogue the significantly altered proteins 

in each pair-wise comparison. QPPC utilizes peptide level measurements to compute protein 

abundance and statistical significance using the permutation test. We recently demonstrated 

superiority of permutation test over other widely used statistical methods because it is not based 

on data normality assumption.33 We selected 10,000 permutations, with an outlier removal 

threshold of 100 for the peptide based SILAC ratios along with two cut-off criterion namely, 

fold change threshold of ±1.5 and p-value < 0.05. Before proceeding to calculation of 

permutation based statistics, QPPC performs additional data preprocessing to eliminate (i) 

peptide ratios that are negative, not numbers or 0s; (ii) peptides that are the only single 

observation of its respective protein; and (iii) peptides that have measurements above the 

outlier threshold. Mean SILAC ratio and standard deviation for individual protein was 
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calculated for each of the two pair-wise comparisons namely, “Light/Heavy” (L/H) and 

“Light/Medium” (L/M) separately using QPPC. In order to account for experiment-to-

experiment variability and to create a baseline for downstream relative abundance comparison 

between L/H and L/M pair-wise comparisons, a mean normalization was performed on protein 

ratios, based on average protein abundance within each pair-wise comparison, during the 

statistical analysis with QPPC (Supplemental Figure S1). 

Generation of lipid raft associated protein-protein interaction network  

A human protein-protein interaction network was downloaded from PINA 2.0 (version 

updated on May 21, 2014).34 PINA is a resource of protein-protein interactions, created by 

compiling protein interaction data across six publicly available, manually curated databases: 

HPRD,35 IntAct,36 BioGRID,37 MINT,38 DIP39 and MIPS MPact.40 As the downloaded 

interactome does not contain all the OPCML binding proteins reported in the literature,20 we 

added five interactions to the PINA network (OPCML interacting with each of HER2, HER4, 

FGFR1, FGFR3 and EPHA2).20 We then took the list of all DRM proteins identified in our 

experiment (both those that change abundance, and those that do not), and built an “intra-raft” 

protein interaction network, consisting of only interactions within proteins identified in our 

experiment. Cytoscape 2.8.2 was used for network visualization and analysis.41  

Next, protein measurements (abundance and statistical significance of altered expression) 

were overlaid on the ovarian raft associated protein-protein interaction network, together with 

the information about cytoskeleton association in Cytoscape. Three sub networks were then 

created: (a) Interactions among cytoskeleton associated proteins inside the lipid raft; (b) 

Interactions within significantly altered cytoskeleton associated proteins at the lipid raft upon 

WT OPCML expression; (c) Interaction network of first neighbor of significantly altered 

cytoskeletal proteins found in network (b) and analyzed using Cytoscape.  

Statistical analysis of protein-protein interaction network topological properties  
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Permutation testing was used to determine the statistical significance the network properties 

of cancer raft networks compared with networks derived from the proteome of normal human 

rafts. One thousand protein-protein interaction (PPI) networks were generated by fetching 

experimentally validated interactions between 230 randomly sampled proteins (the total 

number of proteins identified in ovarian raft) from multiple datasets: the complete human 

proteome, human raft proteins (from RaftProt)23 along with cancer raft datasets belonging to 

RCC13 and prostate cancer lipid raft proteome.14 Each of the thousand networks were built by 

retrieving interactions associated with each random protein set from the PINA2 human 

interactome. For each PPI network, we calculated the total number of nodes, total number of 

edges and average degree distribution using the igraph package in R (www.r-project.org).42 

The data generated from 1000 networks derived from the normal human raft proteome was 

used to generate a distribution of values. We then use a z-test to determine the significance of 

the properties of networks sampled from the human proteome and three cancer raft proteomes 

(ovarian cancer, prostate cancer and RCC).  

RESULTS  

Comparative analysis of lipid raft alterations during cancer progression 

The potential role of lipid rafts, a platform that coordinates cellular events, in cancer 

development has been well characterized.3, 43 However, with the advancements in quantitative 

proteomics techniques, spatio-temporal changes in the protein composition of these 

microdomains have just begun to unfold. Very little is known about the commonalities in the 

lipid raft protein components in different cancer types; understanding these shared features is 

critical to uncover pan-cancer mechanisms. To this end, we carried out an integrative analysis 

of quantitative lipid raft proteomics datasets that compared protein levels during tumorigenesis 

of breast cancer, melanoma and renal cell carcinoma (Figure 1).  
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Three quantitative lipid raft proteomics studies were selected for this analysis as outlined 

under methods section. These studies utilized different models and quantitation methods, 

although all studies used the detergent-resistant membrane method for lipid raft extraction. 

Baruthio et al.,12 examined raft associated changes in protein expression during melanoma 

progression using label-free proteomics technique. In this dataset, spectral counts from four 

cell lines of different metastatic potential i.e. MEK representing pre-malignant cells, SBCL 

representing primary tumor and SMel93 and WMFG cells representing malignant melanoma 

cells at different time points (for SBCL cell line) were pooled together to calculate the relative 

abundance of lipid raft related proteins. A criterion of at-least one observation in comparison 

between either pre-malignant (SBCL or MEK) or malignant cell type (SMel93 and WMFG) 

was used to characterize proteins altered during melanoma progression. Caruso et al.,11 carried 

out proteomic profiling of lipid raft in breast cancer model of tumorigenic progression 

(MCF10A cell lineage) using iTRAQ based quantitative proteomics. Although relative 

quantitation of lipid raft proteins for pre-malignant cell lines (MCF10AT and MCF10ATG3B) 

were available, we only considered proteins altered in fully malignant MCF10CA1a cell line 

compared to parent MCF10A cells for the purpose of this study. Raimondo and co-workers13 

have characterized differential raft associated proteins in renal cell carcinoma (RCC) tissue 

samples compared to adjacent normal kidney (ANK) tissues with the help of label free 

proteomics.  

Data from these three studies were pre-processed for integrative analysis, generating the same 

fold-change ratio (more aggressive/less aggressive). Taking the fold change cut-off of ±1.5, a 

total of 310 unique differentially regulated raft proteins were identified across the three 

published cancer progression model studies in breast cancer, melanoma and RCC 

(Supplemental Table S2). There were 159 unique under-expressed and 170 over-expressed 

proteins in aggressive cancer cell or tissues, with some proteins showing opposite regulation 
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in different datasets (Figure 2). To distil the data into a ‘core cancer lipid raft proteome’, 

proteins consistently altered in at-least two out of three datasets were selected (Table 1). Out 

of the 23 altered raft proteins, 19 proteins were elevated in malignant lipid rafts, while 4 

proteins were reduced during tumor progression (Figure 2a and 2b). This finding suggests that 

there are similarities in association/enrichment of specific repertoire of raft proteins in highly 

malignant tumours. Moreover, 12 of these 23 proteins are structural, regulatory or effector 

components of cytoskeleton (RAC1, AHNAK, GNAI2, GNAI3, GBG12, GAPDH, GELS, 

STOM, FLOT2, ENPL and PLEC).  

To compare the extent of up-regulation of cytoskeletal proteins inside DRM across the three 

proteomics datasets during cancer progression, we further calculated the proportion of 

cytoskeleton associated proteins up-regulated in the lipid raft in each cancer types based on the 

GO annotation. Cytoskeleton proteins represent 36%, 45% and 31% of differentially 

modulated raft proteins in breast cancer, RCC and melanoma respectively during malignant 

progression. These results suggest that altered cytoskeleton assembly at lipid rafts is a common 

phenomenon during cancer progression.  

Ectopic expression of WT and P95R OPCML alters lipid raft proteome of SKOV3 cells 

The above integrated analysis suggests that increased cytoskeleton assembly at lipid raft 

membranes is a common feature in cancer development and progression regardless of tissue of 

origin. If the cytoskeletal components clustered at lipid raft during malignant progression, then 

ectopic expression of raft associated tumor suppressor should reverse this association. We 

previously reported that expression of PTRF in prostate cancer PC3 cells reduced the level of 

the actin cytoskeleton and associated proteins in the lipid raft fraction, concomitant with 

reduced invasive properties.14 Furthermore, recent studies using live cell imaging,44 molecular 

dynamic simulations45 and in-vitro studies46 strongly advocate the role for cytoskeletal 

dynamics at the lipid raft as a mediator of cellular function.47 To further evaluate the hypothesis 
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that limiting cytoskeleton assembly at lipid rafts is a common mechanism of lipid raft-

associated tumor suppressors, we characterized the effect of the GPI-anchored tumor 

suppressor OPCML in ovarian cancer. 

The lipid raft proteome of ovarian cancer SKOV3 cells expressing WT OPCML or a partially 

inactive cancer-associated mutant OPCML (P95R) was compared to control SKOV3 cells in a 

triplex SILAC subcellular proteomics experiment (Figure 3a). The P95R mutation occurs at 

the first immunoglobulin domain of OPCML (Figure 3b and 3c) and results in loss of cell 

adhesion function of OPCML while retaining growth suppression function.20 Equal amount of 

detergent-resistant membrane (DRM) fractions from different SILAC-labelled SKOV3 cells 

stably transfected with empty vector (no OPCML expression), WT OPCML or P95R mutant 

were combined and then analyzed by LC-MS/MS. The protein ratios were calculated from 

peptide SILAC ratios from the three independent experiments (Supplemental Table S3). Two 

pair-wise comparison lists were obtained: control (OPCML-negative) SKOV3 cells versus WT 

OPCML SKOV3 cells (L/H); control SKOV3 cells versus P95R OPCML (L/M). Overall, we 

quantified the expression profiles of 218 and 223 DRM proteins in the respective comparisons 

out of the total of 230 non-redundant proteins. Using the criteria of >±1.5 fold change with p-

value < 0.05, we found 38 and 22 significantly altered DRM proteins by either WT OPCML 

or P95R OPCML, corresponding to 16.5% and 9.5% of total quantified proteins 

(Supplemental Table S4, Figure 3d and 3e). Interestingly, WT OPCML and P95R OPCML 

expression mainly depleted DRM proteins (observed as a positive log ratio in the volcano plots 

Figure 3d and 3e); suggesting that the tumor suppression function of OPCML may be 

mediated by a reduction in lipid raft proteome interactions. The comparative analysis of 

overlapping altered proteins indicated that 17 proteins were depleted from DRM by both 

variants of OPCML (Figure 3f). In addition, WT OPCML by itself modulated 21 raft proteins, 

whereas P95R OPCML modulated raft association of 5 of total 22 altered proteins on its own 
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(Figure 3f). This indicates that the P95R mutation affects raft confinement of a subset of 

protein regulated by WT OPCML, in addition to playing a role in altering recruitment of some 

unique proteins not affected by WT OPCML.  

To our knowledge, this is the first study to characterize the lipid raft assembly, on a 

proteome-wide scale, in a system of ovarian origin using mass spectrometry method. To 

determine the similarity of the ovarian lipid raft proteome with known lipid raft associated 

proteins, we compared the ovarian raft proteins to the human lipid raft proteins in the RaftProt 

database23 which currently hosts 67 human lipid raft proteome datasets derived from 50 

different cell or tissue types. Out of 230 unique ovarian lipid raft proteins, 220 proteins were 

present in RaftProt, with 192 (~84%) classified as high confidence bona fide lipid raft proteins, 

meaning they were identified by more than 1 lipid raft isolation methods or were reported to 

be sensitive to methyl--cyclodextrin extraction. Interestingly, 10 proteins were not detected 

in any of the 67 other high throughput MS based lipid raft proteomics experiments in RaftProt. 

These proteins are AMGO2, AT2C2, DHRS2, ERBB2/HER2, FGF2, H11, H2B1A, HS904, 

LDH6A and VAMP1 (Supplemental Table S4). The presence of ERBB2/HER2 in lipid rafts 

has previously been reported using western blotting and microscopic techniques.20 Although 

further studies using complementary techniques are needed to confirm the other unique ovarian 

cancer raft proteins, it is likely that these proteins were not identified by mass spectrometry in 

previous proteomics studies due to their low abundance in lipid rafts in other tissues or cell 

types.  

Enrichment of cytoskeletal associated proteins in the lipid rafts of ovarian cancer cells.  

Cytoskeleton associated proteins were highly enriched in the ovarian cancer rafts, as this 

class represents 34% of the entire dataset. Of the 23 pan-cancer lipid raft proteins, 19 were 

observed in our ovarian raft datasets, including nine cytoskeleton associated proteins (Table 

1). Similar to the findings from three cancer progression quantitative proteomics datasets, 39% 
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and 35% of DRM proteins altered by WT and P95R OPCML expression in ovarian cancer cells 

were cytoskeletal associated. To determine the extent of interaction between the raft proteins, 

an ovarian raft protein-protein interaction network was built using experimentally validated 

PPIs (Supplementary Figure S2). Around 80% of the raft proteins interact with each other. 

Furthermore, 87% of the ovarian raft cytoskeletal proteins interact with other raft residents, 

and tend to have a larger number of interactions. This is indicative of higher connectedness of 

this class of proteins within the rigid environment provided by membrane rafts. Statistical 

analysis showed that both the ovarian raft-proteome and the raft associated interaction network 

were significantly enriched with cytoskeleton associated proteins compared to the human lipid 

raft proteome and the whole human proteome (Table 2). 

As the ovarian raft-associated protein interaction network is enriched with cytoskeletal 

proteins, we then asked whether the ectopic expression of OPCML modulates their association 

with membrane-rafts. If we consider only cytoskeleton associated proteins from this network, 

we find a single, dense cluster of 54 interacting proteins (Figure 4). We visualize the changes 

in abundance of these interacting proteins under different treatment conditions to identify 

coordinated changes in the cytoskeleton-associated network (Figure 4). A repertoire of 

cytoskeletal proteins show up-regulation (green), down-regulation (magenta) or loss of 

expression (gray) upon WT OPCML expression (Figure 4a). The same pattern of protein 

expression changes was not seen with P95R OPCML (Figure 4b). This result also suggests 

that the WT and P95R OPCML differentially regulate actin filaments, intermediate filaments 

and cytoskeleton regulatory proteins, but microtubules (tubulins) were not significantly altered 

by WT or P95R OPCML.  

We then focused on the WT OPCML-specific lipid raft cytoskeleton associated proteins, 

reasoning that these proteins may mediate the mechanism of OPCML-induced cell adhesion, 

since P95R OPCML has lost this property. The sub-network of WT OPCML-altered 
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cytoskeletal DRM proteins comprise of a cluster of six proteins (Figure 4c and 4d). While 

actin microfilament regulating proteins PLEC, JUP and SPTAN1 were significantly down-

regulated by WT and P95R OPCML expression, VIM, DES and PRPH were significantly 

down-regulated by WT but not P95R OPCML. These results suggest that the loss of VIM, DES 

and PRPH from rafts containing WT OPCML may be associated with the inhibition of cell 

adhesion. VIM and DES are intermediate filaments that are well characterized markers of 

mesenchymal phenotype observed among aggressive tumor cells.48, 49 Depletion of VIM and 

DES from the ovarian rafts upon WT OPCML expression might reverse the epithelial to 

mesenchymal transition of SKOV3 cells.  

To evaluate crosstalk between differentially regulated cytoskeletal components with non-

cytoskeletal proteins, this significantly down-regulated network module (Figure 4c) was 

expanded to include neighboring interactions, resulting in a network of 25 proteins with 50 

interactions (Figure 5). This expanded network includes other cytoskeleton associated proteins 

ACTB, ATCTA2, MYL6, MYH9, CCT6A, GNAI2 and FYN, as well as integrins ITGA6 and 

B4 and the receptor tyrosine kinase ERBB2. The down-regulation of raft localized ERBB2 by 

OPCML observed in this work corroborates our previous findings.20 Furthermore, both WT 

and P95R OPCML expression reduced ERBB2 in DRM (Figure 5a and 5b); suggesting 

ERBB2 removal from lipid rafts may be a mechanism for growth suppression by both WT and 

P95R OPCML, potentially mediated by reducing raft-actin microfilament interaction. On the 

other hand, WT but not P95R OPCML increased the DRM level of desmoglein-2 (DSG2), a 

component of intracellular desmosomal cadherins.50 These results suggest that a web of 

interacting cytoskeletal components in the ovarian cancer rafts might influence the 

sequestration of proteins to the raft. To determine if this property is unique to our ovarian 

cancer data, or is seen in other types of cancer, we next evaluated interaction potential of lipid 

raft proteomes in two further models of cancer development.  
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Cancer lipid rafts: a signaling platform stabilized by protein-protein interactions  

Lipid rafts are known to restrict lateral diffusion of proteins and thereby create a favorable 

environment for proteins to interact.51 Cytoskeletal rearrangements can further influence raft 

protein clustering by stabilizing the raft assemblies.52 Even though the role of the lipid raft as 

a coordinator of protein-protein interaction has been documented,51, 53 very little is known 

about the interaction potential of these microdomains in cancer. Out of the 230 ovarian lipid 

raft proteins identified in the dataset of ovarian cancer, 183 proteins (~80%) interact with each 

other in the ovarian raft associated interaction network we described above (Supplemental 

Figure S2). To determine if this degree of connectivity is characteristic of cancer rafts and 

different from what might be expected of a normal raft proteome, we performed a series of 

network simulations comparing interactions between known raft proteins23 to interactions in 

the wider human proteome and in three cancer lipid raft proteomes (ovarian cancer (this study), 

prostate cancer and RCC, Supplemental Table S5). We exclude breast cancer and melanoma 

raft proteomes due to the smaller size of their measured proteomes. The sample size of each 

dataset for network generation was normalized to the number of proteins detected in the ovarian 

lipid raft. Compared to the network properties (number of interacting proteins, number of 

interactions between proteins and average number of neighbor in the network) of the normal 

human raft interactome, the proteins from complete human proteome participate in 

significantly fewer interactions. Interestingly, all three cancer rafts showed significantly larger 

number of interactions (p-value < 0.05 for every topological measure) compared to the 

interactions between normal raft resident proteins (Table 3). These findings suggest that the 

proteins in cancer rafts have higher tendency to engage in interactions with the other raft 

resident proteins.  

DISCUSSION 
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Mounting evidence supports a key role of lipid rafts in cancer development and progression 

in multiple cancer systems, with diverse molecular mechanisms proposed.54 Numerous studies 

have documented the interplay between lipid raft and membrane cytoskeleton,47, 52, 55  with a 

potential role in coordinating membrane-associated cellular events relating to tumor 

progression, such as motility, cell adhesion, signal transduction and receptor endocytosis.56 

Here we used integrative analysis of quantitative lipid raft proteomics to identify increasing 

abundance of raft-associated cytoskeletal proteins as an underlying molecular mechanism in 

cancer progression. In the comparative analysis of multiple cancer raft proteomes, we observed 

that cytoskeletal proteins dynamically partition to lipid rafts during cancer development. These 

cytoskeletal components are considered to alter membrane heterogeneity by tethering the 

membrane raft components to intra-cellular structures,57 thereby stabilizing raft microdomains.  

If lipid raft-cytoskeleton interactions drive tumor progression, the corollary is that tumor 

suppressors acting on lipid rafts should reduce the cytoskeleton attachment. In a previous study, 

we reported such phenomena for PTRF/cavin-1 in prostate cancer PC3 cells,14 while an 

independent report suggest that merlin, the neurofibromatosis-2 gene product also acts by 

disrupting cytoskeleton-lipid raft interaction.16, 58 Here we report similar findings for an 

unrelated tumor suppressor, OPCML, in ovarian cancer. Together these results indicate that the 

lipid raft cytoskeleton association is critical for tumor progression. Further, ectopic expression 

or drug induced expression of raft localized tumor suppressor molecules might reverse 

neoplastic transformation through re-organizing cytoskeletal components inside membrane 

microdomains. 

Due to their abundance, cytoskeleton components are commonly observed in lipid raft 

proteomics studies. By quantitatively comparing lipid raft proteome changes induced by 

ectopic expression of WT and P95R OPCML in SKOV3 cells, which led to differing adhesive 

properties,18 we identified a potential involvement of intermediate filament-lipid raft 
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interaction for tumor adhesion. Expression of either WT or P95R OPCML in SKOV3 cells 

reduces cell proliferation but only WT OPCML imparts cellular adhesion. Intriguingly, both 

cell lines showed reduction of lipid raft actin microfilament regulating proteins (PLEC, JUP 

and SPTAN1), while intermediate filament proteins (VIM and DES) and tetraspanin-22 

(PRPH) were down-regulated by WT but not P95R OPCML. VIM is a well characterized 

marker of epithelial-to-mesenchymal transition (EMT) during cancer progression.59 In ovarian 

cancer tissues, VIM expression is significantly associated with primary chemo-resistance and 

poor response to chemotherapy at diagnosis60 and it is also abundantly expressed in SKOV-3 

cells representing mesenchymal phenotype.61 A recent finding in colorectal cancer62 

demonstrated that restored expression of OPCML led to inhibition of cell motility and 

invasiveness via negatively regulating EMT. This reversal of EMT phenotype might be 

mediated by dissociation of VIM from the rafts. VIM is frequently found in lipid rafts, being 

reported in 34 out of 67 raft proteomes in RaftProt23 including prostate, breast cancer, renal 

cell carcinoma and melanoma rafts. However, further studies are required to determine the 

molecular function of intermediate filaments in lipid rafts, and its role in EMT transition. 

PRPH, also known as tetraspanin-22, is a member of the tetraspanin family that play a crucial 

role in cell adhesion.63 Initially identified for its role in retinal photoreceptors and involvement 

in retinitis pigementosa,64 PRPH has membrane fusion function.65 According to the human 

protein atlas,66 PRPH shows tissue selective expression, with low/medium protein expression 

in ovarian tumors but not expressed in normal ovary. 

The extent of interconnectivity observed among the raft localized proteins of the ovarian 

cancer, prostate cancer and RCC lipid raft proteome supported the notion of lipid raft serving 

as a protein sorting platform. Biophysical evidence demonstrated a role for cholesterol and 

saturated sphingolipids in the enhancement of lipid raft rigidity.67 This suggests that the raft 

compartmentalization of proteins might provide favorable environment to facilitate 
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interactions among raft components. Microdomains can act as a scaffold to concentrate 

molecules like receptors, adaptors, scaffolding proteins, effectors, kinases and cytoskeletal 

machinery to trigger complex signaling events in cancer. Intriguingly, the network simulation 

results revealed significantly increased connectivity for cancer raft proteome compared to the 

general human raft proteome. Transmembrane proteins anchored to this membrane-skeleton 

“fence” further influence clustering of lipid raft proteins through immobilization and increases 

tendency of protein-protein interaction at cancer rafts, as suggested by Kusumi et al.68 Taken 

together, our results suggest stabilized membrane microdomains, facilitated by increased 

recruitment of cytoskeletal proteins and greater molecular interactions on the lipid raft, are an 

integral and reversible step in cancer development.  

CONCLUSIONS  

Through integrative analysis, we identified pan-cancer molecular signatures common in 

cancer cell lipid rafts. This ‘core cancer lipid raft’ proteome show a high representation of 

cytoskeleton associated proteins. Conversely, tumor suppressors PTRF in PC3 prostate cancers 

and OPCML in SKOV3 ovarian cancer cells act by significantly attenuating cytoskeletal 

components of the lipid raft proteome. Furthermore, we found that cancer raft proteome has an 

increased potential for protein-protein interaction compared to general human raft proteome. 

Taken together, these results suggest that cancer development is associated with cytoskeletal 

rearrangements to stabilize raft platforms and promote raft associated molecular interactions. 

The fact that two independent tumor suppressors (PTRF and OPCML) reduced these 

interactions suggests disruption of cytoskeleton-lipid raft assemblies as a potential anti-cancer 

strategy. We believe the integrated approach we presented here will pave the way to more 

refined representation of lipid raft dynamics in various malignancies.  
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FIGURE LEGENDS 

Figure1: Schematic representation of integrative analysis of lipid raft proteomes in multiple 

cancer progression and tumor suppression models to identify pan-cancer lipid raft proteomic 

signatures.  

Figure 2: Overlap between differentially expressed lipid raft residing proteins during cancer 

progression. (a) Up-regulated proteins in aggressive cancer phenotypes (b) Down-regulated 

proteins in aggressive cancer phenotypes identified in breast cancer, renal cell carcinoma and 

melanoma lipid raft proteomics datasets. 

Figure 3: OPCML regulates lipid raft proteome.  (a) Triplex SILAC quantitative subcellular 

lipid raft proteomics experiment workflow. (b) Domain architecture of OPCML showing three 

immunoglobulin-like domains along with the location of somatic missense P95R mutation on 

the first immunoglobin (Ig) like domain. (c) 3D homology model of the first Ig domain of 

OPCML with replacement of Proline to Arginine residue at the surface of loop between two 

beta sheets. (d) Volcano plot showing magnitude and significance of the lipid raft protein level 

changes in control SKOV3 cells compared to WT OPCML expressing SKOV3 cells. The 

vertical axis indicates –log(p-value). The horizontal axis indicates log(fold change). Proteins 

satisfy the fold change criteria represented by orange and proteins passed the p-value cut-off 

were shown in blue color. The differentially expressed proteins meeting both criteria are shown 

in magenta color. (e) Volcano plot showing magnitude and significance of the lipid raft protein 

levels in control SKOV3 cells compared to P95R OPCML expressing SKOV3 cells. (f) 

Overlap between WT OPCML and P95R OPCML regulated lipid raft proteins in SKOV3 cells. 

Figure 4: Expression signatures of cytoskeleton associated proteins at ovarian lipid rafts upon 

WT and P95R OPCML expression in SKOV3 cells. Pair-wise comparison between (a) Control 

SKOV3 (OPCML negative) versus WT OPCML (b) Control SKOV3 (OPCML negative) 
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versus P95R OPCML. A sub-network of WT OPCML regulated cytoskeleton associated 

proteins is shown in (c), and the effect of P95R OPCML expression on these proteins shown 

in (d). Magenta colored proteins are down-regulated with fold change ≤-1.5; up-regulated 

protein with fold change threshold of ≥ 1.5 represented by green; gray colored proteins for 

which ratio was not found. Thicker borders indicate significantly altered proteins (p-value < 

0.05). 

Figure 5: OPCML mediated altered expression of binding partners of significantly different 

cytoskeletal proteins. Interactions between binding partners of significantly altered cytoskeletal 

proteins (VIM, PRPH, DES, PLEC, JUP and SPTAN1) by WT OPCML. Comparison between 

(a) Control SKOV3 (OPCML negative) versus WT OPCML (b) Control SKOV3 (OPCML 

negative) versus P95R OPCML. Magenta colored proteins are down-regulated proteins with 

fold change ≤ -1.5; up-regulated protein with fold change threshold of  ≥1.5 represented by 

green; gray colored proteins found to dissociate from ovarian lipid rafts in the respective 

comparison and the proteins with thicker borders are significantly altered proteins (permutation 

p-value<0.05) in each pair-wise comparison. Cytoskeleton associated proteins are represented 

by diamond shape.  
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TABLES: 

Table 1: Proteins with increased and decreased expression at lipid raft in more aggressive 

cancer cells primary cells in two out of three cancer datasets 

Protein 

Accession 

Gene 

symbol 
Protein name 

Breast 

Cancer 
11 

Melanoma 
12 

Renal Cell 

Carcinoma 
13 

Ovarian 

Cancer 

Proteins enriched in more aggressive tumour derived rafts 

P68363 TBA1B 
Tubulin alpha-1B 

chain  
Yes No Yes Yes 

P04899 GNAI2 

Guanine 

nucleotide-

binding protein 

G(i) subunit 

alpha-2  

Yes No Yes Yes 

P07355 ANXA2 
Annexin A2 

(Annexin II) 
Yes No Yes Yes 

P08754 GNAI3 

Guanine 

nucleotide-

binding protein 

G(k) subunit 

alpha 

Yes No Yes Yes 

P13987 CD59 

CD59 

glycoprotein 

(1F5 antigen)  

Yes No Yes Yes 

Q03135 CAV1 Caveolin-1 Yes No Yes Yes 

Q9UBI6 GBG12 

Guanine 

nucleotide-

binding protein 

G(I)/G(S)/G(O) 

subunit gamma-

12 

Yes No Yes No 

P11142 HSP7C 

Heat shock 

cognate 71 kDa 

protein  

Yes Yes Yes Yes 

P35232 PHB Prohibitin Yes Yes Yes Yes 

P27105 STOM 

Erythrocyte band 

7 integral 

membrane 

protein  

No Yes Yes Yes 

Q14254 FLOT2 Flotillin-2 No Yes Yes Yes 

P04406 GAPDH 

Glyceraldehyde-

3-phosphate 

dehydrogenase  

No Yes Yes No 

P63000 RAC1 

Ras-related C3 

botulinum toxin 

substrate 1  

No Yes Yes Yes 

P06396 GELS Gelsolin  No Yes Yes No 
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P62424 RL7A 
60S ribosomal 
protein L7a  

Yes Yes No No 

Q09666 AHNAK 

Neuroblast 

differentiation-

associated 

protein AHNAK 

(Desmoyokin) 

Yes Yes No Yes 

Q13488 VPP3 

V-type proton 

ATPase 116 kDa 

subunit a isoform 

3  

Yes Yes No Yes 

Q14126 DSG2 Desmoglein-2  Yes Yes No Yes 

Q99623 PHB2 Prohibitin-2   Yes Yes No Yes 

Proteins depleted from more aggressive tumour derived rafts 

Q15149 PLEC Plectin Yes Yes No Yes 

P15144 AMPN 

Aminopeptidase 

N (plasma 

membrane 

glycoprotein 

CD13)  

No Yes Yes No 

Q9NQ84 GPC5C 

G-protein 

coupled receptor 

family C group 5 

member C 

No Yes Yes Yes 

P14625 ENPL 

Endoplasmin 

(Tumor rejection 

antigen 1)  

No Yes Yes Yes 

Proteins in italics are reported to be structural, regulatory or effector components of 

cytoskeleton. 
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Table 2: Enrichment of cytoskeletal associated protein in the ovarian lipid raft proteome and 

ovarian lipid raft associated interactome  

Dataset Background 

# 

Cytoskelet

al proteins 

Total # 

proteins 

X-

squared 
p-value* 

Ovarian lipid-raft 

proteome 

Human lipid 

raft associated 

proteins 

79 230 11.44 0.0007 

Ovarian lipid raft 

associated protein-

protein interactions 

Human lipid 

raft associated 

proteins 

69 183 11.78 0.0006 

Ovarian lipid-raft 

proteome 

Human 

proteome 
79 230 26.87 2.17 x10-07 

Ovarian lipid raft 

associated protein-

protein interactions 

Human 

proteome 
69 183 25.06 5.55 x10-07 

*Pearson’s X2 goodness of fit test against different background sets 
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Table 3: Topological properties of various protein-protein interaction networks  

Topological 

Property 

Human lipid 

raft proteins* 

(Total=4243) 

Human 

proteome* 

(Total=20192) 

Ovarian 

cancer lipid 

raft proteome 

(Total = 230) 

Prostate 

cancer lipid 

raft  

proteome*  

(Total=358) 

Renal cell 

carcinoma 

raft 

proteome* 

(Total=330) 

Number of  

Proteins 

80 

 

34 

p-value= 9.54 

x 10-8 

183 

p-value=3.35 

x10-68 

173 

p-value= 5.29 

x10-58 

163 

p-value= 1.72 

x 10-51 

Number of 

Interactions 

97 

 

30 

p-value= 1.4 x 

10-12 

509 

p-value= 0.00 

460 

p-value= 4.67 

x 10-14 

378 

p-value= 4.68 

x 10-16 

Average 

Degree 

2.40 

 

1.71 

p-value= 0.31 

5.56 

p-value= 7.80 

x10-97 

5.32 

p-value= 1.93 

x 10-12 

4.46 

p-value= 1.21 

x 10-10 

*The value of each topological property is an average value of 1000 networks generated by 

random sampling where the size of each dataset was normalized to number of proteins 

identified in the ovarian cancer lipid raft proteome. 

The p-value is based on one tailed Z-test that compared average topological property of 

human raft protein-protein networks with the protein-protein interaction networks of each 

respective datasets. 

 


