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Abstract 
 
 

Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous 

system (CNS) that most commonly begins with a relapsing-remitting course (RRMS). 

Many disease modifying treatments now are available, but none have efficacy in all 

patients, all are expensive and all are associated with possible adverse events. 

Stratifying patients to the best tolerated and most efficacious treatment either prior to 

or soon after commencing treatment would enhance relative benefits and reduce 

harm. Effective stratification depends on an understanding of relevant aspects of a 

drug’s mechanism of action, characterisation of key pharmacodynamic effects and 

being able to monitor disease activity over time. In this study, I set out to determine 

whether multi-omics profiling (transcriptome, cytokines, lipoproteins and 

metabolome) can fulfil these three requirements for one of the newer, oral treatments 

for RRMS, dimethyl fumarate (DMF).  

 

Chapter 1 provides an introduction to MS and explores the need for a stratified 

approach to treatment. Chapter 2 outlines the materials and methods used in this study 

including a discussion of modelling approaches that are used for data reduction.      

 

In Chapter 3, I aimed to discriminate MS patients from healthy controls using multi-

omics profiling. The RRMS patients showed greater expression of immune pathway 

genes, as well as raised concentrations of lipids within lipoprotein sub-fractions, 

relative to healthy controls. The lipid measures were predictive of disability as 

measured using the Expanded Disability Status Scale (EDSS) when combined in a 

multivariate regression model.  
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In Chapter 4, I tested whether multi-omics profiling could further elucidate the 

pharmacodynamic actions of dimethyl fumarate (DMF), a disease modifying 

treatment for RRMS. Comparisons of patient samples pre- and 6 weeks post- 

initiation of DMF revealed transcriptome changes enriched for activation of nuclear 

factor (erythroid-derived 2)-like 2 (Nrf2) and inhibition of nuclear factor κB (NFκB). 

Metabolomics profiling defined elevated levels of tricarboxylic acid metabolites, 

fumarate, succinate, succinyl-carnitine and methyl-succinylcarnitine.  

 

In Chapter 5, I used my prospective longitudinal data to test whether gene expression 

and metabolite changes associated with drug action in the blood mononuclear cell 

fraction at 6 weeks are associated with clinical and radiological responses at 15 

months. Patients responding to treatment (measured using the composite outcome 

measure ‘no evidence of disease activity’) showed robust transcriptome changes 

between baseline and 6-weeks that were not present in non-responders. They also 

showed a relative stabilisation of gene expression over the remaining study period.  

 

My study thus provides evidence that multi-omics profiling could be a useful tool for 

stratified medicine in MS. It promises to elucidate differences that exist between 

disease and healthy states, further understanding of the pharmacodynamics of 

treatments and can provide longitudinal measures of response for monitoring the 

impact of a medicine. The latter could be used to optimise treatment choice for 

individual patients. If these methods were reduced to practice they could increase the 

chances of better clinical outcomes whilst avoiding otherwise unnecessary adverse 

events.     
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Chapter 1 
 
 

Introduction 
 
 

Multiple Sclerosis (MS) is a ‘syndrome’ with great variation in disease course, 

presentation and response to treatments(1).  It is now crucial to unpick this 

heterogeneity given the increasing number of available treatments and a more 

informed patient population. Furthermore, there is significant heterogeneity of 

treatment response which is currently difficult to predict. Many of these medicines are 

expensive and therefore better ways of demonstrating efficacy are required (Fig. 1). 

This is important as treatments have different mechanisms of action, efficacy and 

relative risk of adverse events. In conjunction with their neurologist, a newly 

diagnosed patient must now make complex decisions in deciding to initiate treatment, 

treatment choice and treatment escalation.   

 

Multiple Sclerosis Subtypes 

 MS is a neuroinflammatory disorder characterised by demyelination, gliosis and 

axonal injury. Patients commonly present in young adulthood (between the ages of 

20-40), there is a greater preponderance in females (typically a 2:1 ratio) and there is 

often significant heterogeneity in clinical symptomatology. Most patients will initially 

follow a relapsing-remitting course (RRMS) characterised by symptomatic episodes 

from which there is either partial or complete recovery. The frequency of such 

relapses tends to be highly variable, although on average will occur once every one to 

two years(2). This clinical course is typically superseded by a progressive stage of 

disease where relapses become less clearly defined and are replaced by a steady 

worsening of symptoms (referred to as secondary-progressive MS (SPMS). Whilst 
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this may be the most common trajectory, patients have highly variable disease courses 

with respect to frequency of relapses and time to disease progression. Despite a 

substantial literature on the natural history of MS disease course, the future severity of 

the disease in an individual patient cannot be predicted well. A minority of patients 

(<10%) will follow a progressive course from the outset (termed primary progressive 

MS  - PPMS) and a similar proportion will have mild relapses with very limited 

accrual of disability over time (controversially termed benign MS)(3). In reality, the 

majority of this group are not ‘spared’ from motor or cognitive impairment; it just 

appears to be somewhat delayed(4-6).   

 

Pathology of MS 

Neuropathological studies support the hypothesis that MS is both an inflammatory 

and neurodegenerative disorder (7). Associated neuropathological features seem 

inextricably linked. For example, post-mortem studies reveal that dense meningeal 

infiltrates are associated with demyelination, neuronal damage and cortical atrophy(8, 

9). Furthermore, brain biopsies from patients early in disease course have 

demonstrated that inflammatory cortical demyelination often precedes the appearance 

of white matter plaques, the latter being associated with neurodegenerative changes 

such as reactive astrocytosis and neuroaxonal injury(10, 11).  

 

Diagnosis of MS 

Patients are diagnosed with MS based on clinical and radiological findings according 

to the McDonald Criteria, for which there must be evidence of dissemination in time 

and space(12). Diagnosis couples clinical histories with conventional laboratory tests 

and imaging (and, in some cases, cerebrospinal fluid (CSF) examinations)(12). This is 



! 19!

necessary in order to ensure a more accurate diagnosis and to potentially identify 

subtypes of MS such as progressive forms of the disease. Auto-antibody testing can 

improve diagnostic accuracy. For example, neuromyelitis optica spectrum disorders 

(NMOSD), identified by antibodies to aquaporin4 (AQP4-IgG), have a distinct 

clinical course and may worsen with IFN treatment(13). Specificity of AQP4-IgG is 

high(14, 15). However, cautions arise from recognition of the potential insensitivity 

of AQP-4 assays for NMOSD(16).  Patients with MOG antibody-associated 

demyelination also have a unique course characterized by a unique clinical, 

radiological, and therapeutic profile(17).  

 

Treatments for MS 

The last twenty years have seen remarkable developments in the therapeutic 

management of MS. This has almost exclusively benefited patients with RRMS; a 

large unmet clinical need still exists for those in the progressive phase of the disease 

for which there are no currently licensed treatments. The recent results of the 

ocrelizumab trial in progressive MS have provided some hope and this currently 

awaits licensing in the UK. The first available treatments for RRMS were interferon-β 

(IFN- β) and glatiramer acetate (GA), both of which were shown in clinical trials to 

reduce annual relapses rates by approximately 30% and to have an impact on 

radiological measures(18). Long-term follow-up of patients from these early trials has 

demonstrated that a subset experienced reductions in long-term disease severity, 

progression(19) and risk of mortality(20). These latter findings of heterogeneity in 

long term clinical outcomes accurately represent the unmet need in MS management; 

the inability to accurately predict who will respond (or not respond) to a specific 

treatment.  
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A second generation of MS treatments became available at the turn of the century: 

natalizumab in 2003 and fingolimod in 2009(21-23). Natalizumab is a monoclonal 

antibody targeting integrin-α and preventing lymphocyte egress across the blood brain 

barrier (BBB). Initially with proof of principle in the rodent model of MS(24), 

experimental autoimmune encephalomyelitis (EAE), it progressed through pivotal 

clinical trials to boast a greater than 65% reduction in relapse rate and >90% 

attenuation of new MRI lesions(25, 26). The widespread excitement associated with 

this highly effective disease modifying treatment (DMT) was tempered somewhat by 

the diagnosis of progressive multifocal leukoencephalopathy (PML) in two patients 

from the trial(27). PML is a serious adverse event associated with natalizumab that 

affects 1 in 1000 patients taking this DMT. Thought to be caused by reactivation of 

latent polyomavirus JC (JCV); the mechanism by which natalizumab causes PML 

remains unknown(28). Risk factors for PML include prior use of other DMT, duration 

of time on the medication and JCV serostatus(29).    

 

Fingolimod, a sphingosine-1-phosphate (S1P) analogue exerts its action by 

downregulating the S1P receptor 1 on leukocytes and the endothelium thus preventing 

naïve and central memory T lymphocytes from migrating from lymph nodes to the 

peripheral vasculature. Reductions in relapse rates of over 50% and reductions in new 

MRI lesions were observed in clinical trials of this medication(21, 23); however the 

drug is associated with symptomatic bradycardia, lymphopenia, retinal oedema and 

rarely fulminant hepatic failure(30).       

 

Most recently, a number of further DMTs have become available for the management 

of RRMS. These include two oral medications, teriflunomide and dimethyl fumarate 
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(DMF) (31-33) and alemtuzumab, a monoclonal antibody to CD52 which is reserved 

for more aggressive forms of the disease but is associated with secondary 

autoimmune disorders such as thyroid disease and immune thrombocytopenic 

purpura(34-36). The emergence of a number of new medications for MS, with similar 

efficacy but a diversity of adverse event types, severity and frequency has driven the 

need for a personalised approach to therapy, to ensure a patient is on the most 

effective medication for them in order to positively impact on disease course and to 

avoid unwanted side effects and adverse events.  

 

Dimethyl Fumarate 

Dimethyl fumarate (BG-12; Tecfidera) (DMF) is a fumaric acid ester licensed as a 

DMT for RRMS. The primary therapeutic mechanism of action still is debated, but 

has been proposed to involve activation of the transcription factor nuclear factor 

(erythroid-derived 2)-like 2 (Nrf2)(37, 38), inhibition of nuclear factor κB 

(NFκB)(39) or agonism of the hydroxylic acid receptor 2(40). Because DMF is 

believed to act on circulating, as well as tissue-resident immune cells, may trigger 

anti-oxidant pathways through modulation of transcription factors, and is metabolized 

to the intermediate metabolite fumaric acid, its mechanism of action lends itself well 

to characterisation using gene expression studies and metabolomic phenotyping(41).  

 

The pharmacokinetic properties of DMF are well characterized. After oral 

administration, DMF is rapidly hydrolysed by esterases to its principle metabolite 

monomethyl fumarate (MMF)(42). MMF is highly bioavailable, has a half-life of 12 

hours and reaches serum peak concentrations of approximately 20 µM. MMF is 
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ultimately hydrolysed inside cells to fumaric acid entering the tricarboxylic acid cycle 

(TCA)(43, 44).      

 
Initial studies in murine models of MS showed beneficial effects of this treatment on 

clinical parameters and this was attributed to its anti-inflammatory properties 

including induction of IL-10 and reduced macrophage inflammation(45). DMF was 

subsequently tested for efficacy in a phase I clinical trial, which demonstrated that the 

treatment was generally well tolerated and adverse events (AE) (which included 

flushing and gastrointestinal symptoms) were mild and reversible. The trial was also 

able to show a significant reduction in Gd+ enhancing lesions(46). The phase II 

follow up study conducted by Kappos and colleagues reiterated initial findings, 

reporting a 60% reduction in new Gd+ enhancing lesions, as well as a reduction in 

annualised relapse rates by 32%(47). The phase III DEFINE study demonstrated a 

reduction in annualised relapse rates by 0.19 with a relative risk reduction in relapses 

of 53%(31). Further AEs reported included reduction in lymphocyte count and 

elevated liver aminotransferase liver levels.  

 

Anti-Oxidant Properties 

DMF has been shown to activate the Nrf2 transcriptional pathway which reduces 

oxidative stress(37, 38). In support of this postulated mechanism of action, other 

groups have shown that pre-incubation of astrocytes with DMF can prevent dopamine 

mediated neurotoxicity by increasing the activities of intracellular antioxidant 

enzymes(48). Others have argued these antioxidant properties may be exerted by 

astrocytes rather than neurons(49). The anti-oxidant properties of DMF have also 

been shown to be important for T cell activation and differentiation and the ‘healthy’ 
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functioning of the peripheral immune system preventing release of pro-inflammatory 

cytokines and ensuring effective intracellular signalling networks(50).  

 

Anti-Inflammatory Properties  

It has been well described that DMF suppresses nuclear factor κB-dependent 

transcription with consequent preferential expression of anti-inflammatory 

chemokines and cytokines(51, 52). Ockenfels and others have shown that DMF can 

diminish IL-6 and TGF-alpha secretion shifting the immune response from a Th1 to a 

Th2 profile(53, 54). These anti-inflammatory properties of DMF have also been well 

characterised in peripheral blood mononuclear cells (PBMCs)(55). 

 

Personalising treatment in MS 

Stratification of baseline risk 

In order to optimise the management of MS, it is important to be able to accurately 

prognosticate for individual patients.  Because all treatments carry costs – both 

financially and in risks to future health- defining the net benefit of treatment involves 

balancing the expected natural history of an individual’s disease against the risks of 

treatment(56) (Fig. 1a and 1b). Patients differ widely in their baseline risk of 

untreated disease progression, however we are not good at predicting this. 
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    (Figure from Gafson et al, 2017, MS Journal(57)) 

 

 

Considerable community effort has been addressed to the identification of prognostic 

factors for estimation of the baseline risk, but the precision with which this can be 

done still is limited. For example, MRI measures of disease activity (by gadolinium 

contrast enhancement) or T2-hyperintense lesion load are important prognostic 

measures for prediction of risk of clinically definite disease after first symptoms(58). 

Large, single clinical centre-based studies additionally have highlighted interactions 

of MRI measures with age and sex in determining risk of progression(59).  Lesion 

distribution or clinical presentation appear to be independent predictors of medium 

term prognosis(60). Epidemiological studies suggest that other phenotypic (e.g., 
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obesity, serum vitamin D), exposure (e.g., sunlight) and lifestyle factors (e.g., 

smoking) impact on prognosis(61). However, I did not find models that define their 

quantitative interactions with individual susceptibilities.  For example, is the impact 

of smoking, low vitamin D and obesity meaningfully higher in people carrying the 

DRB1501 allele, or with early presentations of disease? Genotype alone has not yet 

been shown to contribute significantly to disease severity risk(62). In the absence of 

single, highly predictive markers, future personalisation will depend on clusters of 

markers in multivariate models.  

 

Stratification of treatment 

There still are few specific indices to guide the timing of treatment beyond evidence 

from trials that early treatment delays short-term clinical progression(63). The choice 

of initial treatment also does not have a good evidence base, other than the lack of 

benefit (or worsening) that has been found with IFN and other conventional 

DMTs(64) in patients with progressive onset disease or NMOSD.   While not fully 

evidence-based, patients with a higher baseline risk likely will probably receive 

greater net benefit from any treatment.  Information concerning the relative efficacy 

of medicines is limited due to the small number of head-to-head clinical trials and the 

limitations of inference even when comparisons of the pivotal trials of individual 

agent efficacies are made using formalized meta-analytic structures(65). One of the 

most promising approaches to gathering evidence concerning relative clinical 

effectiveness is through real-life data aggregation in multi-centre consortia, such as 

MSBase (66). Generally, choices regarding medicine use in clinical practice are 

framed in terms of a hierarchy of efficacy and risk for treatments based on data from 

their pivotal clinical trials (which were intended to demonstrate efficacy, rather than 



! 26!

comparative effectiveness). Decision-making then represents the balancing of these 

data against estimates of relative disease severity for any given patient.  Patient and 

neurologist-specific factors of preference and access also play a role.  However, while 

there may be general guidelines, there is not a general consensus regarding the criteria 

and methods for arriving at the balance of evidence for an individual patient. 

 

Currently, in the absence of strongly predictive prospective markers, treatment 

monitoring plays a major role. In fact, unquestionably the currently best developed 

example of personalized medicine in MS is for safety monitoring of natalizumab 

treatment(29).  This model combines titres of anti-JC virus antibody, treatment 

duration and previous history of immunosuppressive therapy in order to stratify 

patient risk of PML. Baseline risk assessment and monitoring with treatment rapidly 

became the standard of practice as the manufacturer and regulators worked together to 

define a way of keeping this powerful treatment available once PML was recognized 

as a complication. An international pharmacovigilance effort developed by the 

manufacturer rapidly led to validation of a clinically practical approach to 

personalization of risk and subsequent monitoring.   

 

Monitoring for effectiveness is more challenging, in no small part because the target 

outcome (ultimately, the accrual of fixed disability) is less easily defined.  

Nonetheless, there are examples that are widely, if not universally, employed. 

Neutralising antibody levels for IFN(67) and for natalizumab(68) explain a major 

proportion of poorer efficacy of these medications. More generally, T2 lesion 

increases and brain volume reduction on treatment are predictive of longer term 

clinical efficacy, at least at a group level(69). The latter, combined with clinical 
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measures of disease activity (relapse frequency or progression of fixed disability) 

already are incorporated into treatment escalation decisions in many clinical centres, 

although specific criteria for a switch in treatment are not generally agreed.  While the 

availability of large datasets is a major confound, this also is a consequence of lack of 

standardization of MRI field strength, criteria for lesion identification and software 

for brain volume change measures. Possibly even more sensitive markers of sub-

clinical disease activity are emerging, e.g., with monitoring of CSF or serum 

neurofilament light chain (Nf-L) concentrations(70). In a 15-year follow up study, 

higher levels of CSF Nf-L at baseline were associated with greater disability 

progression in RRMS patients(71). Changes in concentrations while on treatment also 

have been linked to treatment response(72). Additional markers are being explored 

actively, but most of the profusion of reports based on studies with smaller 

populations have later failed replication; Kroksveen and colleagues recently reported 

that from 188 proposed CSF MS biomarkers, only 10 (5%) have been successfully 

validated(73). 

 

The importance of real world data  

One of the reasons that no predictive biomarkers of response to medication have 

emerged in MS may lie in the fact that the largest studies with the best power are 

undertaken in the context of clinical trials; where patients are not necessarily 

representative of the real world populations. For example, patients enrolled into such 

studies are restricted by their age and normally have high baseline clinical activity. 

Furthermore, because the medications are not usually tested against one another, it is 

difficult to ascertain response markers unique to the treatment but also associated with 

specific individuals(74). For these reasons, we are more likely to advance discovery 
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of personalised treatment strategies using real world populations in observational 

studies. These can proceed for a longer duration than clinical trials, patients on 

different treatments can be directly compared and prognostic subgroups can be 

characterised.  Despite these advantages, a number of inherent biases must be taken 

into account for such studies, including selection bias and detection bias. Real world 

observational studies have been helpful in showing that escalation of treatment to a 

more aggressive treatment after failure on a DMT can have benefits with respect to 

relapses and the risk of disability progression(75, 76). Furthermore, natalizumab may 

be preferable to fingolimod in patients with more active disease(77).     

 

Omics as a stratification tool 

Deconstructing the heterogeneity of a disease like MS involves understanding the 

differences in populations (responders vs non responders, high disease activity vs low 

disease activity). Given the importance of both genetics and the environment in the 

susceptibility to MS, profiling patients genomes, transcriptomes, proteomes and 

metabolomes is a promising approach to deconstruct this heterogeneity. There are a 

number of ways such data can be used for this purpose. Firstly, one can take a data 

driven approach which is unbiased but relies on good quality data (and samples) in 

order to derive meaningful conclusions. This is an important approach given that there 

is much we still do not understand about the causes of MS or the reasons for differing 

responses to medication or disease course. One can also take a knowledge-driven 

approach but this may ignore other candidates that are not known about a priori. A 

good combined approach may involve an initial pilot study which identifies 

candidates of interest followed by a validation using a knowledge driven approach.  

 



! 29!

Once data is collected using the data-driven approach, there are two approaches to 

data analysis. One can either perform unsupervised classification (discussed in greater 

detail in the Methods section) in which sub-groups of samples are separated based on 

their similarity and then differences in their biological behavior are interrogated. The 

second approach involves supervised classification were samples are assigned to 

relevant groups (e.g. control and patients) and those variables that are best able to 

discriminate them are identified. This approach can be validated using train and test 

subsets to test the predictive value of such a model. In the context of using such an 

approach for identifying predictive markers of treatment response, a number of 

factors must be borne in mind. Firstly, not responding to a medication may result 

from a number of different factors and thus there may not be a specific signature 

common to all those that do not respond to the drug. Secondly, in order to reduce the 

possibility of spurious results, large sample sizes are required. Lastly, any such 

signature must be validated in a separate cohort in order to progress to something that 

will be clinically meaningful.   

 

Pharmacogenomics has been championed as a necessary foundation for personalised 

medicine, based particularly on examples drawn from cancer and rare inherited 

metabolic diseases(78). Individualized, genetic based diagnoses have had 

considerable impact, e.g., in licensing of imatinib for Philadelphia chromosome 

positive chronic myeloid leukaemia and trastuzumab in HER2 positive breast 

cancer(79). 

 

Part of the reason for the success of this approach in cancer is that the underlying 

pathology can in large part be explained by genetic dysfunction. Understanding the 
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mutations that can arise in specific cancers has led to the development of molecular 

targeted therapy(80-82). Treatments can then be individualised to those with the 

specific molecular defect(83). As such, the ultimate goal is that ‘each patient receives 

the right drug at the right time at the right dose for the right disease’(84). Despite 

promising developments in this field, there are drawbacks, for example, on and off 

target side effects(85-87) and the acquisition of resistance to a so-called targeted 

therapy(88). The latter may arise from alterations in the drug target(89-91) or target 

amplification(92, 93). A further role for pharmacogenomics may be in determining 

drug dosage; indeed it is well documented that at a certain dose, a drug may be below 

a therapeutic level in some individuals, but may exert toxicity in others. The most 

common example of this is in the use of warfarin(94). In the context of MS, 

individual characteristics can determine drug metabolism (e.g., hepatic and renal 

function for elimination of IFN) and this may guide choice of drug in less common 

situations in patients with comorbidities(95).  Differences in ethnicity may alter drug 

absorption or metabolism(96).  

 

Extending ‘omics to MS 

A greater understanding of the underlying genetic contribution to MS risk in recent 

years has raised the prospect of applying pharmacogenomics to the personalised 

treatment of MS. Risk susceptibility genes are thought to contribute modestly to 

disease risk heritability governed by complex gene-environment interactions. The first 

genetic association in MS was reported in 1972 for HLA Class I antigens(97). This 

field has now developed such that there are now a number of MHC related alleles 

which confer an increased risk of susceptibility for and severity of MS. Over 100 

further genes of interest became apparent following the first genome wide association 
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study in MS in 2007, most significantly, IL-2 and IL-7 receptor alpha genes(98). 

Cytotoxic T lymphocyte antigen 4 has also been implicated(99-101), however results 

for this have not always proved conclusive and effect sizes are often modest.  

 

Gene expression is a quantitative phenotype that can be used as an endophenotype for 

characterising disease risk genes(102, 103). It is now clear that most of the genome is 

transcribed into RNA, however only a small proportion (1-2%) codes for 

protein(104). Messenger RNA (mRNA) contains the coding region but typically has 

untranslated sequences at both its 5’ and 3’ ends that may play a role in regulatory 

function(105). There are also many non-coding RNA species with roles in 

intracellular signalling and transcriptional modification(106). It appears that mRNA 

does not have a linear relationship with its downstream protein-coding counterpart 

suggesting that a significant regulation may take place before translation occurs(107).  

 

In the context of MS, gene expression studies have been applied in an attempt to gain 

greater insight into the disease(108-111) and also to identify markers of disease 

activity or treatment response(112, 113). These studies have principally relied on 

microarray technology which is cheaper, easier to use and computationally less 

intensive to analyse. Gene expression can be studied in a network context using gene 

co-expression networks. This approach has been used for studying neurological 

disorders with considerable success(114). Here, genes that have similar expression 

patterns are grouped together on the assumption they may be functionally 

related(115). Similarity in gene expression is calculated using a number of 

approaches, including correlation, regression or Bayesian methods. On occasion these 

can be combined to create more robust results(116). Despite promising observations, 
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these associations have not been translated into clinically useful stratification tools or 

robust biomarkers.  

 

Identifying and quantifying the full set of transcripts including as-yet unidentified 

genes and RNA subtypes in a biological sample has become possible using next-

generation sequencing (NGS), known as RNA-Seq. This technique is a multi-stage 

process that begins with fragmentation of RNA species and conversion by reverse 

transcription to cDNA fragments containing sequence adaptors(117). Depending on 

protocol, these fragments will sometimes undergo PCR amplification before high 

throughput sequencing to generate millions of short reads from one or both ends of 

the fragment (single-end and paired-end sequencing respectively). These reads are 

then reconstructed to their original RNA assembly and are then quantified to give an 

estimation of their expression levels. There are many advantages to RNA-Seq over 

traditional sequencing platforms. These include the ability to detect as yet 

unidentified RNA species, SNPS and transcription boundaries(117, 118). 

 

Proteomics 

One approach to validating gene expression studies is to look for correlation with 

downstream proteins of interest. Proteomics has been widely utilised in MS for 

biomarker discovery. Candidates of interest include matrix metalloproteinases 

(MMPs) which are involved in regulating pro-inflammatory cytokine release, myelin 

breakdown and axonal damage. Levels of MMP-9 specifically have been correlated 

with relapses and MRI lesion activity(119-121). A further candidate is ostepontin, 

levels of which are raised in MS patients compared to controls(122, 123) and fall 

following treatment with natalizumab or GA(124). 
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Quantifying cytokines can also be helpful in identifying markers of disease activity. 

In the context of MS, IL-17, IL-12 and IL-23 have been extensively explored. IL-17 

appears to have a strong association with MS, correlating well with worsening disease 

activity. This finding has led to a trial of an anti-IL-17A monoclonal antibody(125) in 

patients with MS (NCT00882999).  

 

Metabolomics 

In combination with transcriptomics and proteomics, one can derive yet more 

information by looking at the end products of physiological and pathological 

processes in the form of metabolomics. Indeed, this has already provided information 

into the pathogenesis of disease(126-129). In the context of a multi-omics experiment, 

metabolites represent the downstream output of the genome. They can now be used 

for patient diagnosis and disease monitoring(130, 131).  

 

In order to conduct an effective metabolomics experiment it is essential to consider 

sample size and to match for co-variates that may affect metabolites of interest (e.g. 

age and sex). It is also important to consider whether to undertake a targeted or 

untargeted approach to the experiment; the latter having the disadvantage that many 

metabolites are unidentifiable. Metabolomics experiments should also take into 

account factors that may affect specific metabolites, for example timing of dose with 

respect to last meal, timing of medications and time of day when blood is collected. 

The main platforms for metabolomics are NMR spectroscopy and mass spectrometry. 

Details of the analysis of such data will be provided in the Methods section. 
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Tools used for metabolomics profiling already provide precision medicine in the 

context of newborn screening. Indeed, these tools are used for diagnosing and 

predicting disease and also for determining optimal therapy (enzyme supplementation 

of dietary restriction) and dosing regime(132, 133). Further examples in adult life 

include measurement of glucose levels to identify pre-diabetes, iron levels in 

haemochromatosis and vitamin levels to diagnose dietary deficiencies.  

 

Pharmacometabolomics has also advanced as a clinically useful tool(134). For 

example, in kidney transplantation, MS-based monitoring of immunosuppressants 

such as mycophenolate and tacrolimus help to optimise patient dosing. This is 

important given the serious adverse advents associated with such medications 

including reduced white cell counts, anaemia and thrombosis(135). Similarly, in 

Alzheimer’s disease where adherence to medication may be problematic, there is 

some promise(136). 

 

A number of metabolomics studies using CSF, serum and urine samples have been 

undertaken in MS patients. With regards to CSF, lactate has been identified as 

increased in patients with active MRI lesions(137), however follow-up validation 

experiments have failed to corroborate findings(138). In serum samples, an NMR-

based approach using partial least squares discriminant analysis (PLS-DA) was able 

to separate RRMS from SPMS subjects(139) with a high degree of accuracy. Other 

studies have also identified metabolites that can accurately predict MS patients vs 

controls(140) and NMO patients(141).   
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One of the advantages of assaying metabolomic profiles in MS patients is the 

dynamic interplay between environmental exposures and their effect on the 

metabolome. Equally, gene-environment interactions can also be studied to gain 

further insight into the disease(142). Environmental exposures seem of particular 

importance in the pathogenesis of MS; the most investigated being Epstein-Barr virus 

infection (EBV), levels of vitamin D and smoking(143, 144). Others include 

adolescent obesity and nocturnal shift work. Despite strong evidence supporting these 

as causative factors, there are a number of biases to be borne in mind. These include 

residual confounders, reverse causation and selection bias. Heritability studies reveal 

that a sibling of a patient with MS has a 7-fold increased risk of the condition. Whilst 

this risk provides some evidence for genetic predisposition, it highlights the 

importance of environmental factors(145, 146). The steady rise in incidence of MS 

amongst women in the last decade is suggestive of environmental triggers. These 

include changes in lifestyle, for example, increases in smoking, obesity and changes 

in reproductive behaviour(147-150).         

 

Different ‘omics can be combined using correlation-based or pathways analysis 

approaches. In a complex disease such as MS, there is continual interplay between 

genes, proteins, metabolites and the environment(151). Integrating these at an 

individual level will enable personalised management. The current approach to 

integrating such data sets is by mathematical modelling(152). The first step involves 

compiling the current knowledge through a literature search in order to establish 

pathways that are affected by the disease. These are then combined to form a network 

which can be evaluated using experimental data. Approaches that provide large 

amounts of information (i.e. omics) are generally more reliable for testing such 
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networks(153, 154). If the network is reliable, a mechanistic model can be created 

which may predict an individuals response to a treatment. 

 

How might personalised medicine work in MS? 

As outlined above, MS requires a personalised approach to its diagnosis, 

prognostication and therapeutic strategy. This will require greater understanding of 

the disease itself and the subtypes within it. Whilst all of the current DMTs that are 

available target the immune system, they target different cell types, their movement 

and their ability to function. I envisage an approach to personalised medicine that 

incorporates a more accurate endophenotype of patients based on genetic and 

environmental information that can be objectively measured using combinations of 

genetics, transcriptomics, metabolomics and proteomics. Furthermore, patients will be 

stratified to an appropriate medication based on short-term pharmacodynamic 

responses measured using the same omic tools. Such tools may determine response to 

treatment and risk of adverse events. Most optimistically, detailed profiling may be 

able to prognosticate patients and predict their future disease course which has 

implications for social, medical and psychological impacts related to the disease itself.    
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Summary and Aims of My Thesis Work 

 

MS is a clinically heterogeneous condition. It is sometimes difficult to diagnose and 

even harder to predict prognosis, disease course or response to a treatment. This is 

important as the medications are expensive and have hazardous risk profiles.  

 

Once a patient is accurately diagnosed, it is important to prioritise initiation of 

treatment as ongoing inflammatory activity leads to accumulation of disability.  

There is currently no algorithm in place to match patients to an appropriate treatment. 

This relies on a ‘trial-and-error’ approach, usually combining a clinicians’ expertise 

with patient values. Escalation of treatment usually occurs when a patient fails to 

respond to their current medication; however classifying ‘response’ to a medication is 

also poorly defined.  

 

Given that a number of treatments are now available for RRMS, it is essential to be 

able to stratify patients to a treatment that is most efficacious. One approach to 

achieving this is through pharmacogenomics. Pharmacogenomics has emerged as a 

key player in personalisation of treatment for cancer. Harnessing this approach for 

MS is an attractive option as there is a genetic predisposition to the disease.  

 

Despite there being some genetic component to MS there are widely recognised 

environmental factors that seem to be associated with MS. Their effects can be 

captured by looking at gene-environment interactions. Additionally, one can derive 

information about environmental risk factors through exploring the metabolome. 

Ultimately, a hierarchical pathway approach combining genetic, transcriptomic, 
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proteomic and metabolomics will yield the ‘bigger picture’. Currently, tools to 

achieve this are very much in their infancy.  

  

A commonly prescribed first line treatment for RRMS is DMF. DMF has been shown 

to be effective at both reducing relapses and MRI lesion load. The therapeutic 

mechanism of action of this drug is not known, however, it is believed to have anti-

oxidant and anti-inflammatory properties. These properties make it an ideal candidate 

for identifying multi-omic treatment response signatures.    

 

 

Hypothesis 

Changes in gene expression in PBMC and metabolomics profiles in plasma 

within 6 weeks of initiation of DMF for RR-MS can associate with clinical and 

radiological response at 15 months. 

 

Aims 

To determine; 

1) Whether gene expression changes in the blood mononuclear cell fraction and 

metabolite changes in plasma 6-weeks post treatment initiation can further elucidate 

the pharmacodynamic actions of DMF. 

 

2) Whether, multi-omics profiling can discriminate treatment-naïve MS patients and 

controls.  
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3) Whether, in MS patients starting DMT, gene expression and metabolite changes 

associated with drug action in the blood mononuclear cell fraction at 6 weeks can be 

associated with clinical and radiological response at 15 months. 
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Chapter 2. Materials and Methods 

 

Ethical Approval 

The study was approved by the NRES Committee London – Camden and Islington – 

14/LO/1896. 

 

Study Design 

 

This! longitudinal! cohort! study! intended! to! explore! whether! changes! in!

transcriptome,!cytokine!and!metabolomic!signatures!could!help!predict!response!

to!DMF!in!RRMS!patients.!36!patients!were!recruited!to!the!study!and!10!healthy!

ageI!and!sexI!matched!controls.!Subjects!and!controls!attended!a!screening!visit!

and! two! further! study! visits! over! the! course! of! 15! months.! Patients! were!

recruited! from! the! MS! clinics! at! Imperial! College! Healthcare! NHS! Trust! and!

consent! for! the! study! was! obtained.! Healthy! volunteers! were! recruited! by!

advertisement.!Inclusion!and!Exclusion!criteria!for!patients!outlined!below.!!

!

!
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Study!Days!

For the patients with MS, clinical assessments were performed at baseline, 6 weeks 

(+/- 3 weeks) and 15 months (+/- 8 weeks). Patients underwent magnetic resonance 

imaging (MRI) at 6 weeks (+/- 3 weeks) and 15 months (+/- 8 weeks), and detailed 

clinical and patient-centred histories were taken to determine whether a patient was 

responding to the drug. Clinical assessment included MS Functional Composite 

(MSFC) at all timepoints as well as a quality of life questionnaire (SF-36) at baseline 

and 6 weeks (+/- 3 weeks). Blood samples were taken on entry to the study, and 6 

Inclusion Criteria 
 

• Male! or! female! between! 18! and! 65! years! of! age! inclusive,! at! the!

time!of!signing!the!informed!consent.!

• Clinical! or! clinical! and! laboratory! supported! diagnosis! of! MS!

(Revised!McDonald!criteria,!2010).!

• Recently!prescribed,!but!yet!to!commence!Tecfidera!for!RRMS.!

• Able!to!lie!comfortably!on!back!for!up!to!60!minutes!at!a!time.!

• Capable! of! giving! written! informed! consent,! which! includes!

compliance! with! the! requirements! and! restrictions! listed! in! the!

consent!form.!

!

Exclusion Criteria 
 
A subject will not be eligible for inclusion in this study if any of the following 
criteria apply: 
 

• Any! clinical! significant! medical! conditions! that! in! the! opinion! of!

the!investigator!would!compromise!subjects’!safety!or!compliance!

with!study!procedures.!!

• Unwillingness!or!inability!to!follow!the!procedures!outlined!in!the!

protocol.!

• Subject!is!mentally!or!legally!incapacitated.!

• Presence! of! a! cardiac! pacemaker! or! other! electronic! device! or!

ferromagnetic!metal!foreign!bodies!as!assessed!by!a!standard!preI

MRI!questionnaire.!

• Claustrophobia!limiting!tolerance!of!MRI!

!
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weeks (+/- 3 weeks) and 15 months (+/- 8 weeks) post treatment onset. Blood from 

healthy volunteers was taken at the same timepoints.  A schema for the project is 

outlined in Fig 2.  

 

Fig 2. Schematic of study visits for RRMS patients and healthy controls. Images 

taken from Google Images.   

 

Patient and Control Demographics 

The study cohort included 36 patients with RRMS (RRMS; median EDSS, 2.5, range 

1- 6.5) diagnosed by McDonald criteria(12), who were recruited from the Imperial 

College Healthcare NHS Trust and who consented for participation in the study. 

Patients recruited were aged between 18-65 and treatment-free (DMT and steroids) 

for at least 3 months. Three patients experienced regular migraines, 2 had asthma, 2 

psoriasis and 2 had autoimmune thyroid disorders. Three patients had thalassemia 

trait and one patient had hypercholesterolaemia. Within the patient cohort, there were 

13 men and 25 women. Mean age was 42.9 (+/- 12. 1), average disease duration from 

diagnosis was 6 years (+/- 5 years) and average disease duration from symptom onset 

was 12 years (+/- 9 years). 19 patients were treatment naïve and 16 patients had been 
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on previous treatments. 3 patients were current smokers. Amongst those patients who 

had been on previous treatments, 9 had been on a !-Interferon, 6 on copaxone and 1 

on azathioprine. Table 1 summarises patient demographics.  

 

10 age- and sex- matched healthy controls were recruited by local advertising. 4 were 

men and 6 were women. 1 patient was a current smoker. There were no comorbidities 

in this cohort. Table 1 summarises control demographics.  

 

 

!
MS#Patients# Controls#

!! ## ##
Gender!! 13!Men!and!23!Women!(n!=36)! 4!Men!6!Women!(n!=!10)!

Mean!Age!(years)! 42.9!+!12.1! 37.3!+!11.0!

Average!disease!duration!

6!+!5! N/A$
from!diagnosis!(years)!

Average!disease!duration!from!!

12!+!9! N/A$
first!symptom!(years)!

EDSS!(median,!range)! 2.5!!(1!–!6.5)! N/A$

Treatment!Naïve!patients! 15! N/A$

Current!Smoker!! 3! 1$

 

Table 1a. Patient and Control Demographics for full cohort. Values quoted as mean + standard 

deviation if not indicated otherwise.   

  

With regards to follow-up, at the 6-week visit, 5 patients did not continue in the study. 

4 were unable to take the medication due to severe abdominal symptoms and 1 was 

unable to attend for follow-up. At the 15 month timepoint, a further 5 patients did not 

continue in the study. 3 had terminated treatment due to side effects and 2 had 

stopped the medication due to disease progression.  
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Sample size for this study was calculated based on previous findings from RNA-Seq 

experiments, feasibility and the limited timeframe of the study(155). A depth 

coverage of 50 million reads and a CV of 0.4 powered the study at 90% when looking 

for expression changes between groups with fold change > 0.5 fold. 

 

Peripheral Blood Mononuclear Cell Extraction 

Whole blood samples were taken at time points described above using EDTA tubes 

(40 mls total). PBMC were extracted from fresh whole blood using Ficoll technique. 

EDTA tubes containing blood samples were initially spun at 1400rpm for 10 minutes 

(Acceleration (A) 7, Deceleration (D) 7) at room temperature. Following 

centrifugation, overlying plasma supernatant was collected into 2ml cryovials and 

stored at -80 oC. Remaining blood was transferred to 50 ml Falcon tubes (maximum 

12mls per Falcon tube) and diluted in Dulbecco’s Phosphate-buffered saline (1:2 

ratio). Equivalent number of 50 ml Falcon tubes were prepared with 15mls histopaque 

at room temperature (Histopaque-1077, Sigma Life Science). Diluted blood was then 

overlaid onto Ficoll and tubes centrifuged at 1600 rpm for 30 minutes (A:5, D:2). 

Buffy coat containing PBMC was aspirated using sterile Pasteur pipettes and washed 

with sterile PBS. Two wash cycles were performed followed by re-suspension of cell 

pellet in 10mls PBS. Cells were then counted using Trypan Blue and 5-10 million 

cells placed into 2 sterile eppendorf tubes for duplicate RNA extraction. Remaining 

cells were stored in a PBS/DMSO (9:1 ratio) solution at -80 oC.  
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RNA extraction 

RNA extraction was performed in duplicate on fresh pellet directly following PBMC 

extraction by Ficoll. RNA extraction was performed using Qiagen RNeasy kit 

(Qiagen, Hilden, Germany). The kit uses the selective-binding properties of a silica-

based membrane to bind up to 100 micrograms of RNA. The cell pellet was lysed and 

homogenised using buffer RLT – a denaturing guanidine-thiocyanate-containing 

buffer that inactivates RNases. Ethanol was then added and the sample inserted into a 

RNeasy Mini spin column for RNA purification and removal of contaminants. The 

sample underwent three buffer washes (buffer RPE and RW1) and an on-column 

DNase digestion step using DNase1 stock solution. The duplicate assay yielded 2 

50Ml samples. RNA quantity was measured using a spectrophotometer and the ratio 

of absorbance at 260nm and 280nm was calculated to assess the purity of RNA (a 

ratio of 2.0 is generally accepted as pure for RNA).  The ratio of absorbance at 

260/230 was also calculated as a secondary measure of nucleic acid purity (a ratio of 

2.0-2.2 is generally accepted as pure for RNA).  

 

Cytokine Assay  

Cytokine and inflammatory markers were measured using the Meso Scale Discovery 

(MSD) v-PLEX Neuroinflammation kit. (Meso Scale Discovery, Maryland, USA). 

This kit consists of 5 microplates pre-coated with antibodies to 40 neuroinflammatory 

markers. The panels are separated as follows. Pro-inflammatory panel (IFN- , IL-

1 , IL-2, IL-4, IL-6, IL-8, IL-10, IL-13 and TNF-a), cytokine panel (IL-1, IL-5,� IL-

7, IL-12/IL-23p40, IL-15, IL-16, IL-17A, TNF-a, VEGF), chemokine panel (Eotaxin, 

MIP-1, Eotaxin-3, TARC, IP-10, MIP-1, MCP-1, MDC, MCP-4), angiogenesis panel 
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(VEGF-C, VEGF-D, Tie-2, Flt-1, PlGF, bFGF) and vascular injury panel (SAA, CRP, 

VCAM-1, ICAM-1).   

 

Calibration curves were prepared in the supplied assay diluent. Arrays were 

preincubated with 25 µL per well of assay diluent for 30 minutes. After the 

preincubation, 25 µL sample or calibrator was added in duplicate to the appropriate 

wells. The array was then incubated at room temperature for 2 hours. The array was 

washed with PBS plus 0.05% Tween 20, and 25 µL detection antibody reagent was 

added. After 2 hours of incubation at room temperature, the array was washed and the 

detection buffer was added. Results were read with a MSD Sector Imager 6000. 

Sample cytokine concentrations were determined with Softmax Pro Version 4.6 

software using curve fit models.  

 

RNA-Seq protocol 

Samples were sent to Genewiz (Genewiz, New Jersey, USA) for library preparation 

and sequencing for mRNA and small RNA. The first step in this process was to run a 

QC on RNA samples and to ensure sufficient quantity and quality. Initial quantities 

assayed using Nanodrop and Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, 

CA, USA) and RNA integrity using Tapestation (Agilent Technologies, Palo Alto, 

Ca, USA). Of all samples sent to Genewiz, all had 260/280 ratio of >2. RNA 

integration number was also > 9 for all samples. Two samples had insufficient 

material for RNA sequencing and were therefore omitted from further analysis. A 

table of this QC is provided in Appendix 1. Following QC, library preparation was 

performed in the same facility (Genewiz, New Jersey, USA).  
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This used the NEBNext Ultra RNA Library Preparation Kit from Illumina following 

manufacturer’s recommendations (NEB, Ipswich, MA, USA). mRNA was enriched 

with Oligod(T) beads and enriched mRNAs were fragmented for 15 minutes at 94oc. 

cDNA for first and second strand were then synthesized, end-paired and adenylated at 

3’ ends. The universal adapter was then ligated to cDNA fragments along with the 

index sequence and the library enriched with limited cycle PCR. Sequencing libraries 

were validated using Agilent Tapestation and quantified using Qubit 2.0 Fluorometer 

and quantitative PCR (Applied Biosystems, Carlsbad, Ca, USA). 

 

Small RNA sequencing was prepared using the Illumina Small RNA Library Prep kit 

(Illumina, San Diego, Ca). Here, Illumina’s 3’ and 5’ adapter was added to RNA 

molecules with a 5’-phosphate and a 3’-hydroxyl group sequentially. Reverse 

transcription was then performed to create single stranded cDNA. cDNA was PCR 

amplified with a common primer and a primer containing the index sequence. The 

amplified cDNA construct was purified using polyacrylamide gel electrophoresis, the 

correct band was excised from the gel, eluted with water and concentrated by ethanol 

precipitation. This final library was then quality controlled using Qubit 2.0 

Fluoremeter and Agilent TapeStation (Applied Biosystems, Carlsbad, Ca, USA).    

 

Sequencing for RNA (Illumina Hi-Seq platform 2 x 150bp PE configuration) and 

small RNA (Illumina HiSeq 2500, 1 x 50bp SR configuration) was performed. The 

sequencing libraries were multiplexed and clustered on two flowcells and these were 

loaded onto the Illumina HiSeq platform. The small RNA libraries were multiplexed 

and clustered on 3 lanes of a flowcell.    
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Raw sequence data was quality controlled, initially by determining the Phred quality 

score, the most common metric used to assess the accuracy of a sequencing 

platform(156). Q scores are defined as a property logarithmically related to base 

calling error probabilities (P)2.  

 

Q = -10 log10P 

  

As an example, if Phred assigns a Q score of 30 (Q30), the probability of an incorrect 

score is 1 per 1000. In my dataset, the percentage of >Q30 bases was >96% for all 

samples. An initial FASTQC was then performed on all samples. FASTQC is a 

software that checks the per base sequence quality, the per base GC content, Kmer 

content and adapter content of a sample(157). An example of a FASTQC report is 

provided in Appendix 1. 

 

 The second QC step involved clipping the adapters from the raw sequences. This was 

performed using TrimGalore software. Trimgalore is a multi-step software tool that 

removes low-quality base calls and removes adapters from raw sequences(158). 

Following this step, a further FASTQC was performed on all samples to ensure that 

data was of sufficient quality.  

 

Following adapter clipping, sequence reads (in the form of fastq files) were aligned to 

a reference genome and raw counts for genes were derived. In order to ensure greater 

reproducibility of findings, alignment was performed using two different pipelines.   
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Method 1: DRAGEN alignment and Counts using HTSeq  

DRAGEN (Dynamic Read Analysis for Genomics) is a commercially available 

software that is capable of aligning raw sequence reads from the Illumina HiSeq 

platform (http://www.edicogenome.com/) to a reference genome. The Fastq files 

containing the raw sequences were inputted into the DRAGEN pipeline and aligned 

using reference genome GRCh38.p10. Alignment accuracy for this software is 

reportedly superior to existing open-source alignment software such as TopHat and 

Star(159). Gene hit counts were calculated from the output BAM files derived from 

DRAGEN software using HTSeq-count(160). HTSeq-count is a python library that 

counts aligned reads overlapping exons for each gene. Only reads mapping 

unambiguously to a single gene are counted using the software; and reads possibly 

mapping to more than one gene are discarded. HTSeq count is a reliable counting tool 

for RNA-Seq data(161).   

 

Method 2: STAR alignment and Counts using StringTie and Ballgown suite  

Alignment and Count derivation were also performed using a different pipeline to 

ensure robustness of analysis and to increase the probability of reproducible findings. 

Alignment was performed using STAR software (Spliced Transcripts Alignment to a 

Reference)(162). STAR is an open-source pipeline that utilises a seed finding phase to 

search for a Maximal Mappable Prefix; a concept used by large-scale genome 

alignment tools. MMP involves sequential searching for a given read sequence within 

the reference genome sequences. The longest substring that matches the reference 

genome is found using the maximum mappable length of the sequence.  Alignments 

are then built using clustering and stitching and alignments are scored based on 

penalties for mismatches, insertions, deletions and splice junction gaps. 
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Small RNA alignment and count derivation 

Sequence reads were trimmed to remove possible adapter sequences at the 3’ end. 

Reads with 17 to 35 nucleotides were retained and mapped against micro RNAs for 

Homo Sapiens in the micro RNA database(163) (miRBase 21) using the CLC 

Genomics workbench v.9.0.1 (Qiagen, Hilden, Germany) . Mapping statistics were 

generated using QualiMap v.2.2.1(164).   

 

Metabolomics 

 A pilot plasma sample set was sent for global metabolomic profiling to Metabolon 

Inc. (Metabolon, Durham, NC, USA). This included 15 MS patients and 10 healthy 

controls at baseline and 6 weeks.  

! MS#Patients# Controls# #
Gender!! 8!Men!and!7!Women!(n!=!15)! 4!Men!6!Women!

Mean!Age!(years)! 37.3!+!11.3! 38.3!+!9.7!

Average!disease!duration!

from!diagnosis!(years)!

5!+!4! N/A$

Average!disease!duration!from!!

first!symptom!(years)!

7!+!6! N/A$

EDSS!(median,!range)! 1.5!(1!–!6.5)! N/A$

Treatment!Naïve!patients! 8! N/A$

Current!Smoker!! 0! 1$

 

Table 1b. Patient and healthy volunteer demographic data for Metabolon Inc. samples. Values 
quoted as mean + standard deviation if not indicated otherwise.   
 

 

Metabolon Mass Spectrometry Analysis 

Mass Spectroscopy (Discovery cohort) 

Samples were sent to Metabolon Inc. (Durham, NC) for untargeted metabolomics 

analysis. Samples were precipitated with methanol followed by centrifugation prior to 
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QC. QC involved addition of several control samples to aid chromatographic 

alignment. This included pooled matrix samples, technical replicates (derived from a 

pool of well characterized human plasma), process blanks and within-sample spiking 

of endogenous compounds. Experimental samples were randomized across the 

platform and run with the QC samples.  

 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy 

(UPLC-MS/MS).  

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography 

(UPLC) (Waters, MA, USA) and a Thermo Scientific Q-Exactive high 

resolution/accurate mass spectrometer (Thermo Fisher Scientific Inc., MA, USA) 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass 

analyzer operated at 35,000 mass resolution. Samples were analysed using acidic 

positive ion conditions (optimized both for hydrophilic and hydrophobic compounds), 

basic negative ion conditions and a negative ionization following elution from a 

HILIC column. The scan range covered 70-1000 m/z.  

 

Metabolite Identification 

Raw data was extracted and peaks identified using the Metabolon library. 

Biochemical identifications are based on three criteria: retention index (RI) within a 

narrow RI window of the proposed identification (within 150 RI units ~10s) , accurate 

mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores 

between the experimental data and authentic standards(165).  Peaks were quantified 

using area-under-the-curve. 
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National Phenome Centre Metabolomics  

All baseline and 6 week plasma samples underwent metabolomic profiling at the 

National Phenome Centre (NPC) at Imperial College London. This included global 

mass spectrometry analysis and a NMR-based lipoprotein analysis.     

 

Samples were formatted into 96-well polypropylene plates as previously 

described(166) and diluted in a 5:1 ratio (v/v) with an aqueous internal standard (IS) 

solution (sample:IS). The sample was further diluted by addition of acetonitrile in a 

1:3 ratio (sample+IS:ACN, v/v). The plate was heat sealed using Thermo-Seal foil 

sheets and an ALPS 50 V-Manual Heat Sealer (Thermo Fisher Scientific Inc., MA, 

USA) prior to mixing for two minutes using a MixMate (Eppendorf) operating at 

1400 rpm and subsequent 2 h incubation, both at 4°C. All samples were then 

centrifuged at 4°C for 10 minutes at 3486 × g to separate precipitated protein and 

other particulate material from the supernatant, which was aspirated and dispensed to 

a separate 96-well plate for UPLC-MS analysis.  

A single HILIC UPLC-MS analysis was performed on an Acquity UPLC instrument 

coupled to a Xevo G2-S oaTOF mass spectrometer (Waters Corp., Manchester, UK) 

via a Zspray electrospray ionization (ESI) source operating in the positive ion mode.  

Details of the UPLC-MS system configuration and HILIC analytical method used for 

profiling have been reported previously(166). Briefly, a 2 µl full loop injection (with 

5× overfill) of prepared sample was made to a 2.1 × 150 mm BEH HILIC column 

(Waters Corp., Milford, MA, USA) thermostatted at 40 °C. Gradient elution was 

performed using acetonitrile + 0.1% formic acid (A) and 20mM ammonium formate 

in water + 0.1% formic acid (B) solvents with a flow rate of 0.6 mL/min. Details of 

the gradient can be found in the supporting information of the provided reference. 
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Feature extraction and data processing were performed using Progenesis QI 2.1 

software (Waters Corp., Manchester, UK) as previously described(166). Metabolites 

of interest from the discovery cohort analysis were located either by retention time 

and accurate mass match to an authentic reference standard or by accurate mass and 

interpretation of the MS/MS fragmentation pattern (specifically for methyl succinyl-

carnitine, as no reference standard was commercially available). 

 

Targeted Quantitative Analysis of Monomethyl Fumaric acid (MMF) 

All samples were subjected to targeted analysis for the absolute quantification of 

MMF. Briefly, samples were prepared by dilution with three volumes of acetonitrile + 

0.1% formic acid containing100 mg/mL heavy labeled MMF (mono-methyl-13C,d3 

fumarate, Sigma-Aldrich). The samples were mixed and centrifuged as described 

above prior to solid phase extraction using OSTRO sample preparation plates (Waters 

Corp., Milford, MA, USA) operated by vacuum manifold for two minutes. The 

product sample was dried overnight under a continuous flow of nitrogen gas and 

reconstituted using an amount of ultra-pure water equal to the original volume of 

plasma used (150 µl). 

 

Sample analysis was performed using an Acquity UPLC instrument coupled to a 

Xevo TQ-S tandem quadrupole mass spectrometer (Waters Corp., Manchester, UK) 

via a Zspray electrospray ionization (ESI) source operating in the negative ion mode.  

MMF was identified using the National Phenome Centre reference library as being 

well retained by the reversed-phase chromatographic method described 

previously(166) and that method was therefore validated with the following 

parameters: limit of detection (LOD) = 0.5 ng/mL; limit of quantification (LOQ) = 
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5ng/mL; linear range = 0.5-100ng/mL; dynamic range = 0.5-2000ng/mL; sensitivity = 

0.99+/-0.023. Within-run precision was measured by seven repeated analyses of 

samples at the low, medium, and high range of the method (% relative standard 

deviation) = 3.3, 1.6, and 2.4 respectively. Matrix effects and absolute recovery 

covered a chosen low, medium and high range within the dynamic range (40, 400 and 

800ng/mL). Matrix effects indicated negligible ion suppression with values above 

95% with no ion enhancement. Absolute recovery was within acceptable range of 77 

to 118% in accordance to stated GLP and GMP Bioanalytical method validation 

guidelines.). Peak integration and calculation of final MMF concentration was 

performed using TargetLynx software (Waters Corp., Milford, MA, USA).   

 

NMR Spectroscopy 

Plasma samples were centrifuged for 5 minutes at 4ºC at 13,000 rpm to remove solid 

particles in suspension. Bruker 600 Avance III spectrometer was used to acquire 1D 

NMR general profiling and 2D J-res spectra(167). Spectra were processed, phased 

and baseline corrected in automation using TopSpin software (v3.2, Bruker BioSpin, 

Rheinstetten, Germany). The signal from the anomeric proton of the glucose at 5.23 

ppm was used to calibrate the plasma spectra. 

 

Lipoprotein and cytokine analyses 

Lipoprotein quantification was performed with the Bruker B.I.-LISA (Bruker IVDr 

Lipoprotein Subclass Analysis) platform using the -CH3 and CH2 resonances in the 

1H-general profile NMR spectrum (0.88 and 1.29 ppm, respectively). These broad 

resonances were bucketed and fitted against a Partial Least Square (PLS2) regression 

model. The model has been validated against direct assays after plasma 
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ultracentrifugation(168). For each sample, the method estimates concentrations of 

lipids (cholesterol, free cholesterol, phospholipids and triglycerides) within the main 

lipoprotein classes (VLDL, IDL, LDL, HDL), subdivided according to increasing 

density and decreasing size (VLDL-1 - VLDL-6, LDL-1 - LDL-6, HDL-1 - HDL-4).  

105 lipoprotein sub-fractions were analysed in each sample using this method. A test-

retest comparison of sub-fractions samples measured in a single healthy control from 

samples taken on 5 consecutive days showed that mean lipoprotein sub-fraction 

concentrations varied by < 5%. 

 

Modelling approaches for data reduction 

Omics approaches yield large datasets and statistical tools have been developed to 

interpret them (9,10). These include dimension reduction techniques that rationalise 

the date into a limited number of variables (called components) that account for the 

greatest variance in the dataset. For any given omics experiment (X) there are 

variables (also referred to as features) (x) and samples (n). This can be represented by: 

 

X = (x1 + x2,….xp) 

 

Dimension reduction identifies a set of new variables or components(f) through a 

linear combination of the original variables. Coefficients (q) will make up the 

components and these are also known as loadings. Dimension reduction finds a set of 

q’s that take into account the greatest possible variance of f components.   

 

f = Xq 
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Principal Component Analysis 

Perhaps the most widely used dimension reduction approach is principal component 

analysis (PCA)(169). This can be performed in a number of ways including Eigen 

analysis, latent variable analysis, factor analysis, singular value decomposition (SVD) 

or linear regression(170). The method reduces the dimensions of a dataset to a few 

principal components. The first principal component is the mathematical combination 

of measurements accounting for the largest amount of variability in the data(171). The 

second component finds the coefficients that maximise variance orthogonally to the 

first component. The total variance is defined as the sum of variances of the predicted 

values for each component. In general, the selection of components is subjective, 

however it will sometimes be the case that the number of components is decided upon 

based on a cumulative proportion of variance(172).    

 

 

Partial least squares discriminant analysis  

 The major criticism of principal component analysis is that the components 

themselves may be modelling variation in x-variables that are of little or no relevance 

to the groups they belong to (y-variables). Partial least squares (PLS) (173, 174) 

attempts to overcome this problem by also calculating a set of latent variables, but 

uses a criterion other than maximum variance for the decomposition step. The 

criterion is a normalised weight vector which is calculated as the covariance between 

the y-variable and the x-variables. In simple terms, the model selects the components 

which describe the greatest amount of variance based on knowledge of group 

membership of samples. Each component is then checked for predictive power 
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through cross-validation(175, 176). In this way, PLS can be used as a supervised 

classification method and the response variable can be classified using a binary 

vector. This is also known as PLS-DA. PLS-DA is regularly applied to gene 

expression data (Datta 2001).  

 

Sparse partial-least squares discriminant analysis (sPLS-DA) 

sPLS-DA combines integration and simultaneous variable selection. It reduces data 

further than PLS-DA using a Lasso penalization combined with singular value 

decomposition (SVD)(177). The advantage of this approach is that the number of 

dimensions and components can be selected in addition to the number of variables to 

select for each dimension. This can then be tested using cross-validation or leave-one-

out analysis(178, 179).   

 

Random Forest Analysis 

This is a supervised classification technique utilising an ensemble of decision 

trees(180). For a given decision tree, a randomised set of the data with class 

identifiers is selected to build the tree (this is known as the ‘bootstrap sample’ or 

‘training set’. The remaining data not used in this sample is known as the ‘out-of-bag 

(OOB)’ variables and these are passed down the tree to provide class predictions for 

each sample. This process if repeated up to thousands of times to produce a forest. 

Each sample is then classified as belonging to a group depending on the class 

prediction frequency derived from the forest. The method is unbiased as the 

prediction for each sample is based on trees that were built without that sample. Once 

all class predictions are made, the OOB error rate is calculated as a measure of 

prediction accuracy. The advantages of random forest include the fact is does not 
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make parametric assumptions and it does not overfit the data. One can also derive the 

variables that make the largest contribution to the classification using the ‘mean 

decrease accuracy’ (MDA). The MDA is determined by running the decision trees 

with and without each variable to determine if this has an effect on the predictive 

accuracy of the mode. If a variable is important, the prediction accuracy drops and 

this is recorded as the MDA.     

 

Multivariate regression and penalisation  

Simple regression consists of one independent variable, X, and one dependent 

variable Y. For a given value of X, one can estimate a value for Y. When performing 

simple regression, one can calculate the sum of squared errors (SSE) which is the sum 

of squared deviations of the data from the predicted values; representing variation in 

the data that is not explained by the regression model.     

When analysing big data sets, the number of dependent variables will be greater than 

1. In this context, multivariate linear regression can be used. In this model, R2 

represents the amount of variation that is explained by the dependent variables. One 

of the disadvantages of multivariate linear regression is that often the dependent 

variables are correlated(181) or there are too many of them and this causes variation 

in the regression slope and intercept that make the regression model unstable. It also 

increases the standard error of the estimated regression coefficients and can cause 

overfitting of the data(182).    

 

One approach to remedy overfitting data is to constrain the magnitude of the 

parameters or ‘budget’ them. This can be done a number of ways but the classic 

approach is through ridge regression. This approach allows one to choose a value for 
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λ; a weight that balances minimising SSE whilst limiting model complexity. The best 

value for λ is normally chosen using cross-validation which evaluates the model with 

a validation data set(183). A further regularisation method is the least absolute 

shrinkage and selector operator (LASSO) regression(184). This model works by 

removing variables as a variable selection method. There are a number of weaknesses 

to this approach, not least that it is not robust to collinearity of variables. Furthermore, 

it will not choose more variables than the number of samples so it a poor application 

for ‘omics datasets. One regression method that blends both of these approaches is 

elastic net regression. This approach allows evaluation of number of variables to be 

used through cross-validation. The advantages of this approach is that it selects more 

variables than LASSO but also shrinks nonzero parameters like ridge regression(185). 

A final approach to reduce variable number but maximise variance accounted for is 

Akaike Information Criterion(186). AIC allows us to perform model selection to 

derive a preferred model based on a trade-off between goodness of fit and model 

complexity. Given a set of candidate models, this approach will give AIC values for 

each model; the lowest value representing the best preferred model. When increasing 

parameters are added, the AIC fixes a penalty and this can discourage overfitting.  
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Chapter 3. Discriminating disease activity using a multi-omics comparative 

approach between MS patients and healthy controls 

 

Introduction 

Current markers of disease activity in MS are principally surrogates of accumulated 

disease activity over time. They provide a picture of a patient’s history with MS rather 

than capturing the current disease status. This is well exemplified by MRI measures 

such as lesion load and size and by the EDSS score.  

An approach to mitigate this is by comparing MS patients to healthy controls and then 

correlating any discriminating features with existing measures of disability.  

 

Gene expression profiling is a method of measuring the approximate biological 

activity of a cell or tissue. It has been utilised in the field of MS to further our 

understanding of the genetic component of the disease. Early proof of concept studies 

have established the MS transcriptome in blood(108) and brain tissue(109). A more 

recent study compared the transcriptome of PBMCs in RRMS, SPMS and PPMS 

patients with healthy controls uncovering a signature of 380 transcripts that 

differentiated MS groups from controls. As with many such studies, the effect sizes 

were only moderate (0.7 – 2.29) but the transcripts identified were concordant with 

genetic susceptibility studies in MS(187, 188). A further approach has been to 

perform gene expression profiling in post-mortem tissues from MS patients(189). 

However, little has been done comparing healthy controls to MS patients at post-

mortem. MicroRNAs (MiRNA) are a novel approach to addressing genetic 

dysregulation in MS patients relative to controls. A number of studies have 

demonstrated either up- or down- regulated miRNAs in cell subsets of MS 
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patients(190). The most robust miRNAs include miR-15a, miR-16-1, miR-20b, miR-

27b, miR-29b, miR-128, miR-155 and miR-320a(190). These findings have led to a 

limited number of studies testing the utility of such miRNAs as biomarkers in the 

diagnosis of MS(191, 192). Nevertheless, poor replication of such studies has meant 

that no clinically validated micro-RNAs exist to aid in the diagnosis of MS.     

 

The role of metabolomics in distinguishing MS patients from healthy controls is 

another approach that also ties in environmental influences. Dickens and colleagues 

recently performed a metabolomics analysis of MS patients and controls. Using a 

PLS-DA, they were able to reliably identify MS patients from controls with high 

sensitivity and specificity. Interestingly, the two most discriminant metabolites were 

glucose and phosphocholine(139). Most recently, Lim and colleagues identified 

metabolites of the kynurenine pathway, known to be involved in chronic 

inflammation and progression of neurodegenerative disease, as dysregulated in MS 

patients compared with controls. A decision tree method was able to discriminate MS 

subtypes with high sensitivity (91%), maintained in a validation cohort(193).     

 

A potential role for lipids in MS 

Disease progression biomarkers may be related to previously identified factors 

associated with the expression of co-morbidities of MS(194).  Cardiovascular disease 

is one of the most frequent co-morbidities of MS and other systemic autoimmune 

disorders such as rheumatoid arthritis, systemic lupus erythematosus and psoriasis 

(195-197). While the underlying causes of vascular comorbidity may be multi-

factorial, elevated plasma lipids, lipoproteins (the carrier molecules of lipids in blood 

e.g. LDL) and oxidised lipids are found with both cardiovascular disease and MS, at 
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least in part because of a direct effect of pro-inflammatory cytokines on hepatic lipid 

metabolism(197, 198).  

 

Previous studies have suggested an association between dyslipidaemia, 

dyslipoproteinaemia and MS disease activity (new MRI lesions(199) or worsening 

EDSS(199-201)). Recently, indirect evidence consistent with a causal role for 

dyslipidaemia in disease progression was provided by results from MS-STAT, a 

Phase IIa study showing that high dose simvastatin reduced rates of brain atrophy and 

disability progression in patients with secondary progressive MS(202).  

 

Lipids and lipoproteins can be measured using a number of techniques including 

ultracentrifugation, high performance liquid chromatography and nuclear magnetic 

resonance (NMR) spectroscopy(203). A novel NMR method has recently been 

developed that can measure lipid concentrations within plasma lipoprotein sub-

fractions (lipoproteins subdivided based on density and size). This method has the 

advantages of being amenable to high throughput use, is highly reproducible and can 

provide simultaneous class-specific information on both lipoproteins and their 

constituent lipids; both of which have been associated with MS disease activity(168). 

It promises increased sensitivity to changes in circulating lipids related to systemic 

inflammatory states.    

 

A role for cytokines 

Measuring cytokines in MS patients has identified that Th2 cytokines are reduced in 

MS patients (despite possibly being protective) and that Th1 cytokines (traditionally 

seen as pro-inflammatory) are associated with a more active disease course. 



! 63!

Furthermore, Th17 cytokines are known to be elevated in MS as well as IL-1β and IL-

6. Further studies have identified that cytokines can be altered by treatments such as 

interferon, natalizumab and DMF(204).  

  

In this study, I utilised baseline samples from untreated RRMS patients and healthy 

controls to determine whether multi-omics approaches can elucidate markers that are 

associated with disease and that may correlate with existing measures of disease 

disability. I performed the multi-omics analyses in sequential biological order starting 

with gene expression, moving on to proteomics (cytokines) and lipidomics and finally 

to the end products of metabolism (metabolomics). Each modality was analysed using 

statistically appropriate tools that have previously been validated for this type of 

‘omics.  I also correlated these markers with existing markers of disease activity.     
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Methods 

All methods for sample collection, assays and basic statistics are provided in the 

Methods chapter. Specific methods for this chapter are outlined below.  

 

Transcriptomics 

Statistical Analyses 

Differential expression analysis was performed on count data derived from StringTie 

and HT-Seq software using DESEq2(205).  Deseq2 performs differential expression 

analysis by first performing a regularised logarithm transformation followed by 

detection and correction of dispersion estimates that are too low through modelling 

using average expression strength over all samples. An assumption made by this 

software is that genes of similar average expression have similar dispersion. Where 

counts are low or dispersion is high for a specific gene, DESEq2 shrinks the log fold 

change (LFC) towards zero. The software provides a log fold change value across 

conditions as well as an adjusted p-value corrected for multiple comparisons using 

Benjamini and Hochberg(206).     

 

I repeated the differential expression analysis using Ballgown, an open-source 

software that uses FPKM values in a linear model(207). The model log transforms the 

count data and applies linear models to test for differential expression at the gene, 

transcript, exon or junction level. Contrasts between patients and controls were 

performed controlling for variables age and gender. Adjusted p-value for significance 

(Padj) was set at (Padj < 0.05). Fold change cut offs were thresholded at log2-fold 

change of ±0.3.!!   
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Following DE analysis, principal component analysis was performed. Description of 

this technique is outlined in Methods section above. Differentially expressed genes 

with adjusted p-value < 0.05 were identified and submitted to G:profiler functional 

annotation tool for gene enrichment. Downstream pathway analysis was also 

performed using the Ingenuity Pathway Analysis (IPA) software; commericially 

licensed by Qiagen.   

 

Metabolomics  

Full lipoprotein and mass spectrometry profiling were performed on all patients and 

all control samples at both the National Phenome Centre and Metabolon.   

Statistical Analyses 

For lipoprotein analyses, contrasts between patients and controls were performed 

using ANOVA (F test). If the ANOVA showed a statistically significant difference (p 

< 0.05), a post hoc analysis was performed using Holm-Bonferroni to correct for 

multiple comparisons. The desired level of significance was set at p < 0.05 after 

correction. 

 

Very Low Density Lipoprotein (VLDL) sub-fractions that had statistically 

significantly different concentrations between patients and controls with a fold change 

> 1.30-fold were taken forward for further analyses. Pearson’s correlation coefficients 

between each pair of VLDL sub-fractions were calculated and used to create the 

matrix of pairwise correlations (Fig 9a,9b).   

 

Correlations between EDSS and plasma lipoproteins and MS patient characteristics 

were analysed using multivariate linear regression models. I included well recognised 
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risk factors of age, gender, disease duration and body mass index (BMI)(208). EDSS 

was defined as the dependent variable, with the patient characteristics and lipid sub-

fraction measures as predictive variables:  

 

 

 

where coefficients α1,…,α5 determine the contributions of each of the predictor 

variables to EDSS and α6 expresses the residual error. I used analysis of residuals to 

check the required assumptions of normally distributed errors with constant variance.   

 

Due to the high collinearity between the VLDL sub-fractions, which would have led 

to variance inflation in a model with all of the lipid sub-fraction measures(209), each 

lipid sub-fraction was analysed separately using the regression model.  These 

multivariate regression models then were evaluated from their R2 values, residual 

standard errors and the overall p-values. The level of significance was set at p < 0.05, 

corrected for multiple comparisons using the Holm-Bonferroni method.  The relative 

significance of contributions of individual predictive variables was assessed by 

averaging sequential sums of squares obtained from all possible orderings of the 

predictors using the LMG method(210). Statistics analysed using ‘relaimpo’ package 

in R(211). 

 

I used the Akaike Information Criterion (AIC) to determine the most parsimonious 

model with the predictor variables available(212).  AIC allows us to perform model 

selection to derive a preferred model based on a trade off between goodness of fit and 

model complexity. These statistics were analysed using ‘mass’ package in R(213). In 

EDSS = ↵1VLDL (sub-fraction) + ↵2Age + ↵3Gender + ↵4Disease Duration + ↵5BMI + ↵6
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order to test if the resulting model was unstable, I performed a leave-one-out cross 

validation.      

 

To explore associations between cytokines and each of the individual VLDL sub-

fractions increased in patients with MS relative to healthy volunteers, I created 

regression models using each of the VLDL sub-types included in the parsimonious 

model derived from AIC and input these into a generalised linear model via penalised 

maximum likelihood. To improve the interpretability and accuracy given the large 

number cytokine variables, I used a lasso regression based cross–validation(214). 

Analyses were performed using the glmnet package in R(215). 

 

For metabolomic data provided by Metabolon, two way ANOVA was initially 

performed to determine whether any metabolites were significantly different between 

patients and controls. These values were corrected by false discovery rate and a 

threshold q-value of <0.05 was set for level of significant. sPLS-DA was then used to 

identify whether patient samples could be distinguished from controls. The sPLS-DA 

analysis was run for 4 components using 10-fold repeated cross-validation and 50 

variables selected for each component. The output of this analysis is an R2 value, 

which expresses the variance in the dataset that can be explained by each 

component(178).  Statistics were analysed using the ‘mixomics’ package in R(216). 

  

In order to derive the most discriminatory variables between patients and controls, I 

used the Random Forest classification(180). I used an 80:20 ratio (train-test subsets) 

and 1000 trees to build the model. A variable importance measure was computed 
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based on the mean decrease accuracy metric. In this analysis, the number of 

discriminatory variables was limited to 30. 

 

Cytokines 

Cytokine and inflammatory markers were measured using the MSD V-PLEX kit at 

baseline (pre-treatment) in both the patient and control groups.  

 

Statistical Analysis 

Comparisons between patients and controls was performed using Student’s t-test 

corrected for multiple comparisons with a significance threshold of p-value < 0.05.   

 

Integrated Analyses 

Transcriptome and metabolome data were integrated using two approaches. Firstly, 

pairwise correlation analyses were performed using Pearson’s correlation coefficient 

between differentially expressed genes at baseline and differentially expressed 

metabolites. Cut-off for significant correlation was   -0.7 > r  > 0.7. I also conducted a 

pathway-based integration using Ingenuity Pathway Analysis (Qiagen, Helden, 

Germany).    
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Results 

Transcriptomic analyses 

MS patients show variable gene expression compared to healthy controls 

A differential expression analysis between untreated RRMS patients and healthy 

controls was initially performed. The fold change results of the DE analysis 

underwent variance-stabilising transformation and a principal component analysis 

was performed on this data. There was a reasonable visual separation of samples by 

disease phenotype in the first two principal components (Fig 3). Despite this apparent 

separation, a sample distance heatmap which plots the Euclidean distance between 

samples was also generated which showed very limited separation between patients 

and healthy controls. This is demonstrated by the mixed clustering of subjects with no 

obvious separation between the two groups (Fig 4). 

 

 

 

 

 

 

 

 

 

 

Figure 3: RNA samples from PBMCs of RRMS patients and healthy controls show 

moderate separation. PCA plot of RRMS patients at baseline (no treatment) and healthy 

controls. Red dots represent RRMS samples. Green dots represent control samples.  
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Fig. 4. RNA samples from RRMS patients and health controls show very limited separation using 

unsupervised clustering analysis. Sample distance heatmap between RRMS patients and control 

as calculated from the regularized log transformation. Samples which demonstrate similarity in 

Euclidean space are clustered close to each other.      

 

Controlling for age and gender, I found 522 genes that were differentially expressed 

(DE) between patients and controls (Padj < 0.05) (Fig 5). Of these, 254 were 

downregulated in patients and 268 were upregulated. Fold changes ranged from (-2.6) 
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to (+2.15). Two genes were differentially upregulated with a fold change >2 (padj 

<0.05) and 5 genes were differentially downregulated with a fold change < 0.5 (padj < 

0.05). A table of these genes (Table 2) along with boxplots of specific genes are 

displayed (Fig 6). Killer cell immunoglobulin-like receptor 3DL2 (KIR3DL2) which 

was significantly differentially expressed in my dataset has previously been 

implicated in the pathogenesis of MS due to its interaction with HLA-A3(217, 218). I 

found significant DE of TOB1 (fold change -0.49, padj < 0.005) which has also 

demonstrated a strong association with MS(111, 219-221).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. 522 genes are differentially expressed between PBMCs of RRMS patients 
compared to healthy controls. MA plot of log2fold change of normalised counts 
of RRMS patients (untreated) compared to healthy controls. Each dot represents 
a gene. Black dots are genes with Padj > 0.05. Red dots are genes with Padj < 
0.05. 
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Gene# Log2FoldChange# Adjusted#P9Value#
ID1! P1.29! 1.04EP06!

KIR3DL2! P1.27! 3.57EP06!

NR4A2! P1.16! 1.07EP07!

FOSB! P1.11! 1.79EP05!

GRASP! P1.09! 4.23EP14!

C21orf33! 1.03! 9.75EP05!

RPL10P9! 1.08! 0.0001!

 

Table 2: Some genes are highly differentially expressed in the PBMCs of RRMS patients 

compared to healthy controls. The 7 most differentially expressed genes between MS patients 

and healthy controls (log2fold change > 1 or <  - 1, padj < 0.05). Abbreviations described in 

Abbreviation section.  

 

Fig 6. Some genes are highly differentially expressed in the PBMCs of RRMS patients 

compared to healthy controls. Boxplots of the three most differentially expressed genes 

between MS patients and controls are visualized. Padj < 0.05 for all ID1, KIR3DL2 and 

C21orf33.  
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Pathway Analysis reveals a role for immune-based mechanisms in MS 

I performed an enrichment based analysis using those genes that showed the greatest 

amount of DE between patients and controls (padj < 0.05) using G:Profiler. Kegg 

pathways enriched in the dataset included ‘B Cell activation involved in the immune 

response’ and ‘TNF signaling pathway’ (p < 0.001).  

Pathway analysis demonstrated that canonical pathways Nrf2-mediated oxidative 

stress, Th2 signaling, IL-9 signaling, Toll-like receptor signaling and Th1 and Th2 

activation were enriched in the differentially expressed genes in patients relative to 

healthy controls (Fig 7).  

 

 

 

Fig. 7. Differentially expressed genes in RRMS patients are enriched for immune pathways. 

Pathway analysis of differentially expressed genes between MS patients and controls. All 

pathways above the orange line are statistically significant (p < 0.005).  
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I performed a correlation analysis in patients between transcript levels for all genes 

and EDSS. No gene was strongly positively correlated with EDSS (r > 0.6) and no 

gene was strongly negatively correlated with EDSS (r < 0.6).  

 

Plasma IL-2 is raised in MS Patients 

Given the enrichment of immune mediated pathways such as Th1 and Th2, I 

investigated whether there were corresponding differences in plasma cytokines in 

RRMS patients compared to healthy controls. Patients had higher plasma 

concentrations of IL-2 than healthy volunteers ([0.56 pg/ml vs 0.29 pg/ml], 1.9-fold 

difference, p < 0.05) (Fig. 8). I also tested whether there was a difference in 

concentrations of Th2 cytokines IL-4 and IL-13, but these were non-significant (p > 

0.05).  

 

 

  

 

 

 

 

 

 

 

Fig. 8. RRMS patients have higher concentrations of IL-2 than healthy controls. Bar chart 

demonstrating concentrations of IL-2 in RRMS patients and healthy controls. Concentration 

provided in pg/ml.  

 

*p!<!0.05 
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NMR based lipoprotein analysis 

VLDL sub-fractions are increased in MS patients compared to healthy controls 

A global lipoprotein sub-fraction survey was performed comparing the MS patient 

and healthy volunteer groups. I found 13 lipid sub-fractions with increased 

concentrations in the patient group relative to the healthy volunteers (Table 3). 12 of 

these were VLDL sub-fractions and 1 was a HDL sub-fraction. 8/12 of the VLDL 

sub-fractions had changes >1.30-fold in patients relative to volunteers (range, 1.38-

2.3-fold)(Table 3). I also found elevated concentrations of plasma triglycerides in the 

patient group (p < 0.0001). Strong pairwise correlations were observed between the 

relative concentrations of VLDL lipid sub-fractions in the patient and healthy 

volunteer groups (r > 0.5) (Fig 9). 

Lipid#Sub9Fraction#
#
Concentration#(mg/dL)#
##

Relative#Change#
(patients/controls)#

#
F#Test#
(corrected)#

!! Patient# Control#
!

!!

HDL91# # # ! !

!Free!Cholesterol! 34.39!(±!19.10)# 23.53!(±!8.36)!# 1.46! P!=!0.03!

#
VLDL91#
####!Triglycerides! 31.92!(±!27.24)! 24.58!(±!27.32)!! 1.29! p!=!0.002!

Free!Cholesterol! 2.04!(±!2.13)!! 0.88!(±!0.78)! 2.30! p!=!0.002!

Cholesterol! 5.94!(±!5.87)! 3.87!(±!1.81)! 1.53! p!=!0.0001!

Phospholipids! 5.26!(±!4.53)! 3.63!(±!1.78)! 1.45! p!=!0.004!

VLDL92#
! ! ! !Free!Cholesterol! 1.27!(±!1.32)! 0.72!(±!0.37)! 1.76! p!=!0.00009!

Triglycerides! 13.66!(±!9.99)! 8.92!(±!3.81)! 1.53! p!=!0.003!

Phospholipids! 3.21!(±!2.46)! 2.11!(±!0.94)! 1.52! p!=!0.003!

Cholesterol! 3.02(±!2.96)! 1.98!(±!0.83)! 1.53! p!=!0.00009!

VLDL93#
! ! ! !Triglycerides! 11.40(±!8.78)! 8.23!(±!3.47)! 1.38! p!=!0.004!

Free!Cholesterol! 1.49!(±!1.50)!! 1.19!(±!0.50)! 1.25! p!=!0.0002!

Cholesterol! 3.67!(±!3.60)! 2.87!(±!1.30)! 1.28! p!=!0.0006!

Phospholipids! 3.39!(±!2.80)! 2.62!(±!1.15)! 1.29! p!=!0.002!

 
Table 3: Lipid sub-fractions that were significantly increased in MS patients relative to healthy 
volunteers. Concentrations are quoted in mg/dL ± standard deviation.  
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A)! ! ! ! ! ! ! ! B)!

 

 

 

 

 

 

 

VLDL sub-fraction concentrations are correlated with disability in people with MS 

I wanted to test whether VLDL sub-fractions elevated in my cohort were correlated 

with MS disease disability. Multivariate regression models showed that each of the 

VLDL sub-fractions found to be significantly increased in the patients relative to the 

healthy volunteers was correlated with EDSS (Table 4).  

 

 

 

 

 

 

 

Fig 9 a,b. Matrices illustrating pairwise correlations between VLDL sub-fraction 
concentrations for healthy volunteers (a) and MS patients (b). Abbreviations:  TPTG = 
total plasma triglycerides, V1TG = VLDL-1; triglycerides, V1CH = VLDL-1; cholesterol, 
V1FC = VLDL-1; free cholesterol, V1PL = VLDL-1; phospholipids, V2TG = VLDL-2; 
triglycerides, V2CH = VLDL-2; cholesterol, V2FC = VLDL-2; free cholesterol, V2PL = 
VLDL-2; phospholipids, V3TG = VLDL-3; triglycerides, V3CH = VLDL-3; cholesterol, 
V3FC = VLDL-3; free cholesterol, V3PL = VLDL-3, phospholipids. Bar represents r-value 
for pairwise correlation.   
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Table 4: VLDL sub-fractions are associated with EDSS. Statistical measures of fit for each 
VLDL sub-fraction with corresponding p-values for the regression model and for each VLDL 
predictor coefficient.  
 

I assessed the relative importance of each predictive variable for each model using a 

residual sum of squares approach. For two of the VLDL-2 models (free cholesterol 

and cholesterol), the VLDL sub-fractions accounted for the greatest proportions of 

variance (0.39 and 0.38, respectively) (Fig. 10 a, b). For the remaining models, the 

VLDL sub-fractions accounted for the second greatest proportion of variance after 

age.  

A)       B) 

 

 

 

 

 

 

 

Fig 10 a, b. Relative weighting of variables to multivariate regression models for VLDL-2 (free 
cholesterol and cholesterol). Values expressed as percentage of R2 with 95% confidence intervals. 
Abbreviations: DD = Disease Duration; V2CH = VLDL-2; cholesterol, V2FC = VLDL-2; free 
cholesterol.      

Lipid#Sub9Fraction# Model!R
2
! Model!PPvalue! Lipid!PPvalue!

!!

!

!

!VLDL91#
!

!

!Free!Cholesterol! 0.35! p!=!0.0006! p!=!0.02!

Cholesterol! 0.38! p!=!0.0003! p!=!0.005!

Phospholipids! 0.33! p!=!0.001! p!=!0.04!

VLDL92#
!

!

!Free!Cholesterol! 0.40! p!=!0.0001!! p!=!0.002!

Triglycerides! 0.39! p!=!0.0002! p!=!0.004!

Phospholipids! 0.37! p!=!0.0003! p!=!0.0007!

Cholesterol! 0.39! p!=!0.0002! p!=!0.003!

VLDL93#
!

!

!Triglycerides! 0.40! p!=!0.0001! p!=!0.002!
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I selected an optimal model based on Akaike Information Criterion (AIC) after 

incorporating all VLDL sub-fraction concentrations and clinical characteristics. The 

best quality model excluded BMI, disease duration and five of the lipoprotein sub-

fractions, leaving VLDL-1 (phospholipids) and VLDL-2 (triglycerides and 

phospholipids), age and sex as explanatory variables: 

 

 

 

This multivariate regression model described a moderately strong correlation between 

EDSS and the lipid sub-fraction measures after accounting for age and sex (R2 = 0.48, 

p < 0.0005). All 3 lipid sub-fractions in this model were statistically significant (p = 

0.01, p = 0.003 and p = 0.01, respectively). I tested stability of the model using leave-

one-out cross validation (LOOCV). For each leave-one-out cross validation, the 

model was statistically significant and the lipid sub-fractions were correlated with 

EDSS score (R2 > 0.46) (Supplementary Lipid Table – Appendix 1).         

 

Integrated analysis reveals that cytokines are associated with relative increases in 

VLDL sub-fractions in MS patients  

Generalised linear regression models were created using the VLDL sub-fractions in 

the optimal model derived from AIC to test for an association between VLDL sub-

fractions and plasma cytokine levels. Consistently strong correlations between VLDL 

sub-fraction increases and both CCL-17 and IL-7 concentrations were found (R2 = 

0.78, p < 0.0001).  

 

 

EDSS =�1VLDL-1 (phospholipids) + �2VLDL-2 (triglycerides) + �3VLDL-2 (phospholipids)

+ �4Gender + �5Age + �6
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Mass Spectrometry based Metabolomics 

Increased triacylglycerols in MS patients  

Of over 1600 metabolites analysed in the mass spectrometry analysis, 14 were 

significantly different in patients compared to controls using two-way ANOVA (q-

value < 0.05). 7 were overexpressed in MS patients and 7 were underexpressed in MS 

patients (Table 5). The over-expressed metabolites were mainly triacylglycerols (6 of 

seven over-expressed, q > 0.05).  

 

Metabolite# Q9Value# Fold#Change#
TAG54:7PFA20:4! 0.0094! 1.76!

TAG58:8PFA20:4! 0.0080! 1.79!

TAG58:9PFA20:4! 0.0060! 1.85!

TAG56:9PFA20:4! 0.0076! 1.88!

TAG58:8PFA20:3! 0.0069! 1.88!

TAG58:10PFA20:4! 0.0014! 2.06!

dihomoPlinolenoylPcholine! 0.0017! 2.35!

4Pacetylphenol!sulfate! 0.0017! 0.39!

isoeugenol!sulfate! 0.0008! 0.22!

5alphaPpregnanP3beta,20alphaPdiol!monosulfate! 0.0006! 0.20!

pregnanolone/allopregnanolone!sulfate! 0.0007! 0.23!

4Pethylphenylsulfate! 0.0003! 0.23!

5alphaPpregnanP3beta,20betaPdiol!monosulfate! 0.0003! 0.25!

pregnanediolP3Pglucuronide! 0.0002! 0.25!

 

Table 5: 14 statistically significant metabolites different between MS patients and healthy 

controls. Q-value is corrected result from two-way ANOVA. Fold changes provided.  

 

RRMS patients can be distinguished from healthy controls with high predictive 

accuracy based on metabolomics 

Next, I wanted to determine whether patient and control groups could be separated 

based on condition state using sPLS-DA. The model was developed using 100-fold 

cross-validation. The estimated error rates stabilised after four dimensions for any 



! 80!

number of selected variables. The optimal number of variables to select for the model 

were determined as 50, 30, 4 and 90 using the model developed by 100-fold cross-

validation.  Visual inspection showed that the model could distinguish DMF treatment 

state accurately (Fig 11). The metabolites most associated with the first principal 

component are seen in Fig. 12. These included pregnanolone (in agreement with the 

two-way ANOVA), vanillylmandelate (VMA) and citrulline. I next tested the 

predictive ability of sPLSDA model using a train and test protocol (80:20 

respectively). I re-built the model using 100-fold cross-validation and 4 components. 

The model had an 80% positive predictive accuracy.  
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Fig 11. RRMS patients can be visually distinguished from healthy controls using 
supervised sPLS-DA analysis. Sample representation using the first 2 latent variables 
from sPLS-DA (50 metabolites selected). RRMS samples (blue triangles) and control 
samples (red circles) are displayed. X-variate 1 is the first latent variable (horizontal 
axis). X-variate 2 is the second latent variable (vertical axis).     
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Finally, I ran a Random Forest calculation on the dataset to both look for individual 

discriminatory variables and also to look for predictive accuracy of the model. 

Consistent with my findings from sPLS-DA, the most discriminatory variable was  

VMA (Fig. 13). I also found that kynurenate was a discriminatory variable. The 

predictive accuracy of the random forest model was 76% 

Fig 12. The most important 5 variables for the first principal component ranked 
from the bottom of the graph. Negative signs indicate the correlation structure 
between variables and underlying group. The negative correlation between these 
metabolites and healthy controls (represented by the blue bars) represents a 
reciprocal positive correlation between these metabolites and RRMS patients.  
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Fig. 13. VMA is the most highly discriminant metabolite comparing RRMS patients to healthy 

controls. Random Forest analysis demonstrating the most important variables in a comparison 

between RRMS patients and controls. Importance of variables expressed as mean-decrease-

accuracy.  

 

Two recent papers have described metabolomics signatures associated with MS. The 

first, by Lim and colleagues(193) described an aberrant kynuerine pathway in MS. 

Using the same statistical analyses, I found that levels of kynurenic acid (KA) in 

controls was almost two-fold higher in controls than in patients (fold-change 1.78, p < 

0.00005); the reverse of Lim and colleagues findings. Furthermore, I found that the 

Kynuerine/Tryptophan ratio and Quinolinic acid /KA ratio between patients and 

controls was not significant (p > 0.05 for both comparisons). I validated reduced 

tryptophan levels in MS patients compared with controls although the fold-change 

was modest (fold-change 0.83l, p < 0.0005). A further recent paper of interest by 
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Villoslada and colleagues identified a number of discriminatory metabolites in RRMS 

patients compared with controls also using PLS-DA methods(222). These included 

sphingomyelin and lysophosphatidylethanolamine. In my cohort, neither 

sphingomyelin nor lysophosphatidylethanolamine were significantly different in 

patients compared to controls (q > 0.05). I also performed a correlation analysis with 

EDSS for all discriminatory variables found by Villoslada and colleagues which I was 

also able to detect in my cohort (namely glutamic acid, tryptophan and 

eiosapentaenoic acid).  Consistent with this groups findings, I found a strong negative 

correlation between eicosapentaenoic acid and EDSS (r = -0.59, p < 0.05). However, 

other discriminatory variables were non-significant.   

 

Integrated analyses implicate multiple inflammatory pathways in the 

pathogenesis of MS 

I performed a pairwise correlation of all differentially expressed genes in the RRMS 

cohort with differentially expressed metabolites. For pregnanolone, I found 5 

differentially expressed genes that were highly correlated with pregnanolone (r > 0.7) 

(Table 6). For other differentially expressed metabolites, only ZNF727 was highly 

correlated with 4-ethylphenylsulfate.  

Gene# Correlation#
SBDSP1! 0.75!

MRPL55! 0.71!

JUN! 0.70!

DCHS1! 0.70!

TUBB2A! 0.70!

 

Table 6: Correlation between metabolite pregnanolone and differentially expressed genes in 

RRMS patients (untreated) compared to healthy controls. 
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An integrated pathway analysis approach undertaken on differentially expressed 

genes in MS patients compared to controls and metabolites identified a number of 

inflammatory pathways significantly altered in the MS population. These included 

TNF and Serine/threonine kinase 11 (STK11) signalling, CD4+ proliferation and 

inflammation of the central nervous system (Fig 14). 
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Fig 14a and 14b. TNF associated transcripts (a) and metabolites (b) differentially expressed in 

RRMS patients compared to controls.  
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Fig 14c and 14d.  STK-11 associated transcripts (c) and metabolites (d) differentially expressed in 
RRMS patients compared to controls. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 14e and 14f. Proliferation of CD4+ lymphocyte associated transcripts (e) and metabolites (f) 
differentially expressed in RRMS patients compared to controls. 
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Results Summary 
 

 
 

•! 522! genes! and! 1! small! RNA!were! differentially! expressed! between!

RRMS! patients! and! healthy! controls.! PCA! analysis! showed! very!

limited! separation!between! the! two!groups!based!on!disease! state,!

but!very!clear!separation!based!on!gender.!!

 

•! An! enrichment! analysis! demonstrated! that! the! differentially!

expressed!genes!between!RRMS!patients!and!controls!were!involved!

in!B5Cell!activation!and!TNF5signalling.!!

 

•! A! cytokine! analysis! demonstrated! that! patients! had! higher!

concentrations!of!IL52!than!healthy!controls.!!!

 

•! VLDL! lipoprotein! sub5fractions! were! elevated! in! RRMS! patients!

compared! to! controls.!These!demonstrated! strong! correlation!with!

disability! as! measured! by! EDSS! score.! A! multivariate! regression!

model!combining!VLDL!sub5fractions!with!gender!and!age!described!

moderately!strong!correlation!with!EDSS.!!

 

•! Data! reduction! techniques! applied! to! mass! spectrometry!

metabolomics! demonstrated! good! separation! between! RRMS!

patients! and! controls.! The!most! discriminant! variables!were! VMA,!

pregnanolone!and!citrulline.!!
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•! An! integrated! pathway! analysis! approach! using! the! metabolomics!

and!transcriptomic!datasets! identified!alterations! in!TNF!signalling!

and!CD4+!proliferation!in!the!MS!cohort.!
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Discussion 

Gene expression profiling is a developing field that has been utilised in MS to try and 

understand the functional consequences of genetic variants that predispose to the 

condition(113). A number of studies have looked at gene expression in MS patients 

and compared this to controls, however these studies have exclusively been conducted 

using microarrays rather than NGS. This current study identified a large number of 

differentially expressed genes between RRMS patients and healthy controls that were 

associated with inflammatory disease. Previous studies have also identified similar 

differences between these groups(223) as well as specifically in PBMCs(224), 

however other results have been more modest, in part due to the use of microarray 

technology which identifies a much smaller number of RNA species(108).  I was able 

to confirm that within the differentially expressed genes, there was enrichment for 

inflammatory pathways and signalling and this result was corroborated in part by the 

finding of raised IL-2 in RRMS patients compared to controls.  

 

Given that dyslipidaemia has previously been associated with MS disease activity I 

also investigated using metabolomics approaches whether lipoprotein sub-fractions 

are associated with disease and disability level in people with RRMS. Using a novel 

NMR analytical methodology that provides information on lipid concentrations within 

lipoprotein sub-classes, I showed that some lipoprotein sub-fractions are elevated 

selectively in the plasma of the MS patients. Because of the disproportionately high 

number of elevated VLDL sub-fractions, I tested for a relationship between these and 

measures of clinical disability (EDSS). For two of my models, selected VLDL 

concentrations individually were the strongest explanatory variables for EDSS.  A 

model combining selected VLDL sub-fraction concentrations (VLDL-1 



! 90!

(phospholipids) and VLDL-2 (triglycerides and phospholipids)) with age and sex was 

highly associated with disability.  

 

By evaluating correlations of VLDL sub-fractions using different multivariate models 

and then applying penalised regression methods, I derived a subset of VLDL sub-

fractions that was most explanatory of disease disability in this cohort. My models 

showed that EDSS score could be partially explained by a combination of VLDL sub-

fractions, age and sex. The latter two variables previously were associated 

independently with a poorer prognosis in MS(225). In this study, VLDL-2 (free 

cholesterol and cholesterol) sub-fractions independently explained as much of the 

variance in disability as age.   

 

Prior studies also have reported that plasma lipids are raised in MS and that these 

correlate with disease disability(194). In this study, I identified novel associations 

between VLDL sub-fractions, which transport cholesterol and triglycerides in the 

blood, and MS disability.  More than one potential mechanistic relationship has been 

hypothesised.  Lipoproteins may be involved in demyelination(226) and may 

exacerbate the blood-brain barrier disruption associated with inflammation(227). 

Increases in VLDL levels(228) also have been reported during other inflammatory 

disorders . In non-alcoholic steatohepatitis, VLDL has been specifically associated 

with hepatic inflammation(229).  

 

However, mechanisms contributing to VLDL increases in MS are unknown.  They are 

associated with monocyte activation in the periphery(230) and a shift to a pro-

inflammatory cytokine secretion profile(231). VLDLs play a role in transport of lipids 
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and proteins in the blood(232). I postulate a possible mechanistic role for VLDL in 

disease progression in MS: VLDL may transport cytokines from the periphery to the 

CNS. A recent study in rheumatoid arthritis demonstrated that variants of the same 

lipoproteins may carry more pro-inflammatory cytokine cargo resulting in greater 

inflammation(233). In the context of this study, I observed an association between 

VLDL and both CCL-17 and IL-7. CCL-17 has been shown to play a role in T cell 

maturation. A common polymorphism in the IL-7 receptor gene is a known genetic 

risk factor for MS(98).  

 

Using mass spectrometry based metabolomics I was able to further investigate the use 

of this approach in discriminating MS patients from healthy controls. This type of 

analysis is in relative infancy, however, a number of studies have already been 

performed in this field and have demonstrated a reasonable degree of accuracy in 

discriminating MS patients from controls(139, 141). Consistent with my NMR 

lipoprotein findings, I also found raised levels of triacylglycerols in RRMS patients. 

Furthermore, using Random Forest, ANOVA and sPLSDA I identified that VMA, 

pregnanolone and citrulline were highly discriminant for my RRMS cohort compared 

to healthy controls. Dysregulation of pregnanolone in MS patients has already been 

identified; it may be involved in neuroinflammatory mechanisms or 

neurodegeneration(234). Furthermore, using an integrated correlation-based analysis, 

I identified high correlation between pregnanolone and c-JUN gene expression. C-

JUN is known to be activated by steroid hormones such as preganolone(235) and has 

previously been implicated in the pathogenesis of MS(236). 
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Using integrated pathway analysis, I was able to show interacting pathways amongst 

those over-represented in both the metabolomics and transcriptomic analyses. These 

included pathways and cells well known to be implicated in MS such as TNF 

signalling and CD4+ T lymphocytes but also lesser known variants such as STK11, a 

variant of which has recently been identified as a risk factor for MS(237).  

 

 A sPLSDA model using train and test subsets was moderately effective at 

discriminating MS patients from healthy controls. A recent study identified abnormal 

kynurenine pathway activity in MS. I demonstrated opposing effects to those found in 

this study; namely lower levels of KA in RRMS patients. Notably, this study also 

found lower levels in secondary progressive and primary-progressive patients 

suggesting this discrepancy may have resulted from different levels of disability in the 

RRMS cohorts respectively(193).   

 

The main limitation of my study was the small sample size and the lack of a 

validation cohort. These factors limit any conclusions that can be made on the 

generalisability of my findings to the broader RRMS population or whether they may 

only describe a subset. Nevertheless, the broad range of EDSS scores, ages and 

disease durations in the cohort may increase the likelihood these findings are 

reproducible. My findings, particularly with respect to the NMR lipoprotein analysis, 

were highly significant. Additional validation studies are needed.   

 

In conclusion, I have provided evidence that increased concentrations of VLDL sub-

fractions in plasma correlate with disability in RRMS patients. I also further highlight 

gene expression and metabolite changes in RRMS patients compared with controls 
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that are associated with inflammatory pathways. My mass spectrometry metabolomics 

data confirmed differences in plasma concentrations of a number of previously known 

metabolites associated with MS and identified differences in concentrations of 

additional metabolites such as VMA, pregnanolone and citrulline. My findings 

highlight relationships between systemic metabolism and MS that provide insights 

into possible mechanisms responsible for some of the common co-morbidities of MS. 

However, these findings need to be replicated in larger populations to test for 

generalisability. They should be explored prospectively in a cohort to explore how 

metabolomic and transcriptomic changes evolve during disease course and 

progressive disability.    
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Chapter 4. Pharmacodynamics of DMF using multi-omic profiling 

 

Introduction 

The mechanism of action of a medication should be thought of as a complex pathway 

that begins from ingestion and ends in metabolism and excretion of the drug or its 

metabolites. The processes involved in between can be measured using a number of 

omics approaches in order to help understand a treatment’s efficacy. 

 

DMF is a relatively newly licensed treatment for RRMS. Its precise mechanism of 

action is unknown. The study of DMF’s therapeutic effect lends itself well to a 

hierarchical signalling approach. After oral administration, DMF is rapidly 

hydrolysed by esterases to its principle metabolite monomethyl fumarate (MMF)(42). 

MMF is highly bioavailable, has a half-life of 12 hours and reaches a mean plasma 

peak concentration of approximately 20 µM. MMF is ultimately hydrolysed inside 

cells to fumaric acid, which enters the tricarboxylic acid cycle (TCA)(43, 44). The 

primary therapeutic mechanism of action still is debated, but is believed to involve 

activation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 

(Nrf2)(37, 38), inhibition of nuclear factor κB (NFκB)(39)  and/or agonism of the 

hydroxylic acid receptor 2(40).      

        

Downstream effects of DMF have been explored using gene expression studies. 

Vandermeeren and colleagues used northern blotting techniques to show that DMF 

reduces levels of ICAM-1, VCAM-1 and E-selectin mRNA arguing this supported 

evidence of inhibition of NF-"B by DMF(51). Further gene expression studies using 

northern blotting have supported this assertion(52, 238) and also the downregulation 
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of endothelial adhesion molecule mRNA by DMF(239). This was followed up by 

another study demonstrating reduced levels of TGF-alpha and Th1 cytokines with an 

increase in the Th2 cytokine IL-10(240).  Consistent with an anti-oxidant role for 

DMF, Lee and colleagues found raised levels of Nrf2 expression in the CNS of DMF 

treated mice(241). Gene expression studies have also provided evidence for an 

antioxidant role of DMF. Zhao and colleagues described inhibition of hypoxia-

inducible factor-1α by DMF which, in turn, resulted in activation of RACK1 and the 

Nrf2 anti-oxidant pathway. Most recently, Brennan and colleagues also identified 

activation of Nrf2 through upregulation of OSGIN1 resulting in cell-cylce inhibition 

and cell protection against oxidative challenge(242, 243).   

 

Metabolomics provides an additional approach for drug target discovery and 

understanding pharmacodynamics(244). Study of patients with MS also may suggest 

novel cerebrospinal fluid (CSF), serum and urine biomarkers of disease, disease 

activity or disability (245).  Because DMF triggers anti-oxidant pathways and is 

metabolized to the intermediate metabolite fumaric acid, its mechanism of action 

lends itself well to characterisation using metabolomics(41). 

Here, I took an unbiased biologically-based sequential omics approach 

(transcriptomics, cyotokine and metabolomics) to investigate the short-term 

pharmacodynamics effects of DMF in patients with RRMS. I performed the multi-

omics analyses in sequential biological order starting with gene expression, moving 

on to proteomics (cytokines) and lipidomics and finally to the end products of 

metabolism (metabolomics). Each modality was analysed using statistically 

appropriate tools that have previously been validated for this type of ‘omics.  

 



! 96!

Methods 

Transcriptomics 

Patients attended at baseline and 6 weeks following onset of treatment where RNA 

was extracted from PBMCs as described in the protocol outlined in Methods chapter.  

 

Differential expression analysis was performed on count data derived from StringTie 

and HT-Seq software using DESEq2(205).  Deseq2 performs differential expression 

analysis by first performing a regularised logarithm transformation followed by 

detection and correction of dispersion estimates that are too low through modelling 

using average expression strength over all samples. An assumption made by this 

software is that genes of similar average expression have similar dispersion. Where 

counts are low or dispersion is high for a specific gene, DESEq2 shrinks the log fold 

change (LFC) towards zero. The software provides a log fold change value across 

conditions as well as an adjusted p-value corrected for multiple comparisons using 

Benjamini and Hochberg(206).     

 

Contrasts between patients pre- and post- treatment were performed using a pairwise 

approach controlling for intra-individual differences. Adjusted p-value for 

significance (Padj) was set at (Padj < 0.05). Following DE analysis, principal 

component analysis was performed. Description of this technique is outlined in 

Methods section above. Differentially expressed genes with adjusted p-value < 0.05 

were identified and submitted to G:profiler functional annotation tool for gene 

enrichment. Downstream pathway analysis was also performed using the Ingenuity 

Pathway Analysis (IPA) software (Qiagen, Helden, Germany).   
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I identified modules of highly correlated genes using a weighted correlation network 

analysis (WGCNA). This analysis involved the formation of an adjacency matrix 

representing the correlation changes that occurred pre- and post- treatment. The 

method groups genes together when their correlations to the same sets of genes 

change between different conditions(246). The output is a list of differentially co-

expressed modules with their associated genes and an estimate of the statistical 

significance of the difference in co-expression derived from a comparison of the 

dispersion index values of each module with the null distribution obtained from 

permuted data(115) .  

 

To validate my RNA-Seq findings, I repeated sequencing pre- and post- treatment for 

a subset of patients (n=9) in a different facility (Imperial College BRC Genomics 

Facility). TruSeq stranded mRNA libraries were multiplexed and sequenced with an 

average of 35 million cDNA fragments per sample (100 bp paired-end reads) 

(Illumina, San Diego, USA). Quality control was performed using FastQC software 

(version 0.11.2)(157). Sequencing reads were aligned to GRCh37 reference human 

genome by Tophat tool (version 2.0.10)(247) using the set of known genes provided 

by Ensembl database (release 75) with an average alignment rate of 85%. rRNA 

contamination (< 4%) and transcript integrity (median ratio of coverage at 5' end vs 3' 

end for 1000 most highly expressed transcripts > 0.6) were monitored with Picard tool 

(version 1.85). The raw number of read pairs mapped to each Ensembl gene was 

calculated with HTSeq (version 0.6.0) in 'union' mode. Reads (or read pairs) that 

overlap more than one gene or mapped to multiple locations were discarded. The raw 

counts data set was normalized with DESeq2 statistical tool(205). Sample's pairing 
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was taken into account while analysing patients at baseline and after treatment using 

DESeq2.  

 

Cytokines 

31 patients were recruited from Imperial College Healthcare NHS Trust prior to 

commencing DMF. Full demographic details as well as sample collection and 

processing are available in the Methods section. Cytokine and inflammatory markers 

were measured using the MesoScale Discovery (MDF) V-PLEX kit at baseline (pre-

treatment) and 6-weeks post treatment in the patient cohort. The same was done for 

10 age- and sex- matched healthy controls and two timepoints separated by 6 weeks.   

 

Statistical Analysis 

 Paired comparisons between patients pre- and post- treatment and controls at 

equivalent timepoints was performed using nonparametric Wilcoxon 2-sample test.   

 

Metabolomics 

Patients were separated into an initial discovery cohort and a validation cohort to test 

for generalisability of results across groups. The discovery cohort included 15 patients 

with RRMS and the validation cohort included 12 patients with RRMS (median 

EDSS 3.0, range 1 – 7). Samples were analysed using mass spectrometry. Discovery 

and validation cohort samples were sent to independent laboratories (Metabolon and 

Phenome Centre respectively). The reason for this was that Metabolon provide a 

library of known metabolites which was unavailable at the Phenome Centre. As such I 

could test metabolites of interest derived from the discovery cohort using a targeted 

approach at the Phenome Centre. Furthermore, being able to validate findings in a 
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different laboratory would increase the chances of future successful replication by 

other groups. It is well known that inter-laboratory sampling can reduce the chances 

of successful replication of findings(248).  Samples from the discovery cohort were 

also profiled at the Phenome Centre as technical replicates. Mass Spectrometry assay 

outlined in the Methods section.   

  

Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) was used to initially 

identify whether patient samples pre- and post- treatment could be distinguished on 

the basis of metabolites as a treatment effect. sPLS-DA is a PLS regression method in 

which variables are selected from the dataset in a supervised framework, i.e. with 

respect to the different categories of samples, which in my case was conditions pre- 

and post-treatment. The sPLS-DA analysis was run for 4 components using 10-fold 

repeated cross-validation and 50 variables selected for each component. The output of 

this analysis is an R2 value, which expresses the variance in the dataset that can be 

explained by each component(178).  Statistics were analysed using the ‘mixomics’ 

package in R(216). 

 

I identified modules of highly correlated metabolites using a weighted correlation 

network analysis (WGCNA). This analysis involved the formation of an adjacency 

matrix representing the correlation changes that occurred pre- and post- treatment. 

The method groups metabolites together when their correlations to the same sets of 

metabolites change between different conditions(246). The output is a list of 

differentially co-expressed modules with their associated metabolites and an estimate 

of the statistical significance of the difference in co-expression derived from a 
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comparison of the dispersion index values of each module with the null distribution 

obtained from permuted data(115)         

 

The significance of changes in specific metabolites pre- and post- treatment were 

estimated relative to equivalent comparisons in the healthy control population using 

one-way ANOVA. All changes were corrected for multiple comparisons using the 

false discovery rate. Statistical significance was set at a q-value < 0.05. Correlation 

between discriminant variables of interest and concentrations of MMF was performed 

using Pearson’s correlation coefficient. Quantification of MMF is outlined in Methods 

section.     

 

In order to derive the most discriminatory variables from the dataset pre- and post- 

treatment, I used the Random Forest classification(180). I used an 80:20 ratio (train-

test subsets) and 1000 trees to build the model. A variable importance measure was 

computed based on the mean decrease accuracy metric. The Mean Decrease Accuracy 

(MDA) is the number of observations that are incorrectly classified by removing the 

metabolite in question from the model. In this analysis, the number of discriminatory 

variables was limited to 30. Change in lipoprotein sub-fraction levels pre- and post- 

treatment determined using paired Student’s T-test (corrected for multiple 

comparisons using Benjamini-Hochberg correction).  

 

Integrated Analyses 

Transcriptome and metabolome data were integrated using a pathway-based 

integration method from Ingenuity Pathway Analysis (Qiagen, Helden, Germany).    
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Results 

Transcriptomics 

DMF is associated with gene expression changes in PBMCs 

I initially performed a differential expression analysis comparing patient samples 

before and 6 weeks post-treatment. PCA analysis of the variance-stabilised data 

demonstrated very little separation between samples by treatment state (Fig 15). 542 

genes were differentially expressed 6-weeks post treatment with DMF (Padj < 0.05). 

329 were upregulated and 213 were downregulated. The 10 most significantly altered 

genes are listed in Table 7.  

 

 

 

 

 

 

 

 

 

Fig 15. RNA samples from RRMS patients pre- and post- treatment cannot accurately 

discriminate treatment state. PCA plot of RRMS patients at baseline (no treatment) and 6 weeks 

post-treatment with DMF. Red dots represent RRMS samples pre-treatment. Lilac dots 

represent RRMS samples post-treatment. Principal component 1 on horizontal axis, principal 

component 2 on vertical axis.  
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Gene# Log2Fold#Change# Padj#
MITF! P0.39! 1.36EP06!

TRNQ! P0.34! 3.88EP06!

LOC107987261! P0.32! 0.0017!

PDGFC! P0.32! 0.0016!

TRNW! P0.31! 1.54EP05!

CD36! P0.30! 0.0008!

N4BP3! 0.28! 0.0038!

SSPN! 0.28! 0.0120!

SIGLEC6! 0.28! 0.0045!

ZNF547! 0.29! 0.0111!

 

 

 

 

 

I performed an enrichment based analysis using those genes that showed the 

significant differential expression pre- and post- treatment in the full sample set (padj 

< 0.05) using G:Profiler. Kegg pathways enriched in the dataset included ‘positive 

response to oxidative stress’ and ‘cellular oxidant detoxification (p < 0.001). In this 

latter pathway, genes involved in this pathway and also differentially expressed post 

treatment included CD36, GPX1, MGST1, NQO1, PTGS1, GSR and PRDX1. 

Pathway analysis revealed that the most highly enriched canonical pathways were 

Nrf2-mediated oxidative stress response (p < 0.005) and glutathione redox reactions 

(p < 0.005). A table and figure of the Nrf2 genes that were DE post-treatment are 

highlighted in Table 8 and Figure 16. 

 

 

Table 7: 10 most differentially expressed genes 6 weeks post treatment with DMF (padj < 

0.05). Fold changes expressed as Log2Fold Change. P-values expressed as adjusted p-

values (corrected by Benjamini and Hochberg.  Abbreviations described in abbreviation 

section.  
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Gene# Log2Fold#Change#
BACH1! P0.17!

FOSL1! P0.252!

FTH1! P0.166!

FTL! P0.186!

GCLC! P0.17!

GSR! P0.14!

GSTP1! P0.155!

MAFG! P0.175!

MGST1! P0.242!

NQO1! P0.236!

PRDX1! P0.142!

TLR9! 0.222!

Table 8: Nrf2 related differentially expressed genes 6-weeks post treatment with DMF (Padj < 

0.05). Fold changes expressed as log2fold-change. 

 

Fig 16. Nrf2 pathway with associated differentially expressed genes 6-weeks post treatment with 

DMF. Green genes are those which were differentially expressed. A purple border denotes 

association with multiple sclerosis.   
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Modules of differentially expressed genes after treatment with DMF 

I identified 4 differentially co-expressed modules comprising a total of 2,444 genes 

(which I arbitrarily described as yellow, salmon, tan and brown) (p-value < 0001 for 

each of four modules). 2 of these modules were more highly correlated after treatment 

(salmon pink and brown, which included 288 and 854 genes, respectively) and 2 were 

less strongly correlated after treatment (yellow and tan, which included 358 and 944 

genes, respectively) (Fig 17). Enrichment analysis demonstrated that the yellow and 

brown modules were enriched for KEGG pathways ‘regulation of metabolic process’ 

(p = 0.005 and p = 0.001 respectively), the salmon module was enriched for KEGG 

pathway ‘positive regulation of innate immune response’ (p = 0.001) and ‘immune 

system process’ (p = 0.001) and the tan module was enriched for KEGG pathway 

MHC class 1 antigen processing and presentation’ (p = 0.0005). The hub genes for the 

brown, salmon, tan and yellow modules were PNISR, NCSTN, KIAA1429 and 

ZNF294 respectively.   
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Fig. 17. Comparative correlation heatmap demonstrating differentially coexpressed modules pre- 
and post- treatment with DMF. The lower diagonal shows pairwise correlation of metabolites 
pre-treatment. The upper diagonal shows pairwise correlation of metabolites post-treatment. 
Module assignments are identified by black squares and by the colour bar (salmon, tan, yellow 
and brown). Correlation heatmap bar represented (range -1.00 (blue) to +1.00 (red)).  
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Validation of findings through re-sequencing in a subset of patients  

I performed a separate differential expression analysis in a subset of 9 patients from 

the overall study whose samples had been sequenced in duplicate at two separate 

facilities (Imperial BRC Genomics Facility and Genewiz, NJ, USA)) using the same 

Illumina sequencing machine model (Illumina Hi-Seq Platform, 2 x 150bp PE 

configuration) but different alignment software (Tophat2(247) vs DRAGEN(159) 

respectively). For these 9 patients, data derived from Genewiz yielded 595 

differentially expressed genes post-treatment (p < 0.05). In the same subset of 

patients, sequenced at a different facility (BRC) but undergoing the same differential 

expression analysis using DESEQ2 software, 498 genes were differentially expressed 

post treatment (p < 0.05). Of these 498 genes found from BRC data, 217 (44%) were 

differentially expressed in the Genewiz dataset. To distinguish differences related to 

sequencing runs from those related to the use of different alignment software, I 

repeated the alignment using TopHat2 with the raw sequence data from both the BRC 

and Genewiz. I then performed identical count derivation using HTSeq. In this 

analysis, there was 498 and 523 DE genes respectively representing 54% overlap of 

statistically significant DE genes. Of the 10 most differentially expressed genes, 8 

overlapped. I investigated whether those genes that did not overlap had lower average 

counts than those which were differentially expressed consistently across both 

sequencing facilities. For those overlapping, mean counts were 804 +/- 619 genes, 

whilst for non-overlapping genes mean counts were 278 +/- 208. The distribution of 

mean counts between overlapping and non-overlapping genes were significantly 

different (p = 0.01).     
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Effect of DMF on small-RNA species 

I also performed a differential expression analysis on small RNA count data using 

software package DESEQ2(205). Controlling for intra-individual variability, 17 small 

RNAs were differentially expressed post-treatment. A similar comparison in the 

control group at the same timepoints yielded no differentially expressed small RNA. 

Expression of 8 of the small RNAs was down-regulated by the treatment (log2fold 

change -0.21 to – 0.4) and 9 were upregulated by treatment (0.18 to 0.31) (Table 9). 

 

Gene# Log2Fold#Change# Padj#
mirP31! 0.31! 0.002!

mirP769! 0.28! 0.001!

mirP192! 0.26! 0.014!

mirP342! 0.24! 0.001!

mirP146b! 0.22! 0.05!

letP7i! 0.18! 0.02!

mirP140! 0.18! 0.001!

mirP361! 0.18! 0.006!

mirP339! 0.16! 0.01!

mirP130a! P0.22! 0.05!

mirP628! P0.24! 0.03!

mirP654! P0.26! 0.006!

mirP493! P0.26! 0.016!

mirP6810! P0.29! 0.025!

mirP1908! P0.30! 0.01!

mirP3908! P0.30! 0.01!

mirP410! P0.41! 0.0003!

 

Table 9: Differentially expressed small RNAs 6-weeks post treatment with DMF in RRMS 

patients (padj < 0.05 – corrected using Benjamini Hochberg). Changes in expression expressed as 

log2fold change.  

 

A shift towards a Th2 cytokine profile after 6-weeks of DMF treatment 

Given the difference in cytokines observed when comparing untreated RRMS patients 

to healthy controls, I also analysed differences in cytokines as a response to DMF. 
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Increases in plasma IL-4 (36%) [0.05 pg/ml (pre), 0.07 pg/ml (post)] and IL-13 (21%) 

[1.5 pg/ml (pre), 1.8 pg/ml (post)] cytokine concentrations were found after treatment 

with DMF (p = 0.03 and p = 0.001 respectively) (Fig. 18). Similar findings were not 

found in the control cohort.  

 

The influence of DMF on Th1 and Th17 cytokines was investigated. There was no 

significant change pre- and post- treatment in Th1 or Th17 cytokines (Table 10). 

In my previous chapter, I identified altered levels of IL-2 in MS patients relative to 

healthy controls. I was unable to show a treatment-mediated change in IL-2 6-weeks 

post-treatment with DMF. 

 

 

Table 10. Median concentration of Th17 and Th1 cytokines pre- and post- DMF. Values 

expressed as median (range). P-values as defined.  

 

 

 

 

Th17#Cytokines# Pre9drug#concn#(pg/ml)# Post9drug#concn#(pg/ml)# p9value#

ILP17! 3.75!(1.63!–!6.64)!! 3.92!(0.15!–!7.11)! 0.06!

GMPCSF! 0.23!(0.06!–!0.72)! 0.22!(0.02!–!0.84)! 0.46!

ILP22! 0.24!(0.03!–!3.3)! 0.2!(0.01!–!2.98)! 0.31!

Th1#Cytokines# Pre9drug#concn#(pg/ml)! Post9drug#concn#(pg/ml)! p9value!

IFNPγ! 13.6!(4.3!–!22.6)! 12.3!(9.7!–!19.6)! 0.21!
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Plasma metabolites change after DMF treatment 

A sPLS-DA analysis was performed on the pre- and post- treatment discovery 

datasets. The estimated error rates stabilised after four dimensions for any number of 

selected variables. The R2 values for these 4 components were 0.1, 0.36, 0.42 and 

0.44, respectively (Fig 19). 

 

Fig!18:!Box!plots!pre!(1)!and!post!(2)!treatment!for!cytokines!IL54!(left)!and!IL513!
(right).!Differences!pre5!and!post5!treatment!were!significant!(p!<!0.05).!! 
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Fig. 19. Pre- and post- treatment samples can be accurately distinguished using supervised sPLS-

DA analysis. Sample representation using the first 2 latent variables from sPLS-DA (50 

metabolites selected). Pre-treatment samples (blue triangles) and post-treatment samples (red 

circles) are displayed. First latent variable represented on horizontal axis. Second latent variable 

represented on vertical axis. 
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Modules of differentially expressed metabolites after treatment with DMF 

I identified 5 differentially co-expressed modules comprising a total of 924 

metabolites. 4 of these were statistically significant (p < 0.001 for orange, red, green 

and blue modules). 2 of these modules were significantly more highly correlated after 

treatment (orange and green, which included 114 and 38 metabolites, respectively) 

and 2 were less strongly correlated after treatment (blue and red, which included 48 

and 29 metabolites, respectively) (Fig 20). A high proportion of the orange module 

was comprised of carnitine species (13%) and phosphatidycholines (11%), 

lysophosphatidylcholines (18%) and lysophosphatidylethanolamines (20%) were 

over-represented in the green module. 
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Fig. 20. Comparative correlation heatmap demonstrating differentially coexpressed modules pre- 

and post- treatment with DMF. The lower diagonal shows pairwise correlation of metabolites 

pre-treatment. The upper diagonal shows pairwise correlation of metabolites post-treatment. 

Modules are identified by black squares and by the Module Assignment bar (orange, red, green, 

black and blue). Correlation displayed using correlation heatmap bar (range -1.00 (blue) to +1.00 

(red)).      
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Exploratory Analyses 

Tricarboxylic Acid intermediates are increased by DMF  

As DMF is ultimately metabolised to fumarate, I tested whether TCA cycle 

intermediates were altered with treatment. Both fumarate and succinate were 

significantly increased 6 weeks after the start of treatment. Furthermore, succinyl-

carnitine and methyl succinyl-carnitine, which can be derived from succinyl-CoA, 

also were increased significantly (q < 0.05) (Table 11) (Fig 21 a-d). Comparison of 

baseline and 6-week samples in controls did not show similar changes. Of all 

metabolites assayed, a random forest analysis confirmed that methyl succinyl-

carnitine, fumarate and succinyl-carnitine were the most discriminatory variables in 

my dataset (Table 11) (Fig 22). 

 

Metabolite#
Fold#
Change# p9value# q9value#

Mean#
Decrease#
Accuracy#

Fumarate! 1.58! 0.00004! 0.00500! 8.6!

Succinate! 1.18! 0.00300! 0.04060! 2.7!

SuccinylPCarnitine! 1.74! 0.00120! 0.02670! 6.0!

Methyl!SuccinylPCarnitine! 39.24! 0.000001! 0.000001! 10.2!

 

Table 11: TCA metabolites significantly increased in MS patients post-treatment with DMF. Fold 

change, P-values and Q values (corrected using false discovery rate) provided. Mean Decrease 

Accuracy values from Random Forest also provided. 
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21(a-d). TCA metabolites are significantly increased 6-weeks post treatment with DMF. 
Boxplots of TCA metabolites (a: succinyl-carnitine, b: methyl succinyl-carnitine, c: fumarate, d: 
succinate) at baseline and 6 weeks in controls (untreated) and patients (treated). Metabolites 
quantified by raw counts. All 4 metabolites statistically increased in the patient cohort after 
correction for multiple comparison. Dots represent outlier values.  
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Figure 22: Pre- and post- treatment metabolites highly discriminatory for treatment state. 
Random Forest plot displaying 30 most discriminatory variables distinguishing pre- and post-
treatment samples and corresponding mean decrease accuracy values.     
 
 
DMF effects on anti-oxidant metabolites  

I investigated whether DMF had any effect on metabolites of glutathione, a peptide 

associated with antioxidant pathways (38). Glutathione was not detected in this study, 

but its metabolites glycine and 5-oxoproline were significantly increased by 6 weeks 

after initiation of treatment with DMF (q < 0.05) (Table 12). However, concentrations 

of cysteinylglycine and cysteine (also metabolites of glutathione) in plasma were not 

significantly altered.  

Metabolite! Fold!Change! pPvalue! qPvalue!

Cysteinylglycine! 1.25! 0.01! 0.07!

Cysteine! 0.94! 0.31! 0.34!

Glycine! 1.19! 0.00002! 0.005!

5Poxoproline! 1.18! 0.002! 0.033!

 

Table 12. Glutathione metabolites in MS patients post-treatment with DMF. Fold change, P-

values and Q values (corrected using false discovery rate) provided. 
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Validation of methyl Succinyl-Carnitine as a marker discriminating pre- from post-

treatment samples  

Given the over-representation of carnitines in the green co-expression module, the 

highly significant increases of succinyl carnitine and methyl succinyl carnitine after 

treatment and the results of the exploratory random forest classification, I sought to 

confirm their association with the pharmacodynamic response in a separate validation 

cohort. The most significantly increased metabolite in the validation cohort was also 

methyl succinyl carnitine (mass/charge ratio 4.71_276.1448), which changed by 145-

fold (p < 0.005). I was also able to validate a rise in glycine post treatment (fold 

change 1.40 (p < 0.005) but findings for 5-oxoproline were non-significant (fold 

change 0.98, p > 0.05).  I was unable to identify a peak for succinyl carnitine using 

the different mass spectroscopy platform employed for the validation dataset.  

 

Levels of MMF correlate with levels of methyl succinyl-carnitine 

I was able to measure plasma concentrations of MMF; the most abundant, 

pharmacologically active metabolite of DMF. Samples seemed to either show low 

concentrations of MMF (<20 ng/mL) or high concentrations of MMF (range 95 – 592 

ng/mL) (Table 13). Pearson’s correlation showed a strong relationship between levels 

of methyl succinyl-carnitine and MMF (r = 0.66) (Fig 23). Levels of the active drug 

did not correlate with reported timing of last dose (r = -0.19) suggesting either a 

previously uncharacterised extreme pharmacokinetic variation of the medication or 

poor adherence to medication.  
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Subject#
Number# MMF#Concentration#(ng/mL)#

Reported#Timing#of#last#dose#
(hours)#

1! <5! 6!!

2! 7.3! 2!!

3! 11! 2!

4! <5! 4!

5! <5! 1!

6! 26.4! 3!

7! <5! 3!

8! <5! 2!

9! <5! 13!

10! <5! 4!

11! <5! 15!

12! <5! 3!

13! 11.9! 3!

14! <5! 15!

15! <5! 1!

16! 95! 4!

17! 486.2! 2!

18! 105.3! 4!

19! 243.2! 4!

20! 432.2! 4!

21! 165.9! 3!

22! 574.7! 8!

23! 358.3! 1!

24! 154.3! 3!

25! 591.5! 3!

26! 242.5! 6!

27! 386! 4!

 

Table 13. Concentrations of MMF in RRMS subjects 6-weeks post treatment with DMF. Values 

expresses as ng/mL. Timing of reported dose also stated in hours.  
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Fig 23. MMF is highly correlated with methyl succinyl-carnitine. Correlation plot of 

MMF concentration (ng/ml) and raw counts of methyl succinyl-carnitine.  

 

Levels of MMF correlate with levels of 1-methylnicotinamide  

I undertook an unbiased correlation analysis to investigate which metabolites 

correlated most strongly with MMF concentrations in my discovery cohort. The most 

highly correlated metabolite was 1-methylnicotinamide (r = 0.76) (Fig 24a). Because I 

undertook full metabolomic profiling on all samples at the National Phenome Centre 

(including technical replicates) I was able to cross-validate this finding in the 

discovery cohort based on the equivalent feature in that dataset (m/z ratio 137.0710, 

retention time 4.05).  In this analysis, I found an even stronger correlation between 

drug concentration and levels of 1-methylnicotinamide (r = 0.85) (Fig 24b).  In order 

to validate this finding, I repeated the correlation analysis in the validation cohort. 

The correlation between MMF levels and 1-methylnicotinamide were maintained (r = 

0.68).  
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High levels of 1-methylnicotinamide are associated with corresponding reductions in 

levels of the methyl-donor betaine(249). In my cohort, there was a strong inverse 

correlation between betaine and both MMF and 1-methylnicotinamide (r = -0.6 and -

0.77 respectively). 

 

 

 

 

 

 

 

 

Fig 24a. MMF is highly correlated with 1-methylnicotinamide. Correlation plot of MMF 

concentrations (ng/mL) and raw counts of 1-methylnicotinamide.  

 

 

 

 

 

 

 

 

Fig 24b. MMF is highly correlated with 1-methylnicotinamide. Correlation plot of MMF 

concentrations (ng/mL) and raw counts of 1-methylnicotinamide (technical replicate).  
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Effect of DMF on lipoprotein sub-fractions 

In chapter 3, I reported an increase in VLDL lipoprotein subfractions in MS patients. I 

sought to evaluate whether 6 weeks of DMF would affect the levels of lipoprotein 

subfractions in my patient cohort. Concentrations of VLDL subfractions were not 

affected by 6 weeks of DMF treatment. However, I was able to identify 5 LDL 

species (L2-Cholesterol, L2-phospholipid, L2-apolipoprotein, L2PN, L2-

FreeCholesterol) that were all significantly reduced 6 weeks post treatment with DMF 

(p = 0.02, p= 0.03, p = 0.03, p=0.04, p=0.04 respectively), corrected for multiple 

comparisons.  

 

Integration of transcriptome, small RNA and metabolomics suggest a role for IL-4 

in mediating pharmacodynamic effects of DMF.   

I combined RNA-Seq and metabolomic data pre- and post- treatment in patients using 

an integrated pathway analysis tool from Ingenuity Pathway Analysis software 

(Qiagen, Hilden, Germany). In my previous chapter, I identified TNF signalling as an 

over-represented and over-activated pathway in patients when compared to my 

healthy volunteer population. I was able to see a down-regulation of this pathway 

following treatment. The IL-4 pathway was significantly over-represented 6-weeks 

post treatment with DMF (Fig 25). This confirmed my previous result showing an 

increase in IL-4 cytokine concentration following onset of treatment.  
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(a) 

 

(b) 

 

Fig 25a and 25b. IL-4 associated transcripts (a) and metabolites (b) differentially expressed post-
treatment with DMF. 

MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1MS4A1

ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1ICAM1

TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2TLR2

KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1KRR1

FCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2BFCGR2B

LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32LRRC32
LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3LDLRAD3

CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2CA2

IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1IL13RA1

MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1MRC1

ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7ST7

F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1F13A1

GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15GNA15

ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230ZNF230

CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36CD36

IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1IL1RL1

IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4

GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1GFI1

GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3GATA3

CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1CLIP1

CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44CD44

PRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNPPRNP

TOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3BTOP3B

TGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBITGFBI

NFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIANFKBIA

SIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPASIRPA

CLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7ACLEC7A

IL4 14

© 2000-2017 QIAGEN. All rights reserved.

L-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-prolineL-proline

IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4IL4

cyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMPcyclic AMP

12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid12-hydroxyeicosatetraenoic acid

D-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucoseD-glucose

L-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginineL-arginine

IL4 15

© 2000-2017 QIAGEN. All rights reserved.



! 122!

Results Summary 

 

•! Data!reduction!techniques!could!accurately!separate!MS!

metabolomic!samples!based!on!treatment!state!(pre5!and!post5!

treatment).!Differential!coexpression!identified!modules!of!

metabolites!that!showed!high!intra5modular!correlation.!!

!

•! TCA!cycle!intermediates!were!elevated!after!treatment!with!DMF.!

Methyl5succinylcarnitine!was!the!most!discriminatory!metabolite!as!

determined!by!basic!statistical!analyses!and!data!reduction!

methods.!!

 

•! The!increase!in!methyl5succinylcarnitine!was!replicated!in!the!

validation!cohort!and!showed!strong!correlation!with!

concentrations!of!the!active!component!of!DMF;!monomethyl!

fumarate.!The!most!highly!correlated!metabolite!with!MMF!was!15

methylnicotinamide.!This!metabolite!was!correlated!with!common!

adverse!effects!associated!with!DMF.!!!

 

•! DMF!caused!an!increase!in!Th2!cytokines!IL54!and!IL513.!Using!

integrated!pathway!analysis!approached,!I!confirmed!a!role!for!IL54!

in!the!short5term!pharmacodynamic!effect!of!DMF!in!metabolomics!

and!transcriptomic!datasets.!!
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•! Short!term!administration!of!DMF!caused!a!robust!alteration!in!the!

gene!expression!signature!of!MS!patients,!however!the!effect!sizes!

were!modest.!Differential!coexpression!analysis!identified!an!

interesting!module!of!differentially!expressed!genes!that!were!

enriched!for!immune!system!processes.!The!hub!gene!for!this!

module!was!nicastrin.!
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Discussion 

The primary mechanism of action of DMF is not well understood. Here I investigated 

whether an integrated ‘omics approach (transcriptomics, metabolomics, cytokine 

analysis) can further elucidate pharmacodynamic effects. Using NGS, I was able to 

demonstrate that just over 500 genes appeared to be differentially expressed after 

short-term administration of DMF and that genes encoding proteins involved in the 

Nrf2 activation pathway were over-represented. Other gene expression studies have 

identified genes related to anti-oxidant pathways(242, 250-252), anti-inflammatory 

pathways(53, 253) and NFκB(52, 254) that may be related to DMF’s therapeutic 

effect. My results confirm in-vivo that Nrf2 related gene expression may be 

implicated in the effect of DMF. Furthermore, I demonstrated that genes altered by 

DMF could be partitioned into differential co-expression modules enriched for 

immune response protein transcripts.  

 

I investigated the reproducibility of differential expression estimates to see if they 

were consistent across different alignment software and sequencing runs at different 

facilities. Consistency improved when alignment software was comparable leaving 

sequencing facilities as the only source of discrepancy. Sequencing methods are 

imperfect and there are a number of potential sources of experimental error that can 

lead to thousands of false positive variants in a fully sequenced human 

transcriptome(255). Potential sources of discrepancy could have occurred at the 

library preparation or sequencing stage. With regards to the former, this may have 

been at the PCR amplification stage(256) which is subject to unmeasured biases or the 

use of barcodes(257, 258) which can result in decreased read quality. With respect to 

sequencing, Illumina is known to have a sequence specific error profile where 
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inverted repeats exists or there are repetitive GGC sequences(259). I also explained 

part of the discrepancy on the basis that those genes which did not overlap were likely 

to have fewer mean counts and therefore were less likely to show sufficient variance 

to make differences statistically significant.   

 

Using mass spectrometry, I observed that short-term administration of DMF could 

only accurately separate samples using supervised classification techniques such as 

sPLS-DA. While some of the changes detected post-treatment could be related to anti-

oxidant pathways, the greatest changes (as measured by Random Forest) were seen in 

TCA cycle metabolites fumarate, succinyl-carnitine and methyl succinyl-carnitine. 

The finding of elevated methyl succinyl-carnitine was validated in samples from a 

separate group of patients using a different mass spectrometry platform.   

 

One prior study has investigated the effect of DMF on oligodendrocytes using a 

metabolomics approach(41). This report also identified increases in succinate and 

fumarate with treatment, but studied much shorter time intervals (24 and 72 hours). 

Increases in carnitine were observed but not succinyl-carnitines. This difference is 

likely due to succinylation of carnitines in peripheral organs such as the liver, which 

would not have occurred in an in-vitro experiment in isolated oligodendrocytes(260). 

My results confirm an increase in TCA cycle intermediates in vivo 6 weeks after 

initiation of treatment with DMF. Furthermore, I identify two novel carnitine species 

(succinyl-carnitine and methyl succinyl-carnitine) that are significantly increased 

post-treatment.  
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The isolated increase in succinate without increases in intermediates involved early in 

the forward direction of the cycle (malate, citrate and α-ketoglutarate) led us to 

hypothesise that fumarate generated from metabolism of DMF(261) may be reduced 

by succinate dehydrogenase to succinate (resulting in corresponding oxidation of 

NADH to NAD+). High levels of succinate and hence succinyl-CoA can result in 

raised levels of succinylation(262, 263) of carnitines and other species, in turn (264, 

265). For example, patients with mutations in succinate-CoA ligase, which normally 

catalyses conversion of succinyl-CoA to succinate, characteristically show increased 

concentrations of both succinyl-CoA and succinylcarnitine(265-268).       

 

L-carnitine and acetyl-l-carnitine have both been demonstrated to activate anti-

oxidant pathways mediated by Nrf2(269-271). In a rat model of interstitial 

nephropathy, reduction in two acyl-carnitines (stearoyl-carnitine and palmitoyl-

carnitine) resulted in impaired Nrf2 pathways and activation of NF-κB; the latter 

known to be inhibited by DMF(272). Carnitine species can increase fatty acid flux 

through acyltransferase and can accumulate to accept acyl groups from CoA in β-

oxidation(273-275). This represents an alternative pathway that would produce a 

similar intra-cellular effect as agonism of the HCA2 receptor during ketogenesis, the 

latter being an alternative proposed mechanism of action of DMF(276, 277).   

 

My finding of a high correlation between MMF and 1-methylnicotinamide was 

replicated using both technical replicates and in a separate validation cohort 

Furthermore, I was able to demonstrate a corresponding inverse correlation between 

1-methylnicotinamide and betaine which has already been identified(249). The 

increase in NAD+ through reversal of succinate dehydrogenase (outlined above) 
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would result in raised 1-methylnicotinamide by the enzyme nicotinamide n-

methyltransferase(278). I hypothesise that this is the mechanism by which I observed 

a high correlation between MMF and 1-methylnicotinamide. Furthermore, I 

hypothesise that 1-methylnicotinamide may play a role in the mechanism of action of 

DMF. 1-methylnicotinamide has been widely explored for its anti-inflammatory(279), 

anti-oxidant(280) and neuroprotective properties(281). However, its potential 

therapeutic effects for MS have yet to be explored. 1-methylnicotinamide has already 

been explored in other murine models of human disease(282) and its pharmacokinetic 

profile has been well characterised(283). 

 

 With respect to cytokine changes following short-term administration of DMF, I 

found an increase in Th2 cytokines IL-4 and IL-13 but no corresponding dynamic 

changes in Th1 or Th17 related cytokines. Pathway analyses of both transcripts and 

metabolites suggest a role for IL-4 in the action of DMF. My finding of increases in 

IL-4 is consistent with a recent study in PBMCs of patients with psoriasis treated with 

DMF(253), which was also able to find alterations in Th1 and Th17 cytokines. The 

difference in results may arise from use of cell subsets (PBMCs) in the latter study, 

rather than measurements directly from plasma.  

 
 

In conclusion, I have provided evidence for a robust transcriptomic response to DMF 

in the short-term which involves up regulation of Nrf2 and enrichment of anti-

inflammatory and anti-oxidant pathways. Furthermore, I have provided evidence that 

TCA cycle intermediates are significantly modulated in patients receiving DMF. The 

most significantly altered metabolites are derivatives of TCA cycle intermediates: 

succinyl-carnitine and methyl succinyl-carnitine. The levels of methyl succinyl-
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carnitine and 1-methylnicotinamide correlate well with concentrations of the active 

drug MMF in sample plasma. Despite previous evidence for the anti-inflammatory 

effects of 1-methylnicotinamide, this is the first evidence for a link between this 

molecule and DMF. I hypothesise that 1-methylnicotinamide and methyl succinyl-

carnitine may be the downstream effectors of DMF’s known mechanisms of action. In 

future work, this could be tested directly in vitro or in pre-clinical models.  
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Chapter 5. Identifying markers associated with response to DMF and its adverse 

events. 

 

Introduction 

Accurately stratifying RRMS patients to the best treatment based on their personal 

characteristics is a therapeutic ideal as it would avoid the use of expensive and 

potentially harmful medications that may yield little benefit and will not prevent 

accrual of disability(57). While an optimal stratification might occur before dosing, an 

alternative would be to assess response only a short time after initiation of treatment. 

The main criticism of current response measures (both clinical and radiological) is 

that they demand longer periods of observation (on the order of a year or more, 

typically). There thus is a strong rationale for searching for short-term biomarkers 

associated with longer-term responses to treatment.  

 

The current major approach to ensuring patients are receiving the most efficacious 

medication for them involves disease activity monitoring over 1-2 years. A recent 

approach to this has been the introduction of the composite outcome measure termed 

‘no evidence of disease activity’ (NEDA) which is increasingly being evaluated for 

measuring treatment response(284-286). NEDA evolved from the term ‘freedom from 

disease activity’ and first appeared in the MS literature in a 2009 post hoc analysis of 

natalizumab(284). The most recent definition; ‘NEDA-4’, combines four measures of 

disease activity to increase sensitivity: no relapses, no EDSS progression, no new 

MRI activity (Gd+ lesions or new/newly enlarging T2 lesions) and no worsening 

brain volume loss(287, 288). The most practical limitation of this approach is the time 

it takes for such measures of disease activity to appear. As such, there is a clinically 
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unmet need for identifying short-term predictive markers of these longer-term 

outcome measures.       

 

A recent post-hoc analysis revealed that only 26% of patients in the DMF 

DEFINE/CONFIRM trials achieved NEDA at two years(289).  This suggests that 

there are definable responder and non-responder populations. The hypothesised 

mechanism of action involving activity on transcription factor-encoding genes nuclear 

factor (erythroid-derived 2)-like 2 (Nrf2)(37, 38) and nuclear factor κB (NFκB)(39) 

within immune cells further suggested to us that the pharmacodynamic effects on the 

transcriptome of PBMC could be used to predict treatment response(290).  To test 

this, I used next-generation RNA sequencing and plasma metabolomic profiling to 

identify short-term changes in gene expression associated with medium-term 

treatment response defined by the composite outcome measure NEDA-4 at 15 months 

post-treatment.  
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Methods 

Patients attended for three study visits; at baseline (pre-drug), at 6-weeks after 

commencing treatment, and at 15 months post-treatment. Full details of assessments 

are outlined in the Methods section.  

 

Outcome Measures  

MRI Scans 

The RRMS patients underwent MRI scanning at the Imperial College Clinical 

Imaging Facility at six weeks and 15 months after the start of treatment (Siemens 

Verio 3T; 32-channel head coil; T1- and T2-weighted structural scans). Scans were 

analysed using MSmetrix, a scanner independent software developed by Icometrix to 

extract whole brain atrophy, lesion volume changes and the number of new lesions 

between two timepoints(291, 292). The longitudinal analysis performed using 

MSmetrix incorporates both spatial and temporal information for accurate and 

consistent lesion segmentation based on Markov Random Field modelling and 

difference imaging across the two time points (293). 

 

Clinical Outcomes 

Clinical outcomes of patients were assessed by a single trained physician (AG). This 

included detailed patient histories to establish whether any new clinical relapses had 

occurred during the study period, a full EDSS assessment, MS Functional Composite 

scoring (MSFC) and SF-36 quality of life questionnaire. 

 

The main outcome measure used to designate patients as responders or non-

responders was the 15-month NEDA-4 outcome. NEDA-4 was defined as no 
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evidence of relapses, active MRI lesions (both new or enlarged T2 lesions), 6-month 

confirmed disability progression (CDP) (defined as an increase in EDSS score of 1.5 

points from a baseline score of 0, of 1.0 point from a baseline score of 1.0 or more or 

0.5 points from baseline greater 5.0) or mean annualised rate of brain volume loss 

(AR-BVL) of more than 0.4%.  

 

The secondary outcomes were MSFC Z-score comparisons between baseline and 15 

months. The MSFC is a multidimensional outcome tool that comprises quantitative 

tests of 3 neurological domains; upper limb coordination (9-Hole Peg Test), 

ambulation (25-Foot Walking test), and cognitive ability (Paced Auditory Serial 

Addition Test-4). The raw scores for these components are standardized as Z scores 

(SD units from mean baseline score in the population) with an increase in MSFC 

scores indicating improvement(294). Z-score comparisons pre- and 18 months post-

treatment were calculated using a paired student’s T-test. Disease progression was 

defined as a greater than 20% increase in 9-Hole Peg Test or 25-foot walk compared 

between baseline and the 15-month study visit using either of these measures(295).  

        

Patients were also assessed using a quality of life questionnaire; SF36(296). The SF36 

is scored in 8 domains of QOL and simplified into two scores, a physical summary 

score (PCS) and a mental component score (MCS). These are expressed as an 

adjusted score range between 0 and 100 (0 being most impaired and 100 being least 

impaired with regards to QOL). Comparisons between baseline and 15-months were 

performed using a paired student’s T-test.    
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Statistical Analysis 

Treatment ‘responder’ or ‘non-responder’ groups were analysed separately with 

respect to identification of treatment response biomarkers. Significant of change in 

MSFC was assessed using Student’s T-test.   

 

Transcriptomics 

 A series of differential expression analyses were performed on count data derived 

from HT-Seq software using DESEq2(205) in parallel in the ‘responder’ and ‘non-

responder’ groups. A full description of Deseq2 can be found in Chapters 3&4. Here, 

the statistical tests are described in the context of treatment responders, however the 

same analyses were also performed in the non-responder group.    

 

Time-course comparisons were performed between baseline and six week samples 

and then between six weeks and 15-month samples controlling for intra-individual 

variation. Cross-sectional contrasts between patients and controls were performed 

controlling for age as a covariate. Adjusted p-value for significance (Padj) was set at 

(Padj < 0.05). The threshold for fold change cut offs was a log2-fold change of ±0.3.!!   

 

Treatment response genes were defined as those that were significantly different in 

the responder vs control group at baseline but that were no longer differentially 

expressed in the responder group at 6 weeks and 18 months; i.e. these genes had 

‘normalised’ in the responder population. Additionally, these genes had to be 

continuously different in the non-responder group at all timepoints. 
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A further set of treatment response genes were defined as those that were 

differentially expressed in the responder group at both post-treatment timepoints and 

that were also different in the treatment responder group vs controls at baseline but 

not at 6 weeks or 18 months; i.e. genes that were persistently altered by treatment and 

were also different in patients compared to controls at baseline but not following 

treatment. 

 

Downstream pathway analysis was performed using the Ingenuity Pathway Analysis 

(IPA) software (Qiagen, Helden, Germany). Genes of interest imputed into IPA had 

Padj < 0.05 and log2-fold change of ±0.3.!Enrichment!analysis!was!performed!

using!g:Profiler!isolated!to!KEGG!pathways!(pIvalue!<!0.0005).!!!!!   

 

Comparison between atrophy rates in non-responder groups was calculated using 

Fisher’s exact test (p < 0.05). Permutation analysis was performed using DESEq2 

(100-fold) with random selection of RRMS subjects (n = 8).   

 

Contrasts were also made in the small RNA dataset. Treatment response small RNAs 

were defined as those that were different in the responder vs control group at baseline 

but not at 6 weeks or 18 months (i.e. normalised) but remained different in the non-

responder group at these timepoints.  

 

In order to investigate any possible interactions between the mRNAs and small RNAs 

of interest I identified target mRNAs for the mi-RNAs of interest using TargetScan 

v7.0. All of the target genes with conserved sites were selected. I then identified genes 
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within this target set that were previously defined as treatment response genes in my 

preliminary analysis.  

 

Treatment responders and non-responders were also compared with reference to 

known MS risk genes. There are currently 200 known genes with variants that 

increase the risk of MS (IMSGC, unpublished data). I also investigated differential 

expression of MS disease risk variants in the subset of genes where there was 

adequate coverage in the RNA-Seq data to accurately identify these variants. Variants 

were derived using GATK software(297) and differential expression was calculated 

using a paired students T-test (p < 0.01).     

 

Metabolomics 

In order to evaluate whether the gene transcripts or microRNAs of interest were 

associated with metabolites, I undertook a pairwise correlation analysis for each of the 

transcripts and microRNAs of interest and all metabolites within both the responder 

and non-responder groups using Pearson’s correlation coefficient. Metabolites with 

high correlations (-0.7 > r or r > 0.7) were treated as significant. Metabolite 

enrichment analysis was performed using Metabolite Set Enrichment Analysis 

(MSEA), an open source tool to identify pathways enriched for a given set of 

metabolites(298).       
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Results 

DMF is an effective DMT in a subset of RRMS patients 

8/24 patients (33%) achieved NEDA-4 over the 15 month period after initiating 

treatment with DMF.  12 patients (50%) had an annualised brain volume loss (AR-

BVL) greater than -0.4% (range, -0.44% to -2.19%). Enlarging or new lesions 

occurred in 9 patients (38% and 4 of these had an AR-BVL < -0.4%). 3 patients 

experienced relapses and 6-month confirmed disability progression occurred in 4 

patients (2/4 of whom also experienced relapses). 

 

The mean change in MSFC from baseline to 15 months for the whole cohort was 

+0.27 (range, -0.27 to 1.33) (p < 0.005).  The SF-36 physical summary score 

increased from 58.4 ± 25.8 to 62.8 ± 25.0 and the mental component score increased 

from 53.6 ± 18.9 to 59.9 ± 18.0, but these changes were not statistically significant (p 

=0.24 and p = 0.1 respectively).  

 

Short-term dynamic effects of DMF 

I assessed pharmacodynamic effects independently in the clinical responder and non-

responder groups.  In the responder group, there were 478 differentially expressed 

genes 6 weeks after the start of treatment with DMF relative to baseline (padj < 0.05). 

These differences showed enrichment of transcripts related to the Nrf2 pathway (p < 

0.0005) (Fig 26) and increased expression of those associated with down-regulation 

of NFκB associated responses (overlap p < 0.0005) (Fig 27). In the non- responder 

group, no differentially expressed genes were identified 6 weeks after the start of 

treatment relative to baseline (Table 14).  
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Fig 26 (a-d). Nrf2 related transcripts are increased 6 weeks post treatment in responders but not 

in non-responders or healthy controls. Boxplots represent variance stabilised transformed counts 

for transcripts (A) ATF4, (B) FOSL1, (C) MAFG, (D) MGST1 at baseline and 6 weeks in 

responders, non-responders and healthy controls. FOSL1 = fos-related antigen 1; ATF4 = 

activating transcription factor 4; MAFG = transcription factor MafG; MGST1 = microsomal 

glutathione S-transferase 1.    

 

! Responders# Non9Responders# Controls#
Baseline!vs!6!weeks! 478! 0! 7!

6!weeks!vs!15!

months!

0! 1264! 180!

 
Table 14. Number of differentially expressed genes between baseline and 6 weeks (short-term), 
and 6 weeks and 15 months (medium-term) in responders, non-responders and controls.  
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Fig 27 (a-d). NFκB related transcripts are increased 6 weeks post treatment in responders but 

not in non-responders or healthy controls. Boxplots represent variance stabilised transformed 

counts for transcripts (A) ICAM1, (B) CD83, (C) NFκBIA, (D) NFκBIE at baseline and 6 weeks 

in responders, non-responders and healthy controls. CD83 =cluster of differentiation 83; ICAM1 

= Intercellular adhesion molecule 1; NFκBIA = nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha; NFκBIE = nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, epsilon. 

 

I confirmed the significance of this difference between responder and non-responder 

groups by testing for effects of outlier values using leave-one-out cross validation 

(LOOCV). The median numbers of differentially expressed genes post-treatment were 

404 and 0 in the responder and non-responder groups, respectively (p < 0.0005).  I 

also assessed RNA-Seq data from untreated healthy controls (n=7).  Comparison from 
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baseline to the end of a 6-week period without any intervention showed only 7 

differentially expressed genes (padj < 0.05) (Table 14).  

 

In the responder group, I found 10 genes altered by treatment (at both 6 weeks and 15 

months) and also differentially expressed between patients and controls. These were 

designated as a set of potential treatment response markers: ZNF594, ZEB2, 

SERTAD3, ZFP36, PIM4, RNF19B, PPP1R15A, LOC105378248, GCNt2, HBEF.  

 

Treatment response is associated with a stable pattern of gene expression 

Between 6 weeks and 15 months, 0 and 1264 differentially expressed genes were 

detected in the responder and non-responder groups, respectively (Table 14). I further 

confirmed a difference between the two groups using a 100-fold permutation analysis 

in randomly selected combinations of 8 RRMS patients. The median number of 

differentially expressed genes in this analysis was 702 (range, 31 – 3230). In healthy 

controls (n = 7), who were not given any intervention and who were followed over the 

same time period, there were 180 differentially expressed genes (Table 14).  

 

The large number of differentially expressed genes found between 6 weeks and 15 

months in the non-responder group prompted us to test for response heterogeneity 

within this group. I first tested for individual outliers.  Based on PCA of the 16 non-

responders at 15 months, responses in 2 patients were outliers. Data from these 

subjects therefore were excluded from further analysis (Fig 28a). Following removal 

of these two outliers, two distinct non-responder groups (arbitrarily called groups A 

and B) were identified in a subsequent round of PCA (Fig 28b).  I then independently 

assessed differentially expressed genes between 6 weeks and 15 months in these 
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groups:  560 differentially expressed genes were found for group A and 648 for group 

B (117 [11%] of these differentially expressed genes overlapped between the two 

groups).  I tested for the significance of these differences relative to the stable 

expression pattern in the responder group using LOOCV.  The median numbers of 

differentially expressed genes with LOOCV were 270 and 497 for groups A and B, 

significantly different to the equivalent analysis in the responder group where the 

median number of differentially expressed genes was 0 (p = 0.03). 

 

Fig 28a. Two subjects appear as outliers in 15 month samples within the non-responder group. 

Principal component analysis of non-responders at 15 months. Each dot represents a subject’s 

RNA sample.    

 

Fig 28b. Two distinct non-responder groups are identified at 15 months. Principal component analysis of 

non-responder group A (green) and group B (red) at 15 months. Each dot represents a subject’s RNA 

sample.   
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In Group A, the most enriched pathways were involved with Th1 and Th2 activation 

and T cell receptor signalling (p < 0.0001).   The differentially expressed genes 

showed enrichment for the KEGG pathway ‘T cell receptor signalling’ (p < 0.0001). 

In Group B, there were no significantly enriched canonical or KEGG pathways. 

Given the enrichment of immune-related genes in Group A, I investigated whether 

this correlated with more adverse clinic outcomes. Within Group A, there appeared to 

be a higher rate of grey matter atrophy (100% vs 62%) and white matter atrophy 

(100% vs 75%) (defined as greater than -0.4% change in annualised atrophy for both 

measures), however neither of these differences in number of subjects exceeding the 

pathological threshold set were statistically significant (p = 0.2 and 0.48, 

respectively).   

 

DMF is associated with a short term ‘pseudo-normalisation’ of gene expression 

in responders  

After controlling for gender, 668 differentially expressed genes were found between 

patients in the responder group and healthy controls at baseline (padj < 0.05).  

However, 6 weeks after the start of treatment, only 3 genes were differentially 

expressed between these patients and healthy controls (Table 15). At 15 months, there 

were 85 differentially expressed genes between these patients, although only 14 genes 

(2%) overlapped with the differentially expressed genes found at baseline (Fig 29a).  

 

478 differentially expressed genes were found between patients in the non-responder 

group and healthy controls at baseline (padj < 0.05) (Table 15). 202 (21%) overlapped 

with those in the equivalent analysis in the responder group. At 6 weeks after the start 

of treatment, 18 genes were differentially expressed between the same patients and 
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healthy controls, 8 of which (44%) also had been identified baseline (Fig 29b). At 15 

months, 391 differentially expressed genes were found in non-responder group A and 

340 in non-responder group B (Table 15).  

 

! Responders#vs#
Control#

Non9Responders#vs#
Control#

Baseline! 668! 478!

6!weeks! 3! 18!

15!months! 85! 391!(Group!A)!

340!(Group!B)!

 

Table 15. Number of differentially expressed genes in cross-sectional analysis between RRMS 

patients and controls at baseline, 6 weeks and 15 months.  

(a)!!!!!! ! ! ! ! ! (b)!

 

Fig 29. DMF treatment is associated with a relative normalisation of gene expression in 

responders but not in non-responders. Venn Diagrams represent the number of DEG in 

responder (A) and non-responder (B) groups compared with controls at baseline, 6 weeks and 15 

months. 
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Nrf2 and NFκB related genes are persistently altered by DMF in responders but 

not in non-responders 

Given the postulated roles of Nrf2 activation and NFκB inhibition in the mechanism 

of action of DMF I sought to identify downstream genes known to be transcriptionally 

regulated by Nrf2(299) and NFκB(300) that may be affected differently in the 

responder and non-responder group. For Nrf2, in the responder group, 14/75 (19%) 

Nrf2 regulated genes were differentially expressed 6 weeks post-treatment. 6 of these 

remained differentially expressed at 15 months. In the ‘non-responder’ group, there 

were no Nrf2-related genes differentially expressed at 6 weeks. CCAAT/enhancer-

binding protein beta (CEBPB) was the only gene that was persistently changed in the 

responder group and which did not change in the non-responder group at either 

timepoints. 2/392 genes known to be regulated by NFκB(300) were persistently 

differentially expressed in the responder group: ferritin heavy chain (FTH1) and 

aspartyl beta-hydroxylase gene (ASPH). FTH1 was differentially expressed in the 

non-responder group at 15 months leaving ASPH as the only NFκB regulated gene to 

be persistently differentially expressed in the responder group but not in the non-

responder group over the study duration.         

 

Small RNA as a treatment response marker in RRMS patients    

I performed similar analyses using data derived from small RNA. In the responder 

group two miRNAs differentially expressed at baseline normalised at 6 weeks and 15 

months (mir-423 and mir-6718). In the non-responders mir-423 was also differentially 

expressed at baseline but remained so at 6 weeks demonstrating no significant 

normalisation of this transcript post-treatment. Mir-423 is therefore a candidate 

marker of drug response. 



! 144!

 

Correlations between RNA and small RNA treatment response markers 

In order to look for correlations between miRNAs and RNAs in the dataset I 

identified all RNAs that are regulated by miRNA of interest mir-423 using 

TargetScan v7.0. I compared this list of 249 conserved RNAs with those RNAs I 

found to be persistently changed at 6 weeks and 15 months in the responder group. 

RNF19B is a gene, known to be regulated by mir-423, that was persistently altered in 

the responder group and also differentially expressed in responders vs controls at 

baseline but not in an equivalent comparison at 6-weeeks and 15 months.  

 

Transcripts of genes associated with MS susceptibility are altered by DMF  

There are currently 200 genes identified by genome wide association studies 

containing variants that confer an increased risk of MS(301). In the responder group, 

at 6 weeks, 16 of these genes were differentially expressed post-treatment. In the non-

responder group, no MS risk genes were differentially expressed 6 weeks post-

treatment. A leave-one-out cross validation was performed in the responder and non-

responder groups respectively. In the responder group, the median number of 

differentially expressed susceptibility genes was 9 (range 0 – 21). In an equivalent 

analysis in the non-responder group the median was 0 (range 0 -1). The difference 

between these distributions was highly significant (p < 0.0001).   

 

 

Using GATK software, I was able to look at differential expression of genetic risk 

variant alleles pre- and post- treatment selectively in patients heterozygous for a risk 

allele. 7 MS risk genes had sufficient depth for this analysis. 1 gene (RUNX3) 
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showed statistically significant reduction in the risk allele (p < 0.05). For this gene, 

the reciprocal healthy variant also showed a significant reduction, representing overall 

reduction in the expression of this gene post treatment rather than a reduction in the 

disease-specific variant itself.   

 

Metabolic correlates of transcriptomic biomarkers    

Next, I attempted to correlate the treatment response RNAs and small RNAs 

(KIR3DL2, RNF19B and mir-423) with metabolomic profiles in the individual 

subjects. Firstly, I correlated MMF concentrations with the three putative 

transcriptomic response markers. Samples showed either low concentrations of MMF 

(<20 ng/mL) or high concentrations of MMF (range 95 – 592 ng/mL). Using all 

samples, I found no correlation between the active drug and the three transcriptome 

biomarkers. A previously identified correlated of MMF (1-methylnicotinamide – see 

Chapter 4) also showed no correlation. When performing the same analysis only in 

those patients with therapeutic concentrations of MMF (range 95 – 592 ng/mL), I 

found a high inverse correlation between mir-423 and levels of MMF (r = -0.68) and 

1-methylnicotinamide (r = -0.85).  

 

I also undertook an unbiased analysis by performing a pairwise correlation between 

each of my transcriptome markers of interest and all metabolites assayed by 

metabolomic profiling. There were 13 metabolites highly correlated with levels of 

RNF19B (r > 0.7) (Table 16). For KIR3DL2 and mir-423, there were no highly 

correlated or inversely correlated metabolites.  
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Metabolite# Correlation#
LPC(18:1)! 0.80!

CER(24:1)! 0.78!

uridine! 0.77!

1Pmethylhistidine! 0.77!

Total!LPC! 0.77!

LPC(16:0)! 0.75!

NPacetylisoleucine! 0.74!

GammaP

glutamylvaline! 0.72!

LPC(17:0)! 0.72!

PC(17:0/22:5)! 0.72!

NPmethylalanine! 0.71!

LPC(20:2)! 0.71!

LPE(22:5)! 0.71!

 

Table 16. Metabolites demonstrating high correlation with gene transcript RNF19B. LPC = 

lipophosphatidylcholine, CER=Ceramide, PC = phosphatidylcholine, LPE = 

lipophosphatidylethanolamine  

 

I repeated this analysis looking only in patients with therapeutic concentrations of 

MMF. There were 249 metabolites that were highly correlated with RNF19B (r > 

0.7). including succinylcarnitine (r = 0.87), methylsuccinylcarnitine (r = 0.85) and 

succinate (r = 0.84) all of which were noted to be significantly elevated 6-weeks post 

treatment (Supplementary Correlation Table – Appendix 1). For KIR3DL2, there 

were 94 highly correlated metabolites (r > 0.7). For mir-423, I found 56 highly 

inversely correlated metabolites, the most significant was 1-methylnicotinamide (r = -

0.85) (Supplementary Correlation Table).  
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Metabolomic correlates of DMF-induced flushing  

One of the most common side effects of DMF is flushing. At 6 weeks follow-up post-

treatment with DMF, 18/35 patients reported flushing at least once since commencing 

DMF. I separated patients out by this symptom and investigated corresponding 

metabolite changes pre- and post- treatment, restricting the analysis to those with 

therapeutic concentrations of the active component of the drug, MMF. 73 metabolites 

were significantly altered post-treatment in the symptomatic group (p < 0.05). The 10 

showing greatest changes are highlighted in Table 17a. 7 of these metabolites were 

over-expressed post-treatment (fold-change 1.26 – 1.87). In the group which did not 

experience symptoms, 200 metabolites were significantly different; 170 of these were 

triacylglycerols that were all under-expressed post-treatment with DMF. For the 10 

most significantly reduced triacylglycerols the mean fold-change was 0.53 (s.d. 0.18) 

(Fig 17b) 

 

 

Metabolite#
Fold#
change#

Standard#
Deviation# Adjusted#p9value#

cysPgly,!oxidized! 1.39! 0.24! 0.0006!

leucylleucine! 0.48! 0.38! 0.0039!

sebacate!(decanedioate)! 1.66! 1.28! 0.0054!

adipoylcarnitine!(C6PDC)! 1.87! 0.57! 0.0056!

creatinine! 0.44! 0.04! 0.0069!

phenylalanylglycine! 1.34! 0.54! 0.0075!

PE(18:1/18:2)! 1.26! 0.47! 0.0076!

LPC(18:2)! 1.19! 0.28! 0.0076!

PE(18:2/18:2)! 1.56! 0.67! 0.0092!

PE(PP18:2/18:2)! 0.47! 0.34! 0.0096!

 

Table 17a.  Patients experiencing flushing demonstrated significant differences in metabolites.  10 

most significantly altered metabolites in the flusher group. Values displayed as fold changes pre- 

and post- treatment with associated standard deviations and adjusted p-values.   
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Metabolite# Fold#Change#
Standard#
Deviation# Adjusted#p9value#

TAG54:6PFA18:1! 0.55! 0.15! 0.0001!

TAG52:4PFA20:0! 0.65! 0.06! 0.0003!

TAG50:4PFA18:2! 0.55! 0.13! 0.0004!

TAG58:8PFA22:5! 0.75! 0.06! 0.0004!

TAG54:6PFA18:3! 0.53! 0.09! 0.0004!

TAG52:6PFA16:1! 0.49! 0.21! 0.0005!

TAG52:6PFA18:3! 0.51! 0.15! 0.0006!

TAG58:7PFA18:1! 0.69! 0.09! 0.0007!

TAG54:5PFA18:3! 0.59! 0.13! 0.0009!

TAG52:6PFA18:2! 0.49! 0.15! 0.0009!

 

Table 17b. Patients not experiencing flushing demonstrated significant differences in metabolites.  

10 most significantly altered metabolites in the non-flusher group. Values displayed as fold 

changes pre- and post- treatment with associated standard deviations and adjusted p-values.   

 

Metabolomic correlates of DMF-induced gastrointestinal symptoms  

Similarly, I repeated this analysis for gastrointestinal symptoms. In my cohort, 20/35 

patients reported gastrointestinal symptoms at least once since commencing DMF. In 

those patients reporting abdominal symptoms, 54 metabolites were significantly 

altered (p < 0.05). These included pregnanolone which I previously identified as 

being significantly reduced in MS patients as well as 1-methylnicotinamide, 

succinylcarnitine and methyl-succinylcarnitine; all of which were also significantly 

increased 6 weeks post- treatment with DMF (Table 18).        

Finally, I tested whether concentrations of MMF were associated with side effects of 

the medication. In the group with therapeutic concentrations of MMF (range 95 – 592 

ng/mL), 67% experienced flushing and 67% experienced gastrointestinal (GI) 
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symptoms. In the group with low plasma concentrations, 28% reported flushing and 

36% experienced GI symptoms (p > 0.05, Fisher’s exact test).   

 

Metabolite#
Fold#
Change#

St#
Deviation#

Adjusted#p9
value#

Palmitoylcholine! 1.76! 0.54! 0.007!

Pregnanolone! 0.8! 0.1! 0.012!

Succinylcarnitine!! 3.8! 1.5! 0.017!

1Pmethylnicotinamide! 2.4! 1.7! 0.021!

Methylsuccinoylcarnitine! 180.4! 206.8! 0.042!

 

Table 18. Metabolites significantly increased 6-weeks post- treatment with DMF and also 

associated with DMF associated gastrointestinal adverse events. Fold changes, standard deviation 

and adjusted p-value provided (corrected using Benjamini-Hochberg).  
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Results Summary 

 

•! Approximately!35%!of!patients!had!‘no!evidence!of!disease!activity!

(NEDA54)!15!months!post5treatment!with!DMF.!DMF!was!highly!

effective!at!improving!a!secondary!outcome;!MSFC,!in!the!cohort!but!

did!not!have!a!significant!effect!on!QOL!measures.!!

 

•! I!observed!a!robust!short!term!pharmacodynamic!transcriptomic!

response!to!DMF!in!a!subset!of!patients!who!responded!to!the!drug!

in!the!medium5term.!!This!effect!coincided!with!‘pseudo5

normalisation’!of!gene!expression!when!comparing!to!healthy!

controls!and!also!a!medium5term!stabilisation!of!gene!expression.!!

 

•! I!found!3!disease!related!genes!that!persistently!normalised!in!the!

responder!but!not!non5responder!group.!1!of!these!genes,!KIR3DL2!

has!been!previously!implicated!in!MS!disease!pathogenesis.!A!

further!10!disease5related!genes!(including!RNF19B)!were!identified!

that!were!persistently!altered!by!DMF!in!the!treatment!responder!

group!but!not!the!non5responder!group.!!

 

•! A!small!subset!of!Nrf2!and!NFκB!related!genes!were!persistently!

altered!by!DMF.!!

 

•! One!disease!related!miRNA!(mir5423)!was!also!affected!by!DMF!

treatment!in!the!responder!but!not!the!non5responder!group.!It!is!
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known!to!regulate!RNF19b!which!I!had!previously!identified!as!a!

responder!gene.!Furthermore,!the!levels!of!mir5423!were!highly!

inversely!correlated!with!concentrations!of!MMF!and!levels!of!the!

metabolite!15methylnicotinamide.!!

 

•! An!unbiased!multi5omics!analysis!revealed!high!correlations!

between!levels!of!RNF519B!and!succinylcarnitine,!methy5

succinylcarnitine!and!succinate,!all!of!which!were!significantly!

elevated!6!weeks!post5treatment.!!
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Discussion 

There is currently no reliable early treatment response prediction marker for any 

RRMS DMT. Here, I investigated whether gene expression changes at 6-weeks are 

associated with the medium-term clinical response to DMF. Using RNAseq, I 

observed that, in treatment responders, a robust short-term transcriptomic response to 

DMF in PBMCs was associated with activation of the NRF2 and inhibition of the 

NFκB pathways.  In non-responders, no early transcriptional changes were observed 

after starting DMF. In addition to a robust short-term pharmacodynamic response to 

DMF in treatment responders, I observed stabilisation of gene expression. This 

contrasted with medium-term expression changes in non-responders enriched for 

transcripts of genes involved in inflammatory pathways. 

 
 
Previous studies investigating the pharmacodynamic effects of DMF on gene 

expression in vitro have identified genes related to anti-oxidant pathways(242, 250-

252), anti-inflammatory pathways(53, 253) and NFκB(52, 254). All may be related to 

DMF’s therapeutic effect. My results extend and confirm these in vivo; all three of 

these pathways may be implicated in the effect of DMF in the subset of patients for 

whom the drug has a medium-term (1-year) beneficial treatment effect. I identified an 

association between microRNA and mRNA (Mir-423/RNF-19B) that was persistently 

altered in the responder group post-treatment but not in the non-responder group. Mir-

423 is a small RNA species known to be reduced in MS patients compared to 

controls(302). It has also been implicated in a number of other human inflammatory 

diseases(303). A separate study in PBMCs of MS patients treated with IFN-beta 

demonstrated a significant reduction in mir-423 post-treatment(304). I observed 

raised levels of mir-423 in MS patients at baseline (responders and non-responders) 
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and a reduction (in agreement with the IFN-beta) following 6-weeks treatment with 

DMF. Mir-423 is known to regulate RNF-19B, a gene that I found to be altered by 

DMF in treatment responders but not in non-responders. Little appears to be known 

about RNF-19B other than that it is expressed predominantly in natural killer 

cells(305). KIR3DL2 is also highly expressed in natural killer cells and was 

consistently differentially expressed in non-responders but normalised in responders 

post-treatment.  It has been implicated in the pathogenesis of MS due to its interaction 

with HLA class 1 molecules(218, 306).  My findings of specific RNA and small-RNA 

species of interest require replication in independent datasets and also validation using 

quantitative PCR techniques.   

 

Alongside a robust transcriptomic pharmacodynamic response to DMF in treatment 

responders, I was able to demonstrate a complete stabilisation of gene expression over 

the medium-term which was not present in treatment non-responders. Whilst an 

interpretation of this finding is not straightforward, I hypothesise that conferring 

relative homeostasis in peripheral PBMC gene expression limits inflammatory flairs. 

In a subset of non-responders I saw over-expression of such pathways in the medium-

term in association with evidence of breakthrough disease activity.  

 

This study identified a large number of differentially expressed genes between RRMS 

patients and healthy controls. While some studies have also identified differentially 

expressed genes between these groups(223)(224), other results have been less clear, 

potentially reflecting the lower sensitivity of   microarray technology, which identifies 

a much smaller number of RNA species(108). I was able to demonstrate that the 

differences between RRMS patients and healthy controls were largely attenuated 
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within 6-weeks of initiation of treatment with DMF. In the subgroup of responders, by 

15 months, this apparent “normalisation” of the transcriptome was maintained over 15 

months, although the number of differentially expressed genes largely returned to pre-

treatment levels amongst the non-responders.  

 

In a subset of the cohort for whom at the time of sampling there were therapeutic 

concentrations of the active metabolite of DMF, I was able to correlate my RNA and 

small RNA species of interest with metabolomic correlates of DMF response 

identified in Chapter 4. These included levels of MMF and 1-methylnicotinamide. 

Furthermore, I was able to demonstrate a strong correlation between RNF19B and 

succinylcarnitine, methylsuccinycarnitine and succinate. These findings imply that a 

potential downstream role for these metabolites in the mechanism of action of DMF, 

and specifically in the expression of genes and micro-RNAs known to be affected by 

the drug itself.    

 

A recent study reported on the medium-term NEDA outcomes of the phase III trials 

(DEFINE/CONFIRM) of DMF in RRMS. In keeping with their findings using 

NEDA-3(289), I found that 33% of patients of patients achieved NEDA-4 after 15 

months of treatment. I was also able to report a highly significant improvement in 

overall MSFC score and 9-hole peg test at 15 months. The improvement in MSFC 

score was considerably better than that found in those patients who participated in the 

initial DEFINE/CONFIRM studies which is encouraging given this is real-life 

data(307). Whilst others have been able to show an improvement in QOL with DMF 

as measured by SF-36(308), I was unable to replicate this finding.           
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The small sample size and using only 3 timepoints limit the confidence in my 

selection of response markers and estimation of responses.   Further confirmatory 

work is needed.  However, I attempted to reduce the impact of these factors by 

increasing the rigor of my statistical analysis (i.e. performing leave-one-out cross 

validation and a permutation analysis). The use of a control group at matching 

timepoints allowed us to compare findings in the patients with those in a healthy 

population over time. I also minimised the impact of artefacts arising from ‘batch’ 

effects, by sequencing all samples at the same time and in the same sequencing 

facility. Without an independent replication cohort, I was unable to test the predictive 

power of my findings formally. These could be tested in a future cohort using a 

regression model developed using my pilot findings as the training dataset. 

 

It is unclear what biological differences exist between the responder and non-

responder groups that may account for their differing response to DMF. Indeed, it 

may also be the case that they represent different subtypes or phenotypes of RRMS 

that have yet to be elucidated. I believe the latter explanation is less likely as there 

was consistently very little difference in differentially expressed genes between these 

two groups at all timepoints. Given the lack of a unique mechanism of action for 

DMF, it is difficult to predict the underlying reason why only a subset of patients 

seemed to respond the medication. If my findings were replicated in a much larger 

cohort, one could look for genetic variants that may be different between responders 

and non-responders potentially within transcription sites already known to be altered 

by DMF.  
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In summary, I have provided evidence that DMF can alter the short term 

transcriptome profiles in a sub-group of MS patients and that these changes are 

consistent with current hypotheses of major mechanisms of action of DMF.  My 

results suggest that DMF enhances immune homeostasis after “normalising” gene 

expression in the PBMC. To my knowledge, this stabilising effect of DMF on gene 

expression has not been described elsewhere. If replicated, my results may have 

implications for the use of DMF in other inflammatory conditions or more 

generally(309, 310). However, my work also raises questions about the biological 

differences between the responder and non-responder groups that may account for 

their differing response to DMF.  One approach to explore this could involve 

replicating my findings in a larger cohort, whilst also identifying genetic variants that 

are different between responders and non-responders in transcription sites modulated 

by DMF. 
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Chapter 6. Summary and Future Directions 

 

 
The landscape for treating RRMS has evolved to such an extent over the last twenty 

years that it is now urgent to identify methods to stratify patients to a treatment that is 

likely to provide the greatest efficacy whilst avoiding unwanted side effects and 

adverse events. For the healthcare payer, there is also the added incentive of cost 

efficiency given that all of these DMTs are very expensive.  

 

The MS community is moving towards an approach established by the rheumatology 

community for the treatment of rheumatoid arthritis (RA)(311). This can be described 

as a ‘treat early, treat aggressively’ mindset. However, the fundamental limitation of 

this approach is the lack of any validated early predictive measures of disease activity 

in individual patients. In the absence of these, we rely on monitoring traditional 

clinical and radiological measures of disease activity which take time to evolve. The 

‘treat-to-target’ approach in RA has similar difficulties; DMARDS for RA have 

similar efficacies at a population level and there are no approved biomarkers to 

appropriately select the best medicine(312). The problem is complex not just because 

of patient heterogeneity, but because medications may act on common pathways but 

at different levels(313).  

 

In the context of MS, the challenges posed by the range of medicines is greater. We 

know that certain medications, such as alemtuzumab work preferentially on CD-52 T 

cells, whereas ocrelizumab is a monoclonal antibody targeting CD20 on B -

lymphocytes. Our limited understanding of the subtypes of MS (both on a molecular 

and a clinical level) is perhaps the main reason why we are unable to accurately 
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stratify patients to an appropriate medication. It is possible there are subtypes of MS 

that are predominantly T-cell or B-cell mediated. We have evidence from experience 

with other DMTs in MS that certain patients are indeed less likely to respond to some 

medications, e.g., a subset of patients on Beta-Interferon will develop neutralising 

antibodies that reduce the efficacy of the medication(314, 315). Stratification for risk 

of adverse events already is a part of routine management of RRMS patients. We 

closely monitor patients on natalizumab for the risk of developing PML which can, to 

some extent be predicted based on antibody levels to JC virus, duration of treatment 

and previous exposure to other DMTs(29).     

 

With these examples in mind, the main aim of this study was to determine whether in 

MS patients starting DMF, gene expression and metabolite changes associated with 

drug action at 6 weeks could explain the clinical and radiological response at 15 

months. I also aimed to use this information to better understand how the circulating 

immune cell responses in MS patients may differ from healthy controls and to further 

understand the mechanism of action of DMF.  

 
 
 
Strengths of this Study 
 
 
In this study, I was able to confirm that gene expression changes in PBMC are present 

in MS patients compared to controls. These genes are enriched for inflammatory 

pathways. Furthermore, I was able to demonstrate robust transcriptomic responses to 

DMF. Adding to prior literature, these support roles for NFkB and Nrf2 in the 

mechanism of action of DMF. I also identified a number of novel RNA and small 

RNA species that were differentially expressed following short-term administration of 
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DMF and which are also altered in MS patients compared to controls. This is 

important as it strengthens the hypothesis that gene expression changes are relevant to 

MS disease course and that these can be modulated by DMT.  

 

With respect to the main aim of this study, I identified that in medium-term responder 

patients, there was a robust short-term response to DMF that was not found in non-

responders. Furthermore, this response was also associated with a longer-term 

stabilisation of gene expression which was not observed in non-responders. The 

robust response to DMF in responders was associated with lack of apparent further 

changes suggesting a stabilisation of gene expression. This gene expression response 

model now needs prospective testing to assess its positive and negative predictive 

power.  

 

Using a novel NMR-based lipoprotein assay I was able to identify a new subtype of 

lipoproteins (VLDL) elevated in MS patients and correlated with disability as 

measured by EDSS. I also found evidence for raised triacylglycerols in the MS 

patients compared to controls using mass spectrometry based metabolomics-assays. 

Furthermore, I was able to describe novel associations between TCA cycle 

intermediates succinylcarnitine and methyl succinylcarnitine and DMF. Using 

pairwise correlation techniques, these metabolic changes were associated with 

differences in the expression of genes and small RNAs of interest. My observations 

may extend understanding of the mechanism of action of DMF: the correlation 

between DMF and 1-methylnicotinamide particularly should also be further explored 

given the potential anti-inflammatory properties of this molecule(279, 281).  
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Challenges of this Study 

In order to fulfil the potential of personalised medicine, it will be essential to 

understand the different phenotypes that exist within the MS syndrome. Using this 

approach, it is more likely that a treatment will target an individuals’ unique 

pathology. The paradigm of this model is in the field of oncology. For example 

individualised, genetic-based diagnoses have had considerable impact in the licensing 

of imatinib for Philadelphia chromosome-positive chronic myeloid leukaemia and 

trastuzumab in HER2-positive breast cancer(79). MS is not a purely genetic disease 

and thus this approach poses a greater challenge. 

 

In this study, whilst I identified a sub-group of patients who appeared to respond to 

the medication in the medium-term, there were no population differences on a 

transcriptome level between these patients and non-responders either before or after 

starting DMF. This was evident in both the differential expression analyses and also 

in the unbiased data-reduction techniques that I employed. Indeed, whilst there are a 

number of underlying genetic variants that increase the risk of MS, the odds ratios for 

individual risk variants are extremely modest and there are only a small proportion of 

genes with associations to MS(316). In addition, there are no known genetic 

discriminants for subtypes of MS. However, it is widely accepted that the 

transcriptome can also be affected by the environment which is known to contribute 

to MS risk susceptibility(61). Even within this limited study, I identified hundreds of 

genes that appeared to change in response to 6-weeks on a new medication. The 

interpretation of a lack of population heterogeneity on a transcriptome level is likely 

to be complex. Gene expression changes are clearly dynamic; they may be inherently 
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too predisposed to noise and environmental fluctuation in vivo to derive any 

meaningful discriminatory variables with the limited sampling employed here.  

 

Whilst I attempted to identify possible genetic variants that may have been 

differentially expressed post treatment, thus potentially explaining population 

differences within the study cohort, this was ultimately unsuccessful. The main reason 

for this was that I could not infer the genotype of intronic sequences using RNA-Seq. 

The majority of these variants are in intronic regions which would not have been 

sequenced using this technology(317). In future studies, it would be advisable to also 

undertake genotype sequencing, potentially using the “ImmunoChip, an efficient 

genotyping platform for loci associated with autoimmune diseases(301).     

 

Alongside these challenges included the choice of cell for this study. Given that this 

was a pilot, I chose all PBMC with the intention to validate any interesting findings in 

future work using a more targeted single cell type approach. This is now a possibility 

with a wide range of resources available that can help identify cell specific gene 

expression(318). Furthermore, the recent developments in single-cell RNA-Seq will 

eliminate further noise. Given that one of my genes of interest, KIR3DL2 is highly 

expressed in natural killer cells, this work has identified a specific cell subset for 

future analysis.      

 

As part of my metabolomic profiling, I was able to derive concentrations of the active 

component of DMF in my patients. This was helpful for finding correlates of the 

medication that may relate to its downstream mechanism of action or to known 

adverse effects. Of a total of 27 patients assayed, only 12 appeared to have potentially 
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therapeutic concentrations of the drug in their plasma at the time of sampling. Given 

the short terminal half-life of monomethylfumarate (approximately 1 hour), no 

circulating evidence of the drug would be expected at 24 hours(319). Consequently, it 

is difficult to determine whether those patients with unmeasurable concentrations of 

MMF had been non-adherent over a longer period than just the last dose of 

medication.  

 

A singular interpretation of this finding is difficult; mechanisms are likely to be 

multifactorial. We know that adherence to medications is generally low, and in 

particular for patients with chronic conditions(320) or where the medications are 

associated with adverse events. However, oral medications tend to be associated with 

better adherence(321) relative to injectables and adherence in general for MS has 

previously been reported in some cases as high(322).  

 

Nevertheless, it is interesting to note that amongst those patients with high 

concentrations of MMF, 67% were responders as defined by the composite measure 

NEDA-4. In those with low concentrations, only 21% were responders. As such, 

perhaps the greatest predictor of a medium-term response to DMF was concentration 

of the drug at 6-weeks, i.e., people who adhere to the prescribed medicine dosing 

regime are more than 3-times more likely to benefit than those who do not.  

 

A final challenge encountered during this study was the relative paucity of techniques 

available currently to integrate transcriptome and metabolomic data. A fundamental 

challenge is that no transcript can be directly mapped to a specific metabolite in the 

same way as a gene can be mapped to a protein(323). The statistical tools that are 
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available for data integration can be broadly defined as correlation-based, 

multivariate-based or pathway based. By demonstrating differences between patients 

and controls (Chapter 3) and also the pharmacodynamics effects of DMF (Chapter 4) 

using transcriptome, metabolome and cytokine datasets, I took a more “conceptual” 

integration approach to the data. This undoubtedly has many limitations and will miss 

associations that could only have been found if the datasets had been integrated 

together.   

 

In order to address this issue, I also used pairwise correlation-based approaches to 

integrate my RNA and small RNA data with metabolomics. This is a form of 

statistical integration. One of the limitations was that metabolites were being 

measured from a different source (plasma) to the transcripts (PBMCs). Furthermore, 

this correlation-based approach does not take into account the timescale of changes; 

metabolite and transcriptome changes likely occur over different timescales. To limit 

any source of error due to this limitation, I could have considered obtaining a time 

course of samples for each omics and aligning these using techniques such as 

Dynamic Time Warping(324). However, despite these limitations, I was able to show 

high correlations between RNA and small RNA of interest and metabolites that were 

previously identified as altered in response to DMF. I was also able to minimise batch 

effects as these samples were extracted at the same time and from the same patients 

(i.e. a replicate-matched study).  

 

A final integration approach uses pathway analysis where over-represented pathways 

from different ‘omics approaches are identified. The advantage of this approach is 

discovery of pathways that may only become over-represented when both approaches 
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are combined and the fact it is a biologically informed data reduction method. The 

limitation of this approach is that it is based on an imperfect model. Using this 

approach I was able to confirm a role for IL-4 in the pharmacodynamic effect of 

DMF, and I was also able to identify STK11 as potentially important gene in the 

pathogenesis of MS.       

 

Undoubtedly, in the future, as multi-omics studies become less expensive, tools 

enabling meaningful integration of omics will develop. Indeed, it may be that such 

tools integrate different statistical approaches and can transform these into functional 

networks based on pathway analysis. Such networks will be highly useful for the 

development of predictive tools for personalised medicine.   

 

Limitations of this Study 

One of the main limitations of this study was the small sample size; which 

undoubtedly reduced the statistical power of findings. This is a significant issue given 

the high probability of false positive results (6) in genetic based studies and also the 

low levels of replication that are commonly seen in biomedical studies in general 

(7,8). Small sample sizes are problematic because the chances of observing a true 

effect are less likely and the risk of a false positive rises. This may occur independent 

of or secondary to inherent study biases(248).  

 

A study with low power is more likely to generate false negative results. For example, 

a study with a power of 30% will only identify 30% of genuine non-null events. In the 

context of NGS studies, power is even more problematic because it is often governed 

by ‘non-scientific’ limitations such as the cost of the technology itself.  When 
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deciding on the sample size for a RNA-Seq differential expression analysis, a balance 

must be achieved between desired power and controlling for an appropriate error rate, 

given the thousands of genes being multiple tested simultaneously.  

 

There are no clear recommendations for sample size in RNA-Seq studies. One study 

sought to examine the number of biological replicates needed and recommended at 

least six replicates per condition or 12 to reduce the chances of missing differentially 

expressed genes(325).  However, this recommendation was based on a single study 

and may not be applicable to other study designs. A further study compared the 

different software tools available to assist in determining a sample size but found they 

produced widely differing results; and also took into account different parameters. 

The conclusion of this study is that pilot data should be used to determine future 

sample sizes(326). The findings of this study are particularly relevant to my study in 

that when using different alignment softwares, there was significant variation in the 

differentially expressed genes that were identified.  

 

Variability can occur in the processing of RNA-Seq data. The earliest source of this 

may be in sample preparation where sequencing errors and bias may arise from 

contamination or sample degradation during isolation and preservation. In order to 

reduce the probability of this, I isolated PBMCs and performed RNA isolation on 

fresh samples on the day of collection. Furthermore, to reduce the chances of batch 

effects, all samples were library prepared and sequenced in the same facility at the 

same time. From visual inspection of the data using principal component analysis, 

there was no evidence of a batch effect.  
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I tested the variance in differentially expressed genes using technical replicates that 

were aligned and sequenced using different software and sequencing facilities 

respectively. When using different alignment approaches the consistency between the 

replicates was in the order of 45%. In order to determine whether the discrepancy 

resulted from different alignment software or from sequencing and library 

preparation, I repeated the bioinformatics steps identically. The result of this was a 

slight improvement in consistency (55%), albeit good consistency (80%) for the most 

differentially expressed genes. The cause of this variance is likely to be multi-

factorial. Variance can occur during library preparation and sequencing. The errors in 

library preparation may have occurred during fragmentation(327), amplification(256) 

or at the barcoding stage(258). With respect to sequencing, Illumina(259) has 

sequence-specific error profiles and differing sequence depth can have an impact on 

the data integrity(255). It was also the case that those genes which were not 

consistently differentially expressed had lower mean counts and thus a statistically 

significant result for differential expression was less likely to be reproducible.  

 
 
In order to have improved the reliability of my study, I could have sequenced samples 

on different platforms and integrated results that demonstrated concordance; termed 

cross-platform replication(328). This would have reduced the number of potentially 

false positive variants however could also have introduced different biases inherent in 

the respective sequencing technologies causing false negative results to occur.     

 

Whilst this study contained a healthy control population who underwent sample 

collection at the same time as RRMS patients, I did not have a control population of 

randomised, untreated RRMS patients who were followed prospectively. The reason 
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for this is the ethical implications associated with not treating a RRMS population 

when a number of treatments are now available. For the same reason, it is no longer 

ethical to conduct placebo-controlled clinical trials in RRMS patients who would 

otherwise be eligible for treatment(329). Such a control population would have been 

most helpful to compare with non-responders as one would have expected similar 

changes both in the short-term following commencement of DMF and also in the 

medium-term. If consistent, this data could have helped support the concept of high 

levels of gene expression changes over time in MS patients compared to controls.  

 

A further major limitation of my pilot study was the lack of a replication cohort. 

Whilst I was able to provide a replication for my metabolomics findings, I was not 

able to do so for the gene expression data due to time constraints. Replication of 

studies is an essential component of study validation. In the context of MS biomarker 

research, most biomarkers have failed replication with only 5% being successfully 

validated(73). This highlights the importance of study replication to increase the 

confidence in findings.   

 

In this study, my main metabolomic findings were replicated in a sub-group of my 

patients. In addition, I was able to demonstrate successful reproducibility using 

technical replicates in my discovery cohort but assayed at a different facility. In the 

context of my gene expression study, whilst I did not have a replication cohort, I 

performed a number of statistical analyses to reduce the chances of results driven by 

outliers. These included permutation analyses and leave-one-out cross validation. I 

was also keen to demonstrate patterns of changes over time as well as changes in 

specific genes; the latter more prone to false positives. One approach I could have 
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used to validate my species of interest would have been quantitative PCR which is an 

essential component of validation of RNA-Seq findings and is the most obvious next 

step for future work.  

 

In conclusion, my findings with respect to the mechanism of action of DMF on TCA 

cycle metabolites are novel and help to better understand the likely heterogeneous 

effects of this medication. It would be very interesting to determine whether the 

correlates of DMF that I found in the metabolome (methyl-succinylcarnitine and 1-

methylnicotinamide) are therapeutic in themselves in an animal model of MS.  

 

My novel finding of an association between VLDLs and MS sheds further light on the 

association between lipid dysregulation and MS. It has implications for the testing of 

lipid-lowering drugs in the treatment of MS, which has until now been restricted to 

patients with progressive MS(202).   

 

Perhaps the most interesting and original preliminary result to arise from this study 

was the apparent relative stabilisation of gene expression over time, which I observed 

in the responder group over the medium term. I termed this ‘gene expression 

homeostasis’. DMF is known to have anti-oxidant properties and we know from other 

conditions (as well as MS(330)) that oxidative stress can result in neurodegeneration 

and abnormal gene expression(331). Furthermore, oxidative stress is known to 

regulate gene expression of a number of inflammatory pathways(332) and has a role 

in ageing(333). Whilst there is a wealth of literature on specific gene expression 

changes that may arise as a result of oxidative stress and which, to some extent, may 

be countered by administration of DMF, this concept of gene expression homeostasis 
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has not been previously described. In order to provide greater credibility to this 

theory, it would of course be necessary to replicate the findings in a much larger 

cohort. Furthermore, it would be necessary to demonstrate maintenance of such an 

effect over a longer period of time. However, in the context of MS treatment (and in 

the current absence of treatments that can reverse disability), the ability to maintain 

stability (or remission) is in itself the definition an effective treatment. In this study, I 

have provided evidence of such stability at least on the transcriptome level in a subset 

of patients who responded to DMF as defined by the composite outcome measure 

NEDA-4. It is important to note that stabilising the transcriptome in such a way has 

implications for the repurposing of DMF for other conditions characterised by 

aberrant gene expression. This may include other inflammatory conditions, cancer or 

even ageing-related disorders. Research into the use of DMF for such conditions is 

already ongoing(309).    

 

This pilot study aimed to identify short term dynamic transcriptomic and metabolomic 

changes in MS patients that are associated with longer term response to DMF. I 

successfully identified patterns of expression of genes, as well as specific genes and 

metabolites that were associated with such a response in a subset of patients. The true 

source of variability between responder and non-responder groups could not be 

identified on the basis of the subjects’ individual transcriptomes. In order to determine 

the true predictive value of my findings, it would be necessary to test them 

prospectively on a new cohort of patients. Furthermore, it would be necessary to 

perform this study over a longer period of time to determine the true predictability 

over the long term. I identified an associated stabilisation of gene expression within 

my responder group. Gene expression homeostasis is a rather novel pharmacological 
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concept that may have implications for the use of DMF for other diseases and 

conditions. The single most important aspect of this study to pursue would be the 

development of a modelling approach using the RNA-Seq findings to determine the 

true predictive power of my findings. If these were confirmed and validated in a 

separate dataset, it would indeed be possible to predict a patients’ medium term 

response to DMF based on gene expression changes within 6 weeks of onset of the 

medication. This would be a potentially practical example of personalised medicine 

for stratification of patients that is associated with a specific treatment in MS. Whilst 

the specific markers may be different with other drugs, the approach can be 

generalised for other medications used in MS. This could contribute meaningfully to 

improved outcomes for patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 171!

References 

 

1.! Confavreux!C,!Vukusic!S.!The!clinical!course!of!multiple!sclerosis.!Handb!

Clin!Neurol.!2014;122:343I69.!

2.! Inusah!S,!Sormani!MP,!Cofield!SS,!Aban!IB,!Musani!SK,!

Srinivasasainagendra!V,!et!al.!Assessing!changes!in!relapse!rates!in!multiple!

sclerosis.!Multiple!sclerosis.!2010;16(12):1414I21.!

3.! Amato!MP,!Zipoli!V,!Goretti!B,!Portaccio!E,!De!Caro!MF,!Ricchiuti!L,!et!al.!

Benign!multiple!sclerosis:!cognitive,!psychological!and!social!aspects!in!a!clinical!

cohort.!Journal!of!neurology.!2006;253(8):1054I9.!

4.! Calabrese!M,!Favaretto!A,!Poretto!V,!Romualdi!C,!Rinaldi!F,!Mattisi!I,!et!al.!

Low!degree!of!cortical!pathology!is!associated!with!benign!course!of!multiple!

sclerosis.!Multiple!sclerosis.!2013;19(7):904I11.!

5.! Correale!J,!Ysrraelit!MC,!Fiol!MP.!Benign!multiple!sclerosis:!does!it!exist?!

Curr!Neurol!Neurosci!Rep.!2012;12(5):601I9.!

6.! Hawkins!SA,!McDonnell!GV.!Benign!multiple!sclerosis?!Clinical!course,!

long!term!follow!up,!and!assessment!of!prognostic!factors.!Journal!of!neurology,!

neurosurgery,!and!psychiatry.!1999;67(2):148I52.!

7.! Cotsapas!C,!Hafler!DA.!ImmuneImediated!disease!genetics:!the!shared!

basis!of!pathogenesis.!Trends!Immunol.!2013;34(1):22I6.!

8.! Howell!OW,!Reeves!CA,!Nicholas!R,!Carassiti!D,!Radotra!B,!Gentleman!SM,!

et!al.!Meningeal!inflammation!is!widespread!and!linked!to!cortical!pathology!in!

multiple!sclerosis.!Brain!:!a!journal!of!neurology.!2011;134(Pt!9):2755I71.!

9.! Frischer!JM,!Bramow!S,!DalIBianco!A,!Lucchinetti!CF,!Rauschka!H,!

Schmidbauer!M,!et!al.!The!relation!between!inflammation!and!

neurodegeneration!in!multiple!sclerosis!brains.!Brain!:!a!journal!of!neurology.!

2009;132(Pt!5):1175I89.!

10.! Magliozzi!R,!Howell!OW,!Reeves!C,!Roncaroli!F,!Nicholas!R,!Serafini!B,!et!

al.!A!Gradient!of!neuronal!loss!and!meningeal!inflammation!in!multiple!sclerosis.!

Annals!of!neurology.!2010;68(4):477I93.!

11.! Serafini!B,!Rosicarelli!B,!Magliozzi!R,!Stigliano!E,!Aloisi!F.!Detection!of!

ectopic!BIcell!follicles!with!germinal!centers!in!the!meninges!of!patients!with!

secondary!progressive!multiple!sclerosis.!Brain!Pathol.!2004;14(2):164I74.!

12.! Polman!CH,!Reingold!SC,!Banwell!B,!Clanet!M,!Cohen!JA,!Filippi!M,!et!al.!

Diagnostic!criteria!for!multiple!sclerosis:!2010!revisions!to!the!McDonald!

criteria.!Annals!of!neurology.!2011;69(2):292I302.!

13.! Uzawa!A,!Mori!M,!Hayakawa!S,!Masuda!S,!Kuwabara!S.!Different!responses!

to!interferon!betaI1b!treatment!in!patients!with!neuromyelitis!optica!and!

multiple!sclerosis.!European!journal!of!neurology.!2010;17(5):672I6.!

14.! Takahashi!T,!Fujihara!K,!Nakashima!I,!Misu!T,!Miyazawa!I,!Nakamura!M,!et!

al.!AntiIaquaporinI4!antibody!is!involved!in!the!pathogenesis!of!NMO:!a!study!on!

antibody!titre.!Brain!:!a!journal!of!neurology.!2007;130(Pt!5):1235I43.!

15.! Kitley!J,!Leite!MI,!Nakashima!I,!Waters!P,!McNeillis!B,!Brown!R,!et!al.!

Prognostic!factors!and!disease!course!in!aquaporinI4!antibodyIpositive!patients!

with!neuromyelitis!optica!spectrum!disorder!from!the!United!Kingdom!and!

Japan.!Brain!:!a!journal!of!neurology.!2012;135(Pt!6):1834I49.!



! 172!

16.! Nakashima!I,!Fujihara!K,!Miyazawa!I,!Misu!T,!Narikawa!K,!Nakamura!M,!et!

al.!Clinical!and!MRI!features!of!Japanese!patients!with!multiple!sclerosis!positive!

for!NMOIIgG.!Journal!of!neurology,!neurosurgery,!and!psychiatry.!

2006;77(9):1073I5.!

17.! Ramanathan!S,!Dale!RC,!Brilot!F.!AntiIMOG!antibody:!The!history,!clinical!

phenotype,!and!pathogenicity!of!a!serum!biomarker!for!demyelination.!

Autoimmunity!reviews.!2016;15(4):307I24.!

18.! McGraw!CA,!Lublin!FD.!Interferon!beta!and!glatiramer!acetate!therapy.!

Neurotherapeutics!:!the!journal!of!the!American!Society!for!Experimental!

NeuroTherapeutics.!2013;10(1):2I18.!

19.! Trojano!M,!Pellegrini!F,!Paolicelli!D,!Fuiani!A,!Zimatore!GB,!Tortorella!C,!et!

al.!RealIlife!impact!of!early!interferon!beta!therapy!in!relapsing!multiple!

sclerosis.!Annals!of!neurology.!2009;66(4):513I20.!

20.! Goodin!DS,!Reder!AT,!Ebers!GC,!Cutter!G,!Kremenchutzky!M,!Oger!J,!et!al.!

Survival!in!MS:!a!randomized!cohort!study!21!years!after!the!start!of!the!pivotal!

IFNbetaI1b!trial.!Neurology.!2012;78(17):1315I22.!

21.! Cohen!JA,!Barkhof!F,!Comi!G,!Hartung!HP,!Khatri!BO,!Montalban!X,!et!al.!

Oral!fingolimod!or!intramuscular!interferon!for!relapsing!multiple!sclerosis.!The!

New!England!journal!of!medicine.!2010;362(5):402I15.!

22.! Ransohoff!RM.!Natalizumab!for!multiple!sclerosis.!The!New!England!

journal!of!medicine.!2007;356(25):2622I9.!

23.! Kappos!L,!Radue!EW,!O'Connor!P,!Polman!C,!Hohlfeld!R,!Calabresi!P,!et!al.!

A!placeboIcontrolled!trial!of!oral!fingolimod!in!relapsing!multiple!sclerosis.!The!

New!England!journal!of!medicine.!2010;362(5):387I401.!

24.! Yednock!TA,!Cannon!C,!Fritz!LC,!SanchezIMadrid!F,!Steinman!L,!Karin!N.!

Prevention!of!experimental!autoimmune!encephalomyelitis!by!antibodies!

against!alpha!4!beta!1!integrin.!Nature.!1992;356(6364):63I6.!

25.! Rudick!RA,!Stuart!WH,!Calabresi!PA,!Confavreux!C,!Galetta!SL,!Radue!EW,!

et!al.!Natalizumab!plus!interferon!betaI1a!for!relapsing!multiple!sclerosis.!The!

New!England!journal!of!medicine.!2006;354(9):911I23.!

26.! Polman!CH,!O'Connor!PW,!Havrdova!E,!Hutchinson!M,!Kappos!L,!Miller!

DH,!et!al.!A!randomized,!placeboIcontrolled!trial!of!natalizumab!for!relapsing!

multiple!sclerosis.!The!New!England!journal!of!medicine.!2006;354(9):899I910.!

27.! LangerIGould!A,!Atlas!SW,!Green!AJ,!Bollen!AW,!Pelletier!D.!Progressive!

multifocal!leukoencephalopathy!in!a!patient!treated!with!natalizumab.!The!New!

England!journal!of!medicine.!2005;353(4):375I81.!

28.! Ransohoff!RM.!PML!risk!and!natalizumab:!more!questions!than!answers.!

The!Lancet!Neurology.!2010;9(3):231I3.!

29.! Bloomgren!G,!Richman!S,!Hotermans!C,!Subramanyam!M,!Goelz!S,!

Natarajan!A,!et!al.!Risk!of!natalizumabIassociated!progressive!multifocal!

leukoencephalopathy.!The!New!England!journal!of!medicine.!

2012;366(20):1870I80.!

30.! Kappos!L,!Antel!J,!Comi!G,!Montalban!X,!O'Connor!P,!Polman!CH,!et!al.!Oral!

fingolimod!(FTY720)!for!relapsing!multiple!sclerosis.!The!New!England!journal!

of!medicine.!2006;355(11):1124I40.!

31.! Gold!R,!Kappos!L,!Arnold!DL,!BarIOr!A,!Giovannoni!G,!Selmaj!K,!et!al.!

PlaceboIcontrolled!phase!3!study!of!oral!BGI12!for!relapsing!multiple!sclerosis.!

The!New!England!journal!of!medicine.!2012;367(12):1098I107.!



! 173!

32.! Fox!RJ,!Miller!DH,!Phillips!JT,!Hutchinson!M,!Havrdova!E,!Kita!M,!et!al.!

PlaceboIcontrolled!phase!3!study!of!oral!BGI12!or!glatiramer!in!multiple!

sclerosis.!The!New!England!journal!of!medicine.!2012;367(12):1087I97.!

33.! Kappos!L,!Gold!R,!Miller!DH,!MacManus!DG,!Havrdova!E,!Limmroth!V,!et!

al.!Effect!of!BGI12!on!contrastIenhanced!lesions!in!patients!with!relapsingII

remitting!multiple!sclerosis:!subgroup!analyses!from!the!phase!2b!study.!

Multiple!sclerosis.!2012;18(3):314I21.!

34.! Cohen!JA,!Coles!AJ,!Arnold!DL,!Confavreux!C,!Fox!EJ,!Hartung!HP,!et!al.!

Alemtuzumab!versus!interferon!beta!1a!as!firstIline!treatment!for!patients!with!

relapsingIremitting!multiple!sclerosis:!a!randomised!controlled!phase!3!trial.!

Lancet.!2012;380(9856):1819I28.!

35.! Coles!AJ,!Twyman!CL,!Arnold!DL,!Cohen!JA,!Confavreux!C,!Fox!EJ,!et!al.!

Alemtuzumab!for!patients!with!relapsing!multiple!sclerosis!after!diseaseI

modifying!therapy:!a!randomised!controlled!phase!3!trial.!Lancet.!

2012;380(9856):1829I39.!

36.! Investigators!CT,!Coles!AJ,!Compston!DA,!Selmaj!KW,!Lake!SL,!Moran!S,!et!

al.!Alemtuzumab!vs.!interferon!betaI1a!in!early!multiple!sclerosis.!The!New!

England!journal!of!medicine.!2008;359(17):1786I801.!

37.! Linker!RA,!Lee!DH,!Ryan!S,!van!Dam!AM,!Conrad!R,!Bista!P,!et!al.!Fumaric!

acid!esters!exert!neuroprotective!effects!in!neuroinflammation!via!activation!of!

the!Nrf2!antioxidant!pathway.!Brain!:!a!journal!of!neurology.!2011;134(Pt!

3):678I92.!

38.! Scannevin!RH,!Chollate!S,!Jung!MY,!Shackett!M,!Patel!H,!Bista!P,!et!al.!

Fumarates!promote!cytoprotection!of!central!nervous!system!cells!against!

oxidative!stress!via!the!nuclear!factor!(erythroidIderived!2)Ilike!2!pathway.!J!

Pharmacol!Exp!Ther.!2012;341(1):274I84.!

39.! Gerdes!S,!Shakery!K,!Mrowietz!U.!Dimethylfumarate!inhibits!nuclear!

binding!of!nuclear!factor!kappaB!but!not!of!nuclear!factor!of!activated!T!cells!and!

CCAAT/enhancer!binding!protein!beta!in!activated!human!T!cells.!Br!J!Dermatol.!

2007;156(5):838I42.!

40.! Chen!H,!Assmann!JC,!Krenz!A,!Rahman!M,!Grimm!M,!Karsten!CM,!et!al.!

Hydroxycarboxylic!acid!receptor!2!mediates!dimethyl!fumarate's!protective!

effect!in!EAE.!The!Journal!of!clinical!investigation.!2014;124(5):2188I92.!

41.! Huang!H,!Taraboletti!A,!Shriver!LP.!Dimethyl!fumarate!modulates!

antioxidant!and!lipid!metabolism!in!oligodendrocytes.!Redox!Biol.!2015;5:169I

75.!

42.! Nibbering!PH,!Thio!B,!Zomerdijk!TP,!Bezemer!AC,!Beijersbergen!RL,!van!

Furth!R.!Effects!of!monomethylfumarate!on!human!granulocytes.!J!Invest!

Dermatol.!1993;101(1):37I42.!

43.! Litjens!NH,!Burggraaf!J,!van!Strijen!E,!van!Gulpen!C,!Mattie!H,!Schoemaker!

RC,!et!al.!Pharmacokinetics!of!oral!fumarates!in!healthy!subjects.!Br!J!Clin!

Pharmacol.!2004;58(4):429I32.!

44.! Venci!JV,!Gandhi!MA.!Dimethyl!fumarate!(Tecfidera):!a!new!oral!agent!for!

multiple!sclerosis.!Ann!Pharmacother.!2013;47(12):1697I702.!

45.! Schilling!S,!Goelz!S,!Linker!R,!Luehder!F,!Gold!R.!Fumaric!acid!esters!are!

effective!in!chronic!experimental!autoimmune!encephalomyelitis!and!suppress!

macrophage!infiltration.!Clin!Exp!Immunol.!2006;145(1):101I7.!

46.! Schimrigk!S,!Brune!N,!Hellwig!K,!Lukas!C,!Bellenberg!B,!Rieks!M,!et!al.!Oral!

fumaric!acid!esters!for!the!treatment!of!active!multiple!sclerosis:!an!openIlabel,!



! 174!

baselineIcontrolled!pilot!study.!European!journal!of!neurology.!2006;13(6):604I

10.!

47.! Kappos!L,!Gold!R,!Miller!DH,!Macmanus!DG,!Havrdova!E,!Limmroth!V,!et!

al.!Efficacy!and!safety!of!oral!fumarate!in!patients!with!relapsingIremitting!

multiple!sclerosis:!a!multicentre,!randomised,!doubleIblind,!placeboIcontrolled!

phase!IIb!study.!Lancet.!2008;372(9648):1463I72.!

48.! Duffy!S,!So!A,!Murphy!TH.!Activation!of!endogenous!antioxidant!defenses!

in!neuronal!cells!prevents!free!radicalImediated!damage.!Journal!of!

neurochemistry.!1998;71(1):69I77.!

49.! Murphy!TH,!Yu!J,!Ng!R,!Johnson!DA,!Shen!H,!Honey!CR,!et!al.!Preferential!

expression!of!antioxidant!response!element!mediated!gene!expression!in!

astrocytes.!Journal!of!neurochemistry.!2001;76(6):1670I8.!

50.! Morris!G,!Anderson!G,!Dean!O,!Berk!M,!Galecki!P,!MartinISubero!M,!et!al.!

The!glutathione!system:!a!new!drug!target!in!neuroimmune!disorders.!Molecular!

neurobiology.!2014;50(3):1059I84.!

51.! Vandermeeren!M,!Janssens!S,!Wouters!H,!Borghmans!I,!Borgers!M,!

Beyaert!R,!et!al.!Dimethylfumarate!is!an!inhibitor!of!cytokineIinduced!nuclear!

translocation!of!NFIkappa!B1,!but!not!RelA!in!normal!human!dermal!fibroblast!

cells.!J!Invest!Dermatol.!2001;116(1):124I30.!

52.! Loewe!R,!Pillinger!M,!de!Martin!R,!Mrowietz!U,!Groger!M,!Holnthoner!W,!

et!al.!Dimethylfumarate!inhibits!tumorInecrosisIfactorIinduced!CD62E!

expression!in!an!NFIkappa!BIdependent!manner.!J!Invest!Dermatol.!

2001;117(6):1363I8.!

53.! Wilms!H,!Sievers!J,!Rickert!U,!RostamiIYazdi!M,!Mrowietz!U,!Lucius!R.!

Dimethylfumarate!inhibits!microglial!and!astrocytic!inflammation!by!

suppressing!the!synthesis!of!nitric!oxide,!ILI1beta,!TNFIalpha!and!ILI6!in!an!inI

vitro!model!of!brain!inflammation.!Journal!of!neuroinflammation.!2010;7:30.!

54.! Ockenfels!HM,!KeimIMaas!C,!Funk!R,!Nussbaum!G,!Goos!M.!Ethanol!

enhances!the!IFNIgamma,!TGFIalpha!and!ILI6!secretion!in!psoriatic!coIcultures.!

Br!J!Dermatol.!1996;135(5):746I51.!

55.! Stoof!TJ,!Flier!J,!Sampat!S,!Nieboer!C,!Tensen!CP,!Boorsma!DM.!The!

antipsoriatic!drug!dimethylfumarate!strongly!suppresses!chemokine!production!

in!human!keratinocytes!and!peripheral!blood!mononuclear!cells.!Br!J!Dermatol.!

2001;144(6):1114I20.!

56.! Kent!DM,!Hayward!RA.!Limitations!of!applying!summary!results!of!clinical!

trials!to!individual!patients:!the!need!for!risk!stratification.!Jama.!

2007;298(10):1209I12.!

57.! Gafson!A,!Craner!MJ,!Matthews!PM.!Personalised!medicine!for!multiple!

sclerosis!care.!Multiple!sclerosis.!2016.!

58.! Fisniku!LK,!Brex!PA,!Altmann!DR,!Miszkiel!KA,!Benton!CE,!Lanyon!R,!et!al.!

Disability!and!T2!MRI!lesions:!a!20Iyear!followIup!of!patients!with!relapse!onset!

of!multiple!sclerosis.!Brain!:!a!journal!of!neurology.!2008;131(Pt!3):808I17.!

59.! Tintore!M,!Rovira!A,!Rio!J,!OteroIRomero!S,!Arrambide!G,!Tur!C,!et!al.!

Defining!high,!medium!and!low!impact!prognostic!factors!for!developing!

multiple!sclerosis.!Brain!:!a!journal!of!neurology.!2015;138(Pt!7):1863I74.!

60.! Tintore!M,!Rovira!A,!Arrambide!G,!Mitjana!R,!Rio!J,!Auger!C,!et!al.!

Brainstem!lesions!in!clinically!isolated!syndromes.!Neurology.!

2010;75(21):1933I8.!



! 175!

61.! Ascherio!A,!Munger!KL.!Environmental!risk!factors!for!multiple!sclerosis.!

Part!II:!Noninfectious!factors.!Annals!of!neurology.!2007;61(6):504I13.!

62.! Sawcer!S,!Franklin!RJ,!Ban!M.!Multiple!sclerosis!genetics.!The!Lancet!

Neurology.!2014;13(7):700I9.!

63.! Kappos!L,!Freedman!MS,!Polman!CH,!Edan!G,!Hartung!HP,!Miller!DH,!et!al.!

Effect!of!early!versus!delayed!interferon!betaI1b!treatment!on!disability!after!a!

first!clinical!event!suggestive!of!multiple!sclerosis:!a!3Iyear!followIup!analysis!of!

the!BENEFIT!study.!Lancet.!2007;370(9585):389I97.!

64.! Karim!ME,!Gustafson!P,!Petkau!J,!Zhao!Y,!Shirani!A,!Kingwell!E,!et!al.!

Marginal!structural!Cox!models!for!estimating!the!association!between!betaI

interferon!exposure!and!disease!progression!in!a!multiple!sclerosis!cohort.!

American!journal!of!epidemiology.!2014;180(2):160I71.!

65.! Zintzaras!E,!Doxani!C,!Mprotsis!T,!Schmid!CH,!Hadjigeorgiou!GM.!Network!

analysis!of!randomized!controlled!trials!in!multiple!sclerosis.!Clinical!

therapeutics.!2012;34(4):857I69!e9.!

66.! Kalincik!T,!Horakova!D,!Spelman!T,!Jokubaitis!V,!Trojano!M,!Lugaresi!A,!et!

al.!Switch!to!natalizumab!versus!fingolimod!in!active!relapsingIremitting!

multiple!sclerosis.!Annals!of!neurology.!2015;77(3):425I35.!

67.! Sominanda!A,!Hillert!J,!FogdellIHahn!A.!In!vivo!bioactivity!of!interferonI

beta!in!multiple!sclerosis!patients!with!neutralising!antibodies!is!titreI

dependent.!Journal!of!neurology,!neurosurgery,!and!psychiatry.!2008;79(1):57I

62.!

68.! Calabresi!PA,!Giovannoni!G,!Confavreux!C,!Galetta!SL,!Havrdova!E,!

Hutchinson!M,!et!al.!The!incidence!and!significance!of!antiInatalizumab!

antibodies:!results!from!AFFIRM!and!SENTINEL.!Neurology.!2007;69(14):1391I

403.!

69.! Sormani!MP,!Bruzzi!P.!MRI!lesions!as!a!surrogate!for!relapses!in!multiple!

sclerosis:!a!metaIanalysis!of!randomised!trials.!The!Lancet!Neurology.!

2013;12(7):669I76.!

70.! Disanto!G,!Adiutori!R,!Dobson!R,!Martinelli!V,!Dalla!Costa!G,!Runia!T,!et!al.!

Serum!neurofilament!light!chain!levels!are!increased!in!patients!with!a!clinically!

isolated!syndrome.!Journal!of!neurology,!neurosurgery,!and!psychiatry.!

2016;87(2):126I9.!

71.! Petzold!A.!The!prognostic!value!of!CSF!neurofilaments!in!multiple!

sclerosis!at!15Iyear!followIup.!Journal!of!neurology,!neurosurgery,!and!

psychiatry.!2015;86(12):1388I90.!

72.! Amor!S,!van!der!Star!BJ,!Bosca!I,!Raffel!J,!Gnanapavan!S,!Watchorn!J,!et!al.!

Neurofilament!light!antibodies!in!serum!reflect!response!to!natalizumab!

treatment!in!multiple!sclerosis.!Multiple!sclerosis.!2014;20(10):1355I62.!

73.! Kroksveen!AC,!Opsahl!JA,!Guldbrandsen!A,!Myhr!KM,!Oveland!E,!

Torkildsen!O,!et!al.!Cerebrospinal!fluid!proteomics!in!multiple!sclerosis.!

Biochimica!et!biophysica!acta.!2015;1854(7):746I56.!

74.! Ioannidis!JP.!Indirect!comparisons:!the!mesh!and!mess!of!clinical!trials.!

Lancet.!2006;368(9546):1470I2.!

75.! Spelman!T,!Kalincik!T,!Zhang!A,!Pellegrini!F,!Wiendl!H,!Kappos!L,!et!al.!

Comparative!efficacy!of!switching!to!natalizumab!in!active!multiple!sclerosis.!

Ann!Clin!Transl!Neurol.!2015;2(4):373I87.!



! 176!

76.! He!A,!Spelman!T,!Jokubaitis!V,!Havrdova!E,!Horakova!D,!Trojano!M,!et!al.!

Comparison!of!switch!to!fingolimod!or!interferon!beta/glatiramer!acetate!in!

active!multiple!sclerosis.!JAMA!neurology.!2015;72(4):405I13.!

77.! Trojano!M,!Tintore!M,!Montalban!X,!Hillert!J,!Kalincik!T,!Iaffaldano!P,!et!al.!

Treatment!decisions!in!multiple!sclerosis!I!insights!from!realIworld!

observational!studies.!Nature!reviews!Neurology.!2017;13(2):105I18.!

78.! Willis!JC,!Lord!GM.!Immune!biomarkers:!the!promises!and!pitfalls!of!

personalized!medicine.!Nature!reviews!Immunology.!2015;15(5):323I9.!

79.! Schilsky!RL.!Personalized!medicine!in!oncology:!the!future!is!now.!Nature!

reviews!Drug!discovery.!2010;9(5):363I6.!

80.! Watanabe!S,!Minegishi!Y,!Yoshizawa!H,!Maemondo!M,!Inoue!A,!Sugawara!

S,!et!al.!Effectiveness!of!gefitinib!against!nonIsmallIcell!lung!cancer!with!the!

uncommon!EGFR!mutations!G719X!and!L861Q.!J!Thorac!Oncol.!2014;9(2):189I

94.!

81.! Kim!S,!Lee!J,!Oh!SJ,!Nam!SJ,!Lee!JE.!Differential!effect!of!EGFR!inhibitors!on!

tamoxifenIresistant!breast!cancer!cells.!Oncol!Rep.!2015;34(3):1613I9.!

82.! Van!Cutsem!E,!Kohne!CH,!Hitre!E,!Zaluski!J,!Chang!Chien!CR,!Makhson!A,!et!

al.!Cetuximab!and!chemotherapy!as!initial!treatment!for!metastatic!colorectal!

cancer.!The!New!England!journal!of!medicine.!2009;360(14):1408I17.!

83.! RodriguezIAntona!C,!Taron!M.!Pharmacogenomic!biomarkers!for!

personalized!cancer!treatment.!Journal!of!internal!medicine.!2015;277(2):201I

17.!

84.! Maronas!O,!Latorre!A,!Dopazo!J,!Pirmohamed!M,!RodriguezIAntona!C,!

Siest!G,!et!al.!Progress!in!pharmacogenetics:!consortiums!and!new!strategies.!

Drug!Metab!Pers!Ther.!2016;31(1):17I23.!

85.! Keefe!DM,!Bateman!EH.!Tumor!control!versus!adverse!events!with!

targeted!anticancer!therapies.!Nat!Rev!Clin!Oncol.!2011;9(2):98I109.!

86.! Vaidya!B,!Gupta!V.!Novel!therapeutic!approaches!for!pulmonary!arterial!

hypertension:!Unique!molecular!targets!to!siteIspecific!drug!delivery.!J!Control!

Release.!2015;211:118I33.!

87.! Jones!BJ,!Bloom!SR.!The!New!Era!of!Drug!Therapy!for!Obesity:!The!

Evidence!and!the!Expectations.!Drugs.!2015;75(9):935I45.!

88.! Lovly!CM,!Shaw!AT.!Molecular!pathways:!resistance!to!kinase!inhibitors!

and!implications!for!therapeutic!strategies.!Clin!Cancer!Res.!2014;20(9):2249I

56.!

89.! Sequist!LV,!Waltman!BA,!DiasISantagata!D,!Digumarthy!S,!Turke!AB,!

Fidias!P,!et!al.!Genotypic!and!histological!evolution!of!lung!cancers!acquiring!

resistance!to!EGFR!inhibitors.!Science!translational!medicine.!

2011;3(75):75ra26.!

90.! Suda!K,!Mizuuchi!H,!Maehara!Y,!Mitsudomi!T.!Acquired!resistance!

mechanisms!to!tyrosine!kinase!inhibitors!in!lung!cancer!with!activating!

epidermal!growth!factor!receptor!mutationIIdiversity,!ductility,!and!destiny.!

Cancer!Metastasis!Rev.!2012;31(3I4):807I14.!

91.! Isozaki!H,!Takigawa!N,!Kiura!K.!Mechanisms!of!Acquired!Resistance!to!

ALK!Inhibitors!and!the!Rationale!for!Treating!ALKIpositive!Lung!Cancer.!Cancers!

(Basel).!2015;7(2):763I83.!

92.! Nurwidya!F,!Takahashi!F,!Murakami!A,!Kobayashi!I,!Kato!M,!Shukuya!T,!et!

al.!Acquired!resistance!of!nonIsmall!cell!lung!cancer!to!epidermal!growth!factor!

receptor!tyrosine!kinase!inhibitors.!Respir!Investig.!2014;52(2):82I91.!



! 177!

93.! Takezawa!K,!Pirazzoli!V,!Arcila!ME,!Nebhan!CA,!Song!X,!de!Stanchina!E,!et!

al.!HER2!amplification:!a!potential!mechanism!of!acquired!resistance!to!EGFR!

inhibition!in!EGFRImutant!lung!cancers!that!lack!the!secondIsite!EGFRT790M!

mutation.!Cancer!Discov.!2012;2(10):922I33.!

94.! Aithal!GP,!Day!CP,!Kesteven!PJ,!Daly!AK.!Association!of!polymorphisms!in!

the!cytochrome!P450!CYP2C9!with!warfarin!dose!requirement!and!risk!of!

bleeding!complications.!Lancet.!1999;353(9154):717I9.!

95.! Hegen!H,!Auer!M,!Deisenhammer!F.!Pharmacokinetic!considerations!in!

the!treatment!of!multiple!sclerosis!with!interferonIbeta.!Expert!opinion!on!drug!

metabolism!&!toxicology.!2015;11(12):1803I19.!

96.! Wu!K,!Mercier!F,!David!OJ,!Schmouder!RL,!Looby!M.!Population!

pharmacokinetics!of!fingolimod!phosphate!in!healthy!participants.!Journal!of!

clinical!pharmacology.!2012;52(7):1054I68.!

97.! Jersild!C,!Svejgaard!A,!Fog!T.!HLIA!antigens!and!multiple!sclerosis.!Lancet.!

1972;1(7762):1240I1.!

98.! International!Multiple!Sclerosis!Genetics!C,!Hafler!DA,!Compston!A,!

Sawcer!S,!Lander!ES,!Daly!MJ,!et!al.!Risk!alleles!for!multiple!sclerosis!identified!by!

a!genomewide!study.!The!New!England!journal!of!medicine.!2007;357(9):851I

62.!

99.! Kantarci!OH,!Hebrink!DD,!Achenbach!SJ,!Atkinson!EJ,!Waliszewska!A,!

Buckle!G,!et!al.!CTLA4!is!associated!with!susceptibility!to!multiple!sclerosis.!

Journal!of!neuroimmunology.!2003;134(1I2):133I41.!

100.! Harbo!HF,!Celius!EG,!Vartdal!F,!Spurkland!A.!CTLA4!promoter!and!exon!1!

dimorphisms!in!multiple!sclerosis.!Tissue!antigens.!1999;53(1):106I10.!

101.! Ligers!A,!Xu!C,!Saarinen!S,!Hillert!J,!Olerup!O.!The!CTLAI4!gene!is!

associated!with!multiple!sclerosis.!Journal!of!neuroimmunology.!1999;97(1I

2):182I90.!

102.! Altshuler!D,!Daly!MJ,!Lander!ES.!Genetic!mapping!in!human!disease.!

Science!(New!York,!NY).!2008;322(5903):881I8.!

103.! Manolio!TA,!Collins!FS,!Cox!NJ,!Goldstein!DB,!Hindorff!LA,!Hunter!DJ,!et!al.!

Finding!the!missing!heritability!of!complex!diseases.!Nature.!

2009;461(7265):747I53.!

104.! Consortium!EP.!An!integrated!encyclopedia!of!DNA!elements!in!the!

human!genome.!Nature.!2012;489(7414):57I74.!

105.! Hinnebusch!AG,!Ivanov!IP,!Sonenberg!N.!Translational!control!by!5'I

untranslated!regions!of!eukaryotic!mRNAs.!Science!(New!York,!NY).!

2016;352(6292):1413I6.!

106.! Cech!TR,!Steitz!JA.!The!noncoding!RNA!revolutionItrashing!old!rules!to!

forge!new!ones.!Cell.!2014;157(1):77I94.!

107.! Albert!FW,!Kruglyak!L.!The!role!of!regulatory!variation!in!complex!traits!

and!disease.!Nat!Rev!Genet.!2015;16(4):197I212.!

108.! Ramanathan!M,!WeinstockIGuttman!B,!Nguyen!LT,!Badgett!D,!Miller!C,!

Patrick!K,!et!al.!In!vivo!gene!expression!revealed!by!cDNA!arrays:!the!pattern!in!

relapsingIremitting!multiple!sclerosis!patients!compared!with!normal!subjects.!

Journal!of!neuroimmunology.!2001;116(2):213I9.!

109.! Lock!C,!Hermans!G,!Pedotti!R,!Brendolan!A,!Schadt!E,!Garren!H,!et!al.!

GeneImicroarray!analysis!of!multiple!sclerosis!lesions!yields!new!targets!

validated!in!autoimmune!encephalomyelitis.!Nature!medicine.!2002;8(5):500I8.!



! 178!

110.! Whitney!LW,!Becker!KG,!Tresser!NJ,!CaballeroIRamos!CI,!Munson!PJ,!

Prabhu!VV,!et!al.!Analysis!of!gene!expression!in!mutiple!sclerosis!lesions!using!

cDNA!microarrays.!Annals!of!neurology.!1999;46(3):425I8.!

111.! Corvol!JC,!Pelletier!D,!Henry!RG,!Caillier!SJ,!Wang!J,!Pappas!D,!et!al.!

Abrogation!of!T!cell!quiescence!characterizes!patients!at!high!risk!for!multiple!

sclerosis!after!the!initial!neurological!event.!Proceedings!of!the!National!

Academy!of!Sciences!of!the!United!States!of!America.!2008;105(33):11839I44.!

112.! Satoh!J,!Nanri!Y,!Tabunoki!H,!Yamamura!T.!Microarray!analysis!identifies!

a!set!of!CXCR3!and!CCR2!ligand!chemokines!as!early!IFNbetaIresponsive!genes!in!

peripheral!blood!lymphocytes!in!vitro:!an!implication!for!IFNbetaIrelated!

adverse!effects!in!multiple!sclerosis.!BMC!Neurol.!2006;6:18.!

113.! Baranzini!SE.!Gene!expression!profiling!in!MS:!a!fulfilled!promise?!

Multiple!sclerosis.!2013;19(14):1813I4.!

114.! Johnson!MR,!Behmoaras!J,!Bottolo!L,!Krishnan!ML,!Pernhorst!K,!Santoscoy!

PL,!et!al.!Systems!genetics!identifies!Sestrin!3!as!a!regulator!of!a!proconvulsant!

gene!network!in!human!epileptic!hippocampus.!Nat!Commun.!2015;6:6031.!

115.! Tesson!BM,!Breitling!R,!Jansen!RC.!DiffCoEx:!a!simple!and!sensitive!

method!to!find!differentially!coexpressed!gene!modules.!BMC!Bioinformatics.!

2010;11:497.!

116.! Marbach!D,!Costello!JC,!Kuffner!R,!Vega!NM,!Prill!RJ,!Camacho!DM,!et!al.!

Wisdom!of!crowds!for!robust!gene!network!inference.!Nature!methods.!

2012;9(8):796I804.!

117.! Wang!Z,!Gerstein!M,!Snyder!M.!RNAISeq:!a!revolutionary!tool!for!

transcriptomics.!Nat!Rev!Genet.!2009;10(1):57I63.!

118.! Zhang!W,!Yu!Y,!Hertwig!F,!ThierryIMieg!J,!Zhang!W,!ThierryIMieg!D,!et!al.!

Comparison!of!RNAIseq!and!microarrayIbased!models!for!clinical!endpoint!

prediction.!Genome!biology.!2015;16:133.!

119.! Waubant!E,!Goodkin!D,!Bostrom!A,!Bacchetti!P,!Hietpas!J,!Lindberg!R,!et!al.!

IFNbeta!lowers!MMPI9/TIMPI1!ratio,!which!predicts!new!enhancing!lesions!in!

patients!with!SPMS.!Neurology.!2003;60(1):52I7.!

120.! Fainardi!E,!Castellazzi!M,!Bellini!T,!Manfrinato!MC,!Baldi!E,!Casetta!I,!et!al.!

Cerebrospinal!fluid!and!serum!levels!and!intrathecal!production!of!active!matrix!

metalloproteinaseI9!(MMPI9)!as!markers!of!disease!activity!in!patients!with!

multiple!sclerosis.!Multiple!sclerosis.!2006;12(3):294I301.!

121.! Benesova!Y,!Vasku!A,!Novotna!H,!Litzman!J,!Stourac!P,!Beranek!M,!et!al.!

Matrix!metalloproteinaseI9!and!matrix!metalloproteinaseI2!as!biomarkers!of!

various!courses!in!multiple!sclerosis.!Multiple!sclerosis.!2009;15(3):316I22.!

122.! Bornsen!L,!Khademi!M,!Olsson!T,!Sorensen!PS,!Sellebjerg!F.!Osteopontin!

concentrations!are!increased!in!cerebrospinal!fluid!during!attacks!of!multiple!

sclerosis.!Multiple!sclerosis.!2011;17(1):32I42.!

123.! Comabella!M,!Pericot!I,!Goertsches!R,!Nos!C,!Castillo!M,!Blas!Navarro!J,!et!

al.!Plasma!osteopontin!levels!in!multiple!sclerosis.!Journal!of!neuroimmunology.!

2005;158(1I2):231I9.!

124.! Kivisakk!P,!Healy!BC,!Francois!K,!Gandhi!R,!Gholipour!T,!Egorova!S,!et!al.!

Evaluation!of!circulating!osteopontin!levels!in!an!unselected!cohort!of!patients!

with!multiple!sclerosis:!relevance!for!biomarker!development.!Multiple!sclerosis.!

2014;20(4):438I44.!

125.! Tzartos!JS,!Friese!MA,!Craner!MJ,!Palace!J,!Newcombe!J,!Esiri!MM,!et!al.!

InterleukinI17!production!in!central!nervous!systemIinfiltrating!T!cells!and!glial!



! 179!

cells!is!associated!with!active!disease!in!multiple!sclerosis.!Am!J!Pathol.!

2008;172(1):146I55.!

126.! Duarte!IF,!Diaz!SO,!Gil!AM.!NMR!metabolomics!of!human!blood!and!urine!

in!disease!research.!J!Pharm!Biomed!Anal.!2014;93:17I26.!

127.! Scrivo!R,!Casadei!L,!Valerio!M,!Priori!R,!Valesini!G,!Manetti!C.!

Metabolomics!approach!in!allergic!and!rheumatic!diseases.!Curr!Allergy!Asthma!

Rep.!2014;14(6):445.!

128.! Manna!SK,!Patterson!AD,!Yang!Q,!Krausz!KW,!Idle!JR,!Fornace!AJ,!et!al.!

UPLCIMSIbased!urine!metabolomics!reveals!indoleI3Ilactic!acid!and!phenyllactic!

acid!as!conserved!biomarkers!for!alcoholIinduced!liver!disease!in!the!PparaInull!

mouse!model.!J!Proteome!Res.!2011;10(9):4120I33.!

129.! Blanchet!L,!Smolinska!A,!Attali!A,!Stoop!MP,!Ampt!KA,!van!Aken!H,!et!al.!

Fusion!of!metabolomics!and!proteomics!data!for!biomarkers!discovery:!case!

study!on!the!experimental!autoimmune!encephalomyelitis.!BMC!Bioinformatics.!

2011;12:254.!

130.! KaddurahIDaouk!R,!Kristal!BS,!Weinshilboum!RM.!Metabolomics:!a!global!

biochemical!approach!to!drug!response!and!disease.!Annu!Rev!Pharmacol!

Toxicol.!2008;48:653I83.!

131.! Wishart!DS.!Applications!of!metabolomics!in!drug!discovery!and!

development.!Drugs!R!D.!2008;9(5):307I22.!

132.! Lehotay!DC,!Hall!P,!Lepage!J,!Eichhorst!JC,!Etter!ML,!Greenberg!CR.!LCI

MS/MS!progress!in!newborn!screening.!Clin!Biochem.!2011;44(1):21I31.!

133.! Chace!DH,!Spitzer!AR.!Altered!metabolism!and!newborn!screening!using!

tandem!mass!spectrometry:!lessons!learned!from!the!bench!to!bedside.!Curr!

Pharm!Biotechnol.!2011;12(7):965I75.!

134.! KaddurahIDaouk!R,!Weinshilboum!RM,!Pharmacometabolomics!Research!

N.!Pharmacometabolomics:!implications!for!clinical!pharmacology!and!systems!

pharmacology.!Clin!Pharmacol!Ther.!2014;95(2):154I67.!

135.! Sallustio!BC.!LCIMS/MS!for!immunosuppressant!therapeutic!drug!

monitoring.!Bioanalysis.!2010;2(6):1141I53.!

136.! Ponnayyan!Sulochana!S,!Sharma!K,!Mullangi!R,!Sukumaran!SK.!Review!of!

the!validated!HPLC!and!LCIMS/MS!methods!for!determination!of!drugs!used!in!

clinical!practice!for!Alzheimer's!disease.!Biomed!Chromatogr.!

2014;28(11):1431I90.!

137.! Simone!IL,!Federico!F,!Trojano!M,!Tortorella!C,!Liguori!M,!Giannini!P,!et!al.!

High!resolution!proton!MR!spectroscopy!of!cerebrospinal!fluid!in!MS!patients.!

Comparison!with!biochemical!changes!in!demyelinating!plaques.!Journal!of!the!

neurological!sciences.!1996;144(1I2):182I90.!

138.! Aasly!J,!Garseth!M,!Sonnewald!U,!Zwart!JA,!White!LR,!Unsgard!G.!

Cerebrospinal!fluid!lactate!and!glutamine!are!reduced!in!multiple!sclerosis.!Acta!

neurologica!Scandinavica.!1997;95(1):9I12.!

139.! Dickens!AM,!Larkin!JR,!Griffin!JL,!Cavey!A,!Matthews!L,!Turner!MR,!et!al.!A!

type!2!biomarker!separates!relapsingIremitting!from!secondary!progressive!

multiple!sclerosis.!Neurology.!2014;83(17):1492I9.!

140.! Mehrpour!M,!Kyani!A,!Tafazzoli!M,!Fathi!F,!Joghataie!MT.!A!metabonomics!

investigation!of!multiple!sclerosis!by!nuclear!magnetic!resonance.!Magn!Reson!

Chem.!2013;51(2):102I9.!

141.! Moussallieh!FM,!Elbayed!K,!Chanson!JB,!Rudolf!G,!Piotto!M,!De!Seze!J,!et!al.!

Serum!analysis!by!1H!nuclear!magnetic!resonance!spectroscopy:!a!new!tool!for!



! 180!

distinguishing!neuromyelitis!optica!from!multiple!sclerosis.!Multiple!sclerosis.!

2014;20(5):558I65.!

142.! van!der!Mei!I,!Lucas!RM,!Taylor!BV,!Valery!PC,!Dwyer!T,!Kilpatrick!TJ,!et!

al.!Population!attributable!fractions!and!joint!effects!of!key!risk!factors!for!

multiple!sclerosis.!Multiple!sclerosis.!2016;22(4):461I9.!

143.! Ascherio!A,!Munger!KL,!Lunemann!JD.!The!initiation!and!prevention!of!

multiple!sclerosis.!Nature!reviews!Neurology.!2012;8(11):602I12.!

144.! Lucas!RM,!Byrne!SN,!Correale!J,!Ilschner!S,!Hart!PH.!Ultraviolet!radiation,!

vitamin!D!and!multiple!sclerosis.!Neurodegener!Dis!Manag.!2015;5(5):413I24.!

145.! Westerlind!H,!Imrell!K,!Ramanujam!R,!Myhr!KM,!Celius!EG,!Harbo!HF,!et!

al.!IdentityIbyIdescent!mapping!in!a!Scandinavian!multiple!sclerosis!cohort.!Eur!J!

Hum!Genet.!2015;23(5):688I92.!

146.! Westerlind!H,!Ramanujam!R,!Uvehag!D,!KujaIHalkola!R,!Boman!M,!Bottai!

M,!et!al.!Modest!familial!risks!for!multiple!sclerosis:!a!registryIbased!study!of!the!

population!of!Sweden.!Brain!:!a!journal!of!neurology.!2014;137(Pt!3):770I8.!

147.! KochIHenriksen!N,!Sorensen!PS.!The!changing!demographic!pattern!of!

multiple!sclerosis!epidemiology.!The!Lancet!Neurology.!2010;9(5):520I32.!

148.! Westerlind!H,!Bostrom!I,!Stawiarz!L,!Landtblom!AM,!Almqvist!C,!Hillert!J.!

New!data!identify!an!increasing!sex!ratio!of!multiple!sclerosis!in!Sweden.!

Multiple!sclerosis.!2014;20(12):1578I83.!

149.! Ponsonby!AL,!Lucas!RM,!van!der!Mei!IA,!Dear!K,!Valery!PC,!Pender!MP,!et!

al.!Offspring!number,!pregnancy,!and!risk!of!a!first!clinical!demyelinating!event:!

the!AusImmune!Study.!Neurology.!2012;78(12):867I74.!

150.! Magyari!M,!KochIHenriksen!N,!Pfleger!CC,!Sorensen!PS.!Reproduction!and!

the!risk!of!multiple!sclerosis.!Multiple!sclerosis.!2013;19(12):1604I9.!

151.! Villoslada!P,!Steinman!L,!Baranzini!SE.!Systems!biology!and!its!application!

to!the!understanding!of!neurological!diseases.!Annals!of!neurology.!

2009;65(2):124I39.!

152.! Kholodenko!BN,!Hancock!JF,!Kolch!W.!Signalling!ballet!in!space!and!time.!

Nat!Rev!Mol!Cell!Biol.!2010;11(6):414I26.!

153.! Morris!MK,!Chi!A,!Melas!IN,!Alexopoulos!LG.!Phosphoproteomics!in!drug!

discovery.!Drug!Discov!Today.!2014;19(4):425I32.!

154.! SaezIRodriguez!J,!Alexopoulos!LG,!Zhang!M,!Morris!MK,!Lauffenburger!DA,!

Sorger!PK.!Comparing!signaling!networks!between!normal!and!transformed!

hepatocytes!using!discrete!logical!models.!Cancer!Res.!2011;71(16):5400I11.!

155.! Hart!ST,!T.!Sample!Size!for!RNAISeq!and!similar!studies.!2016.!

156.! Ewing!B,!Hillier!L,!Wendl!MC,!Green!P.!BaseIcalling!of!automated!

sequencer!traces!using!phred.!I.!Accuracy!assessment.!Genome!Res.!

1998;8(3):175I85.!

157.! Cock!PJ,!Fields!CJ,!Goto!N,!Heuer!ML,!Rice!PM.!The!Sanger!FASTQ!file!

format!for!sequences!with!quality!scores,!and!the!Solexa/Illumina!FASTQ!

variants.!Nucleic!Acids!Res.!2010;38(6):1767I71.!

158.! F!K.!Trim!Galore!!

159.! DRAGEN.!

160.! Anders!S,!Pyl!PT,!Huber!W.!HTSeqIIa!Python!framework!to!work!with!

highIthroughput!sequencing!data.!Bioinformatics.!2015;31(2):166I9.!

161.! Fonseca!NA,!Marioni!J,!Brazma!A.!RNAISeq!gene!profilingIIa!systematic!

empirical!comparison.!PloS!one.!2014;9(9):e107026.!



! 181!

162.! Dobin!A,!Davis!CA,!Schlesinger!F,!Drenkow!J,!Zaleski!C,!Jha!S,!et!al.!STAR:!

ultrafast!universal!RNAIseq!aligner.!Bioinformatics.!2013;29(1):15I21.!

163.! Kozomara!A,!GriffithsIJones!S.!miRBase:!annotating!high!confidence!

microRNAs!using!deep!sequencing!data.!Nucleic!Acids!Res.!2014;42(Database!

issue):D68I73.!

164.! Okonechnikov!K,!Conesa!A,!GarciaIAlcalde!F.!Qualimap!2:!advanced!multiI

sample!quality!control!for!highIthroughput!sequencing!data.!Bioinformatics.!

2016;32(2):292I4.!

165.! Evans!AM!BB,!Michell!MW,!Robindon!RJ,!Dai!H,!Stewart!SJ,!DeHaven!CD,!

Miller!LAD.!High!Resolution!Mass!Spectrometry!Improves!Data!Quantity!and!

Quality!

as!Compared!to!Unit!Mass!Resolution!Mass!Spectrometry!in!HighI!

Throughput!Profiling!Metabolomics.!Metabolomics.!2014;4(2):1I7.!

166.! Lewis!MR,!Pearce!JT,!Spagou!K,!Green!M,!Dona!AC,!Yuen!AH,!et!al.!

Development!and!Application!of!UltraIPerformance!Liquid!ChromatographyITOF!

MS!for!Precision!Large!Scale!Urinary!Metabolic!Phenotyping.!Anal!Chem.!

2016;88(18):9004I13.!

167.! Dona!AC,!Jimenez!B,!Schafer!H,!Humpfer!E,!Spraul!M,!Lewis!MR,!et!al.!

Precision!highIthroughput!proton!NMR!spectroscopy!of!human!urine,!serum,!

and!plasma!for!largeIscale!metabolic!phenotyping.!Anal!Chem.!

2014;86(19):9887I94.!

168.! Bruker!IVDr!Lipoprotein!Subclass!AnalysisBruker!IVDr!Lipoprotein!

Subclass!Analysis!![Available!from:!https://www.bruker.com/products/mr/nmr-
preclinical-screening/lipoprotein-subclass-analysis.html.!
169.! Jackson!JE.!A!Users'!Guide!to!Principal!Components.!1991.!

170.! Wall!ME,!Dyck!PA,!Brettin!TS.!SVDMANIIsingular!value!decomposition!

analysis!of!microarray!data.!Bioinformatics.!2001;17(6):566I8.!

171.! Reich!D,!Price!AL,!Patterson!N.!Principal!component!analysis!of!genetic!

data.!Nat!Genet.!2008;40(5):491I2.!

172.! Schwabbauer!ML.!Use!of!the!latent!image!technique!to!develop!and!

evaluate!problemIsolving!skills.!Am!J!Med!Technol.!1975;41(12):457I62.!

173.! geladi!PMD.!Linearization!and!scatterIcorrection!for!nearIinfared!

reflectance!spectra!of!meat.!Appl!Spectrosc.!1985;39.!

174.! Eriksson!L,!Rosen!J,!Johansson!E,!Trygg!J.!Orthogonal!PLS!(OPLS)!

Modeling!for!Improved!Analysis!and!Interpretation!in!Drug!Design.!Mol!Inform.!

2012;31(6I7):414I9.!

175.! Bro!R,!Kjeldahl!K,!Smilde!AK,!Kiers!HA.!CrossIvalidation!of!component!

models:!a!critical!look!at!current!methods.!Anal!Bioanal!Chem.!

2008;390(5):1241I51.!

176.! Smit!S,!van!Breemen!MJ,!Hoefsloot!HC,!Smilde!AK,!Aerts!JM,!de!Koster!CG.!

Assessing!the!statistical!validity!of!proteomics!based!biomarkers.!Anal!Chim!

Acta.!2007;592(2):210I7.!

177.! Alter!O,!Golub!GH.!Singular!value!decomposition!of!genomeIscale!mRNA!

lengths!distribution!reveals!asymmetry!in!RNA!gel!electrophoresis!band!

broadening.!Proceedings!of!the!National!Academy!of!Sciences!of!the!United!

States!of!America.!2006;103(32):11828I33.!

178.! Le!Cao!KA,!Boitard!S,!Besse!P.!Sparse!PLS!discriminant!analysis:!

biologically!relevant!feature!selection!and!graphical!displays!for!multiclass!

problems.!BMC!Bioinformatics.!2011;12:253.!



! 182!

179.! Le!Cao!KA,!Rossouw!D,!RobertIGranie!C,!Besse!P.!A!sparse!PLS!for!variable!

selection!when!integrating!omics!data.!Stat!Appl!Genet!Mol!Biol.!

2008;7(1):Article!35.!

180.! Breiman!L.!Random!Forests.!Machine!Learning.!2001;45(1):5I32.!

181.! Altman!N,!Krzywinski!M.!Simple!linear!regression.!Nature!methods.!

2015;12(11):999I1000.!

182.! Krzywinski!M,!Altman!N.!Multiple!linear!regression.!Nature!methods.!

2015;12(12):1103I4.!

183.! lever.!Points!of!Significance:!Model!selection!and!overfitting.!Natue!

methods.!2016;13:703I4.!

184.! Tibshirani!R.!Regression!Shrinkage!and!Selection!via!the!Lasso.!Journal!of!

the!Royal!Statistical!Society:!Series!B!(Statistical!Methodology).!1996;58(1):267I

88.!

185.! zou!h.!Regularization!and!variable!selection!via!the!elastic!net!

.!Journal!of!the!Royal!Statistical!Society:!Series!B!(Statistical!Methodology)!

.!2005;67.!

186.! Akaike.!Information!theory!as!an!extension!of!the!maximum!likelihood!

principle.!1973.!

187.! Patsopoulos!NA,!Bayer!Pharma!MSGWG,!Steering!Committees!of!Studies!

Evaluating!IIb,!a!CCRA,!Consortium!AN,!GeneMsa,!et!al.!GenomeIwide!metaI

analysis!identifies!novel!multiple!sclerosis!susceptibility!loci.!Annals!of!

neurology.!2011;70(6):897I912.!

188.! International!Multiple!Sclerosis!Genetics!C,!Wellcome!Trust!Case!Control!

C,!Sawcer!S,!Hellenthal!G,!Pirinen!M,!Spencer!CC,!et!al.!Genetic!risk!and!a!primary!

role!for!cellImediated!immune!mechanisms!in!multiple!sclerosis.!Nature.!

2011;476(7359):214I9.!

189.! Dutta!R.!Gene!expression!changes!underlying!cortical!pathology:!clues!to!

understanding!neurological!disability!in!multiple!sclerosis.!Multiple!sclerosis.!

2013;19(10):1249I54.!

190.! Huang!Q,!Xiao!B,!Ma!X,!Qu!M,!Li!Y,!Nagarkatti!P,!et!al.!MicroRNAs!

associated!with!the!pathogenesis!of!multiple!sclerosis.!Journal!of!

neuroimmunology.!2016;295I296:148I61.!

191.! Fawaz!CN,!Makki!IS,!Kazan!JM,!Gebara!NY,!Andary!FS,!Itani!MM,!et!al.!

Neuroproteomics!and!microRNAs!studies!in!multiple!sclerosis:!transforming!

research!and!clinical!knowledge!in!biomarker!research.!Expert!Rev!Proteomics.!

2015;12(6):637I50.!

192.! SanchezIChaparro!MM,!RodriguezISanchez!IP,!BarreraISaldana!HA,!

MartinezIVillarreal!LE,!ResendezIPerez!D,!GamezIEscobedo!IA.![MicroRNAs!and!

their!neuroimmunoregulator!mechanisms!in!multiple!sclerosis.!Development!of!

biomarkers!for!diagnosis].!Rev!Neurol.!2015;60(12):562I71.!

193.! Lim!CK,!Bilgin!A,!Lovejoy!DB,!Tan!V,!Bustamante!S,!Taylor!BV,!et!al.!

Kynurenine!pathway!metabolomics!predicts!and!provides!mechanistic!insight!

into!multiple!sclerosis!progression.!Sci!Rep.!2017;7:41473.!

194.! Zhornitsky!S,!McKay!KA,!Metz!LM,!Teunissen!CE,!Rangachari!M.!

Cholesterol!and!markers!of!cholesterol!turnover!in!multiple!sclerosis:!

relationship!with!disease!outcomes.!Multiple!sclerosis!and!related!disorders.!

2016;5:53I65.!



! 183!

195.! Tettey!P,!Simpson!S,!Jr.,!Taylor!BV,!van!der!Mei!IA.!Vascular!comorbidities!

in!the!onset!and!progression!of!multiple!sclerosis.!Journal!of!the!neurological!

sciences.!2014;347(1I2):23I33.!

196.! Marrie!RA,!Rudick!R,!Horwitz!R,!Cutter!G,!Tyry!T,!Campagnolo!D,!et!al.!

Vascular!comorbidity!is!associated!with!more!rapid!disability!progression!in!

multiple!sclerosis.!Neurology.!2010;74(13):1041I7.!

197.! Feingold!KR,!Grunfeld!C.!The!Effect!of!Inflammation!and!Infection!on!

Lipids!and!Lipoproteins.!In:!De!Groot!LJ,!BeckIPeccoz!P,!Chrousos!G,!Dungan!K,!

Grossman!A,!Hershman!JM,!et!al.,!editors.!Endotext.!South!Dartmouth!(MA)2000.!

198.! Malmendier!CL,!Lontie!JF,!Sculier!JP,!Dubois!DY.!Modifications!of!plasma!

lipids,!lipoproteins!and!apolipoproteins!in!advanced!cancer!patients!treated!with!

recombinant!interleukinI2!and!autologous!lymphokineIactivated!killer!cells.!

Atherosclerosis.!1988;73(2I3):173I80.!

199.! WeinstockIGuttman!B,!Zivadinov!R,!Mahfooz!N,!Carl!E,!Drake!A,!Schneider!

J,!et!al.!Serum!lipid!profiles!are!associated!with!disability!and!MRI!outcomes!in!

multiple!sclerosis.!Journal!of!neuroinflammation.!2011;8:127.!

200.! Tettey!P,!Simpson!S,!Jr.,!Taylor!B,!Blizzard!L,!Ponsonby!AL,!Dwyer!T,!et!al.!

An!adverse!lipid!profile!is!associated!with!disability!and!progression!in!disability,!

in!people!with!MS.!Multiple!sclerosis.!2014;20(13):1737I44.!

201.! Mandoj!C,!Renna!R,!Plantone!D,!Sperduti!I,!Cigliana!G,!Conti!L,!et!al.!AntiI

annexin!antibodies,!cholesterol!levels!and!disability!in!multiple!sclerosis.!

Neuroscience!letters.!2015;606:156I60.!

202.! Chataway!J,!Schuerer!N,!Alsanousi!A,!Chan!D,!MacManus!D,!Hunter!K,!et!al.!

Effect!of!highIdose!simvastatin!on!brain!atrophy!and!disability!in!secondary!

progressive!multiple!sclerosis!(MSISTAT):!a!randomised,!placeboIcontrolled,!

phase!2!trial.!Lancet.!2014;383(9936):2213I21.!

203.! Hafiane!A,!Genest!J.!High!density!lipoproteins:!Measurement!techniques!

and!potential!biomarkers!of!cardiovascular!risk.!BBA!Clin.!2015;3:175I88.!

204.! O'Connell!KE,!Mok!T,!Sweeney!B,!Ryan!AM,!Dev!KK.!The!use!of!cytokine!

signature!patterns:!separating!drug!naive,!interferon!and!natalizumabItreated!

multiple!sclerosis!patients.!Autoimmunity.!2014;47(8):505I11.!

205.! Love!MI,!Huber!W,!Anders!S.!Moderated!estimation!of!fold!change!and!

dispersion!for!RNAIseq!data!with!DESeq2.!Genome!biology.!2014;15(12):550.!

206.! benjamini!Y!HY.!Controlling!the!false!discovery!rate:!a!practical!and!

powerful!approach!to!multiple!testing.!Stat!Soc!Ser!B!Methodol.!1995;57:289I

300.!

207.! Pertea!M,!Kim!D,!Pertea!GM,!Leek!JT,!Salzberg!SL.!TranscriptIlevel!

expression!analysis!of!RNAIseq!experiments!with!HISAT,!StringTie!and!

Ballgown.!Nat!Protoc.!2016;11(9):1650I67.!

208.! Compston!A,!Coles!A.!Multiple!sclerosis.!Lancet.!2002;359(9313):1221I

31.!

209.! Tu!YK,!Kellett!M,!Clerehugh!V,!Gilthorpe!MS.!Problems!of!correlations!

between!explanatory!variables!in!multiple!regression!analyses!in!the!dental!

literature.!Br!Dent!J.!2005;199(7):457I61.!

210.! Lindeman!RH!MP,!Gold!RZ.!Introduction!to!Bivariate!and!Multivariate!

Analysis.!Scott,!Foresman,!Glenview,!IL1980.!

211.! Gromping!U.!Relative!Importance!for!Linear!Regression!in!R:!The!Package!

relaimpo.!Journal!of!Statistical!Software.!2006;17(1):1I27.!



! 184!

212.! H!A.!A!new!look!at!the!statistical!model!identification.!IEEE!Transactions!

on!Automatic!Control.!1974;19:716I23.!

213.! Ripley!WNVaBD.!Modern!Applied!Statistics!with!S.!2002.!

214.! Jake!Lever!MK,!Naomi!Altman.!Points!of!Significance:!Regularization.!

Nature!methods.!2016;13:803I4.!

215.! Friedman!J,!Hastie!T,!Tibshirani!R.!Regularization!Paths!for!Generalized!

Linear!Models!via!Coordinate!Descent.!J!Stat!Softw.!2010;33(1):1I22.!

216.! Le!Cao!KA,!Gonzalez!I,!Dejean!S.!integrOmics:!an!R!package!to!unravel!

relationships!between!two!omics!datasets.!Bioinformatics.!2009;25(21):2855I6.!

217.! Friese!MA,!Jakobsen!KB,!Friis!L,!Etzensperger!R,!Craner!MJ,!McMahon!RM,!

et!al.!Opposing!effects!of!HLA!class!I!molecules!in!tuning!autoreactive!CD8+!T!

cells!in!multiple!sclerosis.!Nature!medicine.!2008;14(11):1227I35.!

218.! Kaur!G,!Trowsdale!J,!Fugger!L.!Natural!killer!cells!and!their!receptors!in!

multiple!sclerosis.!Brain!:!a!journal!of!neurology.!2013;136(Pt!9):2657I76.!

219.! Baranzini!SE.!The!role!of!antiproliferative!gene!Tob1!in!the!immune!

system.!Clin!Exp!Neuroimmunol.!2014;5(2):132I6.!

220.! Didonna!A,!Cekanaviciute!E,!Oksenberg!JR,!Baranzini!SE.!Immune!cellI

specific!transcriptional!profiling!highlights!distinct!molecular!pathways!

controlled!by!Tob1!upon!experimental!autoimmune!encephalomyelitis.!Sci!Rep.!

2016;6:31603.!

221.! SchulzeITopphoff!U,!Casazza!S,!VarrinIDoyer!M,!Pekarek!K,!Sobel!RA,!

Hauser!SL,!et!al.!Tob1!plays!a!critical!role!in!the!activation!of!encephalitogenic!T!

cells!in!CNS!autoimmunity.!The!Journal!of!experimental!medicine.!

2013;210(7):1301I9.!

222.! Villoslada!P,!Alonso!C,!Agirrezabal!I,!Kotelnikova!E,!Zubizarreta!I,!PulidoI

Valdeolivas!I,!et!al.!Metabolomic!signatures!associated!with!disease!severity!in!

multiple!sclerosis.!Neurol!Neuroimmunol!Neuroinflamm.!2017;4(2):e321.!

223.! Ratzer!R,!Sondergaard!HB,!Christensen!JR,!Bornsen!L,!Borup!R,!Sorensen!

PS,!et!al.!Gene!expression!analysis!of!relapsingIremitting,!primary!progressive!

and!secondary!progressive!multiple!sclerosis.!Multiple!sclerosis.!

2013;19(14):1841I8.!

224.! Achiron!A,!Gurevich!M,!Friedman!N,!Kaminski!N,!Mandel!M.!Blood!

transcriptional!signatures!of!multiple!sclerosis:!unique!gene!expression!of!

disease!activity.!Annals!of!neurology.!2004;55(3):410I7.!

225.! Vukusic!S,!Confavreux!C.!Natural!history!of!multiple!sclerosis:!risk!factors!

and!prognostic!indicators.!Current!opinion!in!neurology.!2007;20(3):269I74.!

226.! Newcombe!J,!Li!H,!Cuzner!ML.!Low!density!lipoprotein!uptake!by!

macrophages!in!multiple!sclerosis!plaques:!implications!for!pathogenesis.!

Neuropathology!and!applied!neurobiology.!1994;20(2):152I62.!

227.! Jiang!X,!Guo!M,!Su!J,!Lu!B,!Ma!D,!Zhang!R,!et!al.!Simvastatin!blocks!bloodI

brain!barrier!disruptions!induced!by!elevated!cholesterol!both!in!vivo!and!in!

vitro.!Int!J!Alzheimers!Dis.!2012;2012:109324.!

228.! Hardardottir!I,!Grunfeld!C,!Feingold!KR.!Effects!of!endotoxin!on!lipid!

metabolism.!Biochem!Soc!Trans.!1995;23(4):1013I8.!

229.! Mannisto!VT,!Simonen!M,!Soininen!P,!Tiainen!M,!Kangas!AJ,!Kaminska!D,!

et!al.!Lipoprotein!subclass!metabolism!in!nonalcoholic!steatohepatitis.!J!Lipid!

Res.!2014;55(12):2676I84.!

230.! den!Hartigh!LJ,!Altman!R,!Norman!JE,!Rutledge!JC.!Postprandial!VLDL!

lipolysis!products!increase!monocyte!adhesion!and!lipid!droplet!formation!via!



! 185!

activation!of!ERK2!and!NFkappaB.!Am!J!Physiol!Heart!Circ!Physiol.!

2014;306(1):H109I20.!

231.! Sampedro!MC,!Motran!C,!Gruppi!A,!Kivatinitz!SC.!VLDL!modulates!the!

cytokine!secretion!profile!to!a!proinflammatory!pattern.!Biochem!Biophys!Res!

Commun.!2001;285(2):393I9.!

232.! Li!WH,!Tanimura!M,!Luo!CC,!Datta!S,!Chan!L.!The!apolipoprotein!

multigene!family:!biosynthesis,!structure,!structureIfunction!relationships,!and!

evolution.!J!Lipid!Res.!1988;29(3):245I71.!

233.! Watanabe!J,!CharlesISchoeman!C,!Miao!Y,!Elashoff!D,!Lee!YY,!Katselis!G,!et!

al.!Proteomic!profiling!following!immunoaffinity!capture!of!highIdensity!

lipoprotein:!association!of!acuteIphase!proteins!and!complement!factors!with!

proinflammatory!highIdensity!lipoprotein!in!rheumatoid!arthritis.!Arthritis!and!

rheumatism.!2012;64(6):1828I37.!

234.! Noorbakhsh!F,!Baker!GB,!Power!C.!Allopregnanolone!and!

neuroinflammation:!a!focus!on!multiple!sclerosis.!Front!Cell!Neurosci.!

2014;8:134.!

235.! Lee!SK,!Kim!HJ,!Na!SY,!Kim!TS,!Choi!HS,!Im!SY,!et!al.!Steroid!receptor!

coactivatorI1!coactivates!activating!proteinI1Imediated!transactivations!through!

interaction!with!the!cIJun!and!cIFos!subunits.!J!Biol!Chem.!1998;273(27):16651I

4.!

236.! Bonetti!B,!Stegagno!C,!Cannella!B,!Rizzuto!N,!Moretto!G,!Raine!CS.!

Activation!of!NFIkappaB!and!cIjun!transcription!factors!in!multiple!sclerosis!

lesions.!Implications!for!oligodendrocyte!pathology.!Am!J!Pathol.!

1999;155(5):1433I8.!

237.! Boullerne!AI,!Skias!D,!Hartman!EM,!Testai!FD,!Kalinin!S,!Polak!PE,!et!al.!A!

singleInucleotide!polymorphism!in!serineIthreonine!kinase!11,!the!gene!

encoding!liver!kinase!B1,!is!a!risk!factor!for!multiple!sclerosis.!ASN!Neuro.!

2015;7(1).!

238.! Loewe!R,!Holnthoner!W,!Groger!M,!Pillinger!M,!Gruber!F,!

Mechtcheriakova!D,!et!al.!Dimethylfumarate!inhibits!TNFIinduced!nuclear!entry!

of!NFIkappa!B/p65!in!human!endothelial!cells.!Journal!of!immunology!

(Baltimore,!Md!:!1950).!2002;168(9):4781I7.!

239.! Wallbrecht!K,!Drick!N,!Hund!AC,!Schon!MP.!Downregulation!of!endothelial!

adhesion!molecules!by!dimethylfumarate,!but!not!monomethylfumarate,!and!

impairment!of!dynamic!lymphocyteIendothelial!cell!interactions.!Exp!Dermatol.!

2011;20(12):980I5.!

240.! Ockenfels!HM,!Schultewolter!T,!Ockenfels!G,!Funk!R,!Goos!M.!The!

antipsoriatic!agent!dimethylfumarate!immunomodulates!TIcell!cytokine!

secretion!and!inhibits!cytokines!of!the!psoriatic!cytokine!network.!Br!J!Dermatol.!

1998;139(3):390I5.!

241.! Lee!DH,!Gold!R,!Linker!RA.!Mechanisms!of!oxidative!damage!in!multiple!

sclerosis!and!neurodegenerative!diseases:!therapeutic!modulation!via!fumaric!

acid!esters.!International!journal!of!molecular!sciences.!2012;13(9):11783I803.!

242.! Zhao!G,!Liu!Y,!Fang!J,!Chen!Y,!Li!H,!Gao!K.!Dimethyl!fumarate!inhibits!the!

expression!and!function!of!hypoxiaIinducible!factorI1alpha!(HIFI1alpha).!

Biochem!Biophys!Res!Commun.!2014;448(3):303I7.!

243.! Brennan!MS,!Matos!MF,!Richter!KE,!Li!B,!Scannevin!RH.!The!NRF2!

transcriptional!target,!OSGIN1,!contributes!to!monomethyl!fumarateImediated!

cytoprotection!in!human!astrocytes.!Sci!Rep.!2017;7:42054.!



! 186!

244.! Reily!MD,!Tymiak!AA.!Metabolomics!in!the!pharmaceutical!industry.!Drug!

Discov!Today!Technol.!2015;13:25I31.!

245.! Bhargava!P,!Calabresi!PA.!Metabolomics!in!multiple!sclerosis.!Multiple!

sclerosis.!2016;22(4):451I60.!

246.! Ravasz!E,!Somera!AL,!Mongru!DA,!Oltvai!ZN,!Barabasi!AL.!Hierarchical!

organization!of!modularity!in!metabolic!networks.!Science!(New!York,!NY).!

2002;297(5586):1551I5.!

247.! Trapnell!C,!Pachter!L,!Salzberg!SL.!TopHat:!discovering!splice!junctions!

with!RNAISeq.!Bioinformatics.!2009;25(9):1105I11.!

248.! Button!KS,!Ioannidis!JP,!Mokrysz!C,!Nosek!BA,!Flint!J,!Robinson!ES,!et!al.!

Power!failure:!why!small!sample!size!undermines!the!reliability!of!neuroscience.!

Nature!reviews!Neuroscience.!2013;14(5):365I76.!

249.! Sun!WP,!Zhai!MZ,!Li!D,!Zhou!Y,!Chen!NN,!Guo!M,!et!al.!Comparison!of!the!

effects!of!nicotinic!acid!and!nicotinamide!degradation!on!plasma!betaine!and!

choline!levels.!Clin!Nutr.!2016.!

250.! Ha!CM,!Park!S,!Choi!YK,!Jeong!JY,!Oh!CJ,!Bae!KH,!et!al.!Activation!of!Nrf2!by!

dimethyl!fumarate!improves!vascular!calcification.!Vascul!Pharmacol.!

2014;63(1):29I36.!

251.! Lin!SX,!Lisi!L,!Dello!Russo!C,!Polak!PE,!Sharp!A,!Weinberg!G,!et!al.!The!antiI

inflammatory!effects!of!dimethyl!fumarate!in!astrocytes!involve!glutathione!and!

haem!oxygenaseI1.!ASN!Neuro.!2011;3(2).!

252.! Han!R,!Xiao!J,!Zhai!H,!Hao!J.!Dimethyl!fumarate!attenuates!experimental!

autoimmune!neuritis!through!the!nuclear!factor!erythroidIderived!2Irelated!

factor!2/hemoxygenaseI1!pathway!by!altering!the!balance!of!M1/M2!

macrophages.!Journal!of!neuroinflammation.!2016;13(1):97.!

253.! Tahvili!S,!Zandieh!B,!Amirghofran!Z.!The!effect!of!dimethyl!fumarate!on!

gene!expression!and!the!level!of!cytokines!related!to!different!T!helper!cell!

subsets!in!peripheral!blood!mononuclear!cells!of!patients!with!psoriasis.!Int!J!

Dermatol.!2015;54(7):e254I60.!

254.! Hund!AC,!Lockmann!A,!Schon!MP.!Mutually!enhancing!antiIinflammatory!

activities!of!dimethyl!fumarate!and!NFIkappaB!inhibitorsIIimplications!for!doseI

sparing!combination!therapies.!Exp!Dermatol.!2016;25(2):124I30.!

255.! Robasky!K,!Lewis!NE,!Church!GM.!The!role!of!replicates!for!error!

mitigation!in!nextIgeneration!sequencing.!Nat!Rev!Genet.!2014;15(1):56I62.!

256.! Hutchison!CA,!3rd,!Smith!HO,!Pfannkoch!C,!Venter!JC.!CellIfree!cloning!

using!phi29!DNA!polymerase.!Proceedings!of!the!National!Academy!of!Sciences!

of!the!United!States!of!America.!2005;102(48):17332I6.!

257.! Kircher!M,!Heyn!P,!Kelso!J.!Addressing!challenges!in!the!production!and!

analysis!of!illumina!sequencing!data.!BMC!genomics.!2011;12:382.!

258.! Bystrykh!LV.!Generalized!DNA!barcode!design!based!on!Hamming!codes.!

PloS!one.!2012;7(5):e36852.!

259.! Nakamura!K,!Oshima!T,!Morimoto!T,!Ikeda!S,!Yoshikawa!H,!Shiwa!Y,!et!al.!

SequenceIspecific!error!profile!of!Illumina!sequencers.!Nucleic!Acids!Res.!

2011;39(13):e90.!

260.! Sadhukhan!S,!Liu!X,!Ryu!D,!Nelson!OD,!Stupinski!JA,!Li!Z,!et!al.!

MetabolomicsIassisted!proteomics!identifies!succinylation!and!SIRT5!as!

important!regulators!of!cardiac!function.!Proceedings!of!the!National!Academy!of!

Sciences!of!the!United!States!of!America.!2016;113(16):4320I5.!



! 187!

261.! Chouchani!ET,!Pell!VR,!Gaude!E,!Aksentijevic!D,!Sundier!SY,!Robb!EL,!et!al.!

Ischaemic!accumulation!of!succinate!controls!reperfusion!injury!through!

mitochondrial!ROS.!Nature.!2014;515(7527):431I5.!

262.! Park!J,!Chen!Y,!Tishkoff!DX,!Peng!C,!Tan!M,!Dai!L,!et!al.!SIRT5Imediated!

lysine!desuccinylation!impacts!diverse!metabolic!pathways.!Mol!Cell.!

2013;50(6):919I30.!

263.! Hirschey!MD,!Zhao!Y.!Metabolic!Regulation!by!Lysine!Malonylation,!

Succinylation,!and!Glutarylation.!Mol!Cell!Proteomics.!2015;14(9):2308I15.!

264.! Rardin!MJ,!He!W,!Nishida!Y,!Newman!JC,!Carrico!C,!Danielson!SR,!et!al.!

SIRT5!regulates!the!mitochondrial!lysine!succinylome!and!metabolic!networks.!

Cell!Metab.!2013;18(6):920I33.!

265.! Jaberi!E,!Chitsazian!F,!Ali!Shahidi!G,!Rohani!M,!Sina!F,!Safari!I,!et!al.!The!

novel!mutation!p.Asp251Asn!in!the!betaIsubunit!of!succinateICoA!ligase!causes!

encephalomyopathy!and!elevated!succinylcarnitine.!J!Hum!Genet.!

2013;58(8):526I30.!

266.! Carrozzo!R,!DionisiIVici!C,!Steuerwald!U,!Lucioli!S,!Deodato!F,!Di!

Giandomenico!S,!et!al.!SUCLA2!mutations!are!associated!with!mild!

methylmalonic!aciduria,!LeighIlike!encephalomyopathy,!dystonia!and!deafness.!

Brain!:!a!journal!of!neurology.!2007;130(Pt!3):862I74.!

267.! Lamperti!C,!Fang!M,!Invernizzi!F,!Liu!X,!Wang!H,!Zhang!Q,!et!al.!A!novel!

homozygous!mutation!in!SUCLA2!gene!identified!by!exome!sequencing.!Mol!

Genet!Metab.!2012;107(3):403I8.!

268.! Van!Hove!JL,!Saenz!MS,!Thomas!JA,!Gallagher!RC,!Lovell!MA,!Fenton!LZ,!et!

al.!SuccinylICoA!ligase!deficiency:!a!mitochondrial!hepatoencephalomyopathy.!

Pediatr!Res.!2010;68(2):159I64.!

269.! Yang!SP,!Yang!XZ,!Cao!GP.!AcetylIlIcarnitine!prevents!homocysteineI

induced!suppression!of!Nrf2/Keap1!mediated!antioxidation!in!human!lens!

epithelial!cells.!Mol!Med!Rep.!2015;12(1):1145I50.!

270.! Li!J,!Zhang!Y,!Luan!H,!Chen!X,!Han!Y,!Wang!C.!lIcarnitine!protects!human!

hepatocytes!from!oxidative!stressIinduced!toxicity!through!AktImediated!

activation!of!Nrf2!signaling!pathway.!Can!J!Physiol!Pharmacol.!2016;94(5):517I

25.!

271.! Hota!KB,!Hota!SK,!Chaurasia!OP,!Singh!SB.!AcetylILIcarnitineImediated!

neuroprotection!during!hypoxia!is!attributed!to!ERK1/2INrf2Iregulated!

mitochondrial!biosynthesis.!Hippocampus.!2012;22(4):723I36.!

272.! Zhao!YY,!Wang!HL,!Cheng!XL,!Wei!F,!Bai!X,!Lin!RC,!et!al.!Metabolomics!

analysis!reveals!the!association!between!lipid!abnormalities!and!oxidative!stress,!

inflammation,!fibrosis,!and!Nrf2!dysfunction!in!aristolochic!acidIinduced!

nephropathy.!Sci!Rep.!2015;5:12936.!

273.! Parvin!R,!Pande!SV.!Enhancement!of!mitochondrial!carnitine!and!

carnitine!acylcarnitine!translocaseImediated!transport!of!fatty!acids!into!liver!

mitochondria!under!ketogenic!conditions.!J!Biol!Chem.!1979;254(12):5423I9.!

274.! Jones!LL,!McDonald!DA,!Borum!PR.!Acylcarnitines:!role!in!brain.!Prog!

Lipid!Res.!2010;49(1):61I75.!

275.! O'Connor!JE,!Costell!M,!Miguez!MP,!Portoles!M,!Grisolia!S.!Effect!of!LI

carnitine!on!ketone!bodies,!redox!state!and!free!amino!acids!in!the!liver!of!

hyperammonemic!mice.!Biochem!Pharmacol.!1987;36(19):3169I73.!



! 188!

276.! Tang!H,!Lu!JY,!Zheng!X,!Yang!Y,!Reagan!JD.!The!psoriasis!drug!

monomethylfumarate!is!a!potent!nicotinic!acid!receptor!agonist.!Biochem!

Biophys!Res!Commun.!2008;375(4):562I5.!

277.! Rahman!M,!Muhammad!S,!Khan!MA,!Chen!H,!Ridder!DA,!MullerIFielitz!H,!

et!al.!The!betaIhydroxybutyrate!receptor!HCA2!activates!a!neuroprotective!

subset!of!macrophages.!Nat!Commun.!2014;5:3944.!

278.! Aksoy!S,!Szumlanski!CL,!Weinshilboum!RM.!Human!liver!nicotinamide!NI

methyltransferase.!cDNA!cloning,!expression,!and!biochemical!characterization.!J!

Biol!Chem.!1994;269(20):14835I40.!

279.! Przygodzki!T,!Kazmierczak!P,!Sikora!J,!Watala!C.!1Imethylnicotinamide!

effects!on!the!selected!markers!of!endothelial!function,!inflammation!and!

haemostasis!in!diabetic!rats.!Eur!J!Pharmacol.!2010;640(1I3):157I62.!

280.! Tanaka!Y,!Kume!S,!Araki!H,!Nakazawa!J,!ChinIKanasaki!M,!Araki!S,!et!al.!1I

Methylnicotinamide!ameliorates!lipotoxicityIinduced!oxidative!stress!and!cell!

death!in!kidney!proximal!tubular!cells.!Free!Radic!Biol!Med.!2015;89:831I41.!

281.! Milani!ZH,!Ramsden!DB,!Parsons!RB.!Neuroprotective!effects!of!

nicotinamide!NImethyltransferase!and!its!metabolite!1Imethylnicotinamide.!J!

Biochem!Mol!Toxicol.!2013;27(9):451I6.!

282.! Bryniarski!K,!Biedron!R,!Jakubowski!A,!Chlopicki!S,!Marcinkiewicz!J.!AntiI

inflammatory!effect!of!1Imethylnicotinamide!in!contact!hypersensitivity!to!

oxazolone!in!mice;!involvement!of!prostacyclin.!Eur!J!Pharmacol.!2008;578(2I

3):332I8.!

283.! Szafarz!M,!Kus!K,!Walczak!M,!Zakrzewska!A,!Niemczak!M,!Pernak!J,!et!al.!

Pharmacokinetic!Profile!of!1IMethylnicotinamide!Nitrate!in!Rats.!J!Pharm!Sci.!

2017;106(5):1412I8.!

284.! Havrdova!E,!Galetta!S,!Hutchinson!M,!Stefoski!D,!Bates!D,!Polman!CH,!et!al.!

Effect!of!natalizumab!on!clinical!and!radiological!disease!activity!in!multiple!

sclerosis:!a!retrospective!analysis!of!the!Natalizumab!Safety!and!Efficacy!in!

RelapsingIRemitting!Multiple!Sclerosis!(AFFIRM)!study.!The!Lancet!Neurology.!

2009;8(3):254I60.!

285.! Arnold!DL,!Calabresi!PA,!Kieseier!BC,!Sheikh!SI,!Deykin!A,!Zhu!Y,!et!al.!

Effect!of!peginterferon!betaI1a!on!MRI!measures!and!achieving!no!evidence!of!

disease!activity:!results!from!a!randomized!controlled!trial!in!relapsingIremitting!

multiple!sclerosis.!BMC!Neurol.!2014;14:240.!

286.! Nixon!R,!Bergvall!N,!Tomic!D,!Sfikas!N,!Cutter!G,!Giovannoni!G.!No!

evidence!of!disease!activity:!indirect!comparisons!of!oral!therapies!for!the!

treatment!of!relapsingIremitting!multiple!sclerosis.!Advances!in!therapy.!

2014;31(11):1134I54.!

287.! Giovannoni!G,!Turner!B,!Gnanapavan!S,!Offiah!C,!Schmierer!K,!Marta!M.!Is!

it!time!to!target!no!evident!disease!activity!(NEDA)!in!multiple!sclerosis?!

Multiple!sclerosis!and!related!disorders.!2015;4(4):329I33.!

288.! Kappos!L,!De!Stefano!N,!Freedman!MS,!Cree!BA,!Radue!EW,!Sprenger!T,!et!

al.!Inclusion!of!brain!volume!loss!in!a!revised!measure!of!'no!evidence!of!disease!

activity'!(NEDAI4)!in!relapsingIremitting!multiple!sclerosis.!Multiple!sclerosis.!

2016;22(10):1297I305.!

289.! Havrdova!E,!Giovannoni!G,!Gold!R,!Fox!RJ,!Kappos!L,!Phillips!JT,!et!al.!

Effect!of!delayedIrelease!dimethyl!fumarate!on!no!evidence!of!disease!activity!in!

relapsingIremitting!multiple!sclerosis:!integrated!analysis!of!the!phase!III!

DEFINE!and!CONFIRM!studies.!European!journal!of!neurology.!2017.!



! 189!

290.! Dubey!D,!Kieseier!BC,!Hartung!HP,!Hemmer!B,!Warnke!C,!Menge!T,!et!al.!

Dimethyl!fumarate!in!relapsingIremitting!multiple!sclerosis:!rationale,!

mechanisms!of!action,!pharmacokinetics,!efficacy!and!safety.!Expert!review!of!

neurotherapeutics.!2015;15(4):339I46.!

291.! Jain!S,!Sima!DM,!Ribbens!A,!Cambron!M,!Maertens!A,!Van!Hecke!W,!et!al.!

Automatic!segmentation!and!volumetry!of!multiple!sclerosis!brain!lesions!from!

MR!images.!Neuroimage!Clin.!2015;8:367I75.!

292.! Smeets!D,!Ribbens!A,!Sima!DM,!Cambron!M,!Horakova!D,!Jain!S,!et!al.!

Reliable!measurements!of!brain!atrophy!in!individual!patients!with!multiple!

sclerosis.!Brain!Behav.!2016;6(9):e00518.!

293.! Jain!S,!Ribbens!A,!Sima!DM,!Cambron!M,!De!Keyser!J,!Wang!C,!et!al.!Two!

Time!Point!MS!Lesion!Segmentation!in!Brain!MRI:!An!ExpectationIMaximization!

Framework.!Front!Neurosci.!2016;10:576.!

294.! Fischer!J,!Jak!AJ,!Kniker!JE,!Rudick!RA,!Cutter!G.!Administration!and!

Scoring!Manual!for!the!Multiple!ScleI!rosis!Functional!Composite!(MSFC).!

National!Multiple!Sclerosis!Society.!2001.!

295.! Polman!CH,!Rudick!RA.!The!multiple!sclerosis!functional!composite:!a!

clinically!meaningful!measure!of!disability.!Neurology.!2010;74!Suppl!3:S8I15.!

296.! Ware!JE,!Jr.,!Sherbourne!CD.!The!MOS!36Iitem!shortIform!health!survey!

(SFI36).!I.!Conceptual!framework!and!item!selection.!Med!Care.!1992;30(6):473I

83.!

297.! Van!der!Auwera!GA,!Carneiro!MO,!Hartl!C,!Poplin!R,!Del!Angel!G,!LevyI

Moonshine!A,!et!al.!From!FastQ!data!to!high!confidence!variant!calls:!the!Genome!

Analysis!Toolkit!best!practices!pipeline.!Curr!Protoc!Bioinformatics.!2013;43:11!

0!1I33.!

298.! Xia!J,!Wishart!DS.!MSEA:!a!webIbased!tool!to!identify!biologically!

meaningful!patterns!in!quantitative!metabolomic!data.!Nucleic!Acids!Res.!

2010;38(Web!Server!issue):W71I7.!

299.! Hayes!JD,!DinkovaIKostova!AT.!The!Nrf2!regulatory!network!provides!an!

interface!between!redox!and!intermediary!metabolism.!Trends!Biochem!Sci.!

2014;39(4):199I218.!

300.! TD!G.!Target!Genes!of!NFIkB.!

301.! International!Multiple!Sclerosis!Genetics!C,!Beecham!AH,!Patsopoulos!NA,!

Xifara!DK,!Davis!MF,!Kemppinen!A,!et!al.!Analysis!of!immuneIrelated!loci!

identifies!48!new!susceptibility!variants!for!multiple!sclerosis.!Nat!Genet.!

2013;45(11):1353I60.!

302.! Jernas!M,!Malmestrom!C,!Axelsson!M,!Nookaew!I,!Wadenvik!H,!Lycke!J,!et!

al.!MicroRNA!regulate!immune!pathways!in!TIcells!in!multiple!sclerosis!(MS).!

BMC!Immunol.!2013;14:32.!

303.! Keller!A,!Leidinger!P,!Bauer!A,!Elsharawy!A,!Haas!J,!Backes!C,!et!al.!Toward!

the!bloodIborne!miRNome!of!human!diseases.!Nature!methods.!2011;8(10):841I

3.!

304.! Hecker!M,!Thamilarasan!M,!Koczan!D,!Schroder!I,!Flechtner!K,!Freiesleben!

S,!et!al.!MicroRNA!expression!changes!during!interferonIbeta!treatment!in!the!

peripheral!blood!of!multiple!sclerosis!patients.!International!journal!of!molecular!

sciences.!2013;14(8):16087I110.!

305.! Haabeth!OA,!Lorvik!KB,!Hammarstrom!C,!Donaldson!IM,!Haraldsen!G,!

Bogen!B,!et!al.!Inflammation!driven!by!tumourIspecific!Th1!cells!protects!against!

BIcell!cancer.!Nat!Commun.!2011;2:240.!



! 190!

306.! Hollenbach!JA,!Oksenberg!JR.!The!immunogenetics!of!multiple!sclerosis:!A!

comprehensive!review.!J!Autoimmun.!2015;64:13I25.!

307.! Giovannoni!G,!Gold!R,!Kappos!L,!Arnold!DL,!BarIOr!A,!Marantz!JL,!et!al.!

DelayedIrelease!dimethyl!fumarate!and!disability!assessed!by!the!Multiple!

Sclerosis!Functional!Composite:!Integrated!analysis!of!DEFINE!

and!CONFIRM.!2016;0(0):1I4.!

308.! Kappos!L,!Gold!R,!Arnold!DL,!BarIOr!A,!Giovannoni!G,!Selmaj!K,!et!al.!

Quality!of!life!outcomes!with!BGI12!(dimethyl!fumarate)!in!patients!with!

relapsingIremitting!multiple!sclerosis:!the!DEFINE!study.!Multiple!sclerosis.!

2014;20(2):243I52.!

309.! AlIJaderi!Z,!Maghazachi!AA.!Utilization!of!Dimethyl!Fumarate!and!Related!

Molecules!for!Treatment!of!Multiple!Sclerosis,!Cancer,!and!Other!Diseases.!

Frontiers!in!immunology.!2016;7:278.!

310.! Xie!X,!Zhao!Y,!Ma!CY,!Xu!XM,!Zhang!YQ,!Wang!CG,!et!al.!Dimethyl!fumarate!

induces!necroptosis!in!colon!cancer!cells!through!GSH!depletion/ROS!

increase/MAPKs!activation!pathway.!Br!J!Pharmacol.!2015;172(15):3929I43.!

311.! Smolen!JS,!Aletaha!D,!Bijlsma!JW,!Breedveld!FC,!Boumpas!D,!Burmester!G,!

et!al.!Treating!rheumatoid!arthritis!to!target:!recommendations!of!an!

international!task!force.!Annals!of!the!rheumatic!diseases.!2010;69(4):631I7.!

312.! Smolen!JS,!Aletaha!D,!Koeller!M,!Weisman!MH,!Emery!P.!New!therapies!for!

treatment!of!rheumatoid!arthritis.!Lancet.!2007;370(9602):1861I74.!

313.! Smolen!JS,!Aletaha!D.!Forget!personalised!medicine!and!focus!on!abating!

disease!activity.!Annals!of!the!rheumatic!diseases.!2013;72(1):3I6.!

314.! Sorensen!PS.!Neutralizing!antibodies!against!interferonIBeta.!Therapeutic!

advances!in!neurological!disorders.!2008;1(2):125I41.!

315.! Sorensen!PS,!Ross!C,!Clemmesen!KM,!Bendtzen!K,!Frederiksen!JL,!Jensen!

K,!et!al.!Clinical!importance!of!neutralising!antibodies!against!interferon!beta!in!

patients!with!relapsingIremitting!multiple!sclerosis.!Lancet.!

2003;362(9391):1184I91.!

316.! Baranzini!SE,!Wang!J,!Gibson!RA,!Galwey!N,!Naegelin!Y,!Barkhof!F,!et!al.!

GenomeIwide!association!analysis!of!susceptibility!and!clinical!phenotype!in!

multiple!sclerosis.!Human!molecular!genetics.!2009;18(4):767I78.!

317.! Piskol!R,!Ramaswami!G,!Li!JB.!Reliable!identification!of!genomic!variants!

from!RNAIseq!data.!Am!J!Hum!Genet.!2013;93(4):641I51.!

318.! Hruz!T,!Laule!O,!Szabo!G,!Wessendorp!F,!Bleuler!S,!Oertle!L,!et!al.!

Genevestigator!v3:!a!reference!expression!database!for!the!metaIanalysis!of!

transcriptomes.!Adv!Bioinformatics.!2008;2008:420747.!

319.! Compendium!EM.!Tecfidera!120mg!and!240mg!gastroIresistant!hard!

capsules.!2017.!

320.! Schroeder!K,!Fahey!T,!Ebrahim!S,!Peters!TJ.!Adherence!to!longIterm!

therapies:!recent!WHO!report!provides!some!answers!but!poses!even!more!

questions.!J!Clin!Epidemiol.!2004;57(1):2I3.!

321.! Lugaresi!A.!Addressing!the!need!for!increased!adherence!to!multiple!

sclerosis!therapy:!can!delivery!technology!enhance!patient!motivation?!Expert!

Opin!Drug!Deliv.!2009;6(9):995I1002.!

322.! Devonshire!V,!Lapierre!Y,!Macdonell!R,!RamoITello!C,!Patti!F,!Fontoura!P,!

et!al.!The!Global!Adherence!Project!(GAP):!a!multicenter!observational!study!on!

adherence!to!diseaseImodifying!therapies!in!patients!with!relapsingIremitting!

multiple!sclerosis.!European!journal!of!neurology.!2011;18(1):69I77.!



! 191!

323.! Palsson!B,!Zengler!K.!The!challenges!of!integrating!multiIomic!data!sets.!

Nat!Chem!Biol.!2010;6(11):787I9.!

324.! Cavill!K,!Briede.!Dynamic!time!wariping!for!omics.!PloS!one.!2013.!

325.! Schurch!NJ,!Schofield!P,!Gierlinski!M,!Cole!C,!Sherstnev!A,!Singh!V,!et!al.!

How!many!biological!replicates!are!needed!in!an!RNAIseq!experiment!and!which!

differential!expression!tool!should!you!use?!RNA.!2016;22(6):839I51.!

326.! Poplawski!A,!Binder!H.!Feasibility!of!sample!size!calculation!for!RNAIseq!

studies.!Brief!Bioinform.!2017.!

327.! Walsh!PS,!Erlich!HA,!Higuchi!R.!Preferential!PCR!amplification!of!alleles:!

mechanisms!and!solutions.!PCR!Methods!Appl.!1992;1(4):241I50.!

328.! Lam!HY,!Clark!MJ,!Chen!R,!Chen!R,!Natsoulis!G,!O'Huallachain!M,!et!al.!

Performance!comparison!of!wholeIgenome!sequencing!platforms.!Nat!

Biotechnol.!2011;30(1):78I82.!

329.! Polman!CH,!Reingold!SC,!Barkhof!F,!Calabresi!PA,!Clanet!M,!Cohen!JA,!et!al.!

Ethics!of!placeboIcontrolled!clinical!trials!in!multiple!sclerosis:!a!reassessment.!

Neurology.!2008;70(13!Pt!2):1134I40.!

330.! GilgunISherki!Y,!Melamed!E,!Offen!D.!The!role!of!oxidative!stress!in!the!

pathogenesis!of!multiple!sclerosis:!the!need!for!effective!antioxidant!therapy.!

Journal!of!neurology.!2004;251(3):261I8.!

331.! Moujalled!D,!Grubman!A,!Acevedo!K,!Yang!S,!Ke!YD,!Moujalled!DM,!et!al.!

TDPI43!mutations!causing!amyotrophic!lateral!sclerosis!are!associated!with!

altered!expression!of!RNAIbinding!protein!hnRNP!K!and!affect!the!Nrf2!

antioxidant!pathway.!Human!molecular!genetics.!2017;26(9):1732I46.!

332.! Kunsch!C,!Medford!RM.!Oxidative!stress!as!a!regulator!of!gene!expression!

in!the!vasculature.!Circ!Res.!1999;85(8):753I66.!

333.! Finkel!T,!Holbrook!NJ.!Oxidants,!oxidative!stress!and!the!biology!of!ageing.!

Nature.!2000;408(6809):239I47.!

 

 

 

 

 

 

 

 

 

 



Bioanalyzer
RIN 

(for RNA)
1 3 8.9
2 26 9.3
3 45 9.4
4 23 9.3
5 26 9.3
6 46 9.3
7 50 9.5
8 36 9.4
9 33 9.1
10 30 9.4
11 26 9.4
12 45 9.6
13 27 9.3
14 20 9.4
15 39 9.7
16 55 9.5
17 44 9.6
18 50 9.6
19 45 9.6
20 45 9.7
21 55 9.6
22 45 9.6
23 80 9
24 46 9.6
25 44 9.1
26 43 9.1
27 44 9.5
28 41 9.5
29 42 9.6
30 45 9.6
31 41 9.5
32 48 9.1
33 47 9.4
34 68 9.5
35 41 9.3
36 45 9.5
37 43 9.6
38 25 9.3
39 45 9.6
40 25 9.6
41 48 9.3
42 44 9.4
43 49 9.3
44 55 9.4

GENEWIZ1NGS1Laboratory
Sample'QC'Form

Name: Arie Gafson
Institute:  Imperial College London
Quotation Number: SA1611232_R1

Sample Vol. (ul)GENEWIZ ID



45 45 9.3
46 48 9.4
47 49 9.2
48 45 9.3
49 58 9.4
50 45 9.4
51 45 9.5
52 54 9.5
53 45 9.4
54 43 9.5
55 46 9.5
56 55 9.9
57 44 9
58 44 9.4
59 46 9.2
60 45 9.4
61 45 9.3
62 50 9.4
63 44 9.3
64 44 9.5
65 45 9.4
66 49 9.4
67 45 9.5
68 45 9.4
69 44 9.3
70 43 9.2
71 29 9.6
72 41 9
73 45 9.6
74 44 9.7
75 44 9.5
76 45 9.5
77 44 9.5
78 45 9.5
79 49 9.7
80 45 9.6
81 24 9.5
82 30 9.7
83 30 8.7
84 30 9.5
85 30 9.6
86 30 9.5
87 30 9.1
88 30 9.4
89 30 9.4
90 30 9.3
91 30 9.5
92 30 9.5
93 30 9.5
94 30 9.4
95 30 9.5
96 30 9.6
97
98 25 8.9
99 30 9.3

N/A



100 30 9.4
101 14 9.5
102 30 9.6
103 30 9.4
104 30 9.5
105 30 9.2
106 30 9.4
107 30 9.1
108 30 9.5
109 30 9.4
110 30 9.6
111 30 9.3
112 30 9.5
113 30 9.5
114 30 9.6
115 20 9.7
116 30 9.7
117 30 9.4
118 30 9.7
119 30 9.5
120 30 9.6
121 30 9.6
122 30 9.5



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 1 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

FastQC Report Sat 18 Mar 2017
AA01A-25-10-16_S14_R1_001_val_1.fq.gz

Summary

Basic Statistics

Per base sequence quality

Per tile sequence quality

Per sequence quality scores

Per base sequence content

Per sequence GC content

Per base N content

Sequence Length Distribution

Sequence Duplication Levels

Overrepresented sequences

Adapter Content

Kmer Content

Basic Statistics
Measure Value

Filename AA01A-25-10-16_S14_R1_001_val_1.fq.gz

File type Conventional base calls

Encoding Sanger / Illumina 1.9

Total Sequences 61407451

Sequences flagged as poor quality 0

Sequence length 20-151

%GC 51

file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M0
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M1
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M2
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M3
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M4
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M5
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M6
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M7
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M8
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M9
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M10
file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html#M11


18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 2 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Per base sequence quality

Per tile sequence quality



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 3 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Per sequence quality scores



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 4 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Per base sequence content



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 5 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Per sequence GC content



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 6 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Per base N content



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 7 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Sequence Length Distribution



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 8 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Sequence Duplication Levels
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No overrepresented sequences

Adapter Content



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 10 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Kmer Content



18/07/2017 14:21AA01A-25-10-16_S14_R1_001_val_1.fq.gz FastQC Report

Page 11 of 12file:///Volumes/TOSHIBA%20EXT/SA1611232_R1/mRNA_Analysis/AA01A-25-10-16_S14_R1_001_val_1_fastqc.html

Sequence Count PValue Obs/Exp Max Max Obs/Exp Position

CTAGTTG 22365 0.0 17.520712 8

ACCTTAG 38225 0.0 16.303713 8

CTCTAGT 29950 0.0 15.728111 6

ACTCTAG 30205 0.0 15.112215 5

CACCTTA 45425 0.0 13.903098 7

TCTAGTT 35615 0.0 13.479933 7

CGACCTA 5745 0.0 12.940136 4

CCGGTAT 15405 0.0 12.592897 1

CGCGAGT 11095 0.0 12.416726 1

GCGGAAT 14055 0.0 12.352204 1

CCTTAGA 52375 0.0 12.323477 9
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GTCGAAC 15360 0.0 12.217952 1

CGAATCG 8720 0.0 12.192246 3

CGGCGAT 22745 0.0 11.990136 1

TCGGGTC 29065 0.0 11.977776 2

GCGGGTT 15975 0.0 11.747589 1

GCGAGAT 21235 0.0 11.419449 1

GCCGTAT 9475 0.0 11.201497 1

GGCGAAT 15890 0.0 11.191155 1

TAGTTGT 36875 0.0 10.984445 9

Produced by FastQC (version 0.11.5)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


!! Model!R2!
Model!!
P*Value! V1PL! V2TG! V2PL!

LOO1! 0.48! 8.47907E*06! 0.014! 0.004! 0.014!
LOO2! 0.48! 7.69336E*06! 0.009! 0.003! 0.014!
LOO3! 0.51! 2.08679E*06! 0.006! 0.001! 0.006!
LOO4! 0.49! 5.44127E*06! 0.013! 0.005! 0.020!
LOO5! 0.47! 8.69054E*06! 0.010! 0.004! 0.014!
LOO6! 0.51! 2.20107E*06! 0.011! 0.003! 0.010!
LOO7! 0.48! 7.42451E*06! 0.009! 0.003! 0.014!
LOO8! 0.49! 4.09666E*06! 0.008! 0.003! 0.011!
LOO9! 0.49! 4.46746E*06! 0.004! 0.002! 0.007!
LOO10! 0.48! 6.5764E*06! 0.012! 0.004! 0.015!
LOO11! 0.49! 4.2431E*06! 0.007! 0.002! 0.009!
LOO12! 0.48! 6.41244E*06! 0.010! 0.004! 0.014!
LOO13! 0.46! 1.3048E*05! 0.010! 0.003! 0.013!
LOO14! 0.48! 6.2049E*06! 0.009! 0.003! 0.014!
LOO15! 0.48! 7.53966E*06! 0.010! 0.004! 0.015!
LOO16! 0.48! 6.86041E*06! 0.014! 0.006! 0.022!
LOO17! 0.48! 7.5189E*06! 0.009! 0.005! 0.019!
LOO18! 0.51! 2.31859E*06! 0.005! 0.001! 0.005!
LOO19! 0.52! 1.16125E*06! 0.005! 0.003! 0.014!
LOO20! 0.48! 6.71033E*06! 0.008! 0.003! 0.014!
LOO21! 0.50! 3.36502E*06! 0.002! 0.002! 0.010!
LOO22! 0.48! 5.8468E*06! 0.010! 0.003! 0.011!
LOO23! 0.48! 7.53797E*06! 0.010! 0.004! 0.015!
LOO24! 0.47! 9.38576E*06! 0.029! 0.008! 0.024!
LOO25! 0.46! 1.58951E*05! 0.016! 0.004! 0.014!
LOO26! 0.48! 6.45236E*06! 0.010! 0.004! 0.015!
LOO27! 0.48! 8.4988E*06! 0.013! 0.006! 0.020!

!
Supplementary,Lipid,Table.,Results,of,leave8one8out,cross,validation,for,optimal,
regression,model.,Statistical,measures,of,fit,for,each,leave8one8out,model,displayed,as,
Model,R2,value.,Corresponding,p8value,for,the,model,and,for,each,VLDL,predictor,
coefficient,provided.,Total,of,27,leave8one8out,cross,validations,performed.,,



Metabolite Correlation,with,RNF19B

nervonoylcarnitine,(C24:1)* 0.97

pyridoxate 0.97

LPC(18:1) 0.96

1,2,3Jbenzenetriol,sulfate,(2) 0.96

lactate 0.96

ximenoylcarnitine,(C26:1)* 0.95

NJacetylvaline 0.95

palmitoyl,ethanolamide 0.94

ribose 0.94

glycolithocholate 0.94

pregnanolone/allopregnanolone,sulfate 0.94

NJacetylisoleucine 0.93

LPE(18:3) 0.93

FFA(16:1) 0.93

LPC(16:0) 0.92

Total,LPC 0.92

17alphaJhydroxypregnenolone,3Jsulfate 0.92

proJhydroxyJpro 0.91

3Jmethoxycatechol,sulfate,(1) 0.91

methyl,indoleJ3Jacetate 0.91

2Jhydroxyphenylacetate 0.91

LPC(18:3) 0.91

LPE(20:4) 0.90

LPE(20:3) 0.90

LPC(20:4) 0.90

uridine 0.90

TAG48:5JFA18:3 0.90

2Jhydroxyacetaminophen,sulfate* 0.89

PI(18:0/20:2) 0.89

4Jvinylguaiacol,sulfate 0.89

NJacetylcarnosine 0.89

tyramine,OJsulfate 0.89

NJacetylJcadaverine 0.88

LPC(20:5) 0.88

LPC(16:1) 0.88

cystathionine 0.88

4Jhydroxyphenylacetatoylcarnitine 0.88

NJacetyltyrosine 0.87

succinylcarnitine,(C4JDC) 0.87

NJmethylalanine 0.87

TAG56:5JFA20:3 0.87

PC(17:0/22:5) 0.87

5JacetylaminoJ6JformylaminoJ3Jmethyluracil 0.86

glucuronate 0.86



DAG(18:1/20:4) 0.86
TAG54:5JFA18:3 0.86
TAG52:5JFA18:1 0.86
LPC(20:1) 0.86
LPC(22:5) 0.86
TAG56:7JFA20:5 0.86
TAG56:7JFA18:3 0.86
TAG50:4JFA20:3 0.86
TAG52:6JFA18:1 0.85
N6Jmethyladenosine 0.85
arabonate/xylonate 0.85
TAG50:5JFA16:1 0.85
alphaJketoglutarate 0.85
methylsuccinoylcarnitine,(1) 0.85
sphingosine,1Jphosphate 0.85
hippurate 0.85
LPC(18:0) 0.85
cyclo(proJval) 0.85
pyruvate 0.85
creatinine 0.84
succinate 0.84
cholate 0.84
NJacetylhistidine 0.84
NJacetylphenylalanine 0.84
DAG(18:1/20:3) 0.84
PC(18:1/18:1) 0.84
TAG50:5JFA16:0 0.84
TAG52:4JFA18:0 0.84
phenylacetylglutamate 0.84
4Jacetamidobutanoate 0.83
TAG52:3JFA16:1 0.83
PI(18:0/22:4) 0.83
TAG48:4JFA18:1 0.83
NJformylanthranilic,acid 0.83
1Jmethylhistidine 0.83
NJacetylputrescine 0.83
TAG50:5JFA20:5 0.83
LPC(17:0) 0.83
TAG48:5JFA18:2 0.83
NJacetylalanine 0.82
TAG52:6JFA20:5 0.82
chenodeoxycholate 0.82
NJacetylserine 0.82
PC(18:1/22:5) 0.82
TAG54:6JFA20:5 0.82



PI(18:0/20:3) 0.82

LPC(20:3) 0.82

TAG48:4JFA18:3 0.82

PC(18:1/16:1) 0.81

5J(galactosylhydroxy)JLJlysine 0.81

TAG56:5JFA18:1 0.81

5JacetylaminoJ6JaminoJ3Jmethyluracil 0.81

1Jmethylurate 0.81

TAG54:6JFA16:1 0.81

TAG54:8JFA20:4 0.81

LPE(22:5) 0.81

heme 0.81

TAG54:4JFA18:3 0.80

TAG52:6JFA16:0 0.80

TAG56:6JFA18:1 0.80

TAG54:4JFA20:3 0.80

5Joxoproline 0.80

TAG46:0JFA12:0 0.80

CE(22:4) 0.80

LPC(22:6) 0.80

TAG56:8JFA18:3 0.80

TAG54:5JFA16:1 0.80

tiglylcarnitine,(C5:1JDC) 0.80

TAG50:5JFA18:1 0.80

TAG52:5JFA20:5 0.80

betaJhydroxyisovalerate 0.80

TAG46:3JFA18:3 0.80

TAG52:6JFA16:1 0.80

TAG54:7JFA18:1 0.80

TAG54:5JFA20:4 0.80

dihomoJlinolenoylcarnitine,(20:3n3,or,6)* 0.80

glutarate,(pentanedioate) 0.79

TAG46:2JFA16:1 0.79

TAG46:3JFA12:0 0.79

phenylacetylcarnitine 0.79

TAG56:6JFA20:5 0.79

LPE(18:1) 0.79

TAG54:8JFA20:5 0.79

TAG58:8JFA20:3 0.79

oleoylcarnitine,(C18:1) 0.79

TAG52:4JFA20:3 0.79

imidazole,propionate 0.78

NJcarbamoylaspartate 0.78

TAG54:7JFA16:1 0.78

TAG54:4JFA16:1 0.78



TAG52:5JFA20:4 0.78
TAG52:4JFA18:3 0.78
TAG54:3JFA18:3 0.78
TAG44:1JFA12:0 0.78
TAG56:4JFA20:3 0.78
TAG52:7JFA20:5 0.78
TAG52:6JFA18:3 0.78
arabitol/xylitol 0.78
PC(20:0/18:1) 0.78
TAG50:5JFA20:4 0.77
LPE(16:0) 0.77
TAG52:2JFA16:1 0.77
TAG54:6JFA18:1 0.77
PC(18:1/22:4) 0.77
ethylmalonate 0.77
TAG52:5JFA20:3 0.77
TAG44:0JFA12:0 0.77
gammaJglutamylhistidine 0.77
PC(18:0/22:5) 0.77
TAG50:4JFA16:0 0.77
TAG44:1JFA16:1 0.77
LPC(22:4) 0.77
erythronate* 0.77
PI(16:0/20:4) 0.76
N1JMethylJ4JpyridoneJ3Jcarboxamide 0.76
HCER(18:0) 0.76
TAG50:4JFA18:3 0.76
CE(18:4) 0.76
TAG56:4JFA20:4 0.76
TAG54:3JFA20:3 0.76
DAG(16:1/18:1) 0.76
TAG48:2JFA16:1 0.76
TAG54:5JFA20:5 0.76
glutarylcarnitine,(C5JDC) 0.76
TAG56:7JFA16:1 0.76
dihomoJlinolenoylJcholine 0.76
TAG58:5JFA18:1 0.76
TAG48:2JFA12:0 0.76
LCER(20:1) 0.76
TAG56:4JFA20:2 0.76
PI(16:0/16:1) 0.75
TAG50:4JFA20:4 0.75
TAG58:6JFA18:1 0.75
phosphate 0.75
TAG48:4JFA16:0 0.75



TAG48:4JFA14:0 0.75
DAG(16:0/20:4) 0.75
TAG53:7JFA18:3 0.75
TAG50:3JFA18:3 0.75
N1JMethylJ2JpyridoneJ5Jcarboxamide 0.75
TAG56:3JFA16:0 0.75
TAG56:6JFA18:3 0.75
TAG48:4JFA16:1 0.75
TAG52:3JFA20:3 0.75
TAG46:1JFA12:0 0.75
CE(18:1) 0.75
eicosenoylcarnitine,(C20:1)* 0.75
TAG50:3JFA20:3 0.75
TAG50:5JFA18:3 0.75
cysteinylglycine 0.75
OJsulfoJLJtyrosine 0.74
TAG53:3JFA18:0 0.74
behenoylcarnitine,(C22)* 0.74
TAG56:6JFA20:4 0.74
TAG48:3JFA18:3 0.74
PC(18:0/16:1) 0.74
PC(16:0/22:5) 0.74
LPC(20:2) 0.74
TAG48:1JFA12:0 0.74
TAG46:2JFA14:1 0.74
TAG48:2JFA18:1 0.74
cyclo(alaJpro) 0.74
TAG56:7JFA20:3 0.74
TAG52:5JFA14:0 0.73
hydantoinJ5Jpropionic,acid 0.73
TAG50:2JFA16:1 0.73
TAG56:7JFA18:0 0.73
oleoylcholine 0.73
LPE(16:1) 0.73
TAG48:4JFA20:4 0.73
N1Jmethyladenosine 0.73
TAG58:7JFA18:1 0.73
gulonate* 0.73
PI(16:0/18:1) 0.73
PC(12:0/18:1) 0.73
PC(14:0/22:5) 0.73
TAG46:3JFA16:0 0.73
PC(18:0/18:3) 0.72
mannitol/sorbitol 0.72
TAG56:5JFA20:4 0.72



TAG56:5JFA22:4 0.72
DAG(16:0/18:3) 0.72
NJacetylleucine 0.72
TAG50:2JFA18:1 0.72
TAG52:2JFA18:1 0.72
PC(14:0/14:0) 0.72
TAG55:6JFA18:1 0.72
TAG52:3JFA18:3 0.72
TAG56:6JFA16:0 0.72
TAG52:4JFA20:4 0.72
pJcresolJglucuronide* 0.72
gammaJglutamylJ2Jaminobutyrate 0.72
PC(16:0/12:0) 0.72
PC(20:0/20:3) 0.72
LPC(14:0) 0.72
PC(18:1/18:3) 0.72
TAG54:7JFA20:5 0.72
PC(16:0/18:1) 0.71
propionylcarnitine,(C3) 0.71
indoleacetate 0.71
TAG54:5JFA16:0 0.71
PC(18:0/20:1) 0.71
PC(16:0/16:1) 0.71
ornithine 0.71
TAG46:1JFA16:1 0.71
TAG54:6JFA20:3 0.71
TAG56:4JFA18:0 0.71
TAG54:3JFA16:1 0.71
PC(18:0/12:0) 0.71
TAG56:4JFA16:0 0.71
gammaJglutamylvaline 0.71
TAG46:1JFA16:0 0.71
stearoylcarnitine,(C18) 0.70
DAG(18:1/18:1) 0.70
TAG56:3JFA20:2 0.70
isoursodeoxycholate 0.70
carnitine 0.70
TAG58:7JFA16:0 0.70
TAG54:4JFA20:4 0.70
DAG(16:0/20:3) 0.70
bilirubin,(E,E)* 0.70
OJmethylcatechol,sulfate 0.70
glycerophosphorylcholine,(GPC) 0.70
NJacetylJ1Jmethylhistidine* 0.70
Metabolite Correlation,with,KIR3DL2



pregnanediolJ3Jglucuronide 0.97
xanthine 0.95
NJacetyltaurine 0.95
androstenediol,(3beta,17beta),disulfate,(2) 0.94
pregnenJdiol,disulfate* 0.94
5alphaJpregnanJ3beta,20betaJdiol,monosulfate,(1) 0.94
12JHETE 0.93
3Jphosphoglycerate 0.93
5alphaJpregnanJ3(alpha,or,beta),20betaJdiol,disulfate0.93
5alphaJpregnanJ3beta,20alphaJdiol,monosulfate,(2) 0.93
bilirubin,(E,Z,or,Z,E)* 0.93
solanidine 0.93
glycerophosphoserine* 0.93
PE(18:2/22:4) 0.92
dehydroisoandrosterone,sulfate,(DHEAJS) 0.91
phenylalanylglycine 0.90
gammaJglutamylglutamine 0.90
androstenediol,(3alpha,,17alpha),monsulfate,(2) 0.90
21Jhydroxypregnenolone,disulfate 0.90
sphingadienine* 0.89
2,3Jdihydroxyisovalerate 0.88
pregn,steroid,monosulfate* 0.88
5alphaJpregnanJ3beta,20alphaJdiol,disulfate 0.87
choline,phosphate 0.87
4Jhydroxyphenylacetylglutamine 0.87
pregnenolone,sulfate 0.87
androstenediol,(3alpha,,17alpha),monsulfate,(3) 0.87
inosine,5'Jmonophosphate,(IMP) 0.87
guanidinoacetate 0.86
PE(OJ18:0/16:1) 0.86
SJmethylcysteine,sulfoxide 0.86
cysteineJglutathione,disulfide 0.85
androstenediol,(3beta,17beta),monosulfate,(2) 0.85
glycochenodeoxycholate 0.85
glycerate 0.85
ethyl,glucuronide 0.85
cytidine,5'Jdiphosphocholine 0.85
biliverdin 0.84
ribose 0.84
glycine 0.84
3Jhydroxysebacate 0.84
acesulfame 0.83
2,3JdihydroxyJ2Jmethylbutyrate 0.83
HCER(18:0) 0.83
phosphoethanolamine 0.83



5Jhydroxyhexanoate 0.83
PE(17:0/22:5) 0.82
tartronate,(hydroxymalonate) 0.82
SJmethylcysteine 0.82
pyroglutamine* 0.81
lanthionine 0.81
sphingosine 0.81
hypotaurine 0.80
5alphaJandrostanJ3alpha,17betaJdiol,disulfate 0.80
androstenediol,(3beta,17beta),monosulfate,(1) 0.80
perfluorooctanesulfonic,acid,(PFOS) 0.80
CJglycosyltryptophan 0.79
etiocholanolone,glucuronide 0.79
6JoxopiperidineJ2Jcarboxylate 0.79
guanosine 0.79
oxalate,(ethanedioate) 0.79
stachydrine 0.79
taurine 0.78
3beta,7alphaJdihydroxyJ5Jcholestenoate 0.78
NJmethylpipecolate 0.78
bilirubin,(Z,Z) 0.78
N6Jcarboxyethyllysine 0.78
N6Jcarboxymethyllysine 0.78
androstenediol,(3beta,17beta),disulfate,(1) 0.78
methylJ4Jhydroxybenzoate,sulfate 0.77
NJmethylproline 0.77
glutamine 0.77
3betaJhydroxyJ5Jcholestenoate 0.77
HCER(20:0) 0.76
eugenol,sulfate 0.76
succinimide 0.76
gammaJglutamylglycine 0.76
phenylpyruvate 0.74
NJacetylaspartate,(NAA) 0.74
Total,LCER 0.74
linoleoyl,ethanolamide 0.74
5alphaJandrostanJ3alpha,17betaJdiol,monosulfate,(2)0.73
uridine,5'Jmonophosphate,(UMP) 0.73
LPE(20:1) 0.73
inosine 0.73
betaJcryptoxanthin 0.72
octadecanedioate 0.72
pipecolate 0.71
glycylvaline 0.71
deoxycarnitine 0.71



3,7Jdimethylurate 0.71
glycocholate 0.71
andro,steroid,monosulfate,(1)* 0.70
cytidine,5'Jmonophosphate,(5'JCMP) 0.70
Metabolite Correlation,with,mirJ423
1Jmethylnicotinamide J0.85
methionine,sulfone J0.84
PE(18:1/20:1) J0.83
PE(PJ18:1/18:3) J0.83
alliin J0.83
PI(18:0/16:1) J0.83
PC(20:0/20:4) J0.83
LCER(22:0) J0.82
PE(PJ18:1/18:1) J0.82
PI(16:0/16:0) J0.82
PC(18:2/18:3) J0.81
PE(PJ18:1/16:0) J0.81
gammaJtocopherol/betaJtocopherol J0.81
SM(20:1) J0.81
PI(18:0/18:1) J0.80
pristanate J0.80
PE(PJ18:0/18:1) J0.80
EDTA J0.79
DAG(14:0/16:0) J0.79
PE(PJ16:0/20:1) J0.78
TAG42:0JFA14:0 J0.78
glycoursodeoxycholate J0.78
PE(PJ18:1/18:0) J0.78
linoleoyl,ethanolamide J0.78
transJurocanate J0.77
PI(16:0/18:2) J0.77
LCER(20:1) J0.77
TAG56:9JFA20:4 J0.76
TAG56:8JFA20:4 J0.76
ursodeoxycholate J0.76
PE(PJ18:2/22:6) J0.75
PI(18:0/18:2) J0.75
alphaJtocopherol J0.75
2Jlinoleoylglycerol,(18:2) J0.75
PC(15:0/20:4) J0.75
PE(18:1/18:3) J0.75
PC(18:1/20:1) J0.74
retinol,(Vitamin,A) J0.74
carboxyethylJGABA J0.74
PI(18:0/22:6) J0.73



3Jhydroxyhippurate J0.73

PE(16:0/20:2) J0.73

PE(18:1/20:2) J0.73

LCER(18:1) J0.73

PC(18:1/18:2) J0.72

PI(18:1/18:2) J0.72

PE(OJ18:0/18:2) J0.72

PC(18:1/20:4) J0.72

DAG(14:0/18:2) J0.72

5Jhydroxyindole,sulfate J0.71

PE(PJ18:0/20:2) J0.71

3Jhydroxybutyrylcarnitine,(2) J0.71

PC(18:2/22:4) J0.70

TAG56:7JFA20:4 J0.70

3J(3Jhydroxyphenyl)propionate J0.70

alphaJketobutyrate J0.70


