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Abstract

Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous
system (CNS) that most commonly begins with a relapsing-remitting course (RRMS).
Many disease modifying treatments now are available, but none have efficacy in all
patients, all are expensive and all are associated with possible adverse events.
Stratifying patients to the best tolerated and most efficacious treatment either prior to
or soon after commencing treatment would enhance relative benefits and reduce
harm. Effective stratification depends on an understanding of relevant aspects of a
drug’s mechanism of action, characterisation of key pharmacodynamic effects and
being able to monitor disease activity over time. In this study, I set out to determine
whether multi-omics profiling (transcriptome, cytokines, lipoproteins and
metabolome) can fulfil these three requirements for one of the newer, oral treatments

for RRMS, dimethyl fumarate (DMF).

Chapter 1 provides an introduction to MS and explores the need for a stratified
approach to treatment. Chapter 2 outlines the materials and methods used in this study

including a discussion of modelling approaches that are used for data reduction.

In Chapter 3, I aimed to discriminate MS patients from healthy controls using multi-
omics profiling. The RRMS patients showed greater expression of immune pathway
genes, as well as raised concentrations of lipids within lipoprotein sub-fractions,
relative to healthy controls. The lipid measures were predictive of disability as
measured using the Expanded Disability Status Scale (EDSS) when combined in a

multivariate regression model.



In Chapter 4, I tested whether multi-omics profiling could further elucidate the
pharmacodynamic actions of dimethyl fumarate (DMF), a disease modifying
treatment for RRMS. Comparisons of patient samples pre- and 6 weeks post-
initiation of DMF revealed transcriptome changes enriched for activation of nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) and inhibition of nuclear factor kB (NFkB).
Metabolomics profiling defined elevated levels of tricarboxylic acid metabolites,

fumarate, succinate, succinyl-carnitine and methyl-succinylcarnitine.

In Chapter 5, I used my prospective longitudinal data to test whether gene expression
and metabolite changes associated with drug action in the blood mononuclear cell
fraction at 6 weeks are associated with clinical and radiological responses at 15
months. Patients responding to treatment (measured using the composite outcome
measure ‘no evidence of disease activity’) showed robust transcriptome changes
between baseline and 6-weeks that were not present in non-responders. They also

showed a relative stabilisation of gene expression over the remaining study period.

My study thus provides evidence that multi-omics profiling could be a useful tool for
stratified medicine in MS. It promises to elucidate differences that exist between
disease and healthy states, further understanding of the pharmacodynamics of
treatments and can provide longitudinal measures of response for monitoring the
impact of a medicine. The latter could be used to optimise treatment choice for
individual patients. If these methods were reduced to practice they could increase the
chances of better clinical outcomes whilst avoiding otherwise unnecessary adverse

events.
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Chapter 1

Introduction

Multiple Sclerosis (MS) is a ‘syndrome’ with great variation in disease course,
presentation and response to treatments(1). It is now crucial to unpick this
heterogeneity given the increasing number of available treatments and a more
informed patient population. Furthermore, there is significant heterogeneity of
treatment response which is currently difficult to predict. Many of these medicines are
expensive and therefore better ways of demonstrating efficacy are required (Fig. 1).
This is important as treatments have different mechanisms of action, efficacy and
relative risk of adverse events. In conjunction with their neurologist, a newly
diagnosed patient must now make complex decisions in deciding to initiate treatment,

treatment choice and treatment escalation.

Multiple Sclerosis Subtypes

MS is a neuroinflammatory disorder characterised by demyelination, gliosis and
axonal injury. Patients commonly present in young adulthood (between the ages of
20-40), there is a greater preponderance in females (typically a 2:1 ratio) and there is
often significant heterogeneity in clinical symptomatology. Most patients will initially
follow a relapsing-remitting course (RRMS) characterised by symptomatic episodes
from which there is either partial or complete recovery. The frequency of such
relapses tends to be highly variable, although on average will occur once every one to
two years(2). This clinical course is typically superseded by a progressive stage of
disease where relapses become less clearly defined and are replaced by a steady

worsening of symptoms (referred to as secondary-progressive MS (SPMS). Whilst
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this may be the most common trajectory, patients have highly variable disease courses
with respect to frequency of relapses and time to disease progression. Despite a
substantial literature on the natural history of MS disease course, the future severity of
the disease in an individual patient cannot be predicted well. A minority of patients
(<10%) will follow a progressive course from the outset (termed primary progressive
MS - PPMS) and a similar proportion will have mild relapses with very limited
accrual of disability over time (controversially termed benign MS)(3). In reality, the
majority of this group are not ‘spared’ from motor or cognitive impairment; it just

appears to be somewhat delayed(4-6).

Pathology of MS

Neuropathological studies support the hypothesis that MS is both an inflammatory
and neurodegenerative disorder (7). Associated neuropathological features seem
inextricably linked. For example, post-mortem studies reveal that dense meningeal
infiltrates are associated with demyelination, neuronal damage and cortical atrophy(8,
9). Furthermore, brain biopsies from patients early in disease course have
demonstrated that inflammatory cortical demyelination often precedes the appearance
of white matter plaques, the latter being associated with neurodegenerative changes

such as reactive astrocytosis and neuroaxonal injury(10, 11).

Diagnosis of MS

Patients are diagnosed with MS based on clinical and radiological findings according
to the McDonald Criteria, for which there must be evidence of dissemination in time
and space(12). Diagnosis couples clinical histories with conventional laboratory tests

and imaging (and, in some cases, cerebrospinal fluid (CSF) examinations)(12). This is
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necessary in order to ensure a more accurate diagnosis and to potentially identify
subtypes of MS such as progressive forms of the disease. Auto-antibody testing can
improve diagnostic accuracy. For example, neuromyelitis optica spectrum disorders
(NMOSD), identified by antibodies to aquaporind (AQP4-IgG), have a distinct
clinical course and may worsen with IFN treatment(13). Specificity of AQP4-IgG is
high(14, 15). However, cautions arise from recognition of the potential insensitivity
of AQP-4 assays for NMOSD(16). Patients with MOG antibody-associated
demyelination also have a unique course characterized by a unique clinical,

radiological, and therapeutic profile(17).

Treatments for MS

The last twenty years have seen remarkable developments in the therapeutic
management of MS. This has almost exclusively benefited patients with RRMS; a
large unmet clinical need still exists for those in the progressive phase of the disease
for which there are no currently licensed treatments. The recent results of the
ocrelizumab trial in progressive MS have provided some hope and this currently
awaits licensing in the UK. The first available treatments for RRMS were interferon-f3
(IFN- B) and glatiramer acetate (GA), both of which were shown in clinical trials to
reduce annual relapses rates by approximately 30% and to have an impact on
radiological measures(18). Long-term follow-up of patients from these early trials has
demonstrated that a subset experienced reductions in long-term disease severity,
progression(19) and risk of mortality(20). These latter findings of heterogeneity in
long term clinical outcomes accurately represent the unmet need in MS management;
the inability to accurately predict who will respond (or not respond) to a specific

treatment.
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A second generation of MS treatments became available at the turn of the century:
natalizumab in 2003 and fingolimod in 2009(21-23). Natalizumab is a monoclonal
antibody targeting integrin-o and preventing lymphocyte egress across the blood brain
barrier (BBB). Initially with proof of principle in the rodent model of MS(24),
experimental autoimmune encephalomyelitis (EAE), it progressed through pivotal
clinical trials to boast a greater than 65% reduction in relapse rate and >90%
attenuation of new MRI lesions(25, 26). The widespread excitement associated with
this highly effective disease modifying treatment (DMT) was tempered somewhat by
the diagnosis of progressive multifocal leukoencephalopathy (PML) in two patients
from the trial(27). PML is a serious adverse event associated with natalizumab that
affects 1 in 1000 patients taking this DMT. Thought to be caused by reactivation of
latent polyomavirus JC (JCV); the mechanism by which natalizumab causes PML
remains unknown(28). Risk factors for PML include prior use of other DMT, duration

of time on the medication and JCV serostatus(29).

Fingolimod, a sphingosine-1-phosphate (S1P) analogue exerts its action by
downregulating the S1P receptor 1 on leukocytes and the endothelium thus preventing
naive and central memory T lymphocytes from migrating from lymph nodes to the
peripheral vasculature. Reductions in relapse rates of over 50% and reductions in new
MRI lesions were observed in clinical trials of this medication(21, 23); however the
drug is associated with symptomatic bradycardia, lymphopenia, retinal oedema and

rarely fulminant hepatic failure(30).

Most recently, a number of further DMTs have become available for the management

of RRMS. These include two oral medications, teriflunomide and dimethyl fumarate
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(DMF) (31-33) and alemtuzumab, a monoclonal antibody to CD52 which is reserved
for more aggressive forms of the disease but is associated with secondary
autoimmune disorders such as thyroid disease and immune thrombocytopenic
purpura(34-36). The emergence of a number of new medications for MS, with similar
efficacy but a diversity of adverse event types, severity and frequency has driven the
need for a personalised approach to therapy, to ensure a patient is on the most
effective medication for them in order to positively impact on disease course and to

avoid unwanted side effects and adverse events.

Dimethyl Fumarate

Dimethyl fumarate (BG-12; Tecfidera) (DMF) is a fumaric acid ester licensed as a
DMT for RRMS. The primary therapeutic mechanism of action still is debated, but
has been proposed to involve activation of the transcription factor nuclear factor
(erythroid-derived 2)-like 2 (Nrf2)(37, 38), inhibition of nuclear factor kB
(NF«xB)(39) or agonism of the hydroxylic acid receptor 2(40). Because DMF is
believed to act on circulating, as well as tissue-resident immune cells, may trigger
anti-oxidant pathways through modulation of transcription factors, and is metabolized
to the intermediate metabolite fumaric acid, its mechanism of action lends itself well

to characterisation using gene expression studies and metabolomic phenotyping(41).

The pharmacokinetic properties of DMF are well characterized. After oral
administration, DMF is rapidly hydrolysed by esterases to its principle metabolite
monomethyl fumarate (MMF)(42). MMF is highly bioavailable, has a half-life of 12

hours and reaches serum peak concentrations of approximately 20 pM. MMF is
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ultimately hydrolysed inside cells to fumaric acid entering the tricarboxylic acid cycle

(TCA)(43, 44).

Initial studies in murine models of MS showed beneficial effects of this treatment on
clinical parameters and this was attributed to its anti-inflammatory properties
including induction of IL-10 and reduced macrophage inflammation(45). DMF was
subsequently tested for efficacy in a phase I clinical trial, which demonstrated that the
treatment was generally well tolerated and adverse events (AE) (which included
flushing and gastrointestinal symptoms) were mild and reversible. The trial was also
able to show a significant reduction in Gd+ enhancing lesions(46). The phase II
follow up study conducted by Kappos and colleagues reiterated initial findings,
reporting a 60% reduction in new Gd+ enhancing lesions, as well as a reduction in
annualised relapse rates by 32%(47). The phase III DEFINE study demonstrated a
reduction in annualised relapse rates by 0.19 with a relative risk reduction in relapses
of 53%(31). Further AEs reported included reduction in lymphocyte count and

elevated liver aminotransferase liver levels.

Anti-Oxidant Properties

DMF has been shown to activate the Nrf2 transcriptional pathway which reduces
oxidative stress(37, 38). In support of this postulated mechanism of action, other
groups have shown that pre-incubation of astrocytes with DMF can prevent dopamine
mediated neurotoxicity by increasing the activities of intracellular antioxidant
enzymes(48). Others have argued these antioxidant properties may be exerted by
astrocytes rather than neurons(49). The anti-oxidant properties of DMF have also

been shown to be important for T cell activation and differentiation and the ‘healthy’
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functioning of the peripheral immune system preventing release of pro-inflammatory

cytokines and ensuring effective intracellular signalling networks(50).

Anti-Inflammatory Properties

It has been well described that DMF suppresses nuclear factor kB-dependent
transcription with consequent preferential expression of anti-inflammatory
chemokines and cytokines(51, 52). Ockenfels and others have shown that DMF can
diminish IL-6 and TGF-alpha secretion shifting the immune response from a Th1 to a
Th2 profile(53, 54). These anti-inflammatory properties of DMF have also been well

characterised in peripheral blood mononuclear cells (PBMCs)(55).

Personalising treatment in MS

Stratification of baseline risk

In order to optimise the management of MS, it is important to be able to accurately
prognosticate for individual patients. Because all treatments carry costs — both
financially and in risks to future health- defining the net benefit of treatment involves
balancing the expected natural history of an individual’s disease against the risks of
treatment(56) (Fig. 1a and 1b). Patients differ widely in their baseline risk of

untreated disease progression, however we are not good at predicting this.
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Figure 1. (a) A simplified illustration of the potential cost-effectiveness of treatment monitoring for routine interferon neutralising antibody (NADb) testing of MS patients on IFN
treatment. The mean cost of relapse treated in the UK National Health System is £3586.% The cost of NAb testing is about £50. It was assumed that the NAb test provides an actionable
index discriminating potential efficacy of the IFN treatment from lack of any impact and that patients recognised to have NAb would be switched to another, equally effective disease
modifying treatment of similar cost. Recognition of the NAb therefore leads to savings accruing from avoidance of potential relapse costs associated with loss of efficacy of the IFN
(change in relapse rates with loss of efficacy * cost of relapse=0.52 x 3586=£1864).° The potential savings per test is the product of savings from avoidance of relapse and probability
of a positive test (1864 x 0.45=£840). (b) A graphical illustration of the dependence of net benefit of any treatment on baseline risk for a patient. The benefit of treatment was assumed
to be proportional to the risk of disease progression (relapse). An ‘ideal treatment’ — one in which there is no cost or risk of adverse events — should benefit all patients, with an
absolute benefit (measured, for example, in adjusted quality of life years) that increases with disease risk. However, in practice, treatments also can have a negative impact on patients,
either as cost or adverse events. Here, for simplicity, the negative impact is assumed to arise only from adverse effects of treatment and the risk and impact are assumed to be the same
for all patients. Estimation of the net benefit to a patient includes consideration both of the impact of treatment to reduce disease activity and the impact of adverse events associated
with medicine use. While patients with higher baseline risk from the untreated disease will receive greater net benefit (area defined by grid lines to the right), those at lower risk from
their disease may experience net harm (punctate area marked to the left). A goal of personalised medicine is to match the benefit/risk profile of a medicine and the baseline disease risk
to optimise the net benefit for a patient.

(Figure from Gafson et al, 2017, MS Journal(57))

Considerable community effort has been addressed to the identification of prognostic
factors for estimation of the baseline risk, but the precision with which this can be
done still is limited. For example, MRI measures of disease activity (by gadolinium
contrast enhancement) or T2-hyperintense lesion load are important prognostic
measures for prediction of risk of clinically definite disease after first symptoms(58).
Large, single clinical centre-based studies additionally have highlighted interactions
of MRI measures with age and sex in determining risk of progression(59). Lesion
distribution or clinical presentation appear to be independent predictors of medium

term prognosis(60). Epidemiological studies suggest that other phenotypic (e.g.,
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obesity, serum vitamin D), exposure (e.g., sunlight) and lifestyle factors (e.g.,
smoking) impact on prognosis(61). However, I did not find models that define their
quantitative interactions with individual susceptibilities. For example, is the impact
of smoking, low vitamin D and obesity meaningfully higher in people carrying the
DRBI1501 allele, or with early presentations of disease? Genotype alone has not yet
been shown to contribute significantly to disease severity risk(62). In the absence of
single, highly predictive markers, future personalisation will depend on clusters of

markers in multivariate models.

Stratification of treatment

There still are few specific indices to guide the timing of treatment beyond evidence
from trials that early treatment delays short-term clinical progression(63). The choice
of initial treatment also does not have a good evidence base, other than the lack of
benefit (or worsening) that has been found with IFN and other conventional
DMTs(64) in patients with progressive onset disease or NMOSD. While not fully
evidence-based, patients with a higher baseline risk likely will probably receive
greater net benefit from any treatment. Information concerning the relative efficacy
of medicines is limited due to the small number of head-to-head clinical trials and the
limitations of inference even when comparisons of the pivotal trials of individual
agent efficacies are made using formalized meta-analytic structures(65). One of the
most promising approaches to gathering evidence concerning relative clinical
effectiveness is through real-life data aggregation in multi-centre consortia, such as
MSBase (66). Generally, choices regarding medicine use in clinical practice are
framed in terms of a hierarchy of efficacy and risk for treatments based on data from

their pivotal clinical trials (which were intended to demonstrate efficacy, rather than
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comparative effectiveness). Decision-making then represents the balancing of these
data against estimates of relative disease severity for any given patient. Patient and
neurologist-specific factors of preference and access also play a role. However, while
there may be general guidelines, there is not a general consensus regarding the criteria

and methods for arriving at the balance of evidence for an individual patient.

Currently, in the absence of strongly predictive prospective markers, treatment
monitoring plays a major role. In fact, unquestionably the currently best developed
example of personalized medicine in MS is for safety monitoring of natalizumab
treatment(29). This model combines titres of anti-JC virus antibody, treatment
duration and previous history of immunosuppressive therapy in order to stratify
patient risk of PML. Baseline risk assessment and monitoring with treatment rapidly
became the standard of practice as the manufacturer and regulators worked together to
define a way of keeping this powerful treatment available once PML was recognized
as a complication. An international pharmacovigilance effort developed by the
manufacturer rapidly led to validation of a clinically practical approach to

personalization of risk and subsequent monitoring.

Monitoring for effectiveness is more challenging, in no small part because the target
outcome (ultimately, the accrual of fixed disability) is less easily defined.
Nonetheless, there are examples that are widely, if not universally, employed.
Neutralising antibody levels for IFN(67) and for natalizumab(68) explain a major
proportion of poorer efficacy of these medications. More generally, T2 lesion
increases and brain volume reduction on treatment are predictive of longer term

clinical efficacy, at least at a group level(69). The latter, combined with clinical
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measures of disease activity (relapse frequency or progression of fixed disability)
already are incorporated into treatment escalation decisions in many clinical centres,
although specific criteria for a switch in treatment are not generally agreed. While the
availability of large datasets is a major confound, this also is a consequence of lack of
standardization of MRI field strength, criteria for lesion identification and software
for brain volume change measures. Possibly even more sensitive markers of sub-
clinical disease activity are emerging, e.g., with monitoring of CSF or serum
neurofilament light chain (Nf-L) concentrations(70). In a 15-year follow up study,
higher levels of CSF Nf-L at baseline were associated with greater disability
progression in RRMS patients(71). Changes in concentrations while on treatment also
have been linked to treatment response(72). Additional markers are being explored
actively, but most of the profusion of reports based on studies with smaller
populations have later failed replication; Kroksveen and colleagues recently reported
that from 188 proposed CSF MS biomarkers, only 10 (5%) have been successfully

validated(73).

The importance of real world data

One of the reasons that no predictive biomarkers of response to medication have
emerged in MS may lie in the fact that the largest studies with the best power are
undertaken in the context of clinical trials; where patients are not necessarily
representative of the real world populations. For example, patients enrolled into such
studies are restricted by their age and normally have high baseline clinical activity.
Furthermore, because the medications are not usually tested against one another, it is
difficult to ascertain response markers unique to the treatment but also associated with

specific individuals(74). For these reasons, we are more likely to advance discovery
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of personalised treatment strategies using real world populations in observational
studies. These can proceed for a longer duration than clinical trials, patients on
different treatments can be directly compared and prognostic subgroups can be
characterised. Despite these advantages, a number of inherent biases must be taken
into account for such studies, including selection bias and detection bias. Real world
observational studies have been helpful in showing that escalation of treatment to a
more aggressive treatment after failure on a DMT can have benefits with respect to
relapses and the risk of disability progression(75, 76). Furthermore, natalizumab may

be preferable to fingolimod in patients with more active disease(77).

Omics as a stratification tool

Deconstructing the heterogeneity of a disease like MS involves understanding the
differences in populations (responders vs non responders, high disease activity vs low
disease activity). Given the importance of both genetics and the environment in the
susceptibility to MS, profiling patients genomes, transcriptomes, proteomes and
metabolomes is a promising approach to deconstruct this heterogeneity. There are a
number of ways such data can be used for this purpose. Firstly, one can take a data
driven approach which is unbiased but relies on good quality data (and samples) in
order to derive meaningful conclusions. This is an important approach given that there
is much we still do not understand about the causes of MS or the reasons for differing
responses to medication or disease course. One can also take a knowledge-driven
approach but this may ignore other candidates that are not known about a priori. A
good combined approach may involve an initial pilot study which identifies

candidates of interest followed by a validation using a knowledge driven approach.
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Once data is collected using the data-driven approach, there are two approaches to
data analysis. One can either perform unsupervised classification (discussed in greater
detail in the Methods section) in which sub-groups of samples are separated based on
their similarity and then differences in their biological behavior are interrogated. The
second approach involves supervised classification were samples are assigned to
relevant groups (e.g. control and patients) and those variables that are best able to
discriminate them are identified. This approach can be validated using train and test
subsets to test the predictive value of such a model. In the context of using such an
approach for identifying predictive markers of treatment response, a number of
factors must be borne in mind. Firstly, not responding to a medication may result
from a number of different factors and thus there may not be a specific signature
common to all those that do not respond to the drug. Secondly, in order to reduce the
possibility of spurious results, large sample sizes are required. Lastly, any such
signature must be validated in a separate cohort in order to progress to something that

will be clinically meaningful.

Pharmacogenomics has been championed as a necessary foundation for personalised
medicine, based particularly on examples drawn from cancer and rare inherited
metabolic diseases(78). Individualized, genetic based diagnoses have had
considerable impact, e.g., in licensing of imatinib for Philadelphia chromosome
positive chronic myeloid leukaemia and trastuzumab in HER2 positive breast

cancer(79).

Part of the reason for the success of this approach in cancer is that the underlying

pathology can in large part be explained by genetic dysfunction. Understanding the
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mutations that can arise in specific cancers has led to the development of molecular
targeted therapy(80-82). Treatments can then be individualised to those with the
specific molecular defect(83). As such, the ultimate goal is that ‘each patient receives
the right drug at the right time at the right dose for the right disease’(84). Despite
promising developments in this field, there are drawbacks, for example, on and off
target side effects(85-87) and the acquisition of resistance to a so-called targeted
therapy(88). The latter may arise from alterations in the drug target(89-91) or target
amplification(92, 93). A further role for pharmacogenomics may be in determining
drug dosage; indeed it is well documented that at a certain dose, a drug may be below
a therapeutic level in some individuals, but may exert toxicity in others. The most
common example of this is in the use of warfarin(94). In the context of MS,
individual characteristics can determine drug metabolism (e.g., hepatic and renal
function for elimination of IFN) and this may guide choice of drug in less common
situations in patients with comorbidities(95). Differences in ethnicity may alter drug

absorption or metabolism(96).

Extending ‘omics to MS

A greater understanding of the underlying genetic contribution to MS risk in recent
years has raised the prospect of applying pharmacogenomics to the personalised
treatment of MS. Risk susceptibility genes are thought to contribute modestly to
disease risk heritability governed by complex gene-environment interactions. The first
genetic association in MS was reported in 1972 for HLA Class I antigens(97). This
field has now developed such that there are now a number of MHC related alleles
which confer an increased risk of susceptibility for and severity of MS. Over 100

further genes of interest became apparent following the first genome wide association
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study in MS in 2007, most significantly, IL-2 and IL-7 receptor alpha genes(98).
Cytotoxic T lymphocyte antigen 4 has also been implicated(99-101), however results

for this have not always proved conclusive and effect sizes are often modest.

Gene expression is a quantitative phenotype that can be used as an endophenotype for
characterising disease risk genes(102, 103). It is now clear that most of the genome is
transcribed into RNA, however only a small proportion (1-2%) codes for
protein(104). Messenger RNA (mRNA) contains the coding region but typically has
untranslated sequences at both its 5* and 3’ ends that may play a role in regulatory
function(105). There are also many non-coding RNA species with roles in
intracellular signalling and transcriptional modification(106). It appears that mRNA
does not have a linear relationship with its downstream protein-coding counterpart

suggesting that a significant regulation may take place before translation occurs(107).

In the context of MS, gene expression studies have been applied in an attempt to gain
greater insight into the disease(108-111) and also to identify markers of disease
activity or treatment response(112, 113). These studies have principally relied on
microarray technology which is cheaper, easier to use and computationally less
intensive to analyse. Gene expression can be studied in a network context using gene
co-expression networks. This approach has been used for studying neurological
disorders with considerable success(114). Here, genes that have similar expression
patterns are grouped together on the assumption they may be functionally
related(115). Similarity in gene expression is calculated using a number of
approaches, including correlation, regression or Bayesian methods. On occasion these

can be combined to create more robust results(116). Despite promising observations,
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these associations have not been translated into clinically useful stratification tools or

robust biomarkers.

Identifying and quantifying the full set of transcripts including as-yet unidentified
genes and RNA subtypes in a biological sample has become possible using next-
generation sequencing (NGS), known as RNA-Seq. This technique is a multi-stage
process that begins with fragmentation of RNA species and conversion by reverse
transcription to cDNA fragments containing sequence adaptors(117). Depending on
protocol, these fragments will sometimes undergo PCR amplification before high
throughput sequencing to generate millions of short reads from one or both ends of
the fragment (single-end and paired-end sequencing respectively). These reads are
then reconstructed to their original RNA assembly and are then quantified to give an
estimation of their expression levels. There are many advantages to RNA-Seq over
traditional sequencing platforms. These include the ability to detect as yet

unidentified RNA species, SNPS and transcription boundaries(117, 118).

Proteomics

One approach to validating gene expression studies is to look for correlation with
downstream proteins of interest. Proteomics has been widely utilised in MS for
biomarker discovery. Candidates of interest include matrix metalloproteinases
(MMPs) which are involved in regulating pro-inflammatory cytokine release, myelin
breakdown and axonal damage. Levels of MMP-9 specifically have been correlated
with relapses and MRI lesion activity(119-121). A further candidate is ostepontin,
levels of which are raised in MS patients compared to controls(122, 123) and fall

following treatment with natalizumab or GA(124).

32



Quantifying cytokines can also be helpful in identifying markers of disease activity.
In the context of MS, IL-17, IL-12 and IL-23 have been extensively explored. IL-17
appears to have a strong association with MS, correlating well with worsening disease
activity. This finding has led to a trial of an anti-IL-17A monoclonal antibody(125) in

patients with MS (NCT00882999).

Metabolomics

In combination with transcriptomics and proteomics, one can derive yet more
information by looking at the end products of physiological and pathological
processes in the form of metabolomics. Indeed, this has already provided information
into the pathogenesis of disease(126-129). In the context of a multi-omics experiment,
metabolites represent the downstream output of the genome. They can now be used

for patient diagnosis and disease monitoring(130, 131).

In order to conduct an effective metabolomics experiment it is essential to consider
sample size and to match for co-variates that may affect metabolites of interest (e.g.
age and sex). It is also important to consider whether to undertake a targeted or
untargeted approach to the experiment; the latter having the disadvantage that many
metabolites are unidentifiable. Metabolomics experiments should also take into
account factors that may affect specific metabolites, for example timing of dose with
respect to last meal, timing of medications and time of day when blood is collected.
The main platforms for metabolomics are NMR spectroscopy and mass spectrometry.

Details of the analysis of such data will be provided in the Methods section.
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Tools used for metabolomics profiling already provide precision medicine in the
context of newborn screening. Indeed, these tools are used for diagnosing and
predicting disease and also for determining optimal therapy (enzyme supplementation
of dietary restriction) and dosing regime(132, 133). Further examples in adult life
include measurement of glucose levels to identify pre-diabetes, iron levels in

haemochromatosis and vitamin levels to diagnose dietary deficiencies.

Pharmacometabolomics has also advanced as a clinically useful tool(134). For
example, in kidney transplantation, MS-based monitoring of immunosuppressants
such as mycophenolate and tacrolimus help to optimise patient dosing. This is
important given the serious adverse advents associated with such medications
including reduced white cell counts, anaemia and thrombosis(135). Similarly, in
Alzheimer’s disease where adherence to medication may be problematic, there is

some promise(136).

A number of metabolomics studies using CSF, serum and urine samples have been
undertaken in MS patients. With regards to CSF, lactate has been identified as
increased in patients with active MRI lesions(137), however follow-up validation
experiments have failed to corroborate findings(138). In serum samples, an NMR-
based approach using partial least squares discriminant analysis (PLS-DA) was able
to separate RRMS from SPMS subjects(139) with a high degree of accuracy. Other
studies have also identified metabolites that can accurately predict MS patients vs

controls(140) and NMO patients(141).
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One of the advantages of assaying metabolomic profiles in MS patients is the
dynamic interplay between environmental exposures and their effect on the
metabolome. Equally, gene-environment interactions can also be studied to gain
further insight into the disease(142). Environmental exposures seem of particular
importance in the pathogenesis of MS; the most investigated being Epstein-Barr virus
infection (EBV), levels of vitamin D and smoking(143, 144). Others include
adolescent obesity and nocturnal shift work. Despite strong evidence supporting these
as causative factors, there are a number of biases to be borne in mind. These include
residual confounders, reverse causation and selection bias. Heritability studies reveal
that a sibling of a patient with MS has a 7-fold increased risk of the condition. Whilst
this risk provides some evidence for genetic predisposition, it highlights the
importance of environmental factors(145, 146). The steady rise in incidence of MS
amongst women in the last decade is suggestive of environmental triggers. These
include changes in lifestyle, for example, increases in smoking, obesity and changes

in reproductive behaviour(147-150).

Different ‘omics can be combined using correlation-based or pathways analysis
approaches. In a complex disease such as MS, there is continual interplay between
genes, proteins, metabolites and the environment(151). Integrating these at an
individual level will enable personalised management. The current approach to
integrating such data sets is by mathematical modelling(152). The first step involves
compiling the current knowledge through a literature search in order to establish
pathways that are affected by the disease. These are then combined to form a network
which can be evaluated using experimental data. Approaches that provide large

amounts of information (i.e. omics) are generally more reliable for testing such
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networks(153, 154). If the network is reliable, a mechanistic model can be created

which may predict an individuals response to a treatment.

How might personalised medicine work in MS?

As outlined above, MS requires a personalised approach to its diagnosis,
prognostication and therapeutic strategy. This will require greater understanding of
the disease itself and the subtypes within it. Whilst all of the current DMTs that are
available target the immune system, they target different cell types, their movement
and their ability to function. I envisage an approach to personalised medicine that
incorporates a more accurate endophenotype of patients based on genetic and
environmental information that can be objectively measured using combinations of
genetics, transcriptomics, metabolomics and proteomics. Furthermore, patients will be
stratified to an appropriate medication based on short-term pharmacodynamic
responses measured using the same omic tools. Such tools may determine response to
treatment and risk of adverse events. Most optimistically, detailed profiling may be
able to prognosticate patients and predict their future disease course which has

implications for social, medical and psychological impacts related to the disease itself.
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Summary and Aims of My Thesis Work

MS is a clinically heterogeneous condition. It is sometimes difficult to diagnose and
even harder to predict prognosis, disease course or response to a treatment. This is

important as the medications are expensive and have hazardous risk profiles.

Once a patient is accurately diagnosed, it is important to prioritise initiation of
treatment as ongoing inflammatory activity leads to accumulation of disability.

There is currently no algorithm in place to match patients to an appropriate treatment.
This relies on a ‘trial-and-error’ approach, usually combining a clinicians’ expertise
with patient values. Escalation of treatment usually occurs when a patient fails to
respond to their current medication; however classifying ‘response’ to a medication is

also poorly defined.

Given that a number of treatments are now available for RRMS, it is essential to be
able to stratify patients to a treatment that is most efficacious. One approach to
achieving this is through pharmacogenomics. Pharmacogenomics has emerged as a
key player in personalisation of treatment for cancer. Harnessing this approach for

MS is an attractive option as there is a genetic predisposition to the disease.

Despite there being some genetic component to MS there are widely recognised
environmental factors that seem to be associated with MS. Their effects can be
captured by looking at gene-environment interactions. Additionally, one can derive
information about environmental risk factors through exploring the metabolome.

Ultimately, a hierarchical pathway approach combining genetic, transcriptomic,

37



proteomic and metabolomics will yield the ‘bigger picture’. Currently, tools to

achieve this are very much in their infancy.

A commonly prescribed first line treatment for RRMS is DMF. DMF has been shown
to be effective at both reducing relapses and MRI lesion load. The therapeutic
mechanism of action of this drug is not known, however, it is believed to have anti-
oxidant and anti-inflammatory properties. These properties make it an ideal candidate

for identifying multi-omic treatment response signatures.

Hypothesis
Changes in gene expression in PBMC and metabolomics profiles in plasma
within 6 weeks of initiation of DMF for RR-MS can associate with clinical and

radiological response at 15 months.

Aims

To determine;

1) Whether gene expression changes in the blood mononuclear cell fraction and
metabolite changes in plasma 6-weeks post treatment initiation can further elucidate

the pharmacodynamic actions of DMF.

2) Whether, multi-omics profiling can discriminate treatment-naive MS patients and

controls.
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3) Whether, in MS patients starting DMT, gene expression and metabolite changes
associated with drug action in the blood mononuclear cell fraction at 6 weeks can be

associated with clinical and radiological response at 15 months.
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Chapter 2. Materials and Methods

Ethical Approval
The study was approved by the NRES Committee London — Camden and Islington —

14/LO/1896.

Study Design

This longitudinal cohort study intended to explore whether changes in
transcriptome, cytokine and metabolomic signatures could help predict response
to DMF in RRMS patients. 36 patients were recruited to the study and 10 healthy
age- and sex- matched controls. Subjects and controls attended a screening visit
and two further study visits over the course of 15 months. Patients were
recruited from the MS clinics at Imperial College Healthcare NHS Trust and
consent for the study was obtained. Healthy volunteers were recruited by

advertisement. Inclusion and Exclusion criteria for patients outlined below.
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Inclusion Criteria

e Male or female between 18 and 65 years of age inclusive, at the
time of signing the informed consent.

e C(linical or clinical and laboratory supported diagnosis of MS
(Revised McDonald criteria, 2010).

e Recently prescribed, but yet to commence Tecfidera for RRMS.

e Able to lie comfortably on back for up to 60 minutes at a time.

e (Capable of giving written informed consent, which includes
compliance with the requirements and restrictions listed in the
consent form.

Exclusion Criteria

A subject will not be eligible for inclusion in this study if any of the following
criteria apply:

e Any clinical significant medical conditions that in the opinion of
the investigator would compromise subjects’ safety or compliance
with study procedures.

e Unwillingness or inability to follow the procedures outlined in the
protocol.

e Subject is mentally or legally incapacitated.

e Presence of a cardiac pacemaker or other electronic device or
ferromagnetic metal foreign bodies as assessed by a standard pre-
MRI questionnaire.

¢ C(laustrophobia limiting tolerance of MRI

Study Days

For the patients with MS, clinical assessments were performed at baseline, 6 weeks
(+/- 3 weeks) and 15 months (+/- 8 weeks). Patients underwent magnetic resonance
imaging (MRI) at 6 weeks (+/- 3 weeks) and 15 months (+/- 8 weeks), and detailed
clinical and patient-centred histories were taken to determine whether a patient was
responding to the drug. Clinical assessment included MS Functional Composite
(MSFC) at all timepoints as well as a quality of life questionnaire (SF-36) at baseline

and 6 weeks (+/- 3 weeks). Blood samples were taken on entry to the study, and 6

41



weeks (+/- 3 weeks) and 15 months (+/- 8 weeks) post treatment onset. Blood from
healthy volunteers was taken at the same timepoints. A schema for the project is

outlined in Fig 2.

Baseline 6 weeks 15 months

2
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Cytokines
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Fig 2. Schematic of study visits for RRMS patients and healthy controls. Images

taken from Google Images.

Patient and Control Demographics

The study cohort included 36 patients with RRMS (RRMS; median EDSS, 2.5, range
1- 6.5) diagnosed by McDonald criteria(12), who were recruited from the Imperial
College Healthcare NHS Trust and who consented for participation in the study.
Patients recruited were aged between 18-65 and treatment-free (DMT and steroids)
for at least 3 months. Three patients experienced regular migraines, 2 had asthma, 2
psoriasis and 2 had autoimmune thyroid disorders. Three patients had thalassemia
trait and one patient had hypercholesterolaemia. Within the patient cohort, there were
13 men and 25 women. Mean age was 42.9 (+/- 12. 1), average disease duration from
diagnosis was 6 years (+/- 5 years) and average disease duration from symptom onset

was 12 years (+/- 9 years). 19 patients were treatment naive and 16 patients had been

42



on previous treatments. 3 patients were current smokers. Amongst those patients who

had been on previous treatments, 9 had been on a B-Interferon, 6 on copaxone and 1

on azathioprine. Table 1 summarises patient demographics.

10 age- and sex- matched healthy controls were recruited by local advertising. 4 were

men and 6 were women. 1 patient was a current smoker. There were no comorbidities

in this cohort. Table 1 summarises control demographics.

MS Patients

Controls

Gender 13 Men and 23 Women (n =36) 4 Men 6 Women (n =10)
Mean Age (years) 429+12.1 37.3+11.0
Average disease duration
6+5 N/A
from diagnosis (years)
Average disease duration from
12+9 N/A
first symptom (years)
EDSS (median, range) 2.5 (1-6.5) N/A
Treatment Naive patients 15 N/A

Current Smoker

3

1

Table 1a. Patient and Control Demographics for full cohort. Values quoted as mean + standard

deviation if not indicated otherwise.

With regards to follow-up, at the 6-week visit, 5 patients did not continue in the study.
4 were unable to take the medication due to severe abdominal symptoms and 1 was
unable to attend for follow-up. At the 15 month timepoint, a further 5 patients did not
continue in the study. 3 had terminated treatment due to side effects and 2 had

stopped the medication due to disease progression.
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Sample size for this study was calculated based on previous findings from RNA-Seq
experiments, feasibility and the limited timeframe of the study(155). A depth
coverage of 50 million reads and a CV of 0.4 powered the study at 90% when looking

for expression changes between groups with fold change > 0.5 fold.

Peripheral Blood Mononuclear Cell Extraction

Whole blood samples were taken at time points described above using EDTA tubes
(40 mls total). PBMC were extracted from fresh whole blood using Ficoll technique.
EDTA tubes containing blood samples were initially spun at 1400rpm for 10 minutes
(Acceleration (A) 7, Deceleration (D) 7) at room temperature. Following
centrifugation, overlying plasma supernatant was collected into 2ml cryovials and
stored at -80 °C. Remaining blood was transferred to 50 ml Falcon tubes (maximum
12mls per Falcon tube) and diluted in Dulbecco’s Phosphate-buffered saline (1:2
ratio). Equivalent number of 50 ml Falcon tubes were prepared with 15mls histopaque
at room temperature (Histopaque-1077, Sigma Life Science). Diluted blood was then
overlaid onto Ficoll and tubes centrifuged at 1600 rpm for 30 minutes (A:5, D:2).
Buffy coat containing PBMC was aspirated using sterile Pasteur pipettes and washed
with sterile PBS. Two wash cycles were performed followed by re-suspension of cell
pellet in 10mls PBS. Cells were then counted using Trypan Blue and 5-10 million
cells placed into 2 sterile eppendorf tubes for duplicate RNA extraction. Remaining

cells were stored in a PBS/DMSO (9:1 ratio) solution at -80 °C.
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RNA extraction

RNA extraction was performed in duplicate on fresh pellet directly following PBMC
extraction by Ficoll. RNA extraction was performed using Qiagen RNeasy kit
(Qiagen, Hilden, Germany). The kit uses the selective-binding properties of a silica-
based membrane to bind up to 100 micrograms of RNA. The cell pellet was lysed and
homogenised using buffer RLT — a denaturing guanidine-thiocyanate-containing
buffer that inactivates RNases. Ethanol was then added and the sample inserted into a
RNeasy Mini spin column for RNA purification and removal of contaminants. The
sample underwent three buffer washes (buffer RPE and RW1) and an on-column
DNase digestion step using DNasel stock solution. The duplicate assay yielded 2
50M1 samples. RNA quantity was measured using a spectrophotometer and the ratio
of absorbance at 260nm and 280nm was calculated to assess the purity of RNA (a
ratio of 2.0 is generally accepted as pure for RNA). The ratio of absorbance at
260/230 was also calculated as a secondary measure of nucleic acid purity (a ratio of

2.0-2.2 is generally accepted as pure for RNA).

Cytokine Assay

Cytokine and inflammatory markers were measured using the Meso Scale Discovery
(MSD) v-PLEX Neuroinflammation kit. (Meso Scale Discovery, Maryland, USA).
This kit consists of 5 microplates pre-coated with antibodies to 40 neuroinflammatory
markers. The panels are separated as follows. Pro-inflammatory panel (IFN- , IL-

1 ,IL-2,1L-4, IL-6, IL-8, IL-10, IL-13 and TNF-a), cytokine panel (IL-1, IL-5, IL-
7, IL-12/IL-23p40, IL-15, IL-16, IL-17A, TNF-a, VEGF), chemokine panel (Eotaxin,

MIP-1, Eotaxin-3, TARC, IP-10, MIP-1, MCP-1, MDC, MCP-4), angiogenesis panel
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(VEGF-C, VEGF-D, Tie-2, Flt-1, PIGF, bFGF) and vascular injury panel (SAA, CRP,

VCAM-1, ICAM-1).

Calibration curves were prepared in the supplied assay diluent. Arrays were
preincubated with 25 uL per well of assay diluent for 30 minutes. After the
preincubation, 25 uL. sample or calibrator was added in duplicate to the appropriate
wells. The array was then incubated at room temperature for 2 hours. The array was
washed with PBS plus 0.05% Tween 20, and 25 pL detection antibody reagent was
added. After 2 hours of incubation at room temperature, the array was washed and the
detection buffer was added. Results were read with a MSD Sector Imager 6000.
Sample cytokine concentrations were determined with Softmax Pro Version 4.6

software using curve fit models.

RNA-Seq protocol

Samples were sent to Genewiz (Genewiz, New Jersey, USA) for library preparation
and sequencing for mRNA and small RNA. The first step in this process was to run a
QC on RNA samples and to ensure sufficient quantity and quality. Initial quantities
assayed using Nanodrop and Qubit 2.0 Fluorometer (Life Technologies, Carlsbad,
CA, USA) and RNA integrity using Tapestation (Agilent Technologies, Palo Alto,
Ca, USA). Of all samples sent to Genewiz, all had 260/280 ratio of >2. RNA
integration number was also > 9 for all samples. Two samples had insufficient
material for RNA sequencing and were therefore omitted from further analysis. A
table of this QC is provided in Appendix 1. Following QC, library preparation was

performed in the same facility (Genewiz, New Jersey, USA).
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This used the NEBNext Ultra RNA Library Preparation Kit from Illumina following
manufacturer’s recommendations (NEB, Ipswich, MA, USA). mRNA was enriched
with Oligod(T) beads and enriched mRNAs were fragmented for 15 minutes at 94°c.
cDNA for first and second strand were then synthesized, end-paired and adenylated at
3’ ends. The universal adapter was then ligated to cDNA fragments along with the
index sequence and the library enriched with limited cycle PCR. Sequencing libraries
were validated using Agilent Tapestation and quantified using Qubit 2.0 Fluorometer

and quantitative PCR (Applied Biosystems, Carlsbad, Ca, USA).

Small RNA sequencing was prepared using the Illumina Small RNA Library Prep kit
(Illumina, San Diego, Ca). Here, Illumina’s 3’ and 5’ adapter was added to RNA
molecules with a 5’-phosphate and a 3’-hydroxyl group sequentially. Reverse
transcription was then performed to create single stranded cDNA. cDNA was PCR
amplified with a common primer and a primer containing the index sequence. The
amplified cDNA construct was purified using polyacrylamide gel electrophoresis, the
correct band was excised from the gel, eluted with water and concentrated by ethanol
precipitation. This final library was then quality controlled using Qubit 2.0

Fluoremeter and Agilent TapeStation (Applied Biosystems, Carlsbad, Ca, USA).

Sequencing for RNA (Illumina Hi-Seq platform 2 x 150bp PE configuration) and
small RNA (Illumina HiSeq 2500, 1 x 50bp SR configuration) was performed. The
sequencing libraries were multiplexed and clustered on two flowcells and these were
loaded onto the Illumina HiSeq platform. The small RNA libraries were multiplexed

and clustered on 3 lanes of a flowcell.
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Raw sequence data was quality controlled, initially by determining the Phred quality
score, the most common metric used to assess the accuracy of a sequencing
platform(156). Q scores are defined as a property logarithmically related to base

calling error probabilities (P).

Q =-10 lOgl()P

As an example, if Phred assigns a Q score of 30 (Q30), the probability of an incorrect
score is 1 per 1000. In my dataset, the percentage of >Q30 bases was >96% for all
samples. An initial FASTQC was then performed on all samples. FASTQC is a
software that checks the per base sequence quality, the per base GC content, Kmer
content and adapter content of a sample(157). An example of a FASTQC report is

provided in Appendix 1.

The second QC step involved clipping the adapters from the raw sequences. This was
performed using TrimGalore software. Trimgalore is a multi-step software tool that
removes low-quality base calls and removes adapters from raw sequences(158).
Following this step, a further FASTQC was performed on all samples to ensure that

data was of sufficient quality.

Following adapter clipping, sequence reads (in the form of fastq files) were aligned to

a reference genome and raw counts for genes were derived. In order to ensure greater

reproducibility of findings, alignment was performed using two different pipelines.
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Method 1: DRAGEN alignment and Counts using HTSeq
DRAGEN (Dynamic Read Analysis for Genomics) is a commercially available
software that is capable of aligning raw sequence reads from the Illumina HiSeq

platform (http://www.edicogenome.com/) to a reference genome. The Fastq files

containing the raw sequences were inputted into the DRAGEN pipeline and aligned
using reference genome GRCh38.p10. Alignment accuracy for this software is
reportedly superior to existing open-source alignment software such as TopHat and
Star(159). Gene hit counts were calculated from the output BAM files derived from
DRAGEN software using HTSeq-count(160). HTSeq-count is a python library that
counts aligned reads overlapping exons for each gene. Only reads mapping
unambiguously to a single gene are counted using the software; and reads possibly
mapping to more than one gene are discarded. HTSeq count is a reliable counting tool

for RNA-Seq data(161).

Method 2: STAR alignment and Counts using StringTie and Ballgown suite
Alignment and Count derivation were also performed using a different pipeline to
ensure robustness of analysis and to increase the probability of reproducible findings.
Alignment was performed using STAR software (Spliced Transcripts Alignment to a
Reference)(162). STAR is an open-source pipeline that utilises a seed finding phase to
search for a Maximal Mappable Prefix; a concept used by large-scale genome
alignment tools. MMP involves sequential searching for a given read sequence within
the reference genome sequences. The longest substring that matches the reference
genome is found using the maximum mappable length of the sequence. Alignments
are then built using clustering and stitching and alignments are scored based on

penalties for mismatches, insertions, deletions and splice junction gaps.
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Small RNA alignment and count derivation

Sequence reads were trimmed to remove possible adapter sequences at the 3’ end.
Reads with 17 to 35 nucleotides were retained and mapped against micro RNAs for
Homo Sapiens in the micro RNA database(163) (miRBase 21) using the CLC
Genomics workbench v.9.0.1 (Qiagen, Hilden, Germany) . Mapping statistics were

generated using QualiMap v.2.2.1(164).

Metabolomics
A pilot plasma sample set was sent for global metabolomic profiling to Metabolon
Inc. (Metabolon, Durham, NC, USA). This included 15 MS patients and 10 healthy

controls at baseline and 6 weeks.

MS Patients Controls
Gender 8 Men and 7 Women (n = 15) 4 Men 6 Women
Mean Age (years) 37.3+11.3 38.3+9.7
Average disease duration 5+4 N/A
from diagnosis (years)
Average disease duration from | 7+6 N/A
first symptom (years)
EDSS (median, range) 1.5(1-6.5) N/A
Treatment Naive patients 8 N/A
Current Smoker 0 1

Table 1b. Patient and healthy volunteer demographic data for Metabolon Inc. samples. Values
quoted as mean + standard deviation if not indicated otherwise.

Metabolon Mass Spectrometry Analysis
Mass Spectroscopy (Discovery cohort)
Samples were sent to Metabolon Inc. (Durham, NC) for untargeted metabolomics

analysis. Samples were precipitated with methanol followed by centrifugation prior to
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QC. QC involved addition of several control samples to aid chromatographic
alignment. This included pooled matrix samples, technical replicates (derived from a
pool of well characterized human plasma), process blanks and within-sample spiking
of endogenous compounds. Experimental samples were randomized across the

platform and run with the QC samples.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy
(UPLC-MS/MS).

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography
(UPLC) (Waters, MA, USA) and a Thermo Scientific Q-Exactive high
resolution/accurate mass spectrometer (Thermo Fisher Scientific Inc., MA, USA)
interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass
analyzer operated at 35,000 mass resolution. Samples were analysed using acidic
positive ion conditions (optimized both for hydrophilic and hydrophobic compounds),
basic negative ion conditions and a negative ionization following elution from a

HILIC column. The scan range covered 70-1000 m/z.

Metabolite Identification

Raw data was extracted and peaks identified using the Metabolon library.
Biochemical identifications are based on three criteria: retention index (RI) within a
narrow RI window of the proposed identification (within 150 RI units ~10s) , accurate
mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores
between the experimental data and authentic standards(165). Peaks were quantified

using area-under-the-curve.
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National Phenome Centre Metabolomics
All baseline and 6 week plasma samples underwent metabolomic profiling at the
National Phenome Centre (NPC) at Imperial College London. This included global

mass spectrometry analysis and a NMR-based lipoprotein analysis.

Samples were formatted into 96-well polypropylene plates as previously
described(166) and diluted in a 5:1 ratio (v/v) with an aqueous internal standard (IS)
solution (sample:IS). The sample was further diluted by addition of acetonitrile in a
1:3 ratio (sample+IS:ACN, v/v). The plate was heat sealed using Thermo-Seal foil
sheets and an ALPS 50 V-Manual Heat Sealer (Thermo Fisher Scientific Inc., MA,
USA) prior to mixing for two minutes using a MixMate (Eppendorf) operating at
1400 rpm and subsequent 2 h incubation, both at 4°C. All samples were then
centrifuged at 4°C for 10 minutes at 3486 x g to separate precipitated protein and
other particulate material from the supernatant, which was aspirated and dispensed to
a separate 96-well plate for UPLC-MS analysis.

A single HILIC UPLC-MS analysis was performed on an Acquity UPLC instrument
coupled to a Xevo G2-S 0aTOF mass spectrometer (Waters Corp., Manchester, UK)
via a Zspray electrospray ionization (ESI) source operating in the positive ion mode.
Details of the UPLC-MS system configuration and HILIC analytical method used for
profiling have been reported previously(166). Briefly, a 2 ul full loop injection (with
5% overfill) of prepared sample was made to a 2.1 x 150 mm BEH HILIC column
(Waters Corp., Milford, MA, USA) thermostatted at 40 °C. Gradient elution was
performed using acetonitrile + 0.1% formic acid (A) and 20mM ammonium formate
in water + 0.1% formic acid (B) solvents with a flow rate of 0.6 mL/min. Details of

the gradient can be found in the supporting information of the provided reference.
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Feature extraction and data processing were performed using Progenesis QI 2.1
software (Waters Corp., Manchester, UK) as previously described(166). Metabolites
of interest from the discovery cohort analysis were located either by retention time
and accurate mass match to an authentic reference standard or by accurate mass and
interpretation of the MS/MS fragmentation pattern (specifically for methyl succinyl-

carnitine, as no reference standard was commercially available).

Targeted Quantitative Analysis of Monomethyl Fumaric acid (MMF)

All samples were subjected to targeted analysis for the absolute quantification of
MMEF. Briefly, samples were prepared by dilution with three volumes of acetonitrile +
0.1% formic acid containing100 mg/mL heavy labeled MMF (mono-methyl-'>C.ds
fumarate, Sigma-Aldrich). The samples were mixed and centrifuged as described
above prior to solid phase extraction using OSTRO sample preparation plates (Waters
Corp., Milford, MA, USA) operated by vacuum manifold for two minutes. The
product sample was dried overnight under a continuous flow of nitrogen gas and
reconstituted using an amount of ultra-pure water equal to the original volume of

plasma used (150 pl).

Sample analysis was performed using an Acquity UPLC instrument coupled to a
Xevo TQ-S tandem quadrupole mass spectrometer (Waters Corp., Manchester, UK)
via a Zspray electrospray ionization (ESI) source operating in the negative ion mode.
MMF was identified using the National Phenome Centre reference library as being
well retained by the reversed-phase chromatographic method described
previously(166) and that method was therefore validated with the following

parameters: limit of detection (LOD) = 0.5 ng/mL; limit of quantification (LOQ) =
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Sng/mL; linear range = 0.5-100ng/mL; dynamic range = 0.5-2000ng/mL; sensitivity =
0.99+/-0.023. Within-run precision was measured by seven repeated analyses of
samples at the low, medium, and high range of the method (% relative standard
deviation) = 3.3, 1.6, and 2.4 respectively. Matrix effects and absolute recovery
covered a chosen low, medium and high range within the dynamic range (40, 400 and
800ng/mL). Matrix effects indicated negligible ion suppression with values above
95% with no ion enhancement. Absolute recovery was within acceptable range of 77
to 118% in accordance to stated GLP and GMP Bioanalytical method validation
guidelines.). Peak integration and calculation of final MMF concentration was

performed using TargetLynx software (Waters Corp., Milford, MA, USA).

NMR Spectroscopy

Plasma samples were centrifuged for 5 minutes at 4°C at 13,000 rpm to remove solid
particles in suspension. Bruker 600 Avance III spectrometer was used to acquire 1D
NMR general profiling and 2D J-res spectra(167). Spectra were processed, phased
and baseline corrected in automation using TopSpin software (v3.2, Bruker BioSpin,
Rheinstetten, Germany). The signal from the anomeric proton of the glucose at 5.23

ppm was used to calibrate the plasma spectra.

Lipoprotein and cytokine analyses

Lipoprotein quantification was performed with the Bruker B.I.-LISA (Bruker IVDr
Lipoprotein Subclass Analysis) platform using the -CH3 and CH2 resonances in the
1H-general profile NMR spectrum (0.88 and 1.29 ppm, respectively). These broad
resonances were bucketed and fitted against a Partial Least Square (PLS2) regression

model. The model has been validated against direct assays after plasma
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ultracentrifugation(168). For each sample, the method estimates concentrations of
lipids (cholesterol, free cholesterol, phospholipids and triglycerides) within the main
lipoprotein classes (VLDL, IDL, LDL, HDL), subdivided according to increasing
density and decreasing size (VLDL-1 - VLDL-6, LDL-1 - LDL-6, HDL-1 - HDL-4).
105 lipoprotein sub-fractions were analysed in each sample using this method. A test-
retest comparison of sub-fractions samples measured in a single healthy control from
samples taken on 5 consecutive days showed that mean lipoprotein sub-fraction

concentrations varied by < 5%.

Modelling approaches for data reduction

Omics approaches yield large datasets and statistical tools have been developed to
interpret them (9,10). These include dimension reduction techniques that rationalise
the date into a limited number of variables (called components) that account for the
greatest variance in the dataset. For any given omics experiment (X) there are

variables (also referred to as features) (x) and samples (n). This can be represented by:

X =(x1+x2,....Xp)

Dimension reduction identifies a set of new variables or components(f) through a

linear combination of the original variables. Coefficients (q) will make up the

components and these are also known as loadings. Dimension reduction finds a set of

q’s that take into account the greatest possible variance of f components.
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Principal Component Analysis

Perhaps the most widely used dimension reduction approach is principal component
analysis (PCA)(169). This can be performed in a number of ways including Eigen
analysis, latent variable analysis, factor analysis, singular value decomposition (SVD)
or linear regression(170). The method reduces the dimensions of a dataset to a few
principal components. The first principal component is the mathematical combination
of measurements accounting for the largest amount of variability in the data(171). The
second component finds the coefficients that maximise variance orthogonally to the
first component. The total variance is defined as the sum of variances of the predicted
values for each component. In general, the selection of components is subjective,
however it will sometimes be the case that the number of components is decided upon

based on a cumulative proportion of variance(172).

Partial least squares discriminant analysis

The major criticism of principal component analysis is that the components
themselves may be modelling variation in x-variables that are of little or no relevance
to the groups they belong to (y-variables). Partial least squares (PLS) (173, 174)
attempts to overcome this problem by also calculating a set of latent variables, but
uses a criterion other than maximum variance for the decomposition step. The
criterion is a normalised weight vector which is calculated as the covariance between
the y-variable and the x-variables. In simple terms, the model selects the components
which describe the greatest amount of variance based on knowledge of group

membership of samples. Each component is then checked for predictive power
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through cross-validation(175, 176). In this way, PLS can be used as a supervised
classification method and the response variable can be classified using a binary
vector. This is also known as PLS-DA. PLS-DA is regularly applied to gene

expression data (Datta 2001).

Sparse partial-least squares discriminant analysis (SPLS-DA)

sPLS-DA combines integration and simultaneous variable selection. It reduces data
further than PLS-DA using a Lasso penalization combined with singular value
decomposition (SVD)(177). The advantage of this approach is that the number of
dimensions and components can be selected in addition to the number of variables to
select for each dimension. This can then be tested using cross-validation or leave-one-

out analysis(178, 179).

Random Forest Analysis

This is a supervised classification technique utilising an ensemble of decision
trees(180). For a given decision tree, a randomised set of the data with class
identifiers is selected to build the tree (this is known as the ‘bootstrap sample’ or
‘training set’. The remaining data not used in this sample is known as the ‘out-of-bag
(OOB)’ variables and these are passed down the tree to provide class predictions for
each sample. This process if repeated up to thousands of times to produce a forest.
Each sample is then classified as belonging to a group depending on the class
prediction frequency derived from the forest. The method is unbiased as the
prediction for each sample is based on trees that were built without that sample. Once
all class predictions are made, the OOB error rate is calculated as a measure of

prediction accuracy. The advantages of random forest include the fact is does not
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make parametric assumptions and it does not overfit the data. One can also derive the
variables that make the largest contribution to the classification using the ‘mean
decrease accuracy’ (MDA). The MDA is determined by running the decision trees
with and without each variable to determine if this has an effect on the predictive
accuracy of the mode. If a variable is important, the prediction accuracy drops and

this is recorded as the MDA.

Multivariate regression and penalisation

Simple regression consists of one independent variable, X, and one dependent
variable Y. For a given value of X, one can estimate a value for Y. When performing
simple regression, one can calculate the sum of squared errors (SSE) which is the sum
of squared deviations of the data from the predicted values; representing variation in
the data that is not explained by the regression model.

When analysing big data sets, the number of dependent variables will be greater than
1. In this context, multivariate linear regression can be used. In this model, R?
represents the amount of variation that is explained by the dependent variables. One
of the disadvantages of multivariate linear regression is that often the dependent
variables are correlated(181) or there are too many of them and this causes variation
in the regression slope and intercept that make the regression model unstable. It also
increases the standard error of the estimated regression coefficients and can cause

overfitting of the data(182).

One approach to remedy overfitting data is to constrain the magnitude of the

parameters or ‘budget’ them. This can be done a number of ways but the classic

approach is through ridge regression. This approach allows one to choose a value for
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A; a weight that balances minimising SSE whilst limiting model complexity. The best
value for A is normally chosen using cross-validation which evaluates the model with
a validation data set(183). A further regularisation method is the least absolute
shrinkage and selector operator (LASSO) regression(184). This model works by
removing variables as a variable selection method. There are a number of weaknesses
to this approach, not least that it is not robust to collinearity of variables. Furthermore,
it will not choose more variables than the number of samples so it a poor application
for ‘omics datasets. One regression method that blends both of these approaches is
elastic net regression. This approach allows evaluation of number of variables to be
used through cross-validation. The advantages of this approach is that it selects more
variables than LASSO but also shrinks nonzero parameters like ridge regression(185).
A final approach to reduce variable number but maximise variance accounted for is
Akaike Information Criterion(186). AIC allows us to perform model selection to
derive a preferred model based on a trade-off between goodness of fit and model
complexity. Given a set of candidate models, this approach will give AIC values for
each model; the lowest value representing the best preferred model. When increasing

parameters are added, the AIC fixes a penalty and this can discourage overfitting.
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Chapter 3. Discriminating disease activity using a multi-omics comparative

approach between MS patients and healthy controls

Introduction

Current markers of disease activity in MS are principally surrogates of accumulated
disease activity over time. They provide a picture of a patient’s history with MS rather
than capturing the current disease status. This is well exemplified by MRI measures
such as lesion load and size and by the EDSS score.

An approach to mitigate this is by comparing MS patients to healthy controls and then

correlating any discriminating features with existing measures of disability.

Gene expression profiling is a method of measuring the approximate biological
activity of a cell or tissue. It has been utilised in the field of MS to further our
understanding of the genetic component of the disease. Early proof of concept studies
have established the MS transcriptome in blood(108) and brain tissue(109). A more
recent study compared the transcriptome of PBMCs in RRMS, SPMS and PPMS
patients with healthy controls uncovering a signature of 380 transcripts that
differentiated MS groups from controls. As with many such studies, the effect sizes
were only moderate (0.7 — 2.29) but the transcripts identified were concordant with
genetic susceptibility studies in MS(187, 188). A further approach has been to
perform gene expression profiling in post-mortem tissues from MS patients(189).
However, little has been done comparing healthy controls to MS patients at post-
mortem. MicroRNAs (MiRNA) are a novel approach to addressing genetic
dysregulation in MS patients relative to controls. A number of studies have

demonstrated either up- or down- regulated miRNAs in cell subsets of MS
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patients(190). The most robust miRNAs include miR-15a, miR-16-1, miR-20b, miR-
27b, miR-29b, miR-128, miR-155 and miR-320a(190). These findings have led to a
limited number of studies testing the utility of such miRNAs as biomarkers in the
diagnosis of MS(191, 192). Nevertheless, poor replication of such studies has meant

that no clinically validated micro-RNAs exist to aid in the diagnosis of MS.

The role of metabolomics in distinguishing MS patients from healthy controls is
another approach that also ties in environmental influences. Dickens and colleagues
recently performed a metabolomics analysis of MS patients and controls. Using a
PLS-DA, they were able to reliably identify MS patients from controls with high
sensitivity and specificity. Interestingly, the two most discriminant metabolites were
glucose and phosphocholine(139). Most recently, Lim and colleagues identified
metabolites of the kynurenine pathway, known to be involved in chronic
inflammation and progression of neurodegenerative disease, as dysregulated in MS
patients compared with controls. A decision tree method was able to discriminate M'S

subtypes with high sensitivity (91%), maintained in a validation cohort(193).

A potential role for lipids in MS

Disease progression biomarkers may be related to previously identified factors
associated with the expression of co-morbidities of MS(194). Cardiovascular disease
is one of the most frequent co-morbidities of MS and other systemic autoimmune
disorders such as rheumatoid arthritis, systemic lupus erythematosus and psoriasis
(195-197). While the underlying causes of vascular comorbidity may be multi-
factorial, elevated plasma lipids, lipoproteins (the carrier molecules of lipids in blood

e.g. LDL) and oxidised lipids are found with both cardiovascular disease and MS, at
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least in part because of a direct effect of pro-inflammatory cytokines on hepatic lipid

metabolism(197, 198).

Previous studies have suggested an association between dyslipidaemia,
dyslipoproteinaemia and MS disease activity (new MRI lesions(199) or worsening
EDSS(199-201)). Recently, indirect evidence consistent with a causal role for
dyslipidaemia in disease progression was provided by results from MS-STAT, a
Phase Ila study showing that high dose simvastatin reduced rates of brain atrophy and

disability progression in patients with secondary progressive MS(202).

Lipids and lipoproteins can be measured using a number of techniques including
ultracentrifugation, high performance liquid chromatography and nuclear magnetic
resonance (NMR) spectroscopy(203). A novel NMR method has recently been
developed that can measure lipid concentrations within plasma lipoprotein sub-
fractions (lipoproteins subdivided based on density and size). This method has the
advantages of being amenable to high throughput use, is highly reproducible and can
provide simultaneous class-specific information on both lipoproteins and their
constituent lipids; both of which have been associated with MS disease activity(168).
It promises increased sensitivity to changes in circulating lipids related to systemic

inflammatory states.

A role for cytokines
Measuring cytokines in MS patients has identified that Th2 cytokines are reduced in
MS patients (despite possibly being protective) and that Th1 cytokines (traditionally

seen as pro-inflammatory) are associated with a more active disease course.
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Furthermore, Th17 cytokines are known to be elevated in MS as well as IL-1f and IL-
6. Further studies have identified that cytokines can be altered by treatments such as

interferon, natalizumab and DMF(204).

In this study, I utilised baseline samples from untreated RRMS patients and healthy
controls to determine whether multi-omics approaches can elucidate markers that are
associated with disease and that may correlate with existing measures of disease
disability. I performed the multi-omics analyses in sequential biological order starting
with gene expression, moving on to proteomics (cytokines) and lipidomics and finally
to the end products of metabolism (metabolomics). Each modality was analysed using
statistically appropriate tools that have previously been validated for this type of

‘omics. I also correlated these markers with existing markers of disease activity.
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Methods
All methods for sample collection, assays and basic statistics are provided in the

Methods chapter. Specific methods for this chapter are outlined below.

Transcriptomics

Statistical Analyses

Differential expression analysis was performed on count data derived from StringTie
and HT-Seq software using DESEq2(205). Deseq?2 performs differential expression
analysis by first performing a regularised logarithm transformation followed by
detection and correction of dispersion estimates that are too low through modelling
using average expression strength over all samples. An assumption made by this
software is that genes of similar average expression have similar dispersion. Where
counts are low or dispersion is high for a specific gene, DESEq2 shrinks the log fold
change (LFC) towards zero. The software provides a log fold change value across
conditions as well as an adjusted p-value corrected for multiple comparisons using

Benjamini and Hochberg(2006).

I repeated the differential expression analysis using Ballgown, an open-source
software that uses FPKM values in a linear model(207). The model log transforms the
count data and applies linear models to test for differential expression at the gene,
transcript, exon or junction level. Contrasts between patients and controls were
performed controlling for variables age and gender. Adjusted p-value for significance
(Padj) was set at (Padj < 0.05). Fold change cut offs were thresholded at log2-fold

change of +0.3.
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Following DE analysis, principal component analysis was performed. Description of
this technique is outlined in Methods section above. Differentially expressed genes
with adjusted p-value < 0.05 were identified and submitted to G:profiler functional
annotation tool for gene enrichment. Downstream pathway analysis was also
performed using the Ingenuity Pathway Analysis (IPA) software; commericially

licensed by Qiagen.

Metabolomics

Full lipoprotein and mass spectrometry profiling were performed on all patients and
all control samples at both the National Phenome Centre and Metabolon.

Statistical Analyses

For lipoprotein analyses, contrasts between patients and controls were performed
using ANOVA (F test). If the ANOVA showed a statistically significant difference (p
< 0.05), a post hoc analysis was performed using Holm-Bonferroni to correct for
multiple comparisons. The desired level of significance was set at p < 0.05 after

correction.

Very Low Density Lipoprotein (VLDL) sub-fractions that had statistically
significantly different concentrations between patients and controls with a fold change
> 1.30-fold were taken forward for further analyses. Pearson’s correlation coefficients
between each pair of VLDL sub-fractions were calculated and used to create the

matrix of pairwise correlations (Fig 9a,9b).

Correlations between EDSS and plasma lipoproteins and MS patient characteristics

were analysed using multivariate linear regression models. I included well recognised
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risk factors of age, gender, disease duration and body mass index (BMI)(208). EDSS
was defined as the dependent variable, with the patient characteristics and lipid sub-

fraction measures as predictive variables:

EDSS = a3 VLDL (sub-fraction) + asAge + asGender + a4Disease Duration + asBMI + ag

where coefficients o, os determine the contributions of each of the predictor

,,,,

variables to EDSS and o expresses the residual error. I used analysis of residuals to

check the required assumptions of normally distributed errors with constant variance.

Due to the high collinearity between the VLDL sub-fractions, which would have led
to variance inflation in a model with all of the lipid sub-fraction measures(209), each
lipid sub-fraction was analysed separately using the regression model. These
multivariate regression models then were evaluated from their R* values, residual
standard errors and the overall p-values. The level of significance was set at p < 0.05,
corrected for multiple comparisons using the Holm-Bonferroni method. The relative
significance of contributions of individual predictive variables was assessed by
averaging sequential sums of squares obtained from all possible orderings of the
predictors using the LMG method(210). Statistics analysed using ‘relaimpo’ package

in R211).

I used the Akaike Information Criterion (AIC) to determine the most parsimonious
model with the predictor variables available(212). AIC allows us to perform model
selection to derive a preferred model based on a trade off between goodness of fit and

model complexity. These statistics were analysed using ‘mass’ package in R(213). In
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order to test if the resulting model was unstable, I performed a leave-one-out cross

validation.

To explore associations between cytokines and each of the individual VLDL sub-
fractions increased in patients with MS relative to healthy volunteers, I created
regression models using each of the VLDL sub-types included in the parsimonious
model derived from AIC and input these into a generalised linear model via penalised
maximum likelihood. To improve the interpretability and accuracy given the large
number cytokine variables, [ used a lasso regression based cross—validation(214).

Analyses were performed using the glmnet package in R(215).

For metabolomic data provided by Metabolon, two way ANOV A was initially
performed to determine whether any metabolites were significantly different between
patients and controls. These values were corrected by false discovery rate and a
threshold g-value of <0.05 was set for level of significant. sSPLS-DA was then used to
identify whether patient samples could be distinguished from controls. The sSPLS-DA
analysis was run for 4 components using 10-fold repeated cross-validation and 50
variables selected for each component. The output of this analysis is an R” value,
which expresses the variance in the dataset that can be explained by each

component(178). Statistics were analysed using the ‘mixomics’ package in R(216).

In order to derive the most discriminatory variables between patients and controls, I

used the Random Forest classification(180). I used an 80:20 ratio (train-test subsets)

and 1000 trees to build the model. A variable importance measure was computed
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based on the mean decrease accuracy metric. In this analysis, the number of

discriminatory variables was limited to 30.

Cytokines
Cytokine and inflammatory markers were measured using the MSD V-PLEX kit at

baseline (pre-treatment) in both the patient and control groups.

Statistical Analysis
Comparisons between patients and controls was performed using Student’s t-test

corrected for multiple comparisons with a significance threshold of p-value < 0.05.

Integrated Analyses

Transcriptome and metabolome data were integrated using two approaches. Firstly,

pairwise correlation analyses were performed using Pearson’s correlation coefficient

between differentially expressed genes at baseline and differentially expressed

metabolites. Cut-off for significant correlation was -0.7>r > 0.7. I also conducted a

pathway-based integration using Ingenuity Pathway Analysis (Qiagen, Helden,

Germany).
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Results

Transcriptomic analyses

MS patients show variable gene expression compared to healthy controls

A differential expression analysis between untreated RRMS patients and healthy
controls was initially performed. The fold change results of the DE analysis
underwent variance-stabilising transformation and a principal component analysis
was performed on this data. There was a reasonable visual separation of samples by
disease phenotype in the first two principal components (Fig 3). Despite this apparent
separation, a sample distance heatmap which plots the Euclidean distance between
samples was also generated which showed very limited separation between patients
and healthy controls. This is demonstrated by the mixed clustering of subjects with no

obvious separation between the two groups (Fig 4).
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Figure 3: RNA samples from PBMCs of RRMS patients and healthy controls show
moderate separation. PCA plot of RRMS patients at baseline (no treatment) and healthy

controls. Red dots represent RRMS samples. Green dots represent control samples.
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Fig. 4. RNA samples from RRMS patients and health controls show very limited separation using

unsupervised clustering analysis. Sample distance heatmap between RRMS patients and control

as calculated from the regularized log transformation. Samples which demonstrate similarity in

Euclidean space are clustered close to each other.

Controlling for age and gender, I found 522 genes that were differentially expressed

(DE) between patients and controls (Padj < 0.05) (Fig 5). Of these, 254 were

downregulated in patients and 268 were upregulated. Fold changes ranged from (-2.6)
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to (+2.15). Two genes were differentially upregulated with a fold change >2 (pad;
<0.05) and 5 genes were differentially downregulated with a fold change < 0.5 (padj <
0.05). A table of these genes (Table 2) along with boxplots of specific genes are
displayed (Fig 6). Killer cell immunoglobulin-like receptor 3DL2 (KIR3DL2) which
was significantly differentially expressed in my dataset has previously been
implicated in the pathogenesis of MS due to its interaction with HLA-A3(217, 218). 1
found significant DE of TOBI1 (fold change -0.49, padj < 0.005) which has also

demonstrated a strong association with MS(111, 219-221).

log fold change
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Fig. 5. 522 genes are differentially expressed between PBMCs of RRMS patients
compared to healthy controls. MA plot of log,fold change of normalised counts
of RRMS patients (untreated) compared to healthy controls. Each dot represents
a gene. Black dots are genes with Padj > 0.05. Red dots are genes with Padj <

0.05.
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Gene Log2FoldChange | Adjusted P-Value

ID1 -1.29 1.04E-06
KIR3DL2 -1.27 3.57E-06
NR4A2 -1.16 1.07E-07
FOSB -1.11 1.79E-05
GRASP -1.09 4.23E-14
C210rf33 1.03 9.75E-05
RPL10P9 1.08 0.0001

Table 2: Some genes are highly differentially expressed in the PBMCs of RRMS patients
compared to healthy controls. The 7 most differentially expressed genes between MS patients
and healthy controls (log,fold change > 1 or < - 1, padj < 0.05). Abbreviations described in

Abbreviation section.

ID1 Gene KIR3DL2 Gene C21orf33 Gene

Variance Stabilised Counts
Variance Stabilised Counts
Variance Stabilised Counts

Fig 6. Some genes are highly differentially expressed in the PBMCs of RRMS patients
compared to healthy controls. Boxplots of the three most differentially expressed genes
between MS patients and controls are visualized. Padj < 0.05 for all ID1, KIR3DL2 and

C21orf33.
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Pathway Analysis reveals a role for immune-based mechanisms in MS

I performed an enrichment based analysis using those genes that showed the greatest
amount of DE between patients and controls (padj < 0.05) using G:Profiler. Kegg
pathways enriched in the dataset included ‘B Cell activation involved in the immune
response’ and ‘TNF signaling pathway’ (p < 0.001).

Pathway analysis demonstrated that canonical pathways Nrf2-mediated oxidative
stress, Th2 signaling, IL-9 signaling, Toll-like receptor signaling and Th1 and Th2
activation were enriched in the differentially expressed genes in patients relative to

healthy controls (Fig 7).
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Fig. 7. Differentially expressed genes in RRMS patients are enriched for immune pathways.
Pathway analysis of differentially expressed genes between MS patients and controls. All

pathways above the orange line are statistically significant (p < 0.005).
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I performed a correlation analysis in patients between transcript levels for all genes
and EDSS. No gene was strongly positively correlated with EDSS (r > 0.6) and no

gene was strongly negatively correlated with EDSS (r < 0.6).

Plasma IL-2 is raised in MS Patients

Given the enrichment of immune mediated pathways such as Th1 and Th2, I
investigated whether there were corresponding differences in plasma cytokines in
RRMS patients compared to healthy controls. Patients had higher plasma
concentrations of IL-2 than healthy volunteers ([0.56 pg/ml vs 0.29 pg/ml], 1.9-fold
difference, p < 0.05) (Fig. 8). I also tested whether there was a difference in
concentrations of Th2 cytokines IL-4 and IL-13, but these were non-significant (p >

0.05).
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Fig. 8. RRMS patients have higher concentrations of IL-2 than healthy controls. Bar chart
demonstrating concentrations of IL-2 in RRMS patients and healthy controls. Concentration

provided in pg/ml.
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NMR based lipoprotein analysis

VLDL sub-fractions are increased in MS patients compared to healthy controls

A global lipoprotein sub-fraction survey was performed comparing the MS patient

and healthy volunteer groups. I found 13 lipid sub-fractions with increased

concentrations in the patient group relative to the healthy volunteers (Table 3). 12 of

these were VLDL sub-fractions and 1 was a HDL sub-fraction. 8/12 of the VLDL

sub-fractions had changes >1.30-fold in patients relative to volunteers (range, 1.38-

2.3-fold)(Table 3). I also found elevated concentrations of plasma triglycerides in the

patient group (p < 0.0001). Strong pairwise correlations were observed between the

relative concentrations of VLDL lipid sub-fractions in the patient and healthy

volunteer groups (r > 0.5) (Fig 9).

Lipid Sub-Fraction Concentration (mg/dL) Relative Change F Test
(patients/controls) | (corrected)
Patient Control
HDL-1
Free Cholesterol 34.39 (+19.10) 23.53 (+8.36) 1.46 P=0.03
VLDL-1
Triglycerides 31.92 (+27.24) 24.58 (+27.32) 1.29 p = 0.002
Free Cholesterol 2.04 (x2.13) 0.88 (+0.78) 2.30 p =0.002
Cholesterol 5.94 (+5.87) 3.87 (+1.81) 1.53 p = 0.0001
Phospholipids 5.26 (+4.53) 3.63 (+1.78) 1.45 p = 0.004
VLDL-2
Free Cholesterol 1.27 (+1.32) 0.72 (£0.37) 1.76 p = 0.00009
Triglycerides 13.66 (9.99) 8.92 (+3.81) 1.53 p =0.003
Phospholipids 3.21 (+2.46) 2.11 (+0.94) 1.52 p = 0.003
Cholesterol 3.02(x 2.96) 1.98 (+0.83) 1.53 p = 0.00009
VLDL-3
Triglycerides 11.40(+ 8.78) 8.23 (+3.47) 1.38 p = 0.004
Free Cholesterol 1.49 (+1.50) 1.19 (£ 0.50) 1.25 p = 0.0002
Cholesterol 3.67 (+3.60) 2.87 (£1.30) 1.28 p = 0.0006
Phospholipids 3.39 (+2.80) 2.62 (+1.15) 1.29 p =0.002

Table 3: Lipid sub-fractions that were significantly increased in MS patients relative to healthy
volunteers. Concentrations are quoted in mg/dL + standard deviation.
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Fig 9 a,b. Matrices illustrating pairwise correlations between VLDL sub-fraction
concentrations for healthy volunteers (a) and MS patients (b). Abbreviations: TPTG =
total plasma triglycerides, VITG = VLDL-1; triglycerides, VICH = VLDL-1; cholesterol,
V1FC = VLDL-1; free cholesterol, VI1PL = VLDL-1; phospholipids, V2TG = VLDL-2;
triglycerides, V2CH = VLDL-2; cholesterol, V2FC = VLDL-2; free cholesterol, V2PL =
VLDL-2; phospholipids, V3TG = VLDL-3; triglycerides, V3CH = VLDL-3; cholesterol,
V3FC = VLDL-3; free cholesterol, V3PL = VLDL-3, phospholipids. Bar represents r-value

for pairwise correlation.

VLDL sub-fraction concentrations are correlated with disability in people with MS

I wanted to test whether VLDL sub-fractions elevated in my cohort were correlated

with MS disease disability. Multivariate regression models showed that each of the

VLDL sub-fractions found to be significantly increased in the patients relative to the

healthy volunteers was correlated with EDSS (Table 4).
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Lipid Sub-Fraction  Model R? Model P-value Lipid P-value
VLDL-1
Free Cholesterol 0.35 p = 0.0006 p =0.02
Cholesterol 0.38 p =0.0003 p = 0.005
Phospholipids 0.33 p =0.001 p=0.04
VLDL-2
Free Cholesterol 0.40 p =0.0001 p =0.002
Triglycerides 0.39 p = 0.0002 p =0.004
Phospholipids 0.37 p =0.0003 p = 0.0007
Cholesterol 0.39 p = 0.0002 p =0.003
VLDL-3
Triglycerides 0.40 p =0.0001 p =0.002

Table 4: VLDL sub-fractions are associated with EDSS. Statistical measures of fit for each
VLDL sub-fraction with corresponding p-values for the regression model and for each VLDL

predictor coefficient.

I assessed the relative importance of each predictive variable for each model using a
residual sum of squares approach. For two of the VLDL-2 models (free cholesterol
and cholesterol), the VLDL sub-fractions accounted for the greatest proportions of
variance (0.39 and 0.38, respectively) (Fig. 10 a, b). For the remaining models, the
VLDL sub-fractions accounted for the second greatest proportion of variance after
age.

A) B)

% of R?

V2CH Age DD Sex BMI V2FC Age DD Sex BMI

Fig 10 a, b. Relative weighting of variables to multivariate regression models for VLDL-2 (free
cholesterol and cholesterol). Values expressed as percentage of R with 95% confidence intervals.
Abbreviations: DD = Disease Duration; V2CH = VLDL-2; cholesterol, V2FC = VLDL-2; free
cholesterol.
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I selected an optimal model based on Akaike Information Criterion (AIC) after
incorporating all VLDL sub-fraction concentrations and clinical characteristics. The
best quality model excluded BMI, disease duration and five of the lipoprotein sub-
fractions, leaving VLDL-1 (phospholipids) and VLDL-2 (triglycerides and

phospholipids), age and sex as explanatory variables:

EDSS =/, VLDL-1 (phospholipids) + 52 VLDL-2 (triglycerides) 4+ 53 VLDL-2 (phospholipids)
+ B4Gender + B5Age + B¢
This multivariate regression model described a moderately strong correlation between
EDSS and the lipid sub-fraction measures after accounting for age and sex (R* = 0.48,
p < 0.0005). All 3 lipid sub-fractions in this model were statistically significant (p =
0.01, p=0.003 and p = 0.01, respectively). I tested stability of the model using leave-
one-out cross validation (LOOCV). For each leave-one-out cross validation, the

model was statistically significant and the lipid sub-fractions were correlated with

EDSS score (R? > 0.46) (Supplementary Lipid Table — Appendix 1).

Integrated analysis reveals that cytokines are associated with relative increases in
VLDL sub-fractions in MS patients

Generalised linear regression models were created using the VLDL sub-fractions in
the optimal model derived from AIC to test for an association between VLDL sub-
fractions and plasma cytokine levels. Consistently strong correlations between VLDL
sub-fraction increases and both CCL-17 and IL-7 concentrations were found (R*=

0.78, p <0.0001).
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Mass Spectrometry based Metabolomics

Increased triacylglycerols in MS patients

Of over 1600 metabolites analysed in the mass spectrometry analysis, 14 were
significantly different in patients compared to controls using two-way ANOVA (g-
value < 0.05). 7 were overexpressed in MS patients and 7 were underexpressed in M'S
patients (Table 5). The over-expressed metabolites were mainly triacylglycerols (6 of

seven over-expressed, q > 0.05).

Metabolite Q-Value Fold Change
TAG54:7-FA20:4 0.0094 1.76
TAG58:8-FA20:4 0.0080 1.79
TAG58:9-FA20:4 0.0060 1.85
TAG56:9-FA20:4 0.0076 1.88
TAG58:8-FA20:3 0.0069 1.88
TAG58:10-FA20:4 0.0014 2.06
dihomo-linolenoyl-choline 0.0017 2.35
4-acetylphenol sulfate 0.0017 0.39
isoeugenol sulfate 0.0008 0.22
S5alpha-pregnan-3beta,20alpha-diol monosulfate 0.0006 0.20
pregnanolone/allopregnanolone sulfate 0.0007 0.23
4-ethylphenylsulfate 0.0003 0.23
S5alpha-pregnan-3beta,20beta-diol monosulfate 0.0003 0.25
pregnanediol-3-glucuronide 0.0002 0.25

Table 5: 14 statistically significant metabolites different between MS patients and healthy

controls. Q-value is corrected result from two-way ANOVA. Fold changes provided.

RRMS patients can be distinguished from healthy controls with high predictive
accuracy based on metabolomics

Next, [ wanted to determine whether patient and control groups could be separated
based on condition state using sPLS-DA. The model was developed using 100-fold

cross-validation. The estimated error rates stabilised after four dimensions for any
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number of selected variables. The optimal number of variables to select for the model
were determined as 50, 30, 4 and 90 using the model developed by 100-fold cross-
validation. Visual inspection showed that the model could distinguish DMF treatment
state accurately (Fig 11). The metabolites most associated with the first principal
component are seen in Fig. 12. These included pregnanolone (in agreement with the
two-way ANOVA), vanillylmandelate (VMA) and citrulline. I next tested the
predictive ability of SPLSDA model using a train and test protocol (80:20
respectively). I re-built the model using 100-fold cross-validation and 4 components.

The model had an 80% positive predictive accuracy.

X-variate 2

-5

4 0 4
X-variate 1

Fig 11. RRMS patients can be visually distinguished from healthy controls using
supervised sSPLS-DA analysis. Sample representation using the first 2 latent variables
from sPLS-DA (50 metabolites selected). RRMS samples (blue triangles) and control
samples (red circles) are displayed. X-variate 1 is the first latent variable (horizontal g
axis). X-variate 2 is the second latent variable (vertical axis).
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Fig 12. The most important 5 variables for the first principal component ranked
from the bottom of the graph. Negative signs indicate the correlation structure
between variables and underlying group. The negative correlation between these
metabolites and healthy controls (represented by the blue bars) represents a
reciprocal positive correlation between these metabolites and RRMS patients.

Finally, I ran a Random Forest calculation on the dataset to both look for individual
discriminatory variables and also to look for predictive accuracy of the model.
Consistent with my findings from sPLS-DA, the most discriminatory variable was
VMA (Fig. 13). I also found that kynurenate was a discriminatory variable. The

predictive accuracy of the random forest model was 76%
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Fig. 13. VMA is the most highly discriminant metabolite comparing RRMS patients to healthy
controls. Random Forest analysis demonstrating the most important variables in a comparison
between RRMS patients and controls. Importance of variables expressed as mean-decrease-

accuracy.

Two recent papers have described metabolomics signatures associated with MS. The
first, by Lim and colleagues(193) described an aberrant kynuerine pathway in MS.
Using the same statistical analyses, I found that levels of kynurenic acid (KA) in
controls was almost two-fold higher in controls than in patients (fold-change 1.78, p <
0.00005); the reverse of Lim and colleagues findings. Furthermore, I found that the
Kynuerine/Tryptophan ratio and Quinolinic acid /KA ratio between patients and
controls was not significant (p > 0.05 for both comparisons). I validated reduced
tryptophan levels in MS patients compared with controls although the fold-change

was modest (fold-change 0.831, p < 0.0005). A further recent paper of interest by
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Villoslada and colleagues identified a number of discriminatory metabolites in RRMS
patients compared with controls also using PLS-DA methods(222). These included
sphingomyelin and lysophosphatidylethanolamine. In my cohort, neither
sphingomyelin nor lysophosphatidylethanolamine were significantly different in
patients compared to controls (q > 0.05). I also performed a correlation analysis with
EDSS for all discriminatory variables found by Villoslada and colleagues which I was
also able to detect in my cohort (namely glutamic acid, tryptophan and
eiosapentaenoic acid). Consistent with this groups findings, I found a strong negative
correlation between eicosapentaenoic acid and EDSS (r = -0.59, p < 0.05). However,

other discriminatory variables were non-significant.

Integrated analyses implicate multiple inflammatory pathways in the
pathogenesis of MS

I performed a pairwise correlation of all differentially expressed genes in the RRMS
cohort with differentially expressed metabolites. For pregnanolone, I found 5
differentially expressed genes that were highly correlated with pregnanolone (r > 0.7)
(Table 6). For other differentially expressed metabolites, only ZNF727 was highly

correlated with 4-ethylphenylsulfate.

Gene Correlation
SBDSP1 0.75
MRPL55 0.71
JUN 0.70
DCHS1 0.70
TUBB2A 0.70

Table 6: Correlation between metabolite pregnanolone and differentially expressed genes in

RRMS patients (untreated) compared to healthy controls.
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An integrated pathway analysis approach undertaken on differentially expressed
genes in MS patients compared to controls and metabolites identified a number of
inflammatory pathways significantly altered in the MS population. These included
TNF and Serine/threonine kinase 11 (STK11) signalling, CD4+ proliferation and

inflammation of the central nervous system (Fig 14).
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Fig 14a and 14b. TNF associated transcripts (a) and metabolites (b) differentially expressed in

RRMS patients compared to controls.
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Fig 14c and 14d. STK-11 associated transcripts (c) and metabolites (d) differentially expressed in

RRMS patients compared to controls.
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differentially expressed in RRMS patients compared to controls.
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Results Summary

522 genes and 1 small RNA were differentially expressed between
RRMS patients and healthy controls. PCA analysis showed very
limited separation between the two groups based on disease state,

but very clear separation based on gender.

An enrichment analysis demonstrated that the differentially
expressed genes between RRMS patients and controls were involved

in B-Cell activation and TNF-signalling.

A cytokine analysis demonstrated that patients had higher

concentrations of IL-2 than healthy controls.

VLDL lipoprotein sub-fractions were elevated in RRMS patients
compared to controls. These demonstrated strong correlation with
disability as measured by EDSS score. A multivariate regression
model combining VLDL sub-fractions with gender and age described

moderately strong correlation with EDSS.

Data reduction techniques applied to mass spectrometry
metabolomics demonstrated good separation between RRMS
patients and controls. The most discriminant variables were VMA,

pregnanolone and citrulline.
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e An integrated pathway analysis approach using the metabolomics
and transcriptomic datasets identified alterations in TNF signalling

and CD4+ proliferation in the MS cohort.
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Discussion

Gene expression profiling is a developing field that has been utilised in MS to try and
understand the functional consequences of genetic variants that predispose to the
condition(113). A number of studies have looked at gene expression in MS patients
and compared this to controls, however these studies have exclusively been conducted
using microarrays rather than NGS. This current study identified a large number of
differentially expressed genes between RRMS patients and healthy controls that were
associated with inflammatory disease. Previous studies have also identified similar
differences between these groups(223) as well as specifically in PBMCs(224),
however other results have been more modest, in part due to the use of microarray
technology which identifies a much smaller number of RNA species(108). I was able
to confirm that within the differentially expressed genes, there was enrichment for
inflammatory pathways and signalling and this result was corroborated in part by the

finding of raised IL-2 in RRMS patients compared to controls.

Given that dyslipidaemia has previously been associated with MS disease activity I
also investigated using metabolomics approaches whether lipoprotein sub-fractions
are associated with disease and disability level in people with RRMS. Using a novel
NMR analytical methodology that provides information on lipid concentrations within
lipoprotein sub-classes, I showed that some lipoprotein sub-fractions are elevated
selectively in the plasma of the MS patients. Because of the disproportionately high
number of elevated VLDL sub-fractions, I tested for a relationship between these and
measures of clinical disability (EDSS). For two of my models, selected VLDL
concentrations individually were the strongest explanatory variables for EDSS. A

model combining selected VLDL sub-fraction concentrations (VLDL-1
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(phospholipids) and VLDL-2 (triglycerides and phospholipids)) with age and sex was

highly associated with disability.

By evaluating correlations of VLDL sub-fractions using different multivariate models
and then applying penalised regression methods, I derived a subset of VLDL sub-
fractions that was most explanatory of disease disability in this cohort. My models
showed that EDSS score could be partially explained by a combination of VLDL sub-
fractions, age and sex. The latter two variables previously were associated
independently with a poorer prognosis in MS(225). In this study, VLDL-2 (free
cholesterol and cholesterol) sub-fractions independently explained as much of the

variance in disability as age.

Prior studies also have reported that plasma lipids are raised in MS and that these
correlate with disease disability(194). In this study, I identified novel associations
between VLDL sub-fractions, which transport cholesterol and triglycerides in the
blood, and MS disability. More than one potential mechanistic relationship has been
hypothesised. Lipoproteins may be involved in demyelination(226) and may
exacerbate the blood-brain barrier disruption associated with inflammation(227).
Increases in VLDL levels(228) also have been reported during other inflammatory
disorders . In non-alcoholic steatohepatitis, VLDL has been specifically associated

with hepatic inflammation(229).

However, mechanisms contributing to VLDL increases in MS are unknown. They are

associated with monocyte activation in the periphery(230) and a shift to a pro-

inflammatory cytokine secretion profile(231). VLDLs play a role in transport of lipids
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and proteins in the blood(232). I postulate a possible mechanistic role for VLDL in
disease progression in MS: VLDL may transport cytokines from the periphery to the
CNS. A recent study in rheumatoid arthritis demonstrated that variants of the same
lipoproteins may carry more pro-inflammatory cytokine cargo resulting in greater
inflammation(233). In the context of this study, I observed an association between
VLDL and both CCL-17 and IL-7. CCL-17 has been shown to play a role in T cell
maturation. A common polymorphism in the IL-7 receptor gene is a known genetic

risk factor for MS(98).

Using mass spectrometry based metabolomics I was able to further investigate the use
of this approach in discriminating MS patients from healthy controls. This type of
analysis is in relative infancy, however, a number of studies have already been
performed in this field and have demonstrated a reasonable degree of accuracy in
discriminating MS patients from controls(139, 141). Consistent with my NMR
lipoprotein findings, I also found raised levels of triacylglycerols in RRMS patients.
Furthermore, using Random Forest, ANOVA and sPLSDA I identified that VMA,
pregnanolone and citrulline were highly discriminant for my RRMS cohort compared
to healthy controls. Dysregulation of pregnanolone in MS patients has already been
identified; it may be involved in neuroinflammatory mechanisms or
neurodegeneration(234). Furthermore, using an integrated correlation-based analysis,
I identified high correlation between pregnanolone and c-JUN gene expression. C-
JUN is known to be activated by steroid hormones such as preganolone(235) and has

previously been implicated in the pathogenesis of MS(236).
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Using integrated pathway analysis, [ was able to show interacting pathways amongst
those over-represented in both the metabolomics and transcriptomic analyses. These
included pathways and cells well known to be implicated in MS such as TNF
signalling and CD4+ T lymphocytes but also lesser known variants such as STK11, a

variant of which has recently been identified as a risk factor for MS(237).

A sPLSDA model using train and test subsets was moderately effective at
discriminating MS patients from healthy controls. A recent study identified abnormal
kynurenine pathway activity in MS. I demonstrated opposing effects to those found in
this study; namely lower levels of KA in RRMS patients. Notably, this study also
found lower levels in secondary progressive and primary-progressive patients
suggesting this discrepancy may have resulted from different levels of disability in the

RRMS cohorts respectively(193).

The main limitation of my study was the small sample size and the lack of a
validation cohort. These factors limit any conclusions that can be made on the
generalisability of my findings to the broader RRMS population or whether they may
only describe a subset. Nevertheless, the broad range of EDSS scores, ages and
disease durations in the cohort may increase the likelihood these findings are
reproducible. My findings, particularly with respect to the NMR lipoprotein analysis,

were highly significant. Additional validation studies are needed.

In conclusion, I have provided evidence that increased concentrations of VLDL sub-

fractions in plasma correlate with disability in RRMS patients. I also further highlight

gene expression and metabolite changes in RRMS patients compared with controls
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that are associated with inflammatory pathways. My mass spectrometry metabolomics
data confirmed differences in plasma concentrations of a number of previously known
metabolites associated with MS and identified differences in concentrations of
additional metabolites such as VMA, pregnanolone and citrulline. My findings
highlight relationships between systemic metabolism and MS that provide insights
into possible mechanisms responsible for some of the common co-morbidities of MS.
However, these findings need to be replicated in larger populations to test for
generalisability. They should be explored prospectively in a cohort to explore how
metabolomic and transcriptomic changes evolve during disease course and

progressive disability.

93



Chapter 4. Pharmacodynamics of DMF using multi-omic profiling

Introduction

The mechanism of action of a medication should be thought of as a complex pathway
that begins from ingestion and ends in metabolism and excretion of the drug or its
metabolites. The processes involved in between can be measured using a number of

omics approaches in order to help understand a treatment’s efficacy.

DMF is a relatively newly licensed treatment for RRMS. Its precise mechanism of
action is unknown. The study of DMF’s therapeutic effect lends itself well to a
hierarchical signalling approach. After oral administration, DMF is rapidly
hydrolysed by esterases to its principle metabolite monomethyl fumarate (MMF)(42).
MMF is highly bioavailable, has a half-life of 12 hours and reaches a mean plasma
peak concentration of approximately 20 pM. MMF is ultimately hydrolysed inside
cells to fumaric acid, which enters the tricarboxylic acid cycle (TCA)(43, 44). The
primary therapeutic mechanism of action still is debated, but is believed to involve
activation of the transcription factor nuclear factor (erythroid-derived 2)-like 2
(Nrf2)(37, 38), inhibition of nuclear factor kB (NFkB)(39) and/or agonism of the

hydroxylic acid receptor 2(40).

Downstream effects of DMF have been explored using gene expression studies.
Vandermeeren and colleagues used northern blotting techniques to show that DMF
reduces levels of I[CAM-1, VCAM-1 and E-selectin mRNA arguing this supported
evidence of inhibition of NF-kB by DMF(51). Further gene expression studies using

northern blotting have supported this assertion(52, 238) and also the downregulation
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of endothelial adhesion molecule mRNA by DMF(239). This was followed up by
another study demonstrating reduced levels of TGF-alpha and Thl cytokines with an
increase in the Th2 cytokine IL-10(240). Consistent with an anti-oxidant role for
DMF, Lee and colleagues found raised levels of Nrf2 expression in the CNS of DMF
treated mice(241). Gene expression studies have also provided evidence for an
antioxidant role of DMF. Zhao and colleagues described inhibition of hypoxia-
inducible factor-1o by DMF which, in turn, resulted in activation of RACK1 and the
Nrf2 anti-oxidant pathway. Most recently, Brennan and colleagues also identified
activation of Nrf2 through upregulation of OSGINI1 resulting in cell-cylce inhibition

and cell protection against oxidative challenge(242, 243).

Metabolomics provides an additional approach for drug target discovery and
understanding pharmacodynamics(244). Study of patients with MS also may suggest
novel cerebrospinal fluid (CSF), serum and urine biomarkers of disease, disease
activity or disability (245). Because DMF triggers anti-oxidant pathways and is
metabolized to the intermediate metabolite fumaric acid, its mechanism of action
lends itself well to characterisation using metabolomics(41).

Here, I took an unbiased biologically-based sequential omics approach
(transcriptomics, cyotokine and metabolomics) to investigate the short-term
pharmacodynamics effects of DMF in patients with RRMS. I performed the multi-
omics analyses in sequential biological order starting with gene expression, moving
on to proteomics (cytokines) and lipidomics and finally to the end products of
metabolism (metabolomics). Each modality was analysed using statistically

appropriate tools that have previously been validated for this type of ‘omics.

95



Methods
Transcriptomics
Patients attended at baseline and 6 weeks following onset of treatment where RNA

was extracted from PBMCs as described in the protocol outlined in Methods chapter.

Differential expression analysis was performed on count data derived from StringTie
and HT-Seq software using DESEq2(205). Deseq?2 performs differential expression
analysis by first performing a regularised logarithm transformation followed by
detection and correction of dispersion estimates that are too low through modelling
using average expression strength over all samples. An assumption made by this
software is that genes of similar average expression have similar dispersion. Where
counts are low or dispersion is high for a specific gene, DESEq2 shrinks the log fold
change (LFC) towards zero. The software provides a log fold change value across
conditions as well as an adjusted p-value corrected for multiple comparisons using

Benjamini and Hochberg(206).

Contrasts between patients pre- and post- treatment were performed using a pairwise
approach controlling for intra-individual differences. Adjusted p-value for
significance (Padj) was set at (Padj < 0.05). Following DE analysis, principal
component analysis was performed. Description of this technique is outlined in
Methods section above. Differentially expressed genes with adjusted p-value < 0.05
were identified and submitted to G:profiler functional annotation tool for gene
enrichment. Downstream pathway analysis was also performed using the Ingenuity

Pathway Analysis (IPA) software (Qiagen, Helden, Germany).
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I identified modules of highly correlated genes using a weighted correlation network
analysis (WGCNA). This analysis involved the formation of an adjacency matrix
representing the correlation changes that occurred pre- and post- treatment. The
method groups genes together when their correlations to the same sets of genes
change between different conditions(246). The output is a list of differentially co-
expressed modules with their associated genes and an estimate of the statistical
significance of the difference in co-expression derived from a comparison of the
dispersion index values of each module with the null distribution obtained from

permuted data(115) .

To validate my RNA-Seq findings, I repeated sequencing pre- and post- treatment for
a subset of patients (n=9) in a different facility (Imperial College BRC Genomics
Facility). TruSeq stranded mRNA libraries were multiplexed and sequenced with an
average of 35 million cDNA fragments per sample (100 bp paired-end reads)
(Illumina, San Diego, USA). Quality control was performed using FastQC software
(version 0.11.2)(157). Sequencing reads were aligned to GRCh37 reference human
genome by Tophat tool (version 2.0.10)(247) using the set of known genes provided
by Ensembl database (release 75) with an average alignment rate of 85%. rRNA
contamination (< 4%) and transcript integrity (median ratio of coverage at 5' end vs 3'
end for 1000 most highly expressed transcripts > 0.6) were monitored with Picard tool
(version 1.85). The raw number of read pairs mapped to each Ensembl gene was
calculated with HTSeq (version 0.6.0) in 'union' mode. Reads (or read pairs) that
overlap more than one gene or mapped to multiple locations were discarded. The raw

counts data set was normalized with DESeq? statistical tool(205). Sample's pairing
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was taken into account while analysing patients at baseline and after treatment using

DESeq?2.

Cytokines

31 patients were recruited from Imperial College Healthcare NHS Trust prior to
commencing DMF. Full demographic details as well as sample collection and
processing are available in the Methods section. Cytokine and inflammatory markers
were measured using the MesoScale Discovery (MDF) V-PLEX kit at baseline (pre-
treatment) and 6-weeks post treatment in the patient cohort. The same was done for

10 age- and sex- matched healthy controls and two timepoints separated by 6 weeks.

Statistical Analysis
Paired comparisons between patients pre- and post- treatment and controls at

equivalent timepoints was performed using nonparametric Wilcoxon 2-sample test.

Metabolomics

Patients were separated into an initial discovery cohort and a validation cohort to test
for generalisability of results across groups. The discovery cohort included 15 patients
with RRMS and the validation cohort included 12 patients with RRMS (median
EDSS 3.0, range 1 — 7). Samples were analysed using mass spectrometry. Discovery
and validation cohort samples were sent to independent laboratories (Metabolon and
Phenome Centre respectively). The reason for this was that Metabolon provide a
library of known metabolites which was unavailable at the Phenome Centre. As such I
could test metabolites of interest derived from the discovery cohort using a targeted

approach at the Phenome Centre. Furthermore, being able to validate findings in a
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different laboratory would increase the chances of future successful replication by
other groups. It is well known that inter-laboratory sampling can reduce the chances
of successful replication of findings(248). Samples from the discovery cohort were
also profiled at the Phenome Centre as technical replicates. Mass Spectrometry assay

outlined in the Methods section.

Sparse Partial Least Squares Discriminant Analysis (sSPLS-DA) was used to initially
identify whether patient samples pre- and post- treatment could be distinguished on
the basis of metabolites as a treatment effect. SPLS-DA is a PLS regression method in
which variables are selected from the dataset in a supervised framework, i.e. with
respect to the different categories of samples, which in my case was conditions pre-
and post-treatment. The sPLS-DA analysis was run for 4 components using 10-fold
repeated cross-validation and 50 variables selected for each component. The output of
this analysis is an R” value, which expresses the variance in the dataset that can be
explained by each component(178). Statistics were analysed using the ‘mixomics’

package in R(216).

I identified modules of highly correlated metabolites using a weighted correlation
network analysis (WGCNA). This analysis involved the formation of an adjacency
matrix representing the correlation changes that occurred pre- and post- treatment.
The method groups metabolites together when their correlations to the same sets of
metabolites change between different conditions(246). The output is a list of
differentially co-expressed modules with their associated metabolites and an estimate

of the statistical significance of the difference in co-expression derived from a
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comparison of the dispersion index values of each module with the null distribution

obtained from permuted data(115)

The significance of changes in specific metabolites pre- and post- treatment were
estimated relative to equivalent comparisons in the healthy control population using
one-way ANOVA. All changes were corrected for multiple comparisons using the
false discovery rate. Statistical significance was set at a g-value < 0.05. Correlation
between discriminant variables of interest and concentrations of MMF was performed
using Pearson’s correlation coefficient. Quantification of MMF is outlined in Methods

section.

In order to derive the most discriminatory variables from the dataset pre- and post-
treatment, [ used the Random Forest classification(180). I used an 80:20 ratio (train-
test subsets) and 1000 trees to build the model. A variable importance measure was
computed based on the mean decrease accuracy metric. The Mean Decrease Accuracy
(MDA) is the number of observations that are incorrectly classified by removing the
metabolite in question from the model. In this analysis, the number of discriminatory
variables was limited to 30. Change in lipoprotein sub-fraction levels pre- and post-
treatment determined using paired Student’s T-test (corrected for multiple

comparisons using Benjamini-Hochberg correction).

Integrated Analyses

Transcriptome and metabolome data were integrated using a pathway-based

integration method from Ingenuity Pathway Analysis (Qiagen, Helden, Germany).
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Results

Transcriptomics

DMF is associated with gene expression changes in PBMCs

I initially performed a differential expression analysis comparing patient samples
before and 6 weeks post-treatment. PCA analysis of the variance-stabilised data
demonstrated very little separation between samples by treatment state (Fig 15). 542
genes were differentially expressed 6-weeks post treatment with DMF (Padj < 0.05).
329 were upregulated and 213 were downregulated. The 10 most significantly altered

genes are listed in Table 7.
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Fig 15. RNA samples from RRMS patients pre- and post- treatment cannot accurately
discriminate treatment state. PCA plot of RRMS patients at baseline (no treatment) and 6 weeks
post-treatment with DMF. Red dots represent RRMS samples pre-treatment. Lilac dots
represent RRMS samples post-treatment. Principal component 1 on horizontal axis, principal

component 2 on vertical axis.
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Gene Log2Fold Change | Padj

MITF -0.39 1.36E-06
TRNQ -0.34 3.88E-06
LOC107987261 -0.32 0.0017
PDGFC -0.32 0.0016
TRNW -0.31 1.54E-05
CD36 -0.30 0.0008
N4BP3 0.28 0.0038
SSPN 0.28 0.0120
SIGLEC6 0.28 0.0045
ZNF547 0.29 0.0111

Table 7: 10 most differentially expressed genes 6 weeks post treatment with DMF (padj <
0.05). Fold changes expressed as Log,Fold Change. P-values expressed as adjusted p-

values (corrected by Benjamini and Hochberg. Abbreviations described in abbreviation

section.

I performed an enrichment based analysis using those genes that showed the

significant differential expression pre- and post- treatment in the full sample set (padj

< 0.05) using G:Profiler. Kegg pathways enriched in the dataset included ‘positive

response to oxidative stress’ and ‘cellular oxidant detoxification (p < 0.001). In this

latter pathway, genes involved in this pathway and also differentially expressed post

treatment included CD36, GPX1, MGST1, NQO1, PTGS1, GSR and PRDX1.

Pathway analysis revealed that the most highly enriched canonical pathways were

Nrf2-mediated oxidative stress response (p < 0.005) and glutathione redox reactions

(p <0.005). A table and figure of the Nrf2 genes that were DE post-treatment are

highlighted in Table 8 and Figure 16.
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Gene Log2Fold Change

BACH1 -0.17
FOSL1 -0.252
FTH1 -0.166
FTL -0.186
GCLC -0.17
GSR -0.14
GSTP1 -0.155
MAFG -0.175
MGST1 -0.242
NQO1 -0.236
PRDX1 -0.142
TLR9 0.222

Table 8: Nrf2 related differentially expressed genes 6-weeks post treatment with DMF (Padj <

0.05). Fold changes expressed as log,fold-change.

Fig 16. Nrf2 pathway with associated differentially expressed genes 6-weeks post treatment with

DMF. Green genes are those which were differentially expressed. A purple border denotes

association with multiple sclerosis.
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Modules of differentially expressed genes after treatment with DMF

I identified 4 differentially co-expressed modules comprising a total of 2,444 genes
(which I arbitrarily described as yellow, salmon, tan and brown) (p-value < 0001 for
each of four modules). 2 of these modules were more highly correlated after treatment
(salmon pink and brown, which included 288 and 854 genes, respectively) and 2 were
less strongly correlated after treatment (yellow and tan, which included 358 and 944
genes, respectively) (Fig 17). Enrichment analysis demonstrated that the yellow and
brown modules were enriched for KEGG pathways ‘regulation of metabolic process’
(p =0.005 and p = 0.001 respectively), the salmon module was enriched for KEGG
pathway ‘positive regulation of innate immune response’ (p = 0.001) and ‘immune
system process’ (p = 0.001) and the tan module was enriched for KEGG pathway
MHC class 1 antigen processing and presentation’ (p = 0.0005). The hub genes for the
brown, salmon, tan and yellow modules were PNISR, NCSTN, KIAA1429 and

ZNF294 respectively.
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Fig. 17. Comparative correlation heatmap demonstrating differentially coexpressed modules pre-
and post- treatment with DMF. The lower diagonal shows pairwise correlation of metabolites
pre-treatment. The upper diagonal shows pairwise correlation of metabolites post-treatment.
Module assignments are identified by black squares and by the colour bar (salmon, tan, yellow
and brown). Correlation heatmap bar represented (range -1.00 (blue) to +1.00 (red)).
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Validation of findings through re-sequencing in a subset of patients

I performed a separate differential expression analysis in a subset of 9 patients from
the overall study whose samples had been sequenced in duplicate at two separate
facilities (Imperial BRC Genomics Facility and Genewiz, NJ, USA)) using the same
[llumina sequencing machine model (Illumina Hi-Seq Platform, 2 x 150bp PE
configuration) but different alignment software (Tophat2(247) vs DRAGEN(159)
respectively). For these 9 patients, data derived from Genewiz yielded 595
differentially expressed genes post-treatment (p < 0.05). In the same subset of
patients, sequenced at a different facility (BRC) but undergoing the same differential
expression analysis using DESEQ2 software, 498 genes were differentially expressed
post treatment (p < 0.05). Of these 498 genes found from BRC data, 217 (44%) were
differentially expressed in the Genewiz dataset. To distinguish differences related to
sequencing runs from those related to the use of different alignment software, |
repeated the alignment using TopHat2 with the raw sequence data from both the BRC
and Genewiz. | then performed identical count derivation using HTSeq. In this
analysis, there was 498 and 523 DE genes respectively representing 54% overlap of
statistically significant DE genes. Of the 10 most differentially expressed genes, 8
overlapped. I investigated whether those genes that did not overlap had lower average
counts than those which were differentially expressed consistently across both
sequencing facilities. For those overlapping, mean counts were 804 +/- 619 genes,
whilst for non-overlapping genes mean counts were 278 +/- 208. The distribution of
mean counts between overlapping and non-overlapping genes were significantly

different (p = 0.01).
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Effect of DMF on small-RNA species

I also performed a differential expression analysis on small RNA count data using
software package DESEQ2(205). Controlling for intra-individual variability, 17 small
RNAs were differentially expressed post-treatment. A similar comparison in the
control group at the same timepoints yielded no differentially expressed small RNA.
Expression of 8 of the small RNAs was down-regulated by the treatment (log,fold

change -0.21 to — 0.4) and 9 were upregulated by treatment (0.18 to 0.31) (Table 9).

Gene Log2Fold Change Padj

mir-31 0.31| 0.002
mir-769 0.28 | 0.001
mir-192 0.26 | 0.014
mir-342 0.24 | 0.001
mir-146b 0.22 0.05
let-7i 0.18 0.02
mir-140 0.18 | 0.001
mir-361 0.18 | 0.006
mir-339 0.16 0.01
mir-130a -0.22 0.05
mir-628 -0.24 0.03
mir-654 -0.26 | 0.006
mir-493 -0.26 | 0.016
mir-6810 -0.29 | 0.025
mir-1908 -0.30 0.01
mir-3908 -0.30 0.01
mir-410 -0.41 | 0.0003

Table 9: Differentially expressed small RNAs 6-weeks post treatment with DMF in RRMS
patients (padj < 0.05 — corrected using Benjamini Hochberg). Changes in expression expressed as

log,fold change.

A shift towards a Th2 cytokine profile after 6-weeks of DMF treatment
Given the difference in cytokines observed when comparing untreated RRMS patients

to healthy controls, I also analysed differences in cytokines as a response to DMF.
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Increases in plasma IL-4 (36%) [0.05 pg/ml (pre), 0.07 pg/ml (post)] and IL-13 (21%)

[1.5 pg/ml (pre), 1.8 pg/ml (post)] cytokine concentrations were found after treatment

with DMF (p = 0.03 and p = 0.001 respectively) (Fig. 18). Similar findings were not

found in the control cohort.

The influence of DMF on Thl and Th17 cytokines was investigated. There was no

significant change pre- and post- treatment in Th1 or Th17 cytokines (Table 10).

In my previous chapter, I identified altered levels of IL-2 in MS patients relative to

healthy controls. I was unable to show a treatment-mediated change in IL-2 6-weeks

post-treatment with DMF.

Th17 Cytokines Pre-drug concn (pg/ml) Post-drug concn (pg/ml) p-value
IL-17 3.75(1.63 - 6.64) 3.92 (0.15-7.11) 0.06
GM-CSF 0.23 (0.06 - 0.72) 0.22 (0.02 - 0.84) 0.46
IL-22 0.24 (0.03-3.3) 0.2 (0.01-2.98) 0.31
Th1 Cytokines Pre-drug concn (pg/ml) Post-drug concn (pg/ml) p-value
IFN-y 13.6 (4.3 —22.6) 12.3 (9.7 - 19.6) 0.21

Table 10. Median concentration of Th17 and Th1 cytokines pre- and post- DMF. Values

expressed as median (range). P-values as defined.
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Fig 18: Box plots pre (1) and post (2) treatment for cytokines IL-4 (left) and IL-13
(right). Differences pre- and post- treatment were significant (p < 0.05).

Plasma metabolites change after DMF treatment

A sPLS-DA analysis was performed on the pre- and post- treatment discovery
datasets. The estimated error rates stabilised after four dimensions for any number of
selected variables. The R? values for these 4 components were 0.1, 0.36, 0.42 and

0.44, respectively (Fig 19).
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Fig. 19. Pre- and post- treatment samples can be accurately distinguished using supervised sPLS-
DA analysis. Sample representation using the first 2 latent variables from sPLS-DA (50
metabolites selected). Pre-treatment samples (blue triangles) and post-treatment samples (red

circles) are displayed. First latent variable represented on horizontal axis. Second latent variable

represented on vertical axis.
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Modules of differentially expressed metabolites after treatment with DMF

I identified 5 differentially co-expressed modules comprising a total of 924
metabolites. 4 of these were statistically significant (p < 0.001 for orange, red, green
and blue modules). 2 of these modules were significantly more highly correlated after
treatment (orange and green, which included 114 and 38 metabolites, respectively)
and 2 were less strongly correlated after treatment (blue and red, which included 48
and 29 metabolites, respectively) (Fig 20). A high proportion of the orange module
was comprised of carnitine species (13%) and phosphatidycholines (11%),
lysophosphatidylcholines (18%) and lysophosphatidylethanolamines (20%) were

over-represented in the green module.
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Fig. 20. Comparative correlation heatmap demonstrating differentially coexpressed modules pre-
and post- treatment with DMF. The lower diagonal shows pairwise correlation of metabolites
pre-treatment. The upper diagonal shows pairwise correlation of metabolites post-treatment.
Modules are identified by black squares and by the Module Assignment bar (orange, red, green,
black and blue). Correlation displayed using correlation heatmap bar (range -1.00 (blue) to +1.00

(red)).
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Exploratory Analyses

Tricarboxylic Acid intermediates are increased by DMF

As DMF is ultimately metabolised to fumarate, I tested whether TCA cycle

intermediates were altered with treatment. Both fumarate and succinate were

significantly increased 6 weeks after the start of treatment. Furthermore, succinyl-

carnitine and methyl succinyl-carnitine, which can be derived from succinyl-CoA,

also were increased significantly (q < 0.05) (Table 11) (Fig 21 a-d). Comparison of

baseline and 6-week samples in controls did not show similar changes. Of all

metabolites assayed, a random forest analysis confirmed that methyl succinyl-

carnitine, fumarate and succinyl-carnitine were the most discriminatory variables in

my dataset (Table 11) (Fig 22).

Mean
Fold Decrease
Metabolite Change | p-value g-value | Accuracy
Fumarate 1.58 | 0.00004 | 0.00500 8.6
Succinate 1.18 | 0.00300 | 0.04060 2.7
Succinyl-Carnitine 1.74 | 0.00120 | 0.02670 6.0
Methyl Succinyl-Carnitine 39.24 | 0.000001 | 0.000001 10.2

Table 11: TCA metabolites significantly increased in MS patients post-treatment with DMF. Fold

change, P-values and Q values (corrected using false discovery rate) provided. Mean Decrease

Accuracy values from Random Forest also provided.

113



(a)

Sy o s

o~

—

== :

—

3.5

3.0

2.5

2.0

0.5

0.0

Baseline 6 Weeks

Controls

(©)

Baseline 6 Weeks

Patient

i

=

=

Baseline 6 Weeks

Controls

Baseline 6 Weeks

Patient

(b)

250

et i g s

200 -

150

100

50

PY 1

Baseline

6 Weeks

Controls

Baseline

6 Weeks

Patient

0.9

0.8 |

0.7

T

T

0.6

Baseline

6 Weeks

Controls

Baseline

6 Weeks

Patient

Figure 21(a-d). TCA metabolites are significantly increased 6-weeks post treatment with DMF.
Boxplots of TCA metabolites (a: succinyl-carnitine, b: methyl succinyl-carnitine, ¢: fumarate, d:
succinate) at baseline and 6 weeks in controls (untreated) and patients (treated). Metabolites
quantified by raw counts. All 4 metabolites statistically increased in the patient cohort after

correction for multiple comparison. Dots represent outlier values.
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Figure 22: Pre- and post- treatment metabolites highly discriminatory for treatment state.
Random Forest plot displaying 30 most discriminatory variables distinguishing pre- and post-

treatment samples and corresponding mean decrease accuracy values.

DMF effects on anti-oxidant metabolites

I investigated whether DMF had any effect on metabolites of glutathione, a peptide
associated with antioxidant pathways (38). Glutathione was not detected in this study,
but its metabolites glycine and 5-oxoproline were significantly increased by 6 weeks

after initiation of treatment with DMF (q < 0.05) (Table 12). However, concentrations

of cysteinylglycine and cysteine (also metabolites of glutathione) in plasma were not

significantly altered.

Metabolite Fold Change | p-value | g-value

Cysteinylglycine 1.25 0.01 0.07
Cysteine 0.94 0.31 0.34
Glycine 1.19 | 0.00002 0.005
5-oxoproline 1.18 0.002 0.033

Table 12. Glutathione metabolites in MS patients post-treatment with DMF. Fold change, P-

values and Q values (corrected using false discovery rate) provided.
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Validation of methyl Succinyl-Carnitine as a marker discriminating pre- from post-
treatment samples

Given the over-representation of carnitines in the green co-expression module, the
highly significant increases of succinyl carnitine and methyl succinyl carnitine after
treatment and the results of the exploratory random forest classification, I sought to
confirm their association with the pharmacodynamic response in a separate validation
cohort. The most significantly increased metabolite in the validation cohort was also
methyl succinyl carnitine (mass/charge ratio 4.71 276.1448), which changed by 145-
fold (p < 0.005). I was also able to validate a rise in glycine post treatment (fold
change 1.40 (p < 0.005) but findings for 5-oxoproline were non-significant (fold
change 0.98, p > 0.05). I was unable to identify a peak for succinyl carnitine using

the different mass spectroscopy platform employed for the validation dataset.

Levels of MMF correlate with levels of methyl succinyl-carnitine

I was able to measure plasma concentrations of MMF; the most abundant,
pharmacologically active metabolite of DMF. Samples seemed to either show low
concentrations of MMF (<20 ng/mL) or high concentrations of MMF (range 95 — 592
ng/mL) (Table 13). Pearson’s correlation showed a strong relationship between levels
of methyl succinyl-carnitine and MMF (r = 0.66) (Fig 23). Levels of the active drug
did not correlate with reported timing of last dose (r = -0.19) suggesting either a
previously uncharacterised extreme pharmacokinetic variation of the medication or

poor adherence to medication.
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Subject Reported Timing of last dose
Number | MMF Concentration (ng/mL) (hours)
1 <5 6
2 7.3 2
3 11 2
4 <5 4
5 <5 1
6 26.4 3
7 <5 3
8 <5 2
9 <5 13
10 <5 4
11 <5 15
12 <5 3
13 11.9 3
14 <5 15
15 <5 1
16 95 4
17 486.2 2
18 105.3 4
19 243.2 4
20 432.2 4
21 165.9 3
22 574.7 8
23 358.3 1
24 154.3 3
25 591.5 3
26 242.5 6
27 386 4

Table 13. Concentrations of MMF in RRMS subjects 6-weeks post treatment with DMF. Values

expresses as ng/mL. Timing of reported dose also stated in hours.
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Fig 23. MMF is highly correlated with methyl succinyl-carnitine. Correlation plot of

MMF concentration (ng/ml) and raw counts of methyl succinyl-carnitine.

Levels of MMF correlate with levels of 1-methylnicotinamide

I undertook an unbiased correlation analysis to investigate which metabolites
correlated most strongly with MMF concentrations in my discovery cohort. The most
highly correlated metabolite was 1-methylnicotinamide (r = 0.76) (Fig 24a). Because |
undertook full metabolomic profiling on all samples at the National Phenome Centre
(including technical replicates) I was able to cross-validate this finding in the
discovery cohort based on the equivalent feature in that dataset (m/z ratio 137.0710,
retention time 4.05). In this analysis, I found an even stronger correlation between
drug concentration and levels of 1-methylnicotinamide (r = 0.85) (Fig 24b). In order
to validate this finding, I repeated the correlation analysis in the validation cohort.
The correlation between MMF levels and 1-methylnicotinamide were maintained (r =

0.68).

118



High levels of 1-methylnicotinamide are associated with corresponding reductions in
levels of the methyl-donor betaine(249). In my cohort, there was a strong inverse
correlation between betaine and both MMF and 1-methylnicotinamide (r = -0.6 and -

0.77 respectively).
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Fig 24a. MMF is highly correlated with 1-methylnicotinamide. Correlation plot of MMF

concentrations (ng/mL) and raw counts of 1-methylnicotinamide.
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Fig 24b. MMF is highly correlated with 1-methylnicotinamide. Correlation plot of MMF

concentrations (ng/mL) and raw counts of 1-methylnicotinamide (technical replicate).
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Effect of DMF on lipoprotein sub-fractions

In chapter 3, I reported an increase in VLDL lipoprotein subfractions in MS patients. I
sought to evaluate whether 6 weeks of DMF would affect the levels of lipoprotein
subfractions in my patient cohort. Concentrations of VLDL subfractions were not
affected by 6 weeks of DMF treatment. However, I was able to identify 5 LDL
species (L2-Cholesterol, L2-phospholipid, L2-apolipoprotein, L2PN, L2-
FreeCholesterol) that were all significantly reduced 6 weeks post treatment with DMF
(p=0.02, p=0.03, p =0.03, p=0.04, p=0.04 respectively), corrected for multiple

comparisons.

Integration of transcriptome, small RNA and metabolomics suggest a role for IL-4
in mediating pharmacodynamic effects of DMF.

I combined RNA-Seq and metabolomic data pre- and post- treatment in patients using
an integrated pathway analysis tool from Ingenuity Pathway Analysis software
(Qiagen, Hilden, Germany). In my previous chapter, I identified TNF signalling as an
over-represented and over-activated pathway in patients when compared to my
healthy volunteer population. I was able to see a down-regulation of this pathway
following treatment. The IL-4 pathway was significantly over-represented 6-weeks
post treatment with DMF (Fig 25). This confirmed my previous result showing an

increase in IL-4 cytokine concentration following onset of treatment.
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Results Summary

Data reduction techniques could accurately separate MS
metabolomic samples based on treatment state (pre- and post-
treatment). Differential coexpression identified modules of

metabolites that showed high intra-modular correlation.

TCA cycle intermediates were elevated after treatment with DMF.
Methyl-succinylcarnitine was the most discriminatory metabolite as
determined by basic statistical analyses and data reduction

methods.

The increase in methyl-succinylcarnitine was replicated in the
validation cohort and showed strong correlation with
concentrations of the active component of DMF; monomethyl
fumarate. The most highly correlated metabolite with MMF was 1-
methylnicotinamide. This metabolite was correlated with common

adverse effects associated with DMF.

DMF caused an increase in Th2 cytokines IL-4 and IL-13. Using
integrated pathway analysis approached, I confirmed a role for IL-4
in the short-term pharmacodynamic effect of DMF in metabolomics

and transcriptomic datasets.
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Short term administration of DMF caused a robust alteration in the
gene expression signature of MS patients, however the effect sizes
were modest. Differential coexpression analysis identified an
interesting module of differentially expressed genes that were
enriched for immune system processes. The hub gene for this

module was nicastrin.
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Discussion

The primary mechanism of action of DMF is not well understood. Here I investigated
whether an integrated ‘omics approach (transcriptomics, metabolomics, cytokine
analysis) can further elucidate pharmacodynamic effects. Using NGS, I was able to
demonstrate that just over 500 genes appeared to be differentially expressed after
short-term administration of DMF and that genes encoding proteins involved in the
Nrf2 activation pathway were over-represented. Other gene expression studies have
identified genes related to anti-oxidant pathways(242, 250-252), anti-inflammatory
pathways(53, 253) and NFkB(52, 254) that may be related to DMF’s therapeutic
effect. My results confirm in-vivo that Nrf2 related gene expression may be
implicated in the effect of DMF. Furthermore, I demonstrated that genes altered by
DMEF could be partitioned into differential co-expression modules enriched for

immune response protein transcripts.

I investigated the reproducibility of differential expression estimates to see if they
were consistent across different alignment software and sequencing runs at different
facilities. Consistency improved when alignment software was comparable leaving
sequencing facilities as the only source of discrepancy. Sequencing methods are
imperfect and there are a number of potential sources of experimental error that can
lead to thousands of false positive variants in a fully sequenced human
transcriptome(255). Potential sources of discrepancy could have occurred at the
library preparation or sequencing stage. With regards to the former, this may have
been at the PCR amplification stage(256) which is subject to unmeasured biases or the
use of barcodes(257, 258) which can result in decreased read quality. With respect to

sequencing, [llumina is known to have a sequence specific error profile where
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inverted repeats exists or there are repetitive GGC sequences(259). I also explained
part of the discrepancy on the basis that those genes which did not overlap were likely
to have fewer mean counts and therefore were less likely to show sufficient variance

to make differences statistically significant.

Using mass spectrometry, I observed that short-term administration of DMF could
only accurately separate samples using supervised classification techniques such as
sPLS-DA. While some of the changes detected post-treatment could be related to anti-
oxidant pathways, the greatest changes (as measured by Random Forest) were seen in
TCA cycle metabolites fumarate, succinyl-carnitine and methyl succinyl-carnitine.
The finding of elevated methyl succinyl-carnitine was validated in samples from a

separate group of patients using a different mass spectrometry platform.

One prior study has investigated the effect of DMF on oligodendrocytes using a
metabolomics approach(41). This report also identified increases in succinate and
fumarate with treatment, but studied much shorter time intervals (24 and 72 hours).
Increases in carnitine were observed but not succinyl-carnitines. This difference is
likely due to succinylation of carnitines in peripheral organs such as the liver, which
would not have occurred in an in-vitro experiment in isolated oligodendrocytes(260).
My results confirm an increase in TCA cycle intermediates in vivo 6 weeks after
initiation of treatment with DMF. Furthermore, I identify two novel carnitine species
(succinyl-carnitine and methyl succinyl-carnitine) that are significantly increased

post-treatment.
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The isolated increase in succinate without increases in intermediates involved early in
the forward direction of the cycle (malate, citrate and a-ketoglutarate) led us to
hypothesise that fumarate generated from metabolism of DMF(261) may be reduced
by succinate dehydrogenase to succinate (resulting in corresponding oxidation of
NADH to NAD+). High levels of succinate and hence succinyl-CoA can result in
raised levels of succinylation(262, 263) of carnitines and other species, in turn (264,
265). For example, patients with mutations in succinate-CoA ligase, which normally
catalyses conversion of succinyl-CoA to succinate, characteristically show increased

concentrations of both succinyl-CoA and succinylcarnitine(265-268).

L-carnitine and acetyl-I-carnitine have both been demonstrated to activate anti-
oxidant pathways mediated by Nrf2(269-271). In a rat model of interstitial
nephropathy, reduction in two acyl-carnitines (stearoyl-carnitine and palmitoyl-
carnitine) resulted in impaired Nrf2 pathways and activation of NF-«B; the latter
known to be inhibited by DMF(272). Carnitine species can increase fatty acid flux
through acyltransferase and can accumulate to accept acyl groups from CoA in 3-
oxidation(273-275). This represents an alternative pathway that would produce a
similar intra-cellular effect as agonism of the HCA2 receptor during ketogenesis, the

latter being an alternative proposed mechanism of action of DMF(276, 277).

My finding of a high correlation between MMF and 1-methylnicotinamide was
replicated using both technical replicates and in a separate validation cohort
Furthermore, I was able to demonstrate a corresponding inverse correlation between
I-methylnicotinamide and betaine which has already been identified(249). The

increase in NAD+ through reversal of succinate dehydrogenase (outlined above)
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would result in raised 1-methylnicotinamide by the enzyme nicotinamide n-
methyltransferase(278). I hypothesise that this is the mechanism by which I observed
a high correlation between MMF and 1-methylnicotinamide. Furthermore, I
hypothesise that 1-methylnicotinamide may play a role in the mechanism of action of
DMF. 1-methylnicotinamide has been widely explored for its anti-inflammatory(279),
anti-oxidant(280) and neuroprotective properties(281). However, its potential
therapeutic effects for MS have yet to be explored. 1-methylnicotinamide has already
been explored in other murine models of human disease(282) and its pharmacokinetic

profile has been well characterised(283).

With respect to cytokine changes following short-term administration of DMF, I
found an increase in Th2 cytokines IL-4 and IL-13 but no corresponding dynamic
changes in Thl or Th17 related cytokines. Pathway analyses of both transcripts and
metabolites suggest a role for IL-4 in the action of DMF. My finding of increases in
IL-4 is consistent with a recent study in PBMCs of patients with psoriasis treated with
DMF(253), which was also able to find alterations in Thl and Th17 cytokines. The
difference in results may arise from use of cell subsets (PBMCs) in the latter study,

rather than measurements directly from plasma.

In conclusion, I have provided evidence for a robust transcriptomic response to DMF
in the short-term which involves up regulation of Nrf2 and enrichment of anti-
inflammatory and anti-oxidant pathways. Furthermore, I have provided evidence that
TCA cycle intermediates are significantly modulated in patients receiving DMF. The
most significantly altered metabolites are derivatives of TCA cycle intermediates:

succinyl-carnitine and methyl succinyl-carnitine. The levels of methyl succinyl-
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carnitine and 1-methylnicotinamide correlate well with concentrations of the active
drug MMF in sample plasma. Despite previous evidence for the anti-inflammatory
effects of 1-methylnicotinamide, this is the first evidence for a link between this

molecule and DMF. I hypothesise that 1-methylnicotinamide and methyl succinyl-

carnitine may be the downstream effectors of DMF’s known mechanisms of action.

future work, this could be tested directly in vitro or in pre-clinical models.

In
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Chapter 5. Identifying markers associated with response to DMF and its adverse

events.

Introduction

Accurately stratifying RRMS patients to the best treatment based on their personal
characteristics is a therapeutic ideal as it would avoid the use of expensive and
potentially harmful medications that may yield little benefit and will not prevent
accrual of disability(57). While an optimal stratification might occur before dosing, an
alternative would be to assess response only a short time after initiation of treatment.
The main criticism of current response measures (both clinical and radiological) is
that they demand longer periods of observation (on the order of a year or more,
typically). There thus is a strong rationale for searching for short-term biomarkers

associated with longer-term responses to treatment.

The current major approach to ensuring patients are receiving the most efficacious
medication for them involves disease activity monitoring over 1-2 years. A recent
approach to this has been the introduction of the composite outcome measure termed
‘no evidence of disease activity’ (NEDA) which is increasingly being evaluated for
measuring treatment response(284-286). NEDA evolved from the term ‘freedom from
disease activity’ and first appeared in the MS literature in a 2009 post hoc analysis of
natalizumab(284). The most recent definition; ‘NEDA-4’, combines four measures of
disease activity to increase sensitivity: no relapses, no EDSS progression, no new
MRI activity (Gd+ lesions or new/newly enlarging T2 lesions) and no worsening
brain volume loss(287, 288). The most practical limitation of this approach is the time

it takes for such measures of disease activity to appear. As such, there is a clinically
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unmet need for identifying short-term predictive markers of these longer-term

outcome measures.

A recent post-hoc analysis revealed that only 26% of patients in the DMF
DEFINE/CONFIRM trials achieved NEDA at two years(289). This suggests that
there are definable responder and non-responder populations. The hypothesised
mechanism of action involving activity on transcription factor-encoding genes nuclear
factor (erythroid-derived 2)-like 2 (Nrf2)(37, 38) and nuclear factor kB (NFkB)(39)
within immune cells further suggested to us that the pharmacodynamic effects on the
transcriptome of PBMC could be used to predict treatment response(290). To test
this, I used next-generation RNA sequencing and plasma metabolomic profiling to
identify short-term changes in gene expression associated with medium-term
treatment response defined by the composite outcome measure NEDA-4 at 15 months

post-treatment.
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Methods
Patients attended for three study visits; at baseline (pre-drug), at 6-weeks after
commencing treatment, and at 15 months post-treatment. Full details of assessments

are outlined in the Methods section.

Outcome Measures

MRI Scans

The RRMS patients underwent MRI scanning at the Imperial College Clinical
Imaging Facility at six weeks and 15 months after the start of treatment (Siemens
Verio 3T; 32-channel head coil; T1- and T2-weighted structural scans). Scans were
analysed using MSmetrix, a scanner independent software developed by Icometrix to
extract whole brain atrophy, lesion volume changes and the number of new lesions
between two timepoints(291, 292). The longitudinal analysis performed using
MSmetrix incorporates both spatial and temporal information for accurate and
consistent lesion segmentation based on Markov Random Field modelling and

difference imaging across the two time points (293).

Clinical Outcomes

Clinical outcomes of patients were assessed by a single trained physician (AG). This
included detailed patient histories to establish whether any new clinical relapses had

occurred during the study period, a full EDSS assessment, MS Functional Composite

scoring (MSFC) and SF-36 quality of life questionnaire.

The main outcome measure used to designate patients as responders or non-

responders was the 15-month NEDA-4 outcome. NEDA-4 was defined as no
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evidence of relapses, active MRI lesions (both new or enlarged T2 lesions), 6-month
confirmed disability progression (CDP) (defined as an increase in EDSS score of 1.5
points from a baseline score of 0, of 1.0 point from a baseline score of 1.0 or more or
0.5 points from baseline greater 5.0) or mean annualised rate of brain volume loss

(AR-BVL) of more than 0.4%.

The secondary outcomes were MSFC Z-score comparisons between baseline and 15
months. The MSFC is a multidimensional outcome tool that comprises quantitative
tests of 3 neurological domains; upper limb coordination (9-Hole Peg Test),
ambulation (25-Foot Walking test), and cognitive ability (Paced Auditory Serial
Addition Test-4). The raw scores for these components are standardized as Z scores
(SD units from mean baseline score in the population) with an increase in MSFC
scores indicating improvement(294). Z-score comparisons pre- and 18 months post-
treatment were calculated using a paired student’s T-test. Disease progression was
defined as a greater than 20% increase in 9-Hole Peg Test or 25-foot walk compared

between baseline and the 15-month study visit using either of these measures(295).

Patients were also assessed using a quality of life questionnaire; SF36(296). The SF36
is scored in 8 domains of QOL and simplified into two scores, a physical summary
score (PCS) and a mental component score (MCS). These are expressed as an
adjusted score range between 0 and 100 (0 being most impaired and 100 being least
impaired with regards to QOL). Comparisons between baseline and 15-months were

performed using a paired student’s T-test.
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Statistical Analysis
Treatment ‘responder’ or ‘non-responder’ groups were analysed separately with
respect to identification of treatment response biomarkers. Significant of change in

MSFC was assessed using Student’s T-test.

Transcriptomics

A series of differential expression analyses were performed on count data derived
from HT-Seq software using DESEq2(205) in parallel in the ‘responder’ and ‘non-
responder’ groups. A full description of Deseq2 can be found in Chapters 3&4. Here,
the statistical tests are described in the context of treatment responders, however the

same analyses were also performed in the non-responder group.

Time-course comparisons were performed between baseline and six week samples
and then between six weeks and 15-month samples controlling for intra-individual
variation. Cross-sectional contrasts between patients and controls were performed
controlling for age as a covariate. Adjusted p-value for significance (Padj) was set at

(Padj < 0.05). The threshold for fold change cut offs was a log2-fold change of +0.3.

Treatment response genes were defined as those that were significantly different in
the responder vs control group at baseline but that were no longer differentially
expressed in the responder group at 6 weeks and 18 months; i.e. these genes had
‘normalised’ in the responder population. Additionally, these genes had to be

continuously different in the non-responder group at all timepoints.
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A further set of treatment response genes were defined as those that were
differentially expressed in the responder group at both post-treatment timepoints and
that were also different in the treatment responder group vs controls at baseline but
not at 6 weeks or 18 months; i.e. genes that were persistently altered by treatment and
were also different in patients compared to controls at baseline but not following

treatment.

Downstream pathway analysis was performed using the Ingenuity Pathway Analysis
(IPA) software (Qiagen, Helden, Germany). Genes of interest imputed into IPA had
Padj < 0.05 and log2-fold change of +0.3. Enrichment analysis was performed

using g:Profiler isolated to KEGG pathways (p-value < 0.0005).

Comparison between atrophy rates in non-responder groups was calculated using
Fisher’s exact test (p < 0.05). Permutation analysis was performed using DESEq2

(100-fold) with random selection of RRMS subjects (n = 8).

Contrasts were also made in the small RNA dataset. Treatment response small RNAs
were defined as those that were different in the responder vs control group at baseline
but not at 6 weeks or 18 months (i.e. normalised) but remained different in the non-

responder group at these timepoints.

In order to investigate any possible interactions between the mRNAs and small RNAs

of interest I identified target mRNAs for the mi-RNAs of interest using TargetScan

v7.0. All of the target genes with conserved sites were selected. I then identified genes
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within this target set that were previously defined as treatment response genes in my

preliminary analysis.

Treatment responders and non-responders were also compared with reference to
known MS risk genes. There are currently 200 known genes with variants that
increase the risk of MS (IMSGC, unpublished data). I also investigated differential
expression of MS disease risk variants in the subset of genes where there was
adequate coverage in the RNA-Seq data to accurately identify these variants. Variants
were derived using GATK software(297) and differential expression was calculated

using a paired students T-test (p < 0.01).

Metabolomics

In order to evaluate whether the gene transcripts or microRNAs of interest were
associated with metabolites, I undertook a pairwise correlation analysis for each of the
transcripts and microRNAs of interest and all metabolites within both the responder
and non-responder groups using Pearson’s correlation coefficient. Metabolites with
high correlations (-0.7 > r or r > (.7) were treated as significant. Metabolite
enrichment analysis was performed using Metabolite Set Enrichment Analysis
(MSEA), an open source tool to identify pathways enriched for a given set of

metabolites(298).
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Results

DMF is an effective DMT in a subset of RRMS patients

8/24 patients (33%) achieved NEDA-4 over the 15 month period after initiating
treatment with DMF. 12 patients (50%) had an annualised brain volume loss (AR-
BVL) greater than -0.4% (range, -0.44% to -2.19%). Enlarging or new lesions
occurred in 9 patients (38% and 4 of these had an AR-BVL < -0.4%). 3 patients
experienced relapses and 6-month confirmed disability progression occurred in 4

patients (2/4 of whom also experienced relapses).

The mean change in MSFC from baseline to 15 months for the whole cohort was
+0.27 (range, -0.27 to 1.33) (p < 0.005). The SF-36 physical summary score
increased from 58.4 + 25.8 to 62.8 & 25.0 and the mental component score increased
from 53.6 + 18.9 to 59.9 &+ 18.0, but these changes were not statistically significant (p

=0.24 and p = 0.1 respectively).

Short-term dynamic effects of DMF

I assessed pharmacodynamic effects independently in the clinical responder and non-
responder groups. In the responder group, there were 478 differentially expressed
genes 6 weeks after the start of treatment with DMF relative to baseline (padj < 0.05).
These differences showed enrichment of transcripts related to the Nrf2 pathway (p <
0.0005) (Fig 26) and increased expression of those associated with down-regulation
of NF«B associated responses (overlap p < 0.0005) (Fig 27). In the non- responder
group, no differentially expressed genes were identified 6 weeks after the start of

treatment relative to baseline (Table 14).
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Fig 26 (a-d). Nrf2 related transcripts are increased 6 weeks post treatment in responders but not

in non-responders or healthy controls. Boxplots represent variance stabilised transformed counts

for transcripts (A) ATF4, (B) FOSL1, (C) MAFG, (D) MGST]1 at baseline and 6 weeks in

responders, non-responders and healthy controls. FOSL1 = fos-related antigen 1; ATF4 =

activating transcription factor 4; MAFG = transcription factor MafG; MGST1 = microsomal

glutathione S-transferase 1.

Responders Non-Responders Controls
Baseline vs 6 weeks 478 0 7
6 weeks vs 15 0 1264 180

months

Table 14. Number of differentially expressed genes between baseline and 6 weeks (short-term),
and 6 weeks and 15 months (medium-term) in responders, non-responders and controls.
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Fig 27 (a-d). NFkB related transcripts are increased 6 weeks post treatment in responders but
not in non-responders or healthy controls. Boxplots represent variance stabilised transformed
counts for transcripts (A) ICAM1, (B) CD83, (C) NFkBIA, (D) NFkBIE at baseline and 6 weeks
in responders, non-responders and healthy controls. CD83 =cluster of differentiation 83; ICAM]1
= Intercellular adhesion molecule 1; NFkBIA = nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha; NFkBIE = nuclear factor of kappa light polypeptide gene

enhancer in B-cells inhibitor, epsilon.

I confirmed the significance of this difference between responder and non-responder
groups by testing for effects of outlier values using leave-one-out cross validation
(LOOCYV). The median numbers of differentially expressed genes post-treatment were
404 and 0 in the responder and non-responder groups, respectively (p < 0.0005). 1

also assessed RNA-Seq data from untreated healthy controls (n=7). Comparison from

138

tissue

BL

E5 owe

tissue

BL

El 6wk



baseline to the end of a 6-week period without any intervention showed only 7

differentially expressed genes (padj < 0.05) (Table 14).

In the responder group, I found 10 genes altered by treatment (at both 6 weeks and 15
months) and also differentially expressed between patients and controls. These were
designated as a set of potential treatment response markers: ZNF594, ZEB2,

SERTAD3, ZFP36, PIM4, RNF19B, PPP1R15A, LOC105378248, GCNt2, HBEF.

Treatment response is associated with a stable pattern of gene expression
Between 6 weeks and 15 months, 0 and 1264 differentially expressed genes were
detected in the responder and non-responder groups, respectively (Table 14). I further
confirmed a difference between the two groups using a 100-fold permutation analysis
in randomly selected combinations of 8 RRMS patients. The median number of
differentially expressed genes in this analysis was 702 (range, 31 — 3230). In healthy
controls (n = 7), who were not given any intervention and who were followed over the

same time period, there were 180 differentially expressed genes (Table 14).

The large number of differentially expressed genes found between 6 weeks and 15
months in the non-responder group prompted us to test for response heterogeneity
within this group. I first tested for individual outliers. Based on PCA of the 16 non-
responders at 15 months, responses in 2 patients were outliers. Data from these
subjects therefore were excluded from further analysis (Fig 28a). Following removal
of these two outliers, two distinct non-responder groups (arbitrarily called groups A
and B) were identified in a subsequent round of PCA (Fig 28b). I then independently

assessed differentially expressed genes between 6 weeks and 15 months in these
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groups: 560 differentially expressed genes were found for group A and 648 for group
B (117 [11%] of these differentially expressed genes overlapped between the two
groups). I tested for the significance of these differences relative to the stable
expression pattern in the responder group using LOOCV. The median numbers of
differentially expressed genes with LOOCYV were 270 and 497 for groups A and B,
significantly different to the equivalent analysis in the responder group where the

median number of differentially expressed genes was 0 (p = 0.03).
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Fig 28a. Two subjects appear as outliers in 15 month samples within the non-responder group.

Principal component analysis of non-responders at 15 months. Each dot represents a subject’s

RNA sample.
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Fig 28b. Two distinct non-responder groups are identified at 15 months. Principal component analysis of
non-responder group A (green) and group B (red) at 15 months. Each dot represents a subject’s RNA

sample.
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In Group A, the most enriched pathways were involved with Th1 and Th2 activation
and T cell receptor signalling (p <0.0001). The differentially expressed genes
showed enrichment for the KEGG pathway T cell receptor signalling’ (p < 0.0001).
In Group B, there were no significantly enriched canonical or KEGG pathways.
Given the enrichment of immune-related genes in Group A, I investigated whether
this correlated with more adverse clinic outcomes. Within Group A, there appeared to
be a higher rate of grey matter atrophy (100% vs 62%) and white matter atrophy
(100% vs 75%) (defined as greater than -0.4% change in annualised atrophy for both
measures), however neither of these differences in number of subjects exceeding the
pathological threshold set were statistically significant (p = 0.2 and 0.48,

respectively).

DMF is associated with a short term ‘pseudo-normalisation’ of gene expression
in responders

After controlling for gender, 668 differentially expressed genes were found between
patients in the responder group and healthy controls at baseline (padj < 0.05).
However, 6 weeks after the start of treatment, only 3 genes were differentially
expressed between these patients and healthy controls (Table 15). At 15 months, there
were 85 differentially expressed genes between these patients, although only 14 genes

(2%) overlapped with the differentially expressed genes found at baseline (Fig 29a).

478 differentially expressed genes were found between patients in the non-responder
group and healthy controls at baseline (padj < 0.05) (Table 15). 202 (21%) overlapped
with those in the equivalent analysis in the responder group. At 6 weeks after the start

of treatment, 18 genes were differentially expressed between the same patients and
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healthy controls, 8 of which (44%) also had been identified baseline (Fig 29b). At 15

months, 391 differentially expressed genes were found in non-responder group A and

340 in non-responder group B (Table 15).

Responders vs

Non-Responders vs

Control Control
Baseline 668 478
6 weeks 3 18
15 months 85 391 (Group A)

340 (Group B)

Table 15. Number of differentially expressed genes in cross-sectional analysis between RRMS

patients and controls at baseline, 6 weeks and 15 months.

()

Baseline

654
(88.3%)

15 months

6 weeks

(b)

6 weeks Group A 15 month

287
(26.4%)

430
(39.6%)

0

Baseline Group B 15 month

Fig 29. DMF treatment is associated with a relative normalisation of gene expression in

responders but not in non-responders. Venn Diagrams represent the number of DEG in

responder (A) and non-responder (B) groups compared with controls at baseline, 6 weeks and 15

months.
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Nrf2 and NFkB related genes are persistently altered by DMF in responders but
not in non-responders

Given the postulated roles of Nrf2 activation and NF«B inhibition in the mechanism
of action of DMF I sought to identify downstream genes known to be transcriptionally
regulated by Nrf2(299) and NFkB(300) that may be affected differently in the
responder and non-responder group. For Nrf2, in the responder group, 14/75 (19%)
Nrf2 regulated genes were differentially expressed 6 weeks post-treatment. 6 of these
remained differentially expressed at 15 months. In the ‘non-responder’ group, there
were no Nrf2-related genes differentially expressed at 6 weeks. CCAAT/enhancer-
binding protein beta (CEBPB) was the only gene that was persistently changed in the
responder group and which did not change in the non-responder group at either
timepoints. 2/392 genes known to be regulated by NFkB(300) were persistently
differentially expressed in the responder group: ferritin heavy chain (FTH1) and
aspartyl beta-hydroxylase gene (ASPH). FTH1 was differentially expressed in the
non-responder group at 15 months leaving ASPH as the only NF«B regulated gene to
be persistently differentially expressed in the responder group but not in the non-

responder group over the study duration.

Small RNA as a treatment response marker in RRMS patients

I performed similar analyses using data derived from small RNA. In the responder
group two miRNAs differentially expressed at baseline normalised at 6 weeks and 15
months (mir-423 and mir-6718). In the non-responders mir-423 was also differentially
expressed at baseline but remained so at 6 weeks demonstrating no significant
normalisation of this transcript post-treatment. Mir-423 is therefore a candidate

marker of drug response.
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Correlations between RNA and small RNA treatment response markers

In order to look for correlations between miRNAs and RNAs in the dataset I
identified all RNAs that are regulated by miRNA of interest mir-423 using
TargetScan v7.0. I compared this list of 249 conserved RNAs with those RNAs I
found to be persistently changed at 6 weeks and 15 months in the responder group.
RNF19B is a gene, known to be regulated by mir-423, that was persistently altered in
the responder group and also differentially expressed in responders vs controls at

baseline but not in an equivalent comparison at 6-weeeks and 15 months.

Transcripts of genes associated with MS susceptibility are altered by DMF

There are currently 200 genes identified by genome wide association studies
containing variants that confer an increased risk of MS(301). In the responder group,
at 6 weeks, 16 of these genes were differentially expressed post-treatment. In the non-
responder group, no MS risk genes were differentially expressed 6 weeks post-
treatment. A leave-one-out cross validation was performed in the responder and non-
responder groups respectively. In the responder group, the median number of
differentially expressed susceptibility genes was 9 (range 0 — 21). In an equivalent
analysis in the non-responder group the median was 0 (range 0 -1). The difference

between these distributions was highly significant (p < 0.0001).

Using GATK software, I was able to look at differential expression of genetic risk
variant alleles pre- and post- treatment selectively in patients heterozygous for a risk

allele. 7 MS risk genes had sufficient depth for this analysis. 1 gene (RUNX3)
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showed statistically significant reduction in the risk allele (p < 0.05). For this gene,
the reciprocal healthy variant also showed a significant reduction, representing overall
reduction in the expression of this gene post treatment rather than a reduction in the

disease-specific variant itself.

Metabolic correlates of transcriptomic biomarkers

Next, I attempted to correlate the treatment response RNAs and small RNAs
(KIR3DL2, RNF19B and mir-423) with metabolomic profiles in the individual
subjects. Firstly, I correlated MMF concentrations with the three putative
transcriptomic response markers. Samples showed either low concentrations of MMF
(<20 ng/mL) or high concentrations of MMF (range 95 — 592 ng/mL). Using all
samples, I found no correlation between the active drug and the three transcriptome
biomarkers. A previously identified correlated of MMF (1-methylnicotinamide — see
Chapter 4) also showed no correlation. When performing the same analysis only in
those patients with therapeutic concentrations of MMF (range 95 — 592 ng/mL), |
found a high inverse correlation between mir-423 and levels of MMF (r = -0.68) and

I-methylnicotinamide (r = -0.85).

I also undertook an unbiased analysis by performing a pairwise correlation between
each of my transcriptome markers of interest and all metabolites assayed by
metabolomic profiling. There were 13 metabolites highly correlated with levels of
RNF19B (r > 0.7) (Table 16). For KIR3DL2 and mir-423, there were no highly

correlated or inversely correlated metabolites.
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Metabolite Correlation
LPC(18:1) 0.80
CER(24:1) 0.78
uridine 0.77
1-methylhistidine 0.77
Total LPC 0.77
LPC(16:0) 0.75
N-acetylisoleucine 0.74
Gamma-

glutamylvaline 0.72
LPC(17:0) 0.72
PC(17:0/22:5) 0.72
N-methylalanine 0.71
LPC(20:2) 0.71
LPE(22:5) 0.71

Table 16. Metabolites demonstrating high correlation with gene transcript RNF19B. LPC =

lipophosphatidylcholine, CER=Ceramide, PC = phosphatidylcholine, LPE =

lipophosphatidylethanolamine

I repeated this analysis looking only in patients with therapeutic concentrations of
MMEF. There were 249 metabolites that were highly correlated with RNF19B (r >

0.7). including succinylcarnitine (r = 0.87), methylsuccinylcarnitine (r = 0.85) and

succinate (r = 0.84) all of which were noted to be significantly elevated 6-weeks post

treatment (Supplementary Correlation Table — Appendix 1). For KIR3DL2, there

were 94 highly correlated metabolites (r > 0.7). For mir-423, I found 56 highly

inversely correlated metabolites, the most significant was 1-methylnicotinamide (r = -

0.85) (Supplementary Correlation Table).
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Metabolomic correlates of DMF-induced flushing

One of the most common side effects of DMF is flushing. At 6 weeks follow-up post-

treatment with DMF, 18/35 patients reported flushing at least once since commencing

DMF. I separated patients out by this symptom and investigated corresponding

metabolite changes pre- and post- treatment, restricting the analysis to those with

therapeutic concentrations of the active component of the drug, MMF. 73 metabolites

were significantly altered post-treatment in the symptomatic group (p < 0.05). The 10

showing greatest changes are highlighted in Table 17a. 7 of these metabolites were

over-expressed post-treatment (fold-change 1.26 — 1.87). In the group which did not

experience symptoms, 200 metabolites were significantly different; 170 of these were

triacylglycerols that were all under-expressed post-treatment with DMF. For the 10

most significantly reduced triacylglycerols the mean fold-change was 0.53 (s.d. 0.18)

(Fig 17b)

Fold Standard
Metabolite change Deviation | Adjusted p-value
cys-gly, oxidized 1.39 0.24 0.0006
leucylleucine 0.48 0.38 0.0039
sebacate (decanedioate) 1.66 1.28 0.0054
adipoylcarnitine (C6-DC) 1.87 0.57 0.0056
creatinine 0.44 0.04 0.0069
phenylalanylglycine 1.34 0.54 0.0075
PE(18:1/18:2) 1.26 0.47 0.0076
LPC(18:2) 1.19 0.28 0.0076
PE(18:2/18:2) 1.56 0.67 0.0092
PE(P-18:2/18:2) 0.47 0.34 0.0096

Table 17a. Patients experiencing flushing demonstrated significant differences in metabolites. 10

most significantly altered metabolites in the flusher group. Values displayed as fold changes pre-

and post- treatment with associated standard deviations and adjusted p-values.
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Standard
Metabolite Fold Change | Deviation Adjusted p-value
TAG54:6-FA18:1 0.55 0.15 0.0001
TAG52:4-FA20:0 0.65 0.06 0.0003
TAG50:4-FA18:2 0.55 0.13 0.0004
TAG58:8-FA22:5 0.75 0.06 0.0004
TAG54:6-FA18:3 0.53 0.09 0.0004
TAG52:6-FAl16:1 0.49 0.21 0.0005
TAG52:6-FA18:3 0.51 0.15 0.0006
TAG58:7-FA18:1 0.69 0.09 0.0007
TAG54:5-FA18:3 0.59 0.13 0.0009
TAG52:6-FA18:2 0.49 0.15 0.0009

Table 17b. Patients not experiencing flushing demonstrated significant differences in metabolites.
10 most significantly altered metabolites in the non-flusher group. Values displayed as fold

changes pre- and post- treatment with associated standard deviations and adjusted p-values.

Metabolomic correlates of DM F-induced gastrointestinal symptoms

Similarly, I repeated this analysis for gastrointestinal symptoms. In my cohort, 20/35
patients reported gastrointestinal symptoms at least once since commencing DMF. In
those patients reporting abdominal symptoms, 54 metabolites were significantly
altered (p < 0.05). These included pregnanolone which I previously identified as
being significantly reduced in MS patients as well as 1-methylnicotinamide,
succinylcarnitine and methyl-succinylcarnitine; all of which were also significantly
increased 6 weeks post- treatment with DMF (Table 18).

Finally, I tested whether concentrations of MMF were associated with side effects of
the medication. In the group with therapeutic concentrations of MMF (range 95 — 592

ng/mL), 67% experienced flushing and 67% experienced gastrointestinal (GI)
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symptoms. In the group with low plasma concentrations, 28% reported flushing and

36% experienced GI symptoms (p > 0.05, Fisher’s exact test).

Fold St Adjusted p-
Metabolite Change Deviation | value
Palmitoylcholine 1.76 0.54 0.007
Pregnanolone 0.8 0.1 0.012
Succinylcarnitine 3.8 1.5 0.017
1-methylnicotinamide 2.4 1.7 0.021
Methylsuccinoylcarnitine 180.4 206.8 0.042

Table 18. Metabolites significantly increased 6-weeks post- treatment with DMF and also
associated with DMF associated gastrointestinal adverse events. Fold changes, standard deviation

and adjusted p-value provided (corrected using Benjamini-Hochberg).
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Results Summary

Approximately 35% of patients had ‘no evidence of disease activity
(NEDA-4) 15 months post-treatment with DMF. DMF was highly
effective at improving a secondary outcome; MSFC, in the cohort but

did not have a significant effect on QOL measures.

I observed a robust short term pharmacodynamic transcriptomic
response to DMF in a subset of patients who responded to the drug
in the medium-term. This effect coincided with ‘pseudo-
normalisation’ of gene expression when comparing to healthy

controls and also a medium-term stabilisation of gene expression.

I found 3 disease related genes that persistently normalised in the
responder but not non-responder group. 1 of these genes, KIR3DL2
has been previously implicated in MS disease pathogenesis. A
further 10 disease-related genes (including RNF19B) were identified
that were persistently altered by DMF in the treatment responder

group but not the non-responder group.

A small subset of Nrf2 and NFkB related genes were persistently

altered by DMF.

One disease related miRNA (mir-423) was also affected by DMF

treatment in the responder but not the non-responder group. It is

150



known to regulate RNF19b which I had previously identified as a
responder gene. Furthermore, the levels of mir-423 were highly
inversely correlated with concentrations of MMF and levels of the

metabolite 1-methylnicotinamide.

¢ Anunbiased multi-omics analysis revealed high correlations
between levels of RNF-19B and succinylcarnitine, methy-
succinylcarnitine and succinate, all of which were significantly

elevated 6 weeks post-treatment.
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Discussion

There is currently no reliable early treatment response prediction marker for any
RRMS DMT. Here, I investigated whether gene expression changes at 6-weeks are
associated with the medium-term clinical response to DMF. Using RNAseq, |
observed that, in treatment responders, a robust short-term transcriptomic response to
DMF in PBMCs was associated with activation of the NRF2 and inhibition of the
NFxB pathways. In non-responders, no early transcriptional changes were observed
after starting DMF. In addition to a robust short-term pharmacodynamic response to
DMF in treatment responders, I observed stabilisation of gene expression. This
contrasted with medium-term expression changes in non-responders enriched for

transcripts of genes involved in inflammatory pathways.

Previous studies investigating the pharmacodynamic effects of DMF on gene
expression in vitro have identified genes related to anti-oxidant pathways(242, 250-
252), anti-inflammatory pathways(53, 253) and NFkB(52, 254). All may be related to
DMEF’s therapeutic effect. My results extend and confirm these in vivo; all three of
these pathways may be implicated in the effect of DMF in the subset of patients for
whom the drug has a medium-term (1-year) beneficial treatment effect. I identified an
association between microRNA and mRNA (Mir-423/RNF-19B) that was persistently
altered in the responder group post-treatment but not in the non-responder group. Mir-
423 is a small RNA species known to be reduced in MS patients compared to
controls(302). It has also been implicated in a number of other human inflammatory
diseases(303). A separate study in PBMCs of MS patients treated with [FN-beta
demonstrated a significant reduction in mir-423 post-treatment(304). I observed

raised levels of mir-423 in MS patients at baseline (responders and non-responders)
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and a reduction (in agreement with the IFN-beta) following 6-weeks treatment with
DMF. Mir-423 is known to regulate RNF-19B, a gene that I found to be altered by
DMF in treatment responders but not in non-responders. Little appears to be known
about RNF-19B other than that it is expressed predominantly in natural killer
cells(305). KIR3DL2 is also highly expressed in natural killer cells and was
consistently differentially expressed in non-responders but normalised in responders
post-treatment. It has been implicated in the pathogenesis of MS due to its interaction
with HLA class 1 molecules(218, 306). My findings of specific RNA and small-RNA
species of interest require replication in independent datasets and also validation using

quantitative PCR techniques.

Alongside a robust transcriptomic pharmacodynamic response to DMF in treatment
responders, I was able to demonstrate a complete stabilisation of gene expression over
the medium-term which was not present in treatment non-responders. Whilst an
interpretation of this finding is not straightforward, I hypothesise that conferring
relative homeostasis in peripheral PBMC gene expression limits inflammatory flairs.
In a subset of non-responders I saw over-expression of such pathways in the medium-

term in association with evidence of breakthrough disease activity.

This study identified a large number of differentially expressed genes between RRMS
patients and healthy controls. While some studies have also identified differentially
expressed genes between these groups(223)(224), other results have been less clear,
potentially reflecting the lower sensitivity of microarray technology, which identifies
a much smaller number of RNA species(108). I was able to demonstrate that the

differences between RRMS patients and healthy controls were largely attenuated
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within 6-weeks of initiation of treatment with DMF. In the subgroup of responders, by
15 months, this apparent “normalisation” of the transcriptome was maintained over 15
months, although the number of differentially expressed genes largely returned to pre-

treatment levels amongst the non-responders.

In a subset of the cohort for whom at the time of sampling there were therapeutic
concentrations of the active metabolite of DMF, I was able to correlate my RNA and
small RNA species of interest with metabolomic correlates of DMF response
identified in Chapter 4. These included levels of MMF and 1-methylnicotinamide.
Furthermore, I was able to demonstrate a strong correlation between RNF19B and
succinylcarnitine, methylsuccinycarnitine and succinate. These findings imply that a
potential downstream role for these metabolites in the mechanism of action of DMF,
and specifically in the expression of genes and micro-RNAs known to be affected by

the drug itself.

A recent study reported on the medium-term NEDA outcomes of the phase III trials
(DEFINE/CONFIRM) of DMF in RRMS. In keeping with their findings using
NEDA-3(289), I found that 33% of patients of patients achieved NEDA-4 after 15
months of treatment. I was also able to report a highly significant improvement in
overall MSFC score and 9-hole peg test at 15 months. The improvement in MSFC
score was considerably better than that found in those patients who participated in the
initial DEFINE/CONFIRM studies which is encouraging given this is real-life
data(307). Whilst others have been able to show an improvement in QOL with DMF

as measured by SF-36(308), I was unable to replicate this finding.
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The small sample size and using only 3 timepoints limit the confidence in my
selection of response markers and estimation of responses. Further confirmatory
work is needed. However, I attempted to reduce the impact of these factors by
increasing the rigor of my statistical analysis (i.e. performing leave-one-out cross
validation and a permutation analysis). The use of a control group at matching
timepoints allowed us to compare findings in the patients with those in a healthy
population over time. I also minimised the impact of artefacts arising from ‘batch’
effects, by sequencing all samples at the same time and in the same sequencing
facility. Without an independent replication cohort, I was unable to test the predictive
power of my findings formally. These could be tested in a future cohort using a

regression model developed using my pilot findings as the training dataset.

It is unclear what biological differences exist between the responder and non-
responder groups that may account for their differing response to DMF. Indeed, it
may also be the case that they represent different subtypes or phenotypes of RRMS
that have yet to be elucidated. I believe the latter explanation is less likely as there
was consistently very little difference in differentially expressed genes between these
two groups at all timepoints. Given the lack of a unique mechanism of action for
DMF, it is difficult to predict the underlying reason why only a subset of patients
seemed to respond the medication. If my findings were replicated in a much larger
cohort, one could look for genetic variants that may be different between responders
and non-responders potentially within transcription sites already known to be altered

by DMF.
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In summary, I have provided evidence that DMF can alter the short term
transcriptome profiles in a sub-group of MS patients and that these changes are
consistent with current hypotheses of major mechanisms of action of DMF. My
results suggest that DMF enhances immune homeostasis after “normalising” gene
expression in the PBMC. To my knowledge, this stabilising effect of DMF on gene
expression has not been described elsewhere. If replicated, my results may have
implications for the use of DMF in other inflammatory conditions or more
generally(309, 310). However, my work also raises questions about the biological
differences between the responder and non-responder groups that may account for
their differing response to DMF. One approach to explore this could involve
replicating my findings in a larger cohort, whilst also identifying genetic variants that
are different between responders and non-responders in transcription sites modulated

by DMF.
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Chapter 6. Summary and Future Directions

The landscape for treating RRMS has evolved to such an extent over the last twenty
years that it is now urgent to identify methods to stratify patients to a treatment that is
likely to provide the greatest efficacy whilst avoiding unwanted side effects and
adverse events. For the healthcare payer, there is also the added incentive of cost

efficiency given that all of these DMTs are very expensive.

The MS community is moving towards an approach established by the rheumatology
community for the treatment of rheumatoid arthritis (RA)(311). This can be described
as a ‘treat early, treat aggressively’ mindset. However, the fundamental limitation of
this approach is the lack of any validated early predictive measures of disease activity
in individual patients. In the absence of these, we rely on monitoring traditional
clinical and radiological measures of disease activity which take time to evolve. The
‘treat-to-target’ approach in RA has similar difficulties; DMARDS for RA have
similar efficacies at a population level and there are no approved biomarkers to
appropriately select the best medicine(312). The problem is complex not just because
of patient heterogeneity, but because medications may act on common pathways but

at different levels(313).

In the context of MS, the challenges posed by the range of medicines is greater. We
know that certain medications, such as alemtuzumab work preferentially on CD-52 T
cells, whereas ocrelizumab is a monoclonal antibody targeting CD20 on B -
lymphocytes. Our limited understanding of the subtypes of MS (both on a molecular

and a clinical level) is perhaps the main reason why we are unable to accurately

157



stratify patients to an appropriate medication. It is possible there are subtypes of MS
that are predominantly T-cell or B-cell mediated. We have evidence from experience
with other DMTs in MS that certain patients are indeed less likely to respond to some
medications, e.g., a subset of patients on Beta-Interferon will develop neutralising
antibodies that reduce the efficacy of the medication(314, 315). Stratification for risk
of adverse events already is a part of routine management of RRMS patients. We
closely monitor patients on natalizumab for the risk of developing PML which can, to
some extent be predicted based on antibody levels to JC virus, duration of treatment

and previous exposure to other DMTs(29).

With these examples in mind, the main aim of this study was to determine whether in
MS patients starting DMF, gene expression and metabolite changes associated with
drug action at 6 weeks could explain the clinical and radiological response at 15
months. I also aimed to use this information to better understand how the circulating
immune cell responses in MS patients may differ from healthy controls and to further

understand the mechanism of action of DMF.

Strengths of this Study

In this study, I was able to confirm that gene expression changes in PBMC are present
in MS patients compared to controls. These genes are enriched for inflammatory
pathways. Furthermore, I was able to demonstrate robust transcriptomic responses to
DMF. Adding to prior literature, these support roles for NFkB and Nrf2 in the
mechanism of action of DMF. I also identified a number of novel RNA and small

RNA species that were differentially expressed following short-term administration of
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DMF and which are also altered in MS patients compared to controls. This is
important as it strengthens the hypothesis that gene expression changes are relevant to

MS disease course and that these can be modulated by DMT.

With respect to the main aim of this study, I identified that in medium-term responder
patients, there was a robust short-term response to DMF that was not found in non-
responders. Furthermore, this response was also associated with a longer-term
stabilisation of gene expression which was not observed in non-responders. The
robust response to DMF in responders was associated with lack of apparent further
changes suggesting a stabilisation of gene expression. This gene expression response
model now needs prospective testing to assess its positive and negative predictive

power.

Using a novel NMR-based lipoprotein assay I was able to identify a new subtype of
lipoproteins (VLDL) elevated in MS patients and correlated with disability as
measured by EDSS. I also found evidence for raised triacylglycerols in the MS
patients compared to controls using mass spectrometry based metabolomics-assays.
Furthermore, I was able to describe novel associations between TCA cycle
intermediates succinylcarnitine and methyl succinylcarnitine and DMF. Using
pairwise correlation techniques, these metabolic changes were associated with
differences in the expression of genes and small RNAs of interest. My observations
may extend understanding of the mechanism of action of DMF: the correlation
between DMF and 1-methylnicotinamide particularly should also be further explored

given the potential anti-inflammatory properties of this molecule(279, 281).
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Challenges of this Study

In order to fulfil the potential of personalised medicine, it will be essential to
understand the different phenotypes that exist within the MS syndrome. Using this
approach, it is more likely that a treatment will target an individuals’ unique
pathology. The paradigm of this model is in the field of oncology. For example
individualised, genetic-based diagnoses have had considerable impact in the licensing
of imatinib for Philadelphia chromosome-positive chronic myeloid leukaemia and
trastuzumab in HER2-positive breast cancer(79). MS is not a purely genetic disease

and thus this approach poses a greater challenge.

In this study, whilst I identified a sub-group of patients who appeared to respond to
the medication in the medium-term, there were no population differences on a
transcriptome level between these patients and non-responders either before or after
starting DMF. This was evident in both the differential expression analyses and also
in the unbiased data-reduction techniques that I employed. Indeed, whilst there are a
number of underlying genetic variants that increase the risk of MS, the odds ratios for
individual risk variants are extremely modest and there are only a small proportion of
genes with associations to MS(316). In addition, there are no known genetic
discriminants for subtypes of MS. However, it is widely accepted that the
transcriptome can also be affected by the environment which is known to contribute
to MS risk susceptibility(61). Even within this limited study, I identified hundreds of
genes that appeared to change in response to 6-weeks on a new medication. The
interpretation of a lack of population heterogeneity on a transcriptome level is likely

to be complex. Gene expression changes are clearly dynamic; they may be inherently
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too predisposed to noise and environmental fluctuation in vivo to derive any

meaningful discriminatory variables with the limited sampling employed here.

Whilst I attempted to identify possible genetic variants that may have been
differentially expressed post treatment, thus potentially explaining population
differences within the study cohort, this was ultimately unsuccessful. The main reason
for this was that I could not infer the genotype of intronic sequences using RNA-Seq.
The majority of these variants are in intronic regions which would not have been
sequenced using this technology(317). In future studies, it would be advisable to also
undertake genotype sequencing, potentially using the “ImmunoChip, an efficient

genotyping platform for loci associated with autoimmune diseases(301).

Alongside these challenges included the choice of cell for this study. Given that this
was a pilot, I chose all PBMC with the intention to validate any interesting findings in
future work using a more targeted single cell type approach. This is now a possibility
with a wide range of resources available that can help identify cell specific gene
expression(318). Furthermore, the recent developments in single-cell RNA-Seq will
eliminate further noise. Given that one of my genes of interest, KIR3DL?2 is highly
expressed in natural killer cells, this work has identified a specific cell subset for

future analysis.

As part of my metabolomic profiling, I was able to derive concentrations of the active
component of DMF in my patients. This was helpful for finding correlates of the
medication that may relate to its downstream mechanism of action or to known

adverse effects. Of a total of 27 patients assayed, only 12 appeared to have potentially
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therapeutic concentrations of the drug in their plasma at the time of sampling. Given
the short terminal half-life of monomethylfumarate (approximately 1 hour), no
circulating evidence of the drug would be expected at 24 hours(319). Consequently, it
is difficult to determine whether those patients with unmeasurable concentrations of
MMF had been non-adherent over a longer period than just the last dose of

medication.

A singular interpretation of this finding is difficult; mechanisms are likely to be
multifactorial. We know that adherence to medications is generally low, and in
particular for patients with chronic conditions(320) or where the medications are
associated with adverse events. However, oral medications tend to be associated with
better adherence(321) relative to injectables and adherence in general for MS has

previously been reported in some cases as high(322).

Nevertheless, it is interesting to note that amongst those patients with high
concentrations of MMF, 67% were responders as defined by the composite measure
NEDA-4. In those with low concentrations, only 21% were responders. As such,
perhaps the greatest predictor of a medium-term response to DMF was concentration
of the drug at 6-weeks, i.e., people who adhere to the prescribed medicine dosing

regime are more than 3-times more likely to benefit than those who do not.

A final challenge encountered during this study was the relative paucity of techniques
available currently to integrate transcriptome and metabolomic data. A fundamental
challenge is that no transcript can be directly mapped to a specific metabolite in the

same way as a gene can be mapped to a protein(323). The statistical tools that are
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available for data integration can be broadly defined as correlation-based,
multivariate-based or pathway based. By demonstrating differences between patients
and controls (Chapter 3) and also the pharmacodynamics effects of DMF (Chapter 4)
using transcriptome, metabolome and cytokine datasets, I took a more “conceptual”
integration approach to the data. This undoubtedly has many limitations and will miss
associations that could only have been found if the datasets had been integrated

together.

In order to address this issue, I also used pairwise correlation-based approaches to
integrate my RNA and small RNA data with metabolomics. This is a form of
statistical integration. One of the limitations was that metabolites were being
measured from a different source (plasma) to the transcripts (PBMCs). Furthermore,
this correlation-based approach does not take into account the timescale of changes;
metabolite and transcriptome changes likely occur over different timescales. To limit
any source of error due to this limitation, I could have considered obtaining a time
course of samples for each omics and aligning these using techniques such as
Dynamic Time Warping(324). However, despite these limitations, I was able to show
high correlations between RNA and small RNA of interest and metabolites that were
previously identified as altered in response to DMF. I was also able to minimise batch
effects as these samples were extracted at the same time and from the same patients

(i.e. a replicate-matched study).

A final integration approach uses pathway analysis where over-represented pathways

from different ‘omics approaches are identified. The advantage of this approach is

discovery of pathways that may only become over-represented when both approaches
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are combined and the fact it is a biologically informed data reduction method. The
limitation of this approach is that it is based on an imperfect model. Using this
approach I was able to confirm a role for IL-4 in the pharmacodynamic effect of
DMF, and I was also able to identify STK11 as potentially important gene in the

pathogenesis of MS.

Undoubtedly, in the future, as multi-omics studies become less expensive, tools
enabling meaningful integration of omics will develop. Indeed, it may be that such
tools integrate different statistical approaches and can transform these into functional
networks based on pathway analysis. Such networks will be highly useful for the

development of predictive tools for personalised medicine.

Limitations of this Study

One of the main limitations of this study was the small sample size; which
undoubtedly reduced the statistical power of findings. This is a significant issue given
the high probability of false positive results (6) in genetic based studies and also the
low levels of replication that are commonly seen in biomedical studies in general
(7,8). Small sample sizes are problematic because the chances of observing a true
effect are less likely and the risk of a false positive rises. This may occur independent

of or secondary to inherent study biases(248).

A study with low power is more likely to generate false negative results. For example,
a study with a power of 30% will only identify 30% of genuine non-null events. In the
context of NGS studies, power is even more problematic because it is often governed

by ‘non-scientific’ limitations such as the cost of the technology itself. When
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deciding on the sample size for a RNA-Seq differential expression analysis, a balance
must be achieved between desired power and controlling for an appropriate error rate,

given the thousands of genes being multiple tested simultaneously.

There are no clear recommendations for sample size in RNA-Seq studies. One study
sought to examine the number of biological replicates needed and recommended at
least six replicates per condition or 12 to reduce the chances of missing differentially
expressed genes(325). However, this recommendation was based on a single study
and may not be applicable to other study designs. A further study compared the
different software tools available to assist in determining a sample size but found they
produced widely differing results; and also took into account different parameters.
The conclusion of this study is that pilot data should be used to determine future
sample sizes(326). The findings of this study are particularly relevant to my study in
that when using different alignment softwares, there was significant variation in the

differentially expressed genes that were identified.

Variability can occur in the processing of RNA-Seq data. The earliest source of this
may be in sample preparation where sequencing errors and bias may arise from
contamination or sample degradation during isolation and preservation. In order to
reduce the probability of this, I isolated PBMCs and performed RNA isolation on
fresh samples on the day of collection. Furthermore, to reduce the chances of batch
effects, all samples were library prepared and sequenced in the same facility at the
same time. From visual inspection of the data using principal component analysis,

there was no evidence of a batch effect.
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I tested the variance in differentially expressed genes using technical replicates that
were aligned and sequenced using different software and sequencing facilities
respectively. When using different alignment approaches the consistency between the
replicates was in the order of 45%. In order to determine whether the discrepancy
resulted from different alignment software or from sequencing and library
preparation, I repeated the bioinformatics steps identically. The result of this was a
slight improvement in consistency (55%), albeit good consistency (80%) for the most
differentially expressed genes. The cause of this variance is likely to be multi-
factorial. Variance can occur during library preparation and sequencing. The errors in
library preparation may have occurred during fragmentation(327), amplification(256)
or at the barcoding stage(258). With respect to sequencing, [llumina(259) has
sequence-specific error profiles and differing sequence depth can have an impact on
the data integrity(255). It was also the case that those genes which were not
consistently differentially expressed had lower mean counts and thus a statistically

significant result for differential expression was less likely to be reproducible.

In order to have improved the reliability of my study, I could have sequenced samples
on different platforms and integrated results that demonstrated concordance; termed
cross-platform replication(328). This would have reduced the number of potentially
false positive variants however could also have introduced different biases inherent in

the respective sequencing technologies causing false negative results to occur.

Whilst this study contained a healthy control population who underwent sample

collection at the same time as RRMS patients, I did not have a control population of

randomised, untreated RRMS patients who were followed prospectively. The reason

166



for this is the ethical implications associated with not treating a RRMS population
when a number of treatments are now available. For the same reason, it is no longer
ethical to conduct placebo-controlled clinical trials in RRMS patients who would
otherwise be eligible for treatment(329). Such a control population would have been
most helpful to compare with non-responders as one would have expected similar
changes both in the short-term following commencement of DMF and also in the
medium-term. If consistent, this data could have helped support the concept of high

levels of gene expression changes over time in MS patients compared to controls.

A further major limitation of my pilot study was the lack of a replication cohort.
Whilst I was able to provide a replication for my metabolomics findings, I was not
able to do so for the gene expression data due to time constraints. Replication of
studies is an essential component of study validation. In the context of MS biomarker
research, most biomarkers have failed replication with only 5% being successfully
validated(73). This highlights the importance of study replication to increase the

confidence in findings.

In this study, my main metabolomic findings were replicated in a sub-group of my
patients. In addition, I was able to demonstrate successful reproducibility using
technical replicates in my discovery cohort but assayed at a different facility. In the
context of my gene expression study, whilst I did not have a replication cohort, I
performed a number of statistical analyses to reduce the chances of results driven by
outliers. These included permutation analyses and leave-one-out cross validation. I
was also keen to demonstrate patterns of changes over time as well as changes in

specific genes; the latter more prone to false positives. One approach I could have
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used to validate my species of interest would have been quantitative PCR which is an
essential component of validation of RNA-Seq findings and is the most obvious next

step for future work.

In conclusion, my findings with respect to the mechanism of action of DMF on TCA
cycle metabolites are novel and help to better understand the likely heterogeneous
effects of this medication. It would be very interesting to determine whether the
correlates of DMF that I found in the metabolome (methyl-succinylcarnitine and 1-

methylnicotinamide) are therapeutic in themselves in an animal model of MS.

My novel finding of an association between VLDLs and MS sheds further light on the
association between lipid dysregulation and MS. It has implications for the testing of
lipid-lowering drugs in the treatment of MS, which has until now been restricted to

patients with progressive MS(202).

Perhaps the most interesting and original preliminary result to arise from this study
was the apparent relative stabilisation of gene expression over time, which I observed
in the responder group over the medium term. I termed this ‘gene expression
homeostasis’. DMF is known to have anti-oxidant properties and we know from other
conditions (as well as MS(330)) that oxidative stress can result in neurodegeneration
and abnormal gene expression(331). Furthermore, oxidative stress is known to
regulate gene expression of a number of inflammatory pathways(332) and has a role
in ageing(333). Whilst there is a wealth of literature on specific gene expression
changes that may arise as a result of oxidative stress and which, to some extent, may

be countered by administration of DMF, this concept of gene expression homeostasis
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has not been previously described. In order to provide greater credibility to this
theory, it would of course be necessary to replicate the findings in a much larger
cohort. Furthermore, it would be necessary to demonstrate maintenance of such an
effect over a longer period of time. However, in the context of MS treatment (and in
the current absence of treatments that can reverse disability), the ability to maintain
stability (or remission) is in itself the definition an effective treatment. In this study, I
have provided evidence of such stability at least on the transcriptome level in a subset
of patients who responded to DMF as defined by the composite outcome measure
NEDA-4. It is important to note that stabilising the transcriptome in such a way has
implications for the repurposing of DMF for other conditions characterised by
aberrant gene expression. This may include other inflammatory conditions, cancer or
even ageing-related disorders. Research into the use of DMF for such conditions is

already ongoing(309).

This pilot study aimed to identify short term dynamic transcriptomic and metabolomic
changes in MS patients that are associated with longer term response to DMF. |
successfully identified patterns of expression of genes, as well as specific genes and
metabolites that were associated with such a response in a subset of patients. The true
source of variability between responder and non-responder groups could not be
identified on the basis of the subjects’ individual transcriptomes. In order to determine
the true predictive value of my findings, it would be necessary to test them
prospectively on a new cohort of patients. Furthermore, it would be necessary to
perform this study over a longer period of time to determine the true predictability
over the long term. I identified an associated stabilisation of gene expression within

my responder group. Gene expression homeostasis is a rather novel pharmacological
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concept that may have implications for the use of DMF for other diseases and
conditions. The single most important aspect of this study to pursue would be the
development of a modelling approach using the RNA-Seq findings to determine the
true predictive power of my findings. If these were confirmed and validated in a
separate dataset, it would indeed be possible to predict a patients’ medium term
response to DMF based on gene expression changes within 6 weeks of onset of the
medication. This would be a potentially practical example of personalised medicine
for stratification of patients that is associated with a specific treatment in MS. Whilst
the specific markers may be different with other drugs, the approach can be
generalised for other medications used in MS. This could contribute meaningfully to

improved outcomes for patients.
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29 42 9.6
30 45 9.6
31 41 9.5
32 48 9.1
33 47 9.4
34 68 9.5
35 41 9.3
36 45 9.5
37 43 9.6
38 25 9.3
39 45 9.6
40 25 9.6
41 48 9.3
42 44 9.4
43 49 9.3
44 55 9.4




45 45 9.3
46 48 9.4
47 49 9.2
48 45 9.3
49 58 9.4
50 45 9.4
51 45 9.5
52 54 9.5
53 45 9.4
54 43 9.5
55 46 9.5
56 55 9.9
57 44 9
58 44 9.4
59 46 9.2
60 45 9.4
61 45 9.3
62 50 9.4
63 44 9.3
64 44 9.5
65 45 9.4
66 49 9.4
67 45 9.5
68 45 9.4
69 44 9.3
70 43 9.2
71 29 9.6
72 41 9
73 45 9.6
74 44 9.7
75 44 9.5
76 45 9.5
77 44 9.5
78 45 9.5
79 49 9.7
80 45 9.6
81 24 9.5
82 30 9.7
83 30 8.7
84 30 9.5
85 30 9.6
86 30 9.5
87 30 9.1
88 30 9.4
89 30 9.4
90 30 9.3
91 30 9.5
92 30 9.5
93 30 9.5
94 30 9.4
95 30 9.5
96 30 9.6
o7 [T S
98 25 8.9
99 30 9.3




100 30 9.4
101 14 9.5
102 30 9.6
103 30 9.4
104 30 9.5
105 30 9.2
106 30 9.4
107 30 9.1
108 30 9.5
109 30 9.4
110 30 9.6
111 30 9.3
112 30 9.5
113 30 9.5
114 30 9.6
115 20 9.7
116 30 9.7
117 30 9.4
118 30 9.7
119 30 9.5
120 30 9.6
121 30 9.6
122 30 9.5
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Quality per tile
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Quality score distribution over all sequences
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G distribution over all sequences

2000000 GC count per read

Theoretical Distribution
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Distribution of sequence lengths over all sequences
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Model

Model R P-Value VIPL V2TG V2PL
LOO1 0.48 8.47907E-06 0.014 0.004 0.014
LOO2 0.48 7.69336E-06  0.009 0.003 0.014
LOO3 0.51 2.08679E-06 0.006 0.001 0.006
LOO4 0.49 5.44127E-06  0.013 0.005 0.020
LOO5 0.47 8.69054E-06 0.010 0.004 0.014
LOO6 0.51 2.20107E-06  0.011 0.003 0.010
LOO7 0.48 7.42451E-06 0.009 0.003 0.014
LOOS 0.49 4.09666E-06 0.008 0.003 0.011
LOO9 0.49 4.46746E-06  0.004 0.002 0.007
LOO10 0.48 6.5764E-06 0.012 0.004 0.015
LOO11 0.49 4.2431E-06 0.007 0.002 0.009
LOO12 0.48 6.41244E-06 0.010 0.004 0.014
LOO13 0.46 1.3048E-05 0.010 0.003 0.013
LOO14 0.48 6.2049E-06 0.009 0.003 0.014
LOO15 0.48 7.53966E-06 0.010 0.004 0.015
LOO16 0.48 6.86041E-06 0.014 0.006 0.022
LOO17 0.48 7.5189E-06 0.009 0.005 0.019
LOO18 0.51 2.31859E-06  0.005 0.001 0.005
LOO19 0.52 1.16125E-06  0.005 0.003 0.014
L0020 0.48 6.71033E-06  0.008 0.003 0.014
L0021 0.50 3.36502E-06  0.002 0.002 0.010
L0022 0.48 5.8468E-06 0.010 0.003 0.011
L0023 0.48 7.53797E-06  0.010 0.004 0.015
L0024 0.47 9.38576E-06  0.029 0.008 0.024
LOO25 0.46 1.58951E-05 0.016 0.004 0.014
LOO26 0.48 6.45236E-06 0.010 0.004 0.015
L0027 0.48 8.4988E-06 0.013 0.006 0.020

Supplementary Lipid Table. Results of leave-one-out cross validation for optimal
regression model. Statistical measures of fit for each leave-one-out model displayed as
Model R? value. Corresponding p-value for the model and for each VLDL predictor
coefficient provided. Total of 27 leave-one-out cross validations performed.



Metabolite Correlation with RNF19B

nervonoylcarnitine (C24:1)* 0.97
pyridoxate 0.97
LPC(18:1) 0.96
1,2,3-benzenetriol sulfate (2) 0.96
lactate 0.96
ximenoylcarnitine (C26:1)* 0.95
N-acetylvaline 0.95
palmitoyl ethanolamide 0.94
ribose 0.94
glycolithocholate 0.94
pregnanolone/allopregnanolor 0.94
N-acetylisoleucine 0.93
LPE(18:3) 0.93
FFA(16:1) 0.93
LPC(16:0) 0.92
Total LPC 0.92
17alpha-hydroxypregnenolone 0.92
pro-hydroxy-pro 0.91
3-methoxycatechol sulfate (1) 091
methyl indole-3-acetate 091
2-hydroxyphenylacetate 0.91
LPC(18:3) 0.91
LPE(20:4) 0.90
LPE(20:3) 0.90
LPC(20:4) 0.90
uridine 0.90
TAG48:5-FA18:3 0.90
2-hydroxyacetaminophen sulfe 0.89
P1(18:0/20:2) 0.89
4-vinylguaiacol sulfate 0.89
N-acetylcarnosine 0.89
tyramine O-sulfate 0.89
N-acetyl-cadaverine 0.88
LPC(20:5) 0.88
LPC(16:1) 0.88
cystathionine 0.88
4-hydroxyphenylacetatoylcarn 0.88
N-acetyltyrosine 0.87
succinyleamnitine (C4-0¢) 087
N-methylalanine 0.87
TAG56:5-FA20:3 0.87
PC(17:0/22:5) 0.87
5-acetylamino-6-formylamino- 0.86

glucuronate 0.86



DAG(18:1/20:4) 0.86

TAG54:5-FA18:3 0.86
TAG52:5-FA18:1 0.86
LPC(20:1) 0.86
LPC(22:5) 0.86
TAG56:7-FA20:5 0.86
TAG56:7-FA18:3 0.86
TAG50:4-FA20:3 0.86
TAG52:6-FA18:1 0.85
N6-methyladenosine 0.85
arabonate/xylonate 0.85
TAG50:5-FA16:1 0.85
alpha-ketoglutarate 0.85
sphingosine 1-phosphate 0.85
hippurate 0.85
LPC(18:0) 0.85
cyclo(pro-val) 0.85
pyruvate 0.85
creatinine 0.84
succinate 084
cholate 0.84
N-acetylhistidine 0.84
N-acetylphenylalanine 0.84
DAG(18:1/20:3) 0.84
PC(18:1/18:1) 0.84
TAG50:5-FA16:0 0.84
TAG52:4-FA18:0 0.84
phenylacetylglutamate 0.84
4-acetamidobutanoate 0.83
TAG52:3-FA16:1 0.83
P1(18:0/22:4) 0.83
TAG48:4-FA18:1 0.83
N-formylanthranilic acid 0.83
1-methylhistidine 0.83
N-acetylputrescine 0.83
TAG50:5-FA20:5 0.83
LPC(17:0) 0.83
TAGA48:5-FA18:2 0.83
N-acetylalanine 0.82
TAG52:6-FA20:5 0.82
chenodeoxycholate 0.82
N-acetylserine 0.82
PC(18:1/22:5) 0.82

TAG54:6-FA20:5 0.82



PI(18:0/20:3)
LPC(20:3)
TAG48:4-FA18:3
PC(18:1/16:1)

5-(galactosylhydroxy)-L-lysine

TAG56:5-FA18:1

5-acetylamino-6-amino-3-metl

1-methylurate
TAG54:6-FA16:1
TAG54:8-FA20:4
LPE(22:5)

heme
TAG54:4-FA18:3
TAG52:6-FA16:0
TAG56:6-FA18:1
TAG54:4-FA20:3
5-oxoproline
TAG46:0-FA12:0
CE(22:4)
LPC(22:6)
TAG56:8-FA18:3
TAG54:5-FA16:1
tiglylcarnitine (C5:1-DC)
TAG50:5-FA18:1
TAG52:5-FA20:5

beta-hydroxyisovalerate

TAG46:3-FA18:3
TAG52:6-FA16:1
TAG54:7-FA18:1
TAG54:5-FA20:4

dihomo-linolenoylcarnitine (2C
glutarate (pentanedioate)

TAG46:2-FA16:1
TAG46:3-FA12:0
phenylacetylcarnitine
TAG56:6-FA20:5
LPE(18:1)
TAG54:8-FA20:5
TAG58:8-FA20:3
oleoylcarnitine (C18:1)
TAG52:4-FA20:3
imidazole propionate
N-carbamoylaspartate
TAG54:7-FA16:1
TAG54:4-FA16:1

0.82
0.82
0.82
0.81
0.81
0.81
0.81
0.81
0.81
0.81
0.81
0.81
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.80
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.79
0.78
0.78
0.78
0.78



TAG52:5-FA20:4
TAG52:4-FA18:3
TAG54:3-FA18:3
TAG44:1-FA12:0
TAG56:4-FA20:3
TAG52:7-FA20:5
TAG52:6-FA18:3
arabitol/xylitol
PC(20:0/18:1)
TAG50:5-FA20:4
LPE(16:0)
TAG52:2-FAl16:1
TAG54:6-FA18:1
PC(18:1/22:4)
ethylmalonate
TAG52:5-FA20:3
TAG44:0-FA12:0

gamma-glutamylhistidine

PC(18:0/22:5)
TAG50:4-FA16:0
TAG44:1-FA16:1
LPC(22:4)
erythronate*
P1(16:0/20:4)

N1-Methyl-4-pyridone-3-carbc

HCER(18:0)
TAG50:4-FA18:3
CE(18:4)
TAG56:4-FA20:4
TAG54:3-FA20:3
DAG(16:1/18:1)
TAG48:2-FA16:1
TAG54:5-FA20:5

glutarylcarnitine (C5-DC)

TAG56:7-FA16:1

dihomo-linolenoyl-choline

TAG58:5-FA18:1
TAG48:2-FA12:0
LCER(20:1)
TAG56:4-FA20:2
P1(16:0/16:1)
TAG50:4-FA20:4
TAG58:6-FA18:1
phosphate
TAG48:4-FA16:0

0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.77
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.75
0.75
0.75
0.75
0.75



TAG48:4-FA14:0
DAG(16:0/20:4)

TAG53:7-FA18:3
TAG50:3-FA18:3

N1-Methyl-2-pyridone-5-carbc

TAG56:3-FA16:0
TAG56:6-FA18:3
TAGA48:4-FA16:1
TAG52:3-FA20:3
TAG46:1-FA12:0
CE(18:1)
eicosenoylcarnitine (C20:1)*
TAG50:3-FA20:3
TAG50:5-FA18:3
cysteinylglycine
O-sulfo-L-tyrosine
TAG53:3-FA18:0
behenoylcarnitine (C22)*
TAG56:6-FA20:4
TAGA48:3-FA18:3
PC(18:0/16:1)
PC(16:0/22:5)
LPC(20:2)
TAG48:1-FA12:0
TAG46:2-FA14:1
TAGA48:2-FA18:1
cyclo(ala-pro)
TAG56:7-FA20:3
TAG52:5-FA14:0
hydantoin-5-propionic acid
TAG50:2-FA16:1
TAG56:7-FA18:0
oleoylcholine
LPE(16:1)
TAGA48:4-FA20:4
N1-methyladenosine
TAG58:7-FA18:1
gulonate*
PI1(16:0/18:1)
PC(12:0/18:1)
PC(14:0/22:5)
TAG46:3-FA16:0
PC(18:0/18:3)
mannitol/sorbitol
TAG56:5-FA20:4

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.74
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.73
0.72
0.72
0.72



TAG56:5-FA22:4
DAG(16:0/18:3)
N-acetylleucine
TAG50:2-FA18:1
TAG52:2-FA18:1
PC(14:0/14:0)
TAG55:6-FA18:1
TAG52:3-FA18:3
TAG56:6-FA16:0
TAG52:4-FA20:4
p-cresol-glucuronide*

gamma-glutamyl-2-aminobuty

PC(16:0/12:0)
PC(20:0/20:3)
LPC(14:0)
PC(18:1/18:3)
TAG54:7-FA20:5
PC(16:0/18:1)
propionylcarnitine (C3)
indoleacetate
TAG54:5-FA16:0
PC(18:0/20:1)
PC(16:0/16:1)
ornithine
TAG46:1-FA16:1
TAG54:6-FA20:3
TAG56:4-FA18:0
TAG54:3-FA16:1
PC(18:0/12:0)
TAG56:4-FA16:0
gamma-glutamylvaline
TAG46:1-FA16:0
stearoylcarnitine (C18)
DAG(18:1/18:1)
TAG56:3-FA20:2
isoursodeoxycholate
carnitine
TAG58:7-FA16:0
TAG54:4-FA20:4
DAG(16:0/20:3)
bilirubin (E,E)*

O-methylcatechol sulfate
glycerophosphorylcholine (GP(
N-acetyl-1-methylhistidine*

Metabolite

0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.72
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.71
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70
0.70

Correlation with KIR3DL2



pregnanediol-3-glucuronide
xanthine

N-acetyltaurine
androstenediol (3beta,17beta)
pregnen-diol disulfate*
5alpha-pregnan-3beta,20beta-
12-HETE

3-phosphoglycerate
5alpha-pregnan-3(alpha or bet
5alpha-pregnan-3beta,20alphe
bilirubin (E,Z or Z,E)*
solanidine
glycerophosphoserine*
PE(18:2/22:4)
dehydroisoandrosterone sulfai
phenylalanylglycine
gamma-glutamylglutamine
androstenediol (3alpha, 17alpt
21-hydroxypregnenolone disul
sphingadienine*
2,3-dihydroxyisovalerate
pregn steroid monosulfate*
5alpha-pregnan-3beta,20alphe
choline phosphate
4-hydroxyphenylacetylglutami
pregnenolone sulfate
androstenediol (3alpha, 17alpt
inosine 5'-monophosphate (IM
guanidinoacetate
PE(O-18:0/16:1)
S-methylcysteine sulfoxide
cysteine-glutathione disulfide
androstenediol (3beta,17beta)
glycochenodeoxycholate
glycerate

ethyl glucuronide

cytidine 5'-diphosphocholine
biliverdin

ribose

glycine

3-hydroxysebacate
acesulfame
2,3-dihydroxy-2-methylbutyrat
HCER(18:0)
phosphoethanolamine

0.97
0.95
0.95
0.94
0.94
0.94
0.93
0.93
0.93
0.93
0.93
0.93
0.93
0.92
0.91
0.90
0.90
0.90
0.90
0.89
0.88
0.88
0.87
0.87
0.87
0.87
0.87
0.87
0.86
0.86
0.86
0.85
0.85
0.85
0.85
0.85
0.85
0.84
0.84
0.84
0.84
0.83
0.83
0.83
0.83



5-hydroxyhexanoate
PE(17:0/22:5)

tartronate (hydroxymalonate)
S-methylcysteine
pyroglutamine*

lanthionine

sphingosine

hypotaurine
5alpha-androstan-3alpha,17be
androstenediol (3beta,17beta)
perfluorooctanesulfonic acid (f
C-glycosyltryptophan
etiocholanolone glucuronide
6-oxopiperidine-2-carboxylate
guanosine

oxalate (ethanedioate)
stachydrine

taurine
3beta,7alpha-dihydroxy-5-chol
N-methylpipecolate

bilirubin (Z,2)
N6-carboxyethyllysine
N6-carboxymethyllysine
androstenediol (3beta,17beta)
methyl-4-hydroxybenzoate sul
N-methylproline

glutamine
3beta-hydroxy-5-cholestenoat:
HCER(20:0)

eugenol sulfate

succinimide
gamma-glutamylglycine
phenylpyruvate
N-acetylaspartate (NAA)

Total LCER

linoleoyl ethanolamide
5alpha-androstan-3alpha,17be
uridine 5'-monophosphate (UN
LPE(20:1)

inosine

beta-cryptoxanthin
octadecanedioate

pipecolate

glycylvaline

deoxycarnitine

0.83
0.82
0.82
0.82
0.81
0.81
0.81
0.80
0.80
0.80
0.80
0.79
0.79
0.79
0.79
0.79
0.79
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.77
0.77
0.77
0.77
0.76
0.76
0.76
0.76
0.74
0.74
0.74
0.74
0.73
0.73
0.73
0.73
0.72
0.72
0.71
0.71
0.71



3,7-dimethylurate
glycocholate

andro steroid monosulfate (1)
cytidine 5'-monophosphate (5'

Metabolite

methionine sulfone
PE(18:1/20:1)
PE(P-18:1/18:3)
alliin
P1(18:0/16:1)
PC(20:0/20:4)
LCER(22:0)
PE(P-18:1/18:1)
P1(16:0/16:0)
PC(18:2/18:3)
PE(P-18:1/16:0)

gamma-tocopherol/beta-tocog

SM(20:1)

P1(18:0/18:1)
pristanate
PE(P-18:0/18:1)

EDTA

DAG(14:0/16:0)
PE(P-16:0/20:1)
TAG42:0-FA14:0
glycoursodeoxycholate
PE(P-18:1/18:0)
linoleoyl ethanolamide
trans-urocanate
P1(16:0/18:2)
LCER(20:1)
TAG56:9-FA20:4
TAG56:8-FA20:4
ursodeoxycholate
PE(P-18:2/22:6)
P1(18:0/18:2)
alpha-tocopherol

2-linoleoylglycerol (18:2)

PC(15:0/20:4)
PE(18:1/18:3)
PC(18:1/20:1)
retinol (Vitamin A)
carboxyethyl-GABA
P1(18:0/22:6)

0.71
0.71
0.70
0.70

Correlation with mir-423

-0.85
-0.84
-0.83
-0.83
-0.83
-0.83
-0.83
-0.82
-0.82
-0.82
-0.81
-0.81
-0.81
-0.81
-0.80
-0.80
-0.80
-0.79
-0.79
-0.78
-0.78
-0.78
-0.78
-0.78
-0.77
-0.77
-0.77
-0.76
-0.76
-0.76
-0.75
-0.75
-0.75
-0.75
-0.75
-0.75
-0.74
-0.74
-0.74
-0.73



3-hydroxyhippurate
PE(16:0/20:2)

PE(18:1/20:2)

LCER(18:1)

PC(18:1/18:2)

P1(18:1/18:2)
PE(0-18:0/18:2)
PC(18:1/20:4)
DAG(14:0/18:2)
5-hydroxyindole sulfate
PE(P-18:0/20:2)
3-hydroxybutyrylcarnitine (2)
PC(18:2/22:4)
TAG56:7-FA20:4
3-(3-hydroxyphenyl)propionat:
alpha-ketobutyrate

-0.73
-0.73
-0.73
-0.73
-0.72
-0.72
-0.72
-0.72
-0.72
-0.71
-0.71
-0.71
-0.70
-0.70
-0.70
-0.70



