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Abstract 

A microporous silicoaluminophosphate with a novel topology type, STA-20, has been 

prepared via a dual templating method using hexamethylene bisdiazabicyclooctane 

(diDABCO-C6) and trimethylamine as co-templates. Its structure has been solved and 
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confirmed using a multi-technique approach that included the use of a hypothetical zeolite 

database to obtain a candidate starting structure, followed by scanning transmission electron 

microscopy with annular dark field imaging and Rietveld refinement. STA-20 is a member of 

the ABC-6 family of zeotype structures. The structure has trigonal symmetry, P-31c, with a = 

13.15497(18) Å and c = 30.5833(4) Å in the calcined form. It has a 12-layer stacking 

sequence of 6-rings (6Rs), AABAABAACAAC(A), which contains single and double 6R 

units. As well as d6r, can and gme cages, STA-20 possesses the longest cage observed in an 

ordered ABC-6 material, giving a 3D-connected pore system limited by 8R windows. Models 

for the location of the templates within cages of the framework were obtained by combining 

elemental analysis, 13C MAS NMR, computer modelling and Rietveld refinement.	
  

 

Introduction  

Small pore aluminosilicate zeolites and their silicoaluminophosphate (SAPO) zeotype 

analogues1 have in recent years found widespread application in catalytic processes, the most 

important of which are the generation of light olefins from methanol over their acid forms via 

acid catalysis (the MTO reaction)2-6 and the reduction of NOx emissions from lean burn 

engines via selective catalytic reduction with ammonia over their copper forms.7-12 In 

particular, structures with pore space comprising cavities connected three-dimensionally via 

rings of eight tetrahedral cations and eight oxygen atoms (8Rs) are suitable for these 

reactions. These include many structures drawn from the so-called ABC-6 family of 

polytypes,14-16 which are built up from layers of 6Rs, linked by 4Rs, with different stacking 

sequences. The 6R units can be centred on three different (x, y) positions in the hexagonal 

ab-plane: A (0, 0), B (2/3, 1/3) and C (1/3, 2/3) and stacking sequences include double 6-ring 

units (D6Rs) as well as 6Rs. Materials representing 22 such polytypes of the ABC-6 family 



3	
  
	
  

have been reported, each with its own characteristic stacking sequence. The CHA framework 

topology, for example (each distinct topology is given a three letter code), may be prepared in 

aluminosilicate form (synthetic chabazites, including the high Si/Al SSZ-1317) as well as with 

silicoaluminophosphate composition, SAPO-34.18 Both find widespread catalytic 

application.4,6-13 In these and in many other ABC-6 structures, cages of cross-sectional 

diameter of ca. 7 Å are linked three dimensionally via elliptical 8Rs, which have minimum 

openings of around 3.4 Å (small pore). Other well studied examples of synthetic ABC-6 type 

materials include those with the topology types LEV (zeolite levynite, SAPO-35), ERI 

(zeolite ZSM-34; SAPO-17) and AFX (zeolite SSZ-16, SAPO-56).14 

New ABC-6 type materials continue to be discovered, both as zeolites and 

aluminophosphates, particularly due to the innovative use of organic structure directing 

agents (OSDAs) that act to template specific cages during crystallisation due to favourable 

short range non-bonding interactions.19-24 Xie et al. recently reported the structure of the 

zeolite SSZ-52, with a structure based on a 18-layer stacking repeat,25,26 Broach et al. 

reported two zincoaluminophosphates with novel stacking sequences27 and Li et al. reported 

two new ABC-6 magnesioaluminophosphates.16 Furthermore, topological consideration and 

molecular modelling indicates that many stacking sequences are possible for which no 

corresponding materials have been observed, even though they are energetically feasible. Li 

et al have recently enumerated the 84,292 hypothetical structures in this ABC-6 family with 

repeat units up to 16 layers and identified by modelling the 1,127 of these that are most likely 

to be feasible.16  

One feature of the more complex of these structures is that they contain more than one cage 

type, and so may be targets for a ‘co-templating’ approach, where two organic structure 

directing agents (OSDAs) are incorporated simultaneously during crystallisation, each 

templating a specific cage type.28,29 Recently, we have had success in using a co-templating 
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approach, making use of computational modelling, to prepare SAPOs in the ABC-6 system. 

In this ‘retrosynthetic’ method, trimethylamine was found to be effective as a template for 

gme cages and longer bis diazabicyclooctane alkane cations were found to act as templates 

for the elongated aft and sfw cages.30 In this way the ABC-6 small pore SAPOs SAPO-56 and 

SAPO (SFW) were successfully prepared, the latter for the first time, and with a very high 

degree of crystallinity. 

Here we report the synthesis of a SAPO in the ABC-6 system with a novel topology type, 

denoted STA-20 (St. Andrews microporous material-20), using the co-templating approach. 

This was first identified as an impurity in the dual-template synthesis of SAPO STA-18 

(SFW),30 and it has been prepared phase pure by careful optimisation of the synthetic 

conditions. Its structure is well ordered, but it is prepared in microcrystalline form, precluding 

structure solution by single crystal X-ray diffraction. Nevertheless, it was possible to 

determine the unit cell dimensions by selected area electron diffraction and use a hypothetical 

zeolite structure database to obtain a plausible structural model, which was confirmed by 

spherical aberration corrected (Cs-corrected) scanning transmission electron microscope 

(STEM) imaging of unprecedented resolution for a SAPO and refined successfully against 

synchrotron X-ray powder diffraction data. 

 

Experimental details 

Synthesis and preparation 

During the experimental investigation, synthesis gels were prepared by mixing 

orthophosphoric acid (85 wt.% in H2O, BDH) with silica (either colloidal, 30 wt.% in H2O, 

PX-30 or fumed, powder 0.007 µm Aldrich or Cabosil M5, Cabot, >99.8), aluminium 
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hydroxide (Aldrich or Alfa Aesar), diDABCO-C6 (99%, Alfa Aesar) and trimethylamine, 

TrMA, (45 wt.% in H2O, Aldrich) in water and stirred at room temperature. 

Tetrabutylammonium hydroxide, TBAOH, (40 wt.% in H2O, Aldrich, or 55 wt.% in H2O, 

Sachem) was used to adjust the gel pH to 7. In order to favour the crystallisation of the 

desired phase, seeds of SAPO AFX, previously prepared (2.0 - 4.0 wt.% with respect to SiO2 

content) were added and the gels heated isothermally at 160 or 190 ºC. 

 

In the final optimized synthesis of STA-20, the overall gel composition was Al(OH)3 : 0.9 

H3PO4 : 0.1 SiO2 : 0.1 (diDABCO-C6)Br2 : 0.42 TrMA : 0.08 TBAOH : 40 H2O with 2.0 wt. 

% of AFX seeds, using fumed Cabosil silica, aluminium hydroxide from Alfa Aesar and 

TBAOH from Sachem. The final gel was stirred continuously for 2 h at room temperature 

until homogeneous and then transferred to a Teflon-lined stainless steel autoclave. It was 

heated under rotation (30 rpm) at 160 °C for 24 h. The resultant product was collected by 

centrifugation, washed with deionised H2O and dried overnight at 110 °C. 

 

Characterisation 

For phase identification purposes, X-ray powder patterns in the 2θ range 5 - 50° (step size 

0.01°, time step 160 s, 0.04 rad Soller, 45 kV, 35 mA) were recorded either on a PANalytical 

Empyrean automated diffractometer equipped with a X’Celerator detector (Bragg-Brentano 

geometry, Cu Kα1 X-radiation, λ = 1.54056 Å, via a primary monochromator) or using a 

Bruker D8 Advance fitted with a copper anode (Cu Kα1) and a LynxEye detector (primary 

beam fitted with a Göbel mirror with a measurement circle of 280 mm, a slit of 0.22 mm and 

an axial Soller of 2.5 °; secondary beam with a measurement circle of 280 mm and axial 

Soller of 2.5 °. No slit was present; step size of 0.022 at 1.5 steps second-1, sample rotated at 

15 rpm). 
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Thermogravimetric analysis of as-prepared samples was performed on a NETZSCH 

TG1000M in a dry air flow with a heating range of 5 °C min-1. Elemental analysis was 

carried out by Elemental Analysis Service, London Metropolitan University, United 

Kingdom. Elemental compositions of the samples were carried out on a PANalytical Axios 

WDXRF (wavelength dispersive X-ray fluorescence) spectrometer with a 4 kW Rh tube. 

Scanning electron microscopy on samples was carried out with a JEOL JSM 6700F SEM.  

Detemplation of selected samples was performed in a tube furnace at a temperature ranging 

between 500 - 600 °C (reached via a heating ramp of 20 °C min-1) for 12 h in a stream of dry 

oxygen. To establish the porosity of the calcined solids, adsorption isotherms for N2 at -

196.15 °C were measured using a Micromeritics Tristar II 3020 apparatus. The samples were 

heated under vacuum at 150 - 180 °C in order to remove physisorbed water. 

Solid-state NMR spectra were recorded at 9.4 T (400 MHz) using a Bruker Avance III 

console, and wide-bore Bruker BB/1H WVT MAS probes; 4 mm for 1H, 13C, 27Al, 31P and 7 

mm for 29Si. The sample was packed into zirconia MAS rotors, which were spun using room 

temperature purified compressed air, at either 4 kHz (29Si), 10 kHz (13C, 31P) or 14 kHz 

(27Al). The sample was either used as-made (13C), dried overnight at 110 °C (27Al, 29Si, 31P, 

calcined sample), or dried overnight at 150 °C (27Al, as-made sample). 27Al, 29Si and 31P 

spectra were acquired using a single pulse (90° pulse for 29Si and 31P, 22.5° pulse for 27Al) 

without 1H decoupling. The 13C spectrum was recorded using ramped cross-polarisation (CP) 

from 1H in a contact time of 1 ms, with 1H decoupling using the SPINAL-64 sequence during 

acquisition of the 13C signal. Recycle delays were 3 s (13C), 0.5 s (27Al), 240 s (29Si) and 200 

s (31P). 13C and 29Si spectra were referenced to neat tetramethylsilane, using secondary 

references of the L-alanine carboxylate resonance at 177.8 ppm, and kaolinite at -91.2 ppm, 

respectively. 27Al spectra were referenced to 1 M Al(NO3)3 (aq) using a secondary reference 
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of yttrium aluminium garnet at 0 ppm. 31P spectra were referenced to 85% H3PO4 using a 

secondary reference of NH4H2PO4 at 0.9 ppm. 

 

Crystallography: Rietveld refinement 

For structural analysis and refinement purposes, samples were loaded in 0.7 mm diameter 

quartz glass capillaries and dehydrated at 170 − 250 °C under a vacuum of 10-5 mbar for 10 h 

before being sealed. For the calcined STA-20, a sample was detemplated at 550 ºC in dry 

oxygen. Upon cooling, the O2 was switched to N2 and when at temperatures below 50 ºC the 

N2 was bubbled through hexane before being passed over the calcined solid, resulting in 

adsorption of hexane by the solid. This prevents hydration of the sample prior to loading into 

the capillary. The adsorbed hexane was then removed upon gradual heating under vacuum on 

the glass line, as described above. X-ray powder patterns were measured in Debye-Scherrer 

mode at station I11 at the Diamond synchrotron using monochromated X-rays (λ = 0.8258 Å) 

and a MythenII position sensitive detector.31,32 

Rietveld refinement of dehydrated as-prepared and calcined samples was carried out using 

the GSAS suite of programs.33,34 The background was fitted using Chebyschev or cosine 

functions and the peak profiles were modelled using a Pseudo-Voigt function.35  

 

Transmission Electron Microscopy 

Transmission electron microscope images and selected-area electron diffraction (SAED) 

patterns were obtained using a JEOL JEM-2011 electron microscope operating at an 

accelerating voltage of 200 kV. The images were recorded using a Gatan 794 CCD camera. 
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Spherical aberration corrected (Cs-corrected) high angle annular dark field scanning 

transmission electron microscopy (STEM-ADF) measurements were made on an X-FEG 

TITAN FEI 60-300 transmission electron microscope operated at 300 kV. The column was 

fitted with a CEOS spherical aberration corrector for the electron probe which was aligned 

using a gold standard sample prior to every experiment. The microscope also incorporated a 

Gatan Tridiem energy filter, an EDAX EDS and a Fischione HAADF detector. The half-

angle employed was 17.5 mrad. The values extracted for the different aberrations were A1 < 

2 nm; A2 and B2 < 20 nm, C3 -500 nm; S3 and A3 < 600 nm allowing a measured probe size 

of 0.78 pÅ. The total time for each of the images presented here did not exceed 10 seconds 

with 1024 × 1024 pixels per micrograph. The dose employed was kept below 10 pA and the 

collection angle was set to 30 mrad (inner) and 200 mrad (outer).  

 

Computational Modelling  

In order to understand the co-templating action of the diDABCO-C6 and trimethylamine 

molecules for STA-20, molecular modelling studies were performed using the Forcite module 

within the program Materials Studio version 6.1.36 The Constant Valence Force Field (CVFF) 

was used and the framework structure was simulated using a fully aluminophosphate model 

with an aluminium to phosphorus ratio of 1:1. Negative charges were spread across all the 

atoms in the framework so that a neutral simulation box was maintained upon introduction of 

diDABCOs with a +2 charge and the crystal symmetry was decreased to P1 to allow full 

freedom of motion of the organic molecules. The framework atoms were held rigid 

throughout the simulation. Energy minimisation was performed following a simulated 

annealing protocol that ran for 100,000 steps at temperatures of 476.85 °C, 226 °C, 26.85 °C 

and −173.15 °C. The time step used was 1 × 10-15 s.  
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For comparison, the lattice energies of the frameworks of STA-20 and similar 12-layer ABC-

6 topology types were calculated, in the SiO2 composition, using the GULP37 program using 

the 3-body interatomic potentials derived by Sanders et al,38 as implemented within the 

Materials Studio software.36 

 

Results 

Synthesis 

The first appearance of STA-20 was as an impurity phase during the synthesis of SAPO 

STA-18 (SFW) using trimethylamine (TrMA) and diDABCO-C6, using a gel composition of 

Al(OH)3: 0.8 H3PO4 : 0.2 SiO2 : 0.1 (diDABCO-C6)Br2 : 0.13 TrMA : 0.28 TBAOH : 40 

H2O (using Aldrich, fumed silica and Aldrich (40 wt.% in H2O) as sources of aluminium 

hydroxide, silica and TBA, respectively) and crystallized under static conditions for 190 °C 

for 48 h. Subsequently, it was found that STA-20 could be prepared under static conditions 

with least impurities by reducing the temperature to 160 ºC and using a Si/Al ratio of 0.2, a 

TrMA/Al ratio of 0.4–0.5 and sufficient TBAOH to bring the initial pH to 7.  

Further improvement of the reproducibility of the synthesis of STA-20 was achieved by 

rotating the autoclaves during heating, reducing the SiO2 content, and using different sources 

of AlOH3, SiO2 and TBAOH. The optimized gel composition was Al(OH)3 : 0.9 H3PO4 : 0.1 

SiO2 : 0.1 (diDABCO-C6)Br2 : 0.42 TrMA : 0.08 TBAOH : 40 H2O with 2.0 wt. % of 

SAPO-56 seeds (using Alfa, fumed silica and Sachem (55 wt.% in H2O) as sources of 

aluminium hydroxide, silica and TBA, respectively), and the optimized procedure is as 

described in the Experimental Section. Under these conditions, SAPO STA-20 was obtained 

as a microcrystalline powder, with hexagonal prismatic crystals a few microns across and less 

than a micron thick (Figure S1). The laboratory PXRD of as-prepared STA-20 is shown in 
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Figure 1. Details of all syntheses and product phases during this optimization procedure are 

given in Table S1.  

The SAPO-56(AFX) seeds added in these preparations accelerate the crystallization of STA-

20 compared to that of competing phases such as SAPO-31 and AlPO-21 and thereby  

improve the phase purity of the product: STA-20 can form without seeds, but often with 

impurity phases. Similar effects were previously observed for co-templated syntheses of 

SAPOs STA-18 (SFW) and STA-19 (GME).30 Other materials with frameworks belonging to 

the ABC-6 family, such as SAPO STA-18 and STA-20, can also be successfully used as 

seeds for STA-20. We speculate that the similar structural layers present in these materials 

play a role in the nucleation of STA-20 crystals. 

To investigate the role of TrMA under these conditions, a synthesis was performed in the 

absence of TrMA, increasing the TBAOH content in order to maintain a neutral pH. The 

composition of the starting gel was 1.0 Al(OH)3 : 0.9 H3PO4 : 0.1 SiO2 : 0.1 (diDABCO-

C6)Br2 : 0.28 TBAOH : 40 H2O. PXRD shows SAPO-31 (ATO-type) was the main phase to 

crystallise (Figure S2(a)), indicating the crucial structure-directing role played by TrMA in 

the crystallization of SAPO STA-20. Notably, during the preparation of SAPO-56 (AFX-

type) and SAPO STA-18 (SFW) in the absence of trimethylamine, the main phase to 

crystallise was AlPO-5 (AFI). 30  

To determine whether STA-20 could crystallize with an AlPO4 framework composition, a gel 

with composition 1.0 Al(OH)3 : 1.0 H3PO4: 0.1 (diDABCO-C6)Br2 : 0.42 TrMA : 0.08 

TBAOH : 40 H2O was heated at 160 ºC for 48 h. AlPO-21 (AWO) was the principal phase to 

form together with STA-20 as a minor impurity (Fig. S2b). AlPO-21 is a small pore material, 

with 1-dimensional 8R channels (opening 4.0 x 2.7 Å) running parallel to the a-axis. AWO 

does not belong to the ABC-6 family of framework structures and it does not contain gme 
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cages in its structure. However, the size and shape of the awo cage are similar to those of gis, 

and consequently it can accommodate trimethylamine. The lack of negative charge within the 

framework due to the absence of Si atoms might disfavour the double positively charged 

diDABCO-C6 from templating the sta-20 cage. 

 

Figure 1. PXRD patterns of as-made (bottom) and calcined (top) SAPO STA-20.  

 

Upon calcination to remove the template, STA-20 retains crystallinity (Fig. 1). The nitrogen 

adsorption isotherm measured volumetrically on calcined SAPO STA-20 (protected against 

water adsorption after calcination by adsorption of hexane and subsequently heated under 

vacuum to remove the alkane) is shown in Figure S3. The N2 uptake at p/p0 = 0.2 corresponds 

to 4.9 mmol g-1, indicating an internal pore volume of 0.17 cm3 g-1. The calculated BET 

surface area was 333 m2 g-1. These values obtained are comparable with those measured for 

calcined SAPO-56 and SAPO STA-18.30  
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Determination of the Framework Structure of STA-20 

The crystallites of STA-20 were too small for single-crystal X-ray diffraction, so selected 

area electron diffraction was performed on crystals of as-prepared STA-20 to determine the 

unit cell. Electron diffraction patterns were obtained with the electron beam incident 

perpendicular to the platy crystals laid flat on the microscope grid (down the [001] zone axis) 

and also onto crystallites oriented ‘edge-on’ to the beam (a direction subsequently established 

as down the [100] axis) (Fig. 2). From this diffraction a trigonal/hexagonal unit cell with a = 

12.92 - 12.95 Å and c = 30.31 - 30.50 Å was derived. Moreover, the SAED pattern collected 

along the [100] zone axis shows a more intense spot every four spots along [001], 

corresponding to a strong repeat corresponding to ¼ of the c-axis, or 7.5 Å. This suggested 

the structure was made up of gme cages, particularly in the light of our previous observation 

that trimethylamine is a strong template for this cage. The electron diffraction patterns do not 

show streaking, indicating the stacking sequence is well ordered. 

 

Figure 2. Selected-area electron diffraction (SAED) of SAPO STA-20 crystals collected along (left) 

[001] and (right) [100] directions. Inserts show TEM images of the corresponding crystals for the 

SAED patterns.  
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X-ray powder diffraction data collected on a sample of as-made STA-20 were analysed using 

the FullProf suite of programs.39 Twenty-five peaks were chosen in the 2θ range 5 - 40° and a 

cell with lattice parameters a = b = 13.219 Å, c = 30.0501 Å, α = β = 90°, γ = 120°, was 

found using the algorithm DICVOL 06 in Fullprof39 (Fig. S4). These unit cell parameters 

suggested SAPO STA-20 is a member of the ABC-6 family. All nineteen ABC-6 structures 

reported in the Zeolite Structure Database12 can be indexed using a hexagonal (or trigonal) 

lattice with a in the range of 13 ± 1 Å. The length of the c-axis is closely related to the ABC 

stacking sequence. The average layer thickness corresponds to ∼2.5 Å. Moreover, the lengths 

of their a-axes vary as a function of the number of 6R and D6R layers in the stacking 

sequence: 6Rs only, a =12.25 - 12.70 Å; 6Rs and D6Rs, a = 12.85 - 13.20 Å and D6Rs only, 

a = 13.65 - 13.75 Å. Based on these assumptions, a- and c-axes of STA-20 suggested that the 

framework belongs to the ABC-6 series and consists of 12 layers (30.05 Å/2.5 Å ∼ 12) which 

include 6R and D6R layers. 

To determine the framework structure, the lattice parameters within the range a = b = 12.8 - 

13.3 Å and c = 29.0 - 31.0 Å were loaded within the Atlas of Prospective Zeolite Structures 

Database.40 After a careful analysis of the 99 results, it was found that the hypothetical ‘SiO2’ 

ABC-6 structure having code 194_3_1140 showed all the desired features: a 12-layer 

stacking sequence AABAABAACAAC with 7.5 Å sub-unit repeats, consistent with the 

strong intensity in the electron diffraction corresponding to a 7.5 Å repeat unit, gme cages 

expected to host trimethylamine co-templates and a cage the length of three 8Rs long enough 

to host extended OSDAs. The topology also contains d6R and can cages. 

To investigate how unique this structural model is, additional topologies consistent with the 

synthetic details and the experimental diffraction data were examined. Li et al. enumerate 
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eighty-five 12-layered topology types, giving their predicted unit cells. From this, many 

possibilities with short a-axis repeats or those lacking gme cages can be eliminated. 

Furthermore, our previous modelling work indicates that the OSDA used in this work, 

diDABCO-C6, favours long cages but does not fit well into cages with less than a 9-layer 

repeat, and these facts enable the possible topology types to be further narrowed down to just 

a few candidates, with that identified from the hypothetical database the most likely. 

Further confirmation of the proposed model was obtained by high resolution transmission 

electron microscopy, which until recently was not thought to be suitable for imaging beam 

sensitive materials such as aluminophosphates at atomic resolution. Images with atomic 

resolution were obtained by the Cs-corrected STEM-ADF method described elsewhere,41-43 

and applied here for the structural elucidation of an unknown zeotype. Figures 3a, b and c 

correspond to a STA-20 crystal orientated along the [100] zone axis allowing a clear 

visualization of the atomic columns while Figures 3d, e and f show the orientation along the 

[001] zone axis. For clarity Figure 3b has been Wiener filtered in order to improve the signal 

to noise ratio; Figure 3c and f are an enlarged micrograph of 3b and e, respectively. These 

images can be matched to the proposed framework structure and those taken along the [100] 

axis enable the stacking sequence AABAABAACAAC to be read off directly, because the 

STEM-ADF image reveals the projected positions of the tetrahedral cations. It does not show 

the lower atomic number oxygen anions. Furthermore, images taken over an extended area 

show that the material is very well ordered, so that the suggested structure is a good starting 

point for subsequent structure refinement.	
   Similar observation was performed in another 

crystal tilted along the [001] zone axis, which were Fourier filtered for clarity. Superposition 

of the STA-20 framework on the STEM images down [100] and [001] zone axes, together 

with the associated electron diffraction patterns, are given in Figure S5. 
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Figure 3. Cs-corrected STEM-ADF images of SAPO STA-20 taken along the [100] (a, b and c) and 

[001] (d, e and f) zone axes. The same projections of the STA-20 frameworks are shown on the right 

for comparison (Si blue, O red). The images were Wiener or Fourier filtered to reduce noise. 

 

Structure Refinement of Calcined STA-20 

Initially, the dehydrated, calcined material was examined by Rietveld refinement, because 

removal of the organic content results in a more straightforward structural refinement. 

Chemical analysis indicates a unit cell composition (assuming the framework model to be 

correct, and without including H) of Al37P33Si2O144 , within experimental error of Al : (P+Si) 

of 1 : 1. Solid-state 27Al and 31P MAS NMR (Fig. S6) indicate both Al and P are tetrahedrally-

coordinated: The relevant narrow signals are 27Al (Al(OP)4) at 33 ppm and 31P (P(OAl)4) at -

34.6 ppm. The 31P shows a broad resonance from around -20 ppm to -30 ppm which may 

come from a less crystalline component. The range of peak positions observed is consistent 

with published values for AlPO4 materials. The broad resonance between −60 and −130 ppm 
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observed in the 29Si MAS NMR spectrum (Fig. S6) is consistent with the presence of silica 

islands and/or amorphous silica.  

The symmetry of 194_3_1140, modelled as pure SiO2, is P63/mmc. This has to be changed to 

P-31c to accommodate the strict alternation of Al and P (or Si) atoms within the framework. 

This model was then used as a starting point for the successful Rietveld refinement of the 

structure against synchrotron PXRD data using GSAS.33,34 Geometric restraints were 

imposed on atom-atom distances of framework atoms as detailed in the Experimental section. 

The final fit is shown in Figure 4 and crystallographic details are listed in Table 1. 

 

Figure 4. Rietveld refinement of calcined, dehydrated STA-20 against synchrotron PXRD data 

(λ = 0.826163 Å). Space group P- 31c, a = 13.15497(18) Å, c = 30.5833(4) Å, Rwp = 4.69 %. Red 

crosses = experimental data, green line = simulated data, black tick marks = predicted peak positions, 

magenta line = difference profile.  
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Table 1. Crystallographic data for as-prepared and calcined dehydrated SAPO STA-20 synthesised 

using trimethylamine and diDABCO-C6 as SDAs. 

	
   SAPO STA-20 as-
prepared, dehydrated 

SAPO STA-20 
calcined, dehydrated 

Chemical composition [diDABCO-C6]1.9[TrMA]3.8 
Al36P30.4Si5.6O144  

Al36P30.4Si5.6O144 

Data collection   
    Wavelength / Å 0.826163 0.826163 
    Diffractometer geometry Debye-Scherrer Debye-Scherrer 
    Sample Rotating 0.7 mm capillary Rotating 0.7 mm capillary 
    Refined region / 2θ° 2.0–92.0 2.0–92.0 
    Step size / 2θ° 0.01 0.01 
Unit cell   
    Chemical formula [N1C3H9]2[N3.7C16.8H33.7]2 

Al36Si7.2P28.8O147.1 
Al36Si7.2P28.8O144 

    Crystal system trigonal trigonal 
    Space group P -3 1 c P -3 1 c 
    a / Å 13.17399(11) 13.15497(18) 
    b / Å 13.17399(11) 13.15497(18) 
    c / Å 30.0927(9) 30.5833(4) 
    Volume / Å3 4523.00(16) 4583.48(13) 
Rietveld refinement   
    Refined region / 2θ° 2.0–60.0 2.0–40.0 
    Excluded regions / 2θ° 13.05–13.39, 24.90–25.64, 

26.78–27.16 
 

    Background Chebyschev 36 terms Cosine Fourier 36 terms 
    Rwp 0.0568 0.0469 
    Rp 0.0378 0.0356 
    RF

2 0.1261 0.1207 

	
  

Framework Structure of SAPO STA-20  

The 6R stacking sequence of STA-20 results in a structure that consists of two different types 

of columns of cages that run parallel to the crystallographic c-axis, and this is represented in 

Figures 5 and 6. The first column type, which passes through the origin of the unit cell at the 

position (x = 0, y = 0) in a projection on the ab plane (A site), consists of alternating can 

cages and d6r units, with two can cages in a sequence having the same orientation while the 

next two are rotated by 60°, so that in a unit cell the sequence along c is can-d6r-can-d6r-

can(R60°)-d6r-can(R60°)-d6r. The second column type, which occupies the space between 

chains of the first type, consists of alternating gme and sta-20 cages and runs along the c-axis 

through B (1/3, 2/3) and C (2/3, 1/3) in projection on the ab-plane. There are two columns of 
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the second type for every column of the first type (Figure 5). STA-20 is the second member 

of the ABC-6 family to be discovered that contains four different types of cages in its 

structure: d6r, can, gme and sta-20 cages. The other member is AlPO-52 (AFT) which 

contains d6r, gme, cha and aft cages. Li et al. speculated that a feasible ABC-6 structure 

should contain no more than four types of ABC-6 cages:16 STA-20 does not violate this 

suggestion. 

 

 

Figure 5. Refined structure of calcined SAPO STA-20, viewed perpendicular to (left) and parallel to 

(right) the c-axis with ball-and-stick representations. (light blue, Al; dark grey, P; red, O). 
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Figure 6. (a) STA-20 framework structure viewed down a-axis, showing the three different types of 

cages (green: gme; blue: can; violet: sta-20 cage). The stacking sequences of the 6R layers are given 

on the left. Stereoplots (b) and (c) show the column of secondary building units and cages joined 

parallel to the c-axis and the way in which adjacent columns are linked, respectively. Oxygen atoms 

omitted for clarity. 

 

The approximate cavity size (length × cross sectional diameter, minus the van der Waals radii 

of 1.35 Å per O atom) is 20.18 × 6.67 Å for the sta-20 cage and 6.71 × 5.01 Å for the gme 

cage. The sta-20 cage is 1.7 Å longer than the sfw cage (SSZ-52 and STA-18) that was 

recently assigned as the longest cavity observed in the ABC-6 family, so that STA-20 

possesses the longest cage of the ABC-6 family. The largest openings in the structure are the 

nine 8R openings in each sta-20 cage; six lead to other sta-20 cages (ca. 5.10 Å × 3.37 Å) and 
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three to gme cages (ca. 5.01 Å × 3.27 Å). STA-20 therefore has a three-dimensionally 

connected small pore (8R) channel system as shown by the stereoplot in Figure 6.  

The twelve layer 6R stacking sequence of STA-20 (AABAABAACAAC) is the equal longest 

stacking sequence in the subfamily of ABC-6 structures consisting of 6Rs and D6Rs, on a par 

with that of STA-2 (SAT). SAPO STA-20 is characterised by a framework density (defined 

as the number of T-atoms per 1000 Å3) of 15.7, which is higher than those of other ABC-6 

materials whose repeated stacking sequences can be described using only D6Rs (such as 

AlPO-52 (14.9) and SAPO-56 (14.7)).14,15 

The arrangement of building units and cages in STA-20 is closely related to those of offretite 

(OFF) and particularly erionite (ERI). The three structures are shown in Figure 7. All three 

structures consist of alternating can cages and d6r units in the A position, but there are 

differences in the orientations of the can cages in the three structures. As a result, while OFF 

has a column of gme cages in the B site, and a 12R-channel centred at C, ERI has columns of 

eri cages in B and C sites and STA-20 has columns of alternating gme and sta-20 cages along 

both B and C sites.  
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Figure 7. OFF, ERI and STA-20 framework structures viewed down a- and c-axes, showing the 

different types of cages (green: gme; light blue: eri; violet: sta-20) and their relative position along the 

hexagonal ab-plane: A (0, 0, 0), B (2/3, 1/3, 0) and C (1/3, 2/3, 0). Oxygen atoms omitted for clarity.  

 

Structure Solution and Refinement for As-Prepared STA-20 

The unit cell parameters of as-prepared STA-20 are very similar to those of the calcined 

material, so the framework structure was expected to be the same. To fit the diffraction 

pattern, however, a model of the structure including the organic structure directing agents is 
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required. This was achieved using a combination of solid state NMR, chemical analysis and 

computational modelling. 

The solid-state 13C MAS NMR spectra of as-prepared STA-20 is consistent with the 

incorporation of both TrMA and diDABCO-C6 templates within the STA-20 framework (Fig. 

8, with full assignment), and can be related to that observed previously for STA-18 (SFW) 

prepared with the same co-templates.30 Most signals observed in STA-20 are closely similar 

to those non-equivalent C atoms assigned to diDABCO-C6 in STA-20. However, for each 

expected non-equivalent C in diDABCO-C6 in STA-20, two peaks can be resolved in the 

spectrum. This indicates either the molecule is in an asymmetric environment, or that the 

molecule is present in two distinct configurations or states within the zeolite framework 

structure. The N(CH3)3 resonance at 46.9 ppm was assigned to TrMA, shifted to lower 

frequency compared to the 47.8 ppm observed in SAPO-56, STA-18 and STA-19 prepared 

using the co-templating approach.30  

 

In the 27Al MAS NMR spectrum of the as-prepared sample (Fig. S7), two main signals are 

present: one at 37.5 ppm assigned to tetrahedrally-coordinated Al atoms and one at 15.6 ppm 

assigned to five-fold Al. The additional coordination is likely to be from charge-balancing 

hydroxyl groups, because it is not removed by dehydration at 150 °C. 
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Figure 8. Solid-state 13C MAS NMR spectrum for dehydrated as-prepared SAPO STA-20, with 

suggested assignments.  

Elemental (CHN) analysis, including a measured C/N ratio of 3.45, combined with TGA and 

XRF indicates a unit cell composition of [diDABCO-C6]1.96[TrMA]3.66Al37.4P32.9Si1.7O144 

4H2O. Remarkably, this suggests that TrMA does not only occupy gme cages (of which there 

are two in the unit cell) but must also occupy sites in the larger cages. (A simple model with 

100% occupancy of TrMA in gme and diDABCO-C6 in sta-20 cages would give a C/N ratio 

of 3.6). Molecular modelling studies were used to investigate this further. The minimum 

energy configuration of diDABCO-C6 was modelled in the sta-20 cage and, for comparison, 

in the sfw cage of STA-18 (SFW), which had been observed experimentally. The SDA gives 

comparable energies for the two configurations (Fig. S8) with binding energies per mole of 

SDA of -173 kcal mol-1 in STA-20 cf. -155 kcal mol-1 in STA-18 (SFW). However, additional 

space is available in the longer sta-20 cage, and the question arose whether this would be 
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sufficient to hold an additional TrMA molecule, as suggested by the compositional 

measurements. Two structural models were therefore generated computationally (Fig. S9). In 

the first, diDABCO-C6 and TrMA were included in the sta-20 and gme cages, respectively, 

and their energies minimised. In the second, a TrMA molecule was included into each sta-20 

cage along with the diDABCO-C6 molecule, as well as in the gme cages. These were used as 

starting models for Rietveld refinement against synchrotron PXRD data of dehydrated as-

prepared STA-20. 

During the refinements, the positions of the templates were kept constant and only their 

occupancy was allowed to refine. A slightly better fit (Fig. 9) was achieved for the model 

including TrMA molecules in the sta-20 cages as well as in the gme cages, shown in Figure 

10. Furthermore, one extra-framework site for an oxygen atom within the can cage was found 

by difference Fourier analysis (Fig. S10). Although slightly too far away from the Al atoms 

and probably in a disordered average position, the oxygen atom might correspond to charge-

balancing hydroxyl groups suggested by 27Al MAS NMR. Similar bridging hydroxyl oxygen 

atoms were previously found within the can cage of AlPO-1744 and AlPO STA-245 prepared 

with the SDAs N,N,N′,N′-tetramethyl-1,6-hexanediamine and diDABCO-C4, respectively. 

Attempts to search for further sites via Fourier analysis were not successful. 

 Crystallographic data are listed in Table 1. The final atomic coordinates and thermal 

parameters for as-prepared and calcined SAPO STA-20 are listed in Table S2 and Table S3, 

respectively. Their selected interatomic lengths and angles are summarised in Table S4 and 

Table S5, respectively. 
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Figure 9. Rietveld refinement against synchrotron data (λ = 0.826163 Å) for as-prepared, dehydrated 

STA-20. Space group P-31c, a = 13.17399(11) Å, c = 30.0927(9) Å, Rwp = 5.70 %. Red crosses = 

experimental data, green line = simulated data, black tick marks = predicted peak positions, magenta 

line = difference profile. 
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Figure 10. Structure of as-prepared SAPO STA-20, viewed down a- (left) and c-axes (right), with 

ball-and-stick representations of trimethylamine and diDABCO-C6 in the gme and sta-20 cages. (Al 

light blue, P dark grey, O red, C black, N green; H atoms are omitted for clarity; template atoms 

shown with disorder over symmetrically equivalent positions). 

 

A consideration of the 12-layer polytypes in the ABC-6 system shows that two other stacking 

sequences, denoted MS-1 and MS-2 (recently listed in the Li et al. database,16 codes 183 and 

184 respectively), contain similar d6r, can, gme and sta-20* cages to those in STA-20. The 

sta-20* cages in MS-1 and MS-2 have the same length as sta-20 but the sequence of D6R (d) 

and 6R (s) along the cage walls are different: STA-20 dsdsd, MS-1 ddssd and MS-2 dssdd. 

The three structures with their relative stacking sequences and distribution of building units 

on the ab-plane are shown in Figure 11 and Table 2. To have a better understanding of the 

reason for the crystallisation of the specific stacking sequence AABAABAACAAC(A) by 

STA-20, and not one of the other two possibilities, the three framework structures, considered 

as pure silicates in P1 symmetry, have been energy minimised at isochoric and isobaric 

conditions by GULP calculation. The energy value at constant volume for the 194_3_1140 
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model is −9256.55 eV whereas the MS-1 and MS-2 models give energies of −9254.96 and 

−9255.11 eV, respectively. This shows that the structure determined for STA-20 is 1.59 eV 

(153.4 kJ mol-1) and 1.44 eV (138.9 kJ mol-1) more stable than those of MS-1 and MS-2, 

respectively. The same trend was also observed for the energy minimisation conducted at 

constant pressure: 1.55 eV (149.6 kJ mol-1) with MS-1 and 1.38 eV (133.2 kJ mol-1) with 

MS-2. These energy calculations are therefore consistent with the identification of the 

structure of STA-20 achieved by atomic-resolution electron microscopy (Fig. 3). 

Table 2. Three possible 12-layer stacking sequences containing d6r, can, gme and sta-20/sta-20* 

cages. 

model n° of 
T site 

space 
group 

stacking 
sequence 

A site B site C site 

194_3_1140 3 P63/mmc AABAABAACA
AC(A) 

can, … can, gme, … gme, can, can, 
… 

MS-1 6 P63mc AABBABAACC
AC(A) 

sta-20*, gme, 
… 

sta-20*, can, … sta-20*, can, 
… 

MS-2 6 P-3m1 AABBABAACA
CC(A) 

gme, sta-20*, 
… 

can, sta-20*, … can, sta-20*, 
… 

 

Figure 11. Three candidate structures with 12-layer stacking sequences which include 6Rs and D6Rs. 
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Discussion 

The characterisation and crystallography reveal that a novel ABC-6 polytype with a three 

dimensionally-connected pore system and silicoaluminophosphate composition has been 

prepared using a combination of trimethylamine and diDABCO-C6 in the hydrothermal 

synthesis. Solid-state 13C NMR and chemical analysis indicates both are included in the final 

product. Trimethylamine is known to direct the formation of gme cages30 - without it the 

channel structure SAPO-31 forms - while the diDABCO-C6 can only occupy the longer ‘sta-

20’ cages. Furthermore, elemental analysis suggests that during the crystallisation, 

trimethylamine is included not only in the gme cages but also in the ‘sta-20’ cages, which are 

longer than the diDABCO-C6 molecules. Modelling shows that this is reasonable, and 

inclusion of the TrMA in the sta-20 cages also improves the Rietveld refinement. It also 

provides one possible explanation for observed splitting in 13C resonances from the 

diDABCO-C6 SDA. Incorporation of more than one organic molecule in a single cage during 

crystallisation has been previously proposed for the aluminosilicate SSZ-52 (SFW).25  

Previously, co-templating (using tetramethylammonium and tetraethylammonium as co-

templates) has been used to prepare the zeolite UZM-5,46,47 with a topology type (UFI) that 

had at that time not been observed. The co-templating approach has been shown to give 

SAPOs with known topology types previously observed as aluminosilicates (GME, SFW); 

here we show it is possible to use this approach to access SAPOs with structure types not yet 

prepared in any composition. The ABC-6 structural family of SAPOs is particularly 

amenable to co-templating studies because cages of different sizes and shapes arise as a 

consequence of the different polytypic arrangements. 
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The details of the preparation of STA-20 are also of interest. STA-18 (SAPO (SFW)) and 

STA-20 may be prepared from similar gel compositions and using the same organic SDAs. 

This is not surprising, because both contain gme cages and elongated cavities, and modelling 

shows the diDABCO-C6 templates give similar non-bonding interaction energies in the sfw 

and sta-20 cages. One difference between the synthesis conditions that give rise to the two 

structures is that STA-20 is formed from gels with lower SiO2 contents, and so has lower Si 

concentrations, while the main structural difference is that STA-20 contains can cages, 

whereas SAPO (SFW) does not. The charge balance required by SAPOs with low framework 

silica content may be achieved by the presence of framework bound hydroxyl groups. 

Hydroxyl groups have previously been shown to occur in the can cages in the AlPO4 form of 

the related ABC-6 structure, STA-2, and there is evidence for such species in the structural 

analysis of as-prepared STA-20 in this work. A second difference in the syntheses conditions 

is that STA-20 crystallisation is favoured over STA-18 by the use of higher TrMA : 

diDABCO-C6 ratios (0.4:1 to 0.5:1 cf. 0.13:1), even though the gme: longer cage ratio in 

STA-20 is 1 : 1, compared to 2 : 1 in the SFW structure. The co-inclusion of TrMA in the 

larger cages in STA-20 would make the total TrMA: diDABCO-C6 ratio the same in the two 

structures, assuming full occupancy. 

The structure solution of STA-20 has been achieved via a multi-technique approach of the 

general type previously used for zeolites and zeotypes. The most remarkable additional 

elements in this example are the use of a hypothetical zeolite structure database and of the 

aberration-corrected STEM-ADF imaging technique. The use of hypothetical structure 

databases for structure confirmation when different framework possibilities fit the unit cell 

data has previously been reported.48 In this example we used the database directly. Currently 

this approach is limited to structures with 6 or less crystallographically-distinct T sites for 

‘SiO2’ zeolites (or double this number for AlPOs where Al/P ordering results in symmetry 
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lowering). Whereas this was not an issue for STA-20, which has only 3 distinct Al and 3 

distinct P sites, extension of the database will be required for structure solution of more 

complex zeolitic materials. The high quality results of the aberration-corrected STEM-ADF 

imaging, which directly identify the AABAABAACAAC unit cell stacking sequence of 6-

ring layers, shows that it is now possible to directly image complex beam-sensitive SAPO 

structures. In the case of STA-20, this confirmed the structure proposed from the hypothetical 

database. The use of STEM-ADF, exemplified here, will open up many beam-sensitive 

materials to study at the atomic level, particularly when used in combination with other 

recent advances in electron microscopy.49,50 

Finally, the high degree of order (and absence of stacking faults) in STA-20, illustrated by the 

absence of streaking in the electron diffraction patterns, indicates that organic templating can 

control precisely the stacking arrangement in zeolitic materials with large c-axis repeats, as 

shown previously for the SAPOs STA-2 (SAT) and STA-18 (SFW). We speculate that this is 

because the long templates ‘overlap’ in projection perpendicular to the c-axis, so that during 

growth along this direction, one set of cages begins to assemble as another is completed. 

Establishing the mechanism of this co-templated crystallisation requires more detailed study. 

 

Conclusions 

The synthesis of a small pore zeotype of the ABC-6 family has been achieved via the dual 

templating approach. Trimethylamine acts as a template for the gme cages in the structure, 

while the diDABCO-C6 acts as a structure directing agent for the sta-20 cage, the longest 

observed in zeolitic ABC-6 structures. Chemical analysis suggests trimethylamine is also 

included along with the diDABCO-C6 molecules in these long cages: modelling gives a 

plausible structural model for the as-prepared material consistent with the experimental data. 
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The framework structure of STA-20 was elucidated via determination of the unit cell 

parameters (electron diffraction; powder diffraction) and subsequent identification of a 

candidate structural model using a hypothetical zeolite database. This model was confirmed 

directly by the powerful high resolution transmission electron microscopic STEM-ADF 

method and refined against synchrotron X-ray powder diffraction. Both hypothetical 

crystallography and STEM-ADF add considerably to the longer-established tools available 

for the structure solution of zeolites and zeotypes that crystallise as microcrystalline powders. 

STA-20 possesses a 3D-connected small-pore system of the general type shown (when 

prepared in the appropriate chemical composition) to promote good catalytic activity for 

reactions such as the methanol-to-olefins conversion and the selective catalytic conversion of           

NO by ammonia. The ABC-6 structural family therefore continues to be a fruitful area to 

explore for potentially useful zeotypes and zeolites. 
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