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ABSTRACT 15 

The QuVis Quantum Mechanics Visualization Project provides freely-available research-

based interactive simulations with accompanying activities for the teaching and 

learning of quantum mechanics across a wide range of topics and levels. This article 

gives an overview of some of the simulations and describes their use in an introductory 

physical chemistry university course, where simulations were implemented as a pre-lab 20 

assignment, as lecture demonstrations, and as homework problems. 
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OVERVIEW OF THE QUVIS SIMULATIONS 
Quantum mechanics is fundamental to understanding atomic and molecular 30 

structure and spectra and chemical bonding, but its mathematical complexity and often 

counterintuitive consequences such as the wave-like behavior of particles can present 

major barriers for introductory physical chemistry students. Interactive simulations 

have been shown to be powerful tools for chemistry instruction, through their use of 

macroscopic and microscopic visualizations, multiple representations and simplified 35 

and idealized situations to reduce cognitive load.1,2 The interactive elements allow 

students to make sense of the representations shown and explore the relationships 

between them. 

The QuVis Quantum Mechanics Visualization project3 aims to support the learning 

and teaching of quantum mechanics through the research-based development of 40 

interactive simulations with accompanying activities.4,5 Over 100 simulations are now 

freely available on the QuVis website, covering a wide range of topics from the 

introductory to the advanced undergraduate levels. Simulations include text 

explanations that aim to make them self-contained instructional resources. The 

simulations on the website are divided into two collections: older Flash simulations that 45 

run on desktop computers, and HTML5 simulations with inherent touchscreen support 

that are also suitable for tablets and mobile devices (one of which is shown in Figure 1). 

Many of the HTML5 simulations include a second “Challenges” tab with challenges 

aligned with the learning goals. The Challenges tab includes a score counter and gives 

students feedback on submitted answers. The older simulations include a second “Step-50 

by-step exploration” tab with explanations and animated highlighting. Simulations can 
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be used online or downloaded from the QuVis website for offline use. Problem sets 

accompanying the simulations with password-protected solutions are available on the 

website. Instructors can edit activities as needed to suit their local context. Instructors 

may obtain the solutions by sending an email request.6  55 

 

Figure 1. A screenshot of the “Simulation” view of the Non-interacting particles in a one-dimensional infinite square well 
simulation.15 

 

Simulations are based on our research and the literature on student difficulties with 60 

quantum mechanics.7-10  They make use of implicit scaffolding11 by guiding students 

towards the learning goals through the visualizations and controls available and their 

ranges and layout. They are based on principles of perception-based interaction 

design12, such as the use of intuitive controls, using color to highlight objects and link 

different representations and grouping controls with similar functions. After 65 

development, simulations are tested with individual student volunteers and iteratively 

refined based on student and instructor feedback. Evaluation with in-class trials 
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includes the use of student surveys, pre- and post-tests and analysis of students’ 

success in completing the simulation activities.4,5,13 The Supporting Information 

includes further details on simulation design and refinement as well as website features 70 

and navigation.   

SIMULATION USE IN AN INTRODUCTORY PHYSICAL CHEMISTRY COURSE  
QuVis simulations have been used to support student learning in an introductory 

physical chemistry course at the University of St Andrews since 2012. The course is 

typically taken by 90 students in their second year of study and includes class time, 75 

homework problems and two lab sessions per week. The quantum mechanics part of 

this course provides an introduction to the quantum mechanics of atoms. Topics 

covered include de Broglie matter waves, the time-independent Schrödinger equation 

and the Born interpretation, the Heisenberg Uncertainty Principle, the particle in a box 

(the infinitely-deep potential well), the finite-depth potential well, identical particles and 80 

the Pauli Principle, quantum numbers, orbitals and energy levels for the hydrogen 

atom, spin angular momentum, the building-up principle of many-electron atoms, spin-

orbit coupling and selection rules for transitions between energy levels. In what follows, 

we describe how simulations were implemented into this course to support instruction. 

Simulations are given by their full title, with the short title used to list simulations on 85 

the website in parentheses and the URLs in the references. The Supporting Information 

includes a syllabus of topics with all simulations used. 

Simulations as pre-lab assignments 
Two simulations, Wavefunctions and energy levels of a particle in a one-dimensional 

box14 (1D Particle in a Box) and Non-interacting particles in a one-dimensional infinite 90 

square well15 (Particles in an Infinite Well) were used as a pre-lab assignment for a lab 

experiment on the absorption spectra of conjugated systems.  A screenshot of the latter 

simulation is shown in Figure 1. This simulation allows students to place identical spin 
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1/2 fermions or spinless bosons into the same infinite well to build the ground state, 

first excited state, etc. of the system. Thus, students observe that the energy for a 95 

system of multiple quantum particles is the sum of the individual energies. In addition, 

if students try to place two fermions with the same spin orientation on the same energy 

level, one fermion drops down into the container below the well. This observation allows 

students to discover the Pauli principle, that a maximum of two fermions (one with 

spin-up, one with spin-down) can occupy each energy level.  100 

The pre-lab assignment was set up as an online quiz. Students use the simulation 

shown in Figure 1 to determine the electron configurations and total energies for a 

molecule with 4, 6 and 8 π-electrons using the infinite square well model. They then 

determine the UV photon absorption energy needed to promote the molecule from the 

ground state to the first excited state, by promoting an electron from the highest 105 

occupied energy level to the lowest unoccupied level. 

 

Figure 2. Two conjugated molecules of different length, experimentally studied in the lab and modelled as described in the 
text using the particle in a box model. 

 110 

In the lab experiment, students measure the UV absorption of a series of conjugated 

molecules of different length, such as the ones shown in Figure 2. The particle in a box 

model is used to estimate the absorption wavelength based on the assumption that the 

π -electrons are free to move along the length of the molecule. The pre-lab assignment 

ensures that students understand a simple theoretical model that can be used to 115 

describe the experiment. They learn for example that the absorption wavelength will 

depend on the length of the molecule (i.e. the length of the box) and are able to judge if 
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the trend observed in the experiment is correct. The final data evaluation is done in the 

written report. Students are then also asked to consider the accuracy of the 

theoretically determined values and to discuss potential sources for the observed 120 

deviations between experiment and model (limitations of the model; deviation of 

molecules from the particle in a box model etc.).  

Simulations as in-lecture demonstrations and as homework problems 
Simulations are also used to illustrate concepts in class and to help students 

visualize concepts in homework problems. The physical chemistry course is taught 125 

through traditional lectures. Simulations are employed by the instructor during the 

lecture to support concepts in quantum mechanics that are considered to be difficult by 

many students. As lecture time is limited, students are encouraged to explore the 

simulations in more detail outside of class time.  In what follows, we give some 

examples of how simulations are used in the lectures; the Supporting Information 130 

includes a full list of simulations used in the lectures and as homework problems. They 

are presented in the order in which they appear in the course.  

Many chemistry students are not familiar with eigenfunctions and eigenvalues, 

concepts that underpin the Schrödinger equation. The Graphical representation of 

eigenvectors16 (Eigenvectors and Eigenvalues) simulation is used by the instructor 135 

during the lecture to help students make connections between graphical and 

mathematical representations of eigenvectors and eigenvalues. The simulation depicts 

the two components of a unit vector in the xy-plane, and the same vector under several 

different transformations. The orientation of the initial vector can be changed using a 

slider. The simulation shows whether or not the vector is an eigenvector, and if so 140 

displays the associated eigenvalue.  

Another example is the interpretation of the modulus squared of the wave function 

as a probability density (also called a probability distribution). In order to illustrate 
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probability density using a classical system well known to students, the Probabilistic 

analysis of a mass-spring system17 (Classical Oscillator) simulation is employed. The 145 

simulation allows users to take snapshots at random times of the position of a mass on 

a spring, and displays the probability density of the resulting position distribution. The 

simulation thus demonstrates how a probability density can be obtained for a classical 

system.  

The course discusses the particle in a box (the infinitely-deep potential well) in one 150 

and more dimensions. This part of the course uses the Comparison of one particle in a 

two-dimensional well and two particles in a one-dimensional well18 (1D and 2D Infinite 

Well) simulation shown in Figure 3. It allows users to compare the probability 

distribution for a single quantum particle in a two-dimensional square well or 

rectangular well, and the probability distribution for two particles in a one-dimensional 155 

infinite well. The simulation is used in the course to introduce degeneracy by showing 

that different combinations of quantum numbers can give the same total energy though 

the wavefunctions are different. It is also used to introduce the symmetry or 

antisymmetry requirements of quantum-mechanical wavefunctions describing several 

identical particles (fermions and bosons), by demonstrating that otherwise the 160 

probability density at a certain position would not be identical if the labels of two 

particles with different energies are swapped.  
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Figure 3. A screenshot of the Comparison of one particle in a two-dimensional well and two particles in a one-dimensional 
well18 simulation. For the view shown, the user can choose the energies Ex and Ey of the particle along x and y. The total 165 
energy of the particle is given by the sum Ex + Ey. 

 

The course introduces the orbitals and energy levels for the hydrogen atom.  The 

Radial distribution functions and electron densities for hydrogen electron orbitals19 

(Radial Distribution Functions) simulation shown in Figure 4 is used in this part of the 170 

course to help students translate between the three-dimensional electron density 

representation and the radial distribution function for the hydrogen atom. A highlighted 

region can be moved in both graphs to better compare them. The visualization during 

the lecture helps students to differentiate between the most likely point in space to find 

the electron (this would be the origin for the state shown in Figure 4) and the most 175 
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likely radial distance to find the electron (the maximum of the radial distribution 

function).  

 

Figure 4. A screenshot of the Radial distribution functions and electron densities for hydrogen electron orbitals19 
simulation.  180 

 

The Experimental proof of spin angular momentum: The Stern-Gerlach experiment20 

(Experimental Proof of Spin) simulation is used to introduce spin angular momentum. 

With the help of this simulation, students are led from the classical expectation to the 

quantum result. The simulation allows users to compare the experimental outcomes of 185 

a Stern-Gerlach experiment for classical rotating particles, quantum particles with 

orbital angular momentum, and quantum particles with spin 1/2 angular momentum. 

The Semi-classical vector model of orbital angular momentum21 (Vector Model Angular 

Momentum) simulation is used to help students visualize the quantized nature of 
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orbital angular momentum. It depicts orbital angular momentum vectors and cones of 190 

possible angular momentum directions. The quantum numbers for the magnitude and 

the z-component of angular momentum can be changed.  

CONCLUSIONS  
The QuVis simulations can support quantum mechanics instruction for physical 

chemistry students. This article has described their use as in-class demonstrations, 195 

homework problems and pre-lab activities, and given examples of simulations used in 

an introductory physical chemistry course. The simulations and accompanying 

activities are freely available on the QuVis website. Further development of simulations 

(including the recoding of the Flash simulations described in this article in HTML5) and 

evaluation and refinement through instructor and student feedback are ongoing. 200 
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