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ABSTRACT  25	
  

Identifying and quantifying variation in vocalizations is fundamental to advancing our 26	
  

understanding of processes such as speciation, sexual selection, and cultural 27	
  

evolution. The song of the humpback whale (Megaptera novaeangliae) presents an 28	
  

extreme example of complexity and cultural evolution. It is a long, hierarchically 29	
  

structured vocal display that undergoes constant evolutionary change. Obtaining 30	
  

robust metrics to quantify song variation at multiple scales (from a sound through to 31	
  

population variation across the seascape) is a substantial challenge. Here, we present a 32	
  

method to quantify song similarity at multiple levels within the hierarchy. To 33	
  

incorporate the complexity of these multiple levels, the calculation of similarity is 34	
  

weighted by measurements of sound units (lower levels within the display) to bridge 35	
  

the gap in information between upper and lower levels. Results demonstrate that the 36	
  

inclusion of weighting provides a more realistic and robust representation of song 37	
  

similarity at multiple levels within the display. Our method permits robust 38	
  

quantification of cultural patterns and processes that will also contribute to the 39	
  

conservation management of endangered humpback whale populations, and is 40	
  

applicable to any hierarchically structured signal sequence. 41	
  

 42	
  

PACS number(s): 43.80.Ka, 43.80.Ev 43	
  

 44	
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I. INTRODUCTION 50	
  

Identifying and quantifying variation in vocalizations is fundamental to advancing our 51	
  

understanding of processes such as speciation (Riesch et al., 2012), sexual selection 52	
  

(Catchpole & Slater, 2008), and cultural evolution (Rendell & Whitehead, 2001; Noad 53	
  

et al., 2000; Janik, 2014). For example, variations in the group-specific calls of killer 54	
  

whales (Orcinus orca) are believed to be leading to speciation (Riesch et al., 2012) 55	
  

potentially through culture-genome coevolution (Foote et al., 2016), while the vocal 56	
  

displays of song birds are driven by both sexual selection and cultural evolution 57	
  

(Catchpole & Slater, 2008). Understanding variation within and between habitats can 58	
  

also support conservation and management by revealing details of population 59	
  

structure. Therefore, robust metrics to quantify vocal variation at multiple scales 60	
  

(from single utterances through to variation across the land and seascape) are essential 61	
  

to address what defines a “dialect”, how dialects may correspond to populations, and 62	
  

how this information is incorporated into the management of populations or species.  63	
  

Substantial research has been conducted at comparing the population 64	
  

repertoires of many species, including our own, to identify and quantify dialect 65	
  

variation (e.g., human language: Wieling & Nerbonne, 2015; bird song: Catchpole & 66	
  

Slater, 2008; whale song: Payne and Guinee, 1983; rock hyrax, Procavia capensis: 67	
  

Kershenbaum et al., 2012). Studies on non-human animals typically compare call 68	
  

types, and how the parameters of each call and frequencies with which they are used 69	
  

vary geographically. This can become complicated when vocalizations are grouped 70	
  

together into bouts or displays. Songbird dialects are a well-established means of 71	
  

defining groupings (Catchpole & Slater, 2008). Dialects are defined as song 72	
  

differences between neighboring populations of potentially interbreeding individuals 73	
  

(Connor, 1982). Bird songs typically last for a few seconds and are composed of a 74	
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few to tens of syllables. In contrast, humpback whale (Megaptera novaeangliae) 75	
  

songs can last in excess of 20 minutes and commonly comprise thousands of units 76	
  

(individual sounds). This male-only vocal display is long, complex, and highly 77	
  

stereotyped (Payne and McVay, 1971).  78	
  

Humpback whale song is divided into multiple levels that are stacked on top 79	
  

of each other (i.e., it is a nested hierarchy; Payne and McVay, 1971; Herman and 80	
  

Tavolga, 1980). The shortest, continuous sound to our ear is called a ‘unit’ (Payne and 81	
  

McVay, 1971; Fig. 1i). Several units are arranged in a stereotyped sequence that is 82	
  

termed a ‘phrase’. A phrase is repeated multiple times and this is called a ‘theme’. A 83	
  

few different themes, each comprised of repeats of a different stereotyped phrase, are 84	
  

sung in a particular order to make a ‘song’. Songs are repeated multiple times by an 85	
  

individual whale to comprise a ‘song session’. Different versions of the song 86	
  

(comprised of different themes and phrases) are termed ‘song types’ (Garland et al., 87	
  

2011). For context, humpback whale phrases and bird songs are considered analogous 88	
  

(see Cholewiak et al., 2012). There is a clear challenge in incorporating all of this 89	
  

variation into a quantitative analysis that includes as much information as possible 90	
  

without abstracting from the data. 91	
  

 92	
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 93	
  

FIG. 1. Spectrograms illustrating the hierarchical structure of humpback whale song. 94	
  

A single unit (‘trumpet’) and a single phrase from Theme 25a are shown in the top 95	
  

panel. Theme 25a units from the single phrase in the top panel are as follows: short 96	
  

ascending moan, grunt, grunt, grunt, grunt, grunt, grunt, short ascending moan, 97	
  

trumpet, squeak, trumpet, squeak, trumpet. The repetition of phrases and the 98	
  

sequential singing of themes are shown in each of the subsequent panels 99	
  

(corresponding audio: SuppPubmm1.wav). Spectrograms were 2048 point fast Fourier 100	
  

transform (FFT), Hann window, 31 Hz resolution, and 75% overlap, generated in 101	
  

Raven Pro 1.4. 102	
  

 103	
  

Within a population, most males conform to the current arrangement and 104	
  

content of the song (Winn and Winn, 1978; Payne et al., 1983). The song 105	
  

progressively evolves through time (Payne and Payne, 1985), with all males 106	
  

incorporating these changes to maintain the observed similarity. Across an ocean 107	
  

basin, populations that are geographically closer to each other display a higher degree 108	
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of song similarity (Payne and Guinee, 1983; Helweg et al., 1990, 1998; Cerchio et al., 109	
  

2001). However, song sharing within the western and central South Pacific is very 110	
  

dynamic as songs can be directionally transmitted eastward across the region from 111	
  

eastern Australia to French Polynesia, usually over a period of two years (Garland et 112	
  

al., 2011, 2013). The underlying drivers for this unidirectionality in song transmission 113	
  

are not well understood, but have been suggested to be a result of differences in 114	
  

population sizes within the region (Garland et al., 2011). Despite this transmission of 115	
  

different versions of the display across the region, it is possible to use differences in 116	
  

the song to identify different dialects and also populations at any point in time 117	
  

(Garland et al., 2015). Songs and the stereotyped sequences of units therein are used 118	
  

to define geographic dialects (Payne and Guinee, 1983; Garland et al., 2015). Since 119	
  

variation can occur at all levels of the song structure, it is a substantial analysis 120	
  

challenge to incorporate variation at all these levels into a single metric.  121	
  

Many studies have undertaken quantification of humpback whale sounds 122	
  

(units) to allow comparison, typically involving the measurement of time and 123	
  

frequency parameters (e.g., Dunlop et al., 2007; Stimpert et al., 2011; Rekdahl et al., 124	
  

2013). Previous work has also compared multiple metrics to establish which of a 125	
  

variety of commonly employed sequence analysis techniques performs best for 126	
  

comparing humpback whale song (Kershenbaum and Garland, 2015). The string edit 127	
  

or Levenshtein distance (LD) metric outperformed all other metrics in comparing 128	
  

humpback whale song sequences. The LD is a robust metric that should be employed 129	
  

in the comparison of song in preference to other commonly utilized techniques (such 130	
  

as Markov chains, hidden Markov models or Shannon entropy). The LD is a basic 131	
  

technique in computer science and information theory which has been used in 132	
  

genetics for analyzing the sequence of nucleotides in DNA (e.g., Altschul et al., 1990) 133	
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and has also found favour in linguistics (e.g., Wieling and Nerbonne, 2015) and 134	
  

animal bioacoustics (e.g., Margoliash et al., 1991; Kershenbaum et al., 2012). More 135	
  

advanced applications of the LD have been undertaken to investigate bird song 136	
  

dialects (e.g., Ranjard and Ross, 2007, 2008) and language relatedness (see Wieling 137	
  

and Nerbonne, 2015), where the cost of substitution was reduced based on the 138	
  

proportional similarity of acoustic features or phonetic similarity. The LD has also 139	
  

previously been used to quantify song similarity in humpback whales (Helweg et al., 140	
  

1998; Eriksen et al., 2005; Tougaard and Eriksen, 2006; Garland et al., 2012, 2013, 141	
  

2015). These studies have compared song similarity among individuals and 142	
  

populations in the South Pacific to understand dialect grouping; however, none have 143	
  

employed a weighting system to better represent the complexities in song structure.   144	
  

Here, we present a straightforward LD-based analysis method to quantify 145	
  

stereotyped sequences of sounds that vary geographically (i.e., song dialects) at 146	
  

multiple levels within the display. To incorporate the complexity of these multiple 147	
  

levels, the calculation is weighted by sound unit measurements taken from lower 148	
  

levels within the display. We use humpback whale song as an example due to its 149	
  

inherent complexity and constant evolution. Instead of qualitatively judging unit 150	
  

similarity as is commonly undertaken, the quantitative level of similarity as calculated 151	
  

using a suite of variables taken directly from each unit type is an important step 152	
  

towards a robust, reportable and repeatable quantification of humpback whale song. 153	
  

 154	
  

II. METHODS 155	
  

A. Calculating the Levenshtein distance (LD) and its derivatives 156	
  

Both the conceptual understanding of the LD and its calculation is straightforward. 157	
  

The LD measures the similarity between any two strings (sequences) of data by 158	
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calculating the minimum number of changes (insertions, deletions and substitutions) 159	
  

needed to convert one string into another (Levenshtein, 1966; Kohonen, 1985). The 160	
  

Levenshtein distance (LD) is calculated by: 161	
  

𝐿𝐷 𝑎, 𝑏 =   min  (𝑖 + 𝑑 + 𝑠) (1) 162	
  

where string (a) is converted into string (b) by the minimum number of insertions (i), 163	
  

deletions (d) and substitutions (s). To ensure the output is comparable to more then a 164	
  

single pair of strings, the LD is standardised by the length of the longest string within 165	
  

the pair to give the Levenshtein distance similarity index (LSI), defined as: 166	
  

𝐿𝑆𝐼 𝑎, 𝑏 =   1− !"(!,!)
!"#  (!"# ! ,!"# ! )

 (2) 167	
  

where the LD between strings a and b is divided by the length of the longer string of 168	
  

the pair (see Garland et al., 2012, 2013). This produces a measure of similarity among 169	
  

multiple sequences of varying lengths, and an overall understanding of the similarity 170	
  

of all sequences (Helweg et al., 1998; Eriksen et al., 2005; Tougaard and Eriksen, 171	
  

2006; Garland et al., 2012, 2013, 2015).  172	
  

Within any set of sequences, a median, or most representative sequence, for 173	
  

that set can be calculated. Examples of a set (or group) include all of the songs from a 174	
  

population, all songs from a population in a particular year, repeated songs from an 175	
  

individual, or all examples of a particular theme from all individuals within a 176	
  

population. The string with the highest overall similarity to all other strings within the 177	
  

group or set is found by summing all LSI scores per string. The string or sequence 178	
  

with the highest summed LSI and thus highest similarity to all other members within 179	
  

the group is then assigned as the ‘set median string’ (Kohonen, 1985). This provides a 180	
  

representative string for the set that can then be used to compare among sets without 181	
  

losing substantial amounts of information.  182	
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As noted in Kershenbaum and Garland (2015), the LD relies more on the 183	
  

straight sequence of sound units and does not account for any hierarchy in the overall 184	
  

structural pattern. To address this gap we propose a method of weighting changes in 185	
  

higher levels within the song hierarchy using measurements taken directly from lower 186	
  

levels.  187	
  

 188	
  

B. Calculating weightings 189	
  

1. Song recordings  190	
  

Recordings of humpback whale song were made in Mo’orea, French Polynesia in 191	
  

2005 using a Sony DAT TCD-D100 recorder and a hydrophone designed by John and 192	
  

Beverly Ford of Vancouver, Canada (recorded digitally but then transferred to 193	
  

computer by digital to analog conversion followed by re-digitizing at 44.1 kHz and 16 194	
  

bit). Two different song types (Blue and Dark Red) were identified in the recordings 195	
  

based on previously described songs (Garland et al., 2011, 2012, 2013). Given that 196	
  

songs are constantly evolving through changes in the arrangement and content of 197	
  

phrases and themes (Payne and Payne, 1985), and these differences can then be 198	
  

transmitted to another population (Noad et al., 2000; Garland et al., 2011), identifying 199	
  

differences between song types is essential to identify the underlying dynamics and 200	
  

track dynamic dialect boundaries.  201	
  

 202	
  

2. Unit measurements 203	
  

Units, the shortest continuous sound to our ear delineated by silence (Payne and 204	
  

McVay, 1971), were initially categorized into sound types by a human classifier 205	
  

(E.C.G.; following Dunlop et al., 2007 classification system) as is common in 206	
  

humpback whale studies (see Cholewiak et al., 2012; Fig. 1). Units were named as 207	
  



10 

they sound (e.g., moan, groan, squeak) and included information on the slope (e.g., 208	
  

ascending, modulated) and length of the call (e.g., short, long). This resulted in a fine-209	
  

scale classification of units instead of large, variable unit categories (for example the 210	
  

unit category ‘purr’ could be further subdivided into ‘long purr’ or ‘short purr’ based 211	
  

on length). All units were coded for each recording. As a single song can contain 212	
  

upwards of 1,000 units, a subset of units from each recording is measured. All units in 213	
  

the first, full phrase of each theme in the recording were measured to provide a variety 214	
  

of units from different themes in the song, and from different individuals for 215	
  

comparison. This resulted in 750 measured units, a set containing multiple examples 216	
  

of 96 unique unit types. All measured units were taken from a subset (described 217	
  

above) of the 636 available phrases. Units were measured in Raven Pro 1.4 for 11 218	
  

frequency and duration variables (Table I) following those outlined in Dunlop et al. 219	
  

(2007). These measurements were taken from a spectrogram made with a 2048 point 220	
  

fast Fourier transform (FFT), Hann window, 16 bit, 31 Hz resolution, and 75% 221	
  

overlap. In R (R Development Core Team, 2015), this subset of measured units 222	
  

(N=750, 96 unit types) was subjected to both Classification And Regression Tree 223	
  

analysis (CART) and Random Forest classification. Of the 96 unit types classified by 224	
  

CART and Random Forest, 77% and 73% (respectively) were classified in the same 225	
  

way by the human classifier, inferring repeatability in the naming of units. Therefore, 226	
  

all 636 phrases (which included both the qualitatively assigned units and the 750 227	
  

measured units) were included in further analysis. 228	
  

 229	
  

3. Turning unit measurements into a weighting system 230	
  

To create a weighting cost or penalty between every pair of unit types (e.g., a moan or 231	
  

a whoop) based on the distance among units to allow a quantification of similarity, the 232	
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mean of each variable (e.g., maximum frequency) for each unit type was calculated. 233	
  

These were taken from the 750 measured units. The mean unit type values for each 234	
  

variable were then transformed into z-scores to ensure all the variables were 235	
  

comparable on the same scale. Given that we do not currently know what sound 236	
  

features are most important to humpback whales, all variables were included in the 237	
  

analysis in preference to reducing these to a small number of factors (e.g., through 238	
  

Principal Components Analysis). The Euclidian distance was computed for all unit 239	
  

types creating a single measure of distance between each pair of unit types in n-240	
  

dimensional acoustic feature space (here, n=11 as there were 11 variables). The 241	
  

Euclidian distance was normalized to the maximum pairwise distance (i.e., linearly) to 242	
  

represent a value between 0 and 1, where 1 represented the largest distance (or highest 243	
  

dissimilarity) between unit types in n-dimensional space. The linear normalized cost 244	
  

d(x,y) is simply the Euclidian distance between the z-scores of units xi and yi, divided 245	
  

by the maximum value of d: 246	
  

𝑑 𝑥,𝑦 = !(!!)!!(!!) !!
!"#  (!)

    (3) 247	
  

This linear normalized Euclidian distance between every unit type was used as a 248	
  

weighting penalty for substitutions in subsequent LD calculations (Fig. 2). However, 249	
  

preliminary tests indicated a linear scale was inadequate at capturing the differences 250	
  

among units as the majority of penalty scores were aggregated at one end of the scale 251	
  

due to a small number of very different units (Fig. 3). 252	
  

 To account for this, a non-linear transformation that compressed the range of 253	
  

Euclidian distances that represent the most variation in the normalised scale was 254	
  

undertaken. An exponential scale was able to capture the small but important 255	
  

differences among very similar units, while also ensuring a high penalty score for the 256	
  

very different units (Fig. 3). The exponential normalized cost is given by: 257	
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𝑒𝑥𝑝_𝑐𝑜𝑠𝑡 𝑥,𝑦 = 1− 𝑒!!"(!,!) (4) 258	
  

where β is the exponential coefficient. The exponential coefficient β could be altered 259	
  

to relax the penalty slope, which resulted in a reduction in the cost for substitution 260	
  

(Fig. 2 & 3). All initial weighting tests were run at β = 1, and then the coefficient was 261	
  

reduced to β = 0.5 and β = 0.25 to allow the effects of weighting to be explored (Fig. 262	
  

2).  β = 1 represents the closest distribution of penalty scores to the un-weighted 263	
  

analysis (with all scores = 1), while the relaxing of the slope to β = 0.5 and β = 0.25 264	
  

pushes the distribution to the left (Fig. 3) into lower penalty scores. A linear 265	
  

distribution represents the other extreme with a large number of very low substitution 266	
  

costs (see Results for the consequences of such a situation). An alternative to our 267	
  

weighting system not explored here would be to use a penalty matrix based on the 268	
  

output of node weights, Euclidian distances, or Cartesian distances from a self-269	
  

organizing map (SOM; Placer et al., 2006; Green et al., 2011). 270	
  

 271	
  

FIG. 2. Substitution costs with different exponential coefficients (β = 1, β = 0.5 and β 272	
  

= 0.25) and linear scaling on the Euclidian distances calculated from sound unit 273	
  

measurements (color online). 274	
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 275	
  

FIG. 3. Histogram of the frequency of normalized substitution costs with A) linear 276	
  

scaling, and exponential coefficients B) β = 1, C) β = 0.5, and D) β = 0.25. Note the 277	
  

difference in the y-axis scale.  278	
  

 279	
  

C. Applying weightings to better capture hierarchical complexity 280	
  

The cost of any change (insertion, deletion or substitution) was initially set to 1 (cost 281	
  

of 1 for a change, cost of 0 for no change i.e., exactly the same unit in the same 282	
  

position) following the traditional application of the metric. Previous qualitative 283	
  

analyses of song variation have not been so categorical; instead, substituting a unit 284	
  

with a similar unit was considered a less important change relative to substituting it 285	
  

with a less similar unit (Helweg et al., 1998). This is inherently sensible as there are a 286	
  

number of sound units that are indeed very similar. However, the quantitative level of 287	
  

similarity as calculated using a suite of variables taken directly from each unit type is 288	
  

used here instead of qualitatively judging this similarity to move towards a robust, 289	
  

reportable and repeatable quantification of similarity. The penalty or cost of 290	
  

substitution is therefore assigned based on the Euclidian distance between sound units 291	
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and the exponential coefficient, β. Previous studies have shown that phrase duration is 292	
  

one of the most stable components of humpback whale song (Cholewiak et al. 2012). 293	
  

Therefore the cost of insertion or deletion of sounds resulting in the lengthening or 294	
  

shortening of a phrase remains unaltered (cost remains as 1). Insertions and deletions 295	
  

are therefore more heavily penalized than substitutions in this framework.  296	
  

 297	
  

D. Tests using humpback whale song sequences 298	
  

Three different analyses were undertaken to demonstrate the utility of this weighted 299	
  

analysis in capturing the inherent multi-levelled structure and complexity within the 300	
  

display. These can be viewed as the major steps in song quantification from lower to 301	
  

upper levels. In each analysis, the strings used for calculating the LSI represent 302	
  

different levels in the hierarchical song structure: 303	
  

A. Assigning a sequence of units to a known phrase and by extension a theme. In 304	
  

this analysis, a string represents a sequence of units. 305	
  

B. Identifying a median unit sequence per phrase/theme. Here, a string also 306	
  

represents a sequence of units. 307	
  

C. Assigning a song to a song type based on the sequence of phrases (as 308	
  

quantified from analyses A and B). In this final analysis, a string represents a 309	
  

sequence of phrases. 310	
  

The upper level of analysis (C.) of assigning songs to song types is run solely un-311	
  

weighted in this instance. Weightings could be utilized to trace evolving themes (none 312	
  

are present in the current dataset; Garland et al., 2011) by including the LSI 313	
  

dissimilarity score for those particular themes as the penalty score. The analysis was 314	
  

run in R (R Development Core Team, 2015) utilizing custom written code (available 315	
  

at https://github.com/ellengarland/leven). The code calculates the LSI similarity 316	
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matrix, creates median strings per group (as specified by the user; see below), 317	
  

calculates the average LSI score within and between groups to investigate average 318	
  

similarity and also within theme variability, and calls the hclust, pvclust and pvrect 319	
  

packages (see Suzuki and Shimodaira, 2004) to cluster strings and calculate bootstrap 320	
  

errors. Examples of a group include all of the songs from a population, all songs from 321	
  

a population in a particular year, repeated songs from an individual, or all examples of 322	
  

a particular theme from all individuals within a population. The percentage theme 323	
  

similarity function calculates the average LSI similarity of all strings within a group 324	
  

(e.g., population, individual, theme, etc.) to provide an understanding of the 325	
  

variability in similarity within that group. This is also calculated among groups; 326	
  

pairwise LSI scores calculated between all strings from two groups are averaged to 327	
  

find the average % theme similarity between those particular groups. This 328	
  

complements the single LSI score calculated between set medians from each group. 329	
  

Clustering was conducted using either single or average-linkage (UPGMA) clustering. 330	
  

Each cluster matrix was bootstrapped with multi-scale bootstrap resampling (AU) and 331	
  

normal bootstrap probability (BP) 1,000 times to establish p-values (significance for 332	
  

AU at p > 95% and for BP at p > 70%) and SE for each split in the tree (see Garland 333	
  

et al., 2012 for detailed methods). Branches with high AU and BP values are strongly 334	
  

supported by the data while lower values suggest variability in their division. As a 335	
  

further test of how well a dendrogram represented the data, the Cophenetic 336	
  

Correlation Coefficient (CCC) was calculated. A CCC score of over 0.8 is considered 337	
  

high and thus a good representation of the associations within the data (Sokal and 338	
  

Rohlf, 1962). 339	
  

 340	
  

 341	
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III. RESULTS 342	
  

From 19 recordings containing three hours and 24 minutes of song, a total of 636 343	
  

phrases (i.e., a sequence of individual sound units) were transcribed. Similar phrases 344	
  

were qualitatively assigned to themes and song types for ease of understanding 345	
  

(following previous analyses that qualitatively matched themes and/or assigned song 346	
  

types using un-weighted LSI analyses; Garland et al., 2011, 2012). Sixteen themes 347	
  

were identified; the Blue song type (Table II) contained nine themes (labelled 23 to 348	
  

30b) with 212 phrases, and the Dark Red song type contained seven themes (labelled 349	
  

31a to 37b) with 424 phrases. Previous qualitative assignment of these themes 350	
  

(presented in Garland et al., 2011) provides a direct comparison of this quantitative 351	
  

method to naïve matching tests. 352	
  

 353	
  

A. Assigning a sequence of units to a phrase and, by extension, a theme 354	
  

The aim of this test was to assign multiple strings of units to a phrase (and therefore a 355	
  

theme, which represents the repetition of a stereotyped set of similar phrases). The 356	
  

clustering of phrases into themes using both un-weighted and weighted analyses was 357	
  

conducted for all themes for both the Blue and Dark Red song types (data not shown), 358	
  

with similar results to those reported below. To demonstrate this, three themes were 359	
  

chosen from the Blue song type to ensure a complex task that could also be visually 360	
  

presented without requiring a magnifying glass. All strings from each of the chosen 361	
  

themes were included in the analysis (N=72 phrases). Theme 28a (N=19 phrases) was 362	
  

a long phrase that contained between nine and 20 units, made up of a possible 11 363	
  

unique unit types (Table III). The length of a 28a phrase depended on the number of 364	
  

repetitions of a sub-phrase (a sequence of one or more units that is sometimes 365	
  

repeated in a series; Cholewiak et al. 2012) comprising the ‘ascending moan’ and 366	
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‘violin’ units (see Table III). Theme 30b (N=33 phrases) was shorter then Theme 28a 367	
  

with between four and seven units, and was made up of six possible unit types (Table 368	
  

III). None of the unit types were shared between the two themes. Theme 25a (N=20 369	
  

phrases) contained between 11 and 20 units, and was made up of seven possible unit 370	
  

types (Table III). The length of a 25a phrase primarily depended on the number of 371	
  

‘grunts’ (gt; a short, low frequency unit that was repeated multiple times) sung in the 372	
  

first sub-phrase, and whether this first sub-phrase was itself repeated (Table III). 373	
  

Theme 25a and Theme 28a shared two unit types (ba: ‘bark’, and sq: ‘squeak’), while 374	
  

a number of other units were very similar in their acoustic features (i.e., frequency 375	
  

and duration measures). However, these themes are clearly different in the 376	
  

arrangement of their units (see Fig. 1), and the selection of these two themes was 377	
  

intentional in an attempt to confuse and identify shortcomings in the weighted 378	
  

analysis.  379	
  

When the analysis was run un-weighted (i.e., every substitution cost=1), 380	
  

bootstrapping indicated three general clusters corresponding to the three themes (Fig. 381	
  

4a). The CCC of 0.974 indicated a very good representation of the associations within 382	
  

the data, despite some of the branches in the tree not reaching AU or BP significance. 383	
  

The average % similarity between Themes 25a and 28a was 4%, with 0% similarity 384	
  

between either of these themes and 30b. The analysis was then run as a weighted 385	
  

analysis with β = 1. Average-linkage hierarchical clustering and bootstrapping 386	
  

indicated two major branches and four general clusters were present (Fig. 4b), and the 387	
  

dendrogram was again a very good representation of the data (CCC=0.982). The 388	
  

average % similarity between Themes 25a and 28a rose to 33%, with similarity 389	
  

between either of these themes and Theme 30b ranging from 4 to 6%. The weighting 390	
  

allowed similar units to be less costly for substitution. Two clusters within the left 391	
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branch (Fig. 4b) were present after bootstrapping and clustering of the weighted data, 392	
  

as Themes 25a and 28a were subdivided at a higher level of similarity than 30b. This 393	
  

relates to the length of strings as the LD attempts to find the minimum number of 394	
  

changes (which is weighted towards less costly substitutions). Theme 30b contained 395	
  

two versions based on length and thus two clusters within the overall theme: a single 396	
  

(short) or repeated (long) ‘groan’ and ‘purr’. Given this variation is permitted and 397	
  

considered the same Theme in qualitative assessment, this provides a guide for 398	
  

understanding the impact of length on weighting. Alternatively, it may indicate that 399	
  

Theme 30b should be split into two finer-scale groupings based on length (i.e., 30b 400	
  

short and 30b long).  401	
  

To understand the overall variability in sequences within a phrase/theme, the 402	
  

average similarity score to all other strings within the theme set was calculated (Table 403	
  

II, % Theme similarity). While visually the difference introduced by weighting (β = 1) 404	
  

is subtle among these three themes, weighting has a profound effect on stabilising and 405	
  

reducing variability within a theme. This is best seen in the increase in within theme 406	
  

similarity for each theme (Table II, column 5). The difference between un-weighted 407	
  

and weighted (β = 1) analyses was clear. Theme 25a increased in similarity to itself 408	
  

(from 73% to 79%), as did Theme 28a (from 60% to 70%) and Theme 30b (from 44% 409	
  

to 53%) from un-weighted to weighted analyses, respectively. For example, the cost 410	
  

of substituting between two units, a ‘bark’ (ba) and a ‘long bark’ (lb), was 411	
  

significantly reduced from cost = 1 (un-weighted analysis) to cost = 0.506 in the 412	
  

weighted analysis (β = 1), as a long bark represents a longer duration version of a bark 413	
  

(> 1 sec). There is a trade-off, however, between reducing variability within a theme 414	
  

and increasing the similarity among themes.  415	
  

 416	
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 417	
  

 418	
  

FIG. 4. Dendrograms of bootstrapped (1000) LSI average-linkage hierarchical 419	
  

clustered individual unit strings from Themes 25a, 28a and 30b (N=72) for A) un-420	
  

weighted, B) β = 1, C) β = 0.5, and D) β = 0.25 analyses. Where multi-scale bootstrap 421	
  

resampling (AU; left, red �) p-values and normal bootstrap probability (BP; right, 422	
  

green �) p-values did not meet significance (p<0.95, p<0.7, respectively), these are 423	
  

displayed (color online). Red boxes indicate clusters that are strongly supported by 424	
  

the data. Theme 30b is split into two versions: ‘Long’ had four starting units, while 425	
  

‘short’ contained two starting units. Note the confusion of Theme 25a and 28a in D 426	
  

(*) indicating the process of relaxing the coefficient value has gone too far. 427	
  

 428	
  

To further explore the impact of weighting and this trade-off, the exponential 429	
  

coefficient was relaxed from β = 1 to β = 0.5 and β = 0.25. This reduces the steepness 430	
  

and relaxes the penalty slope, drawing similar units closer together (Fig. 2 & 3). For 431	
  

example, substituting from a bark to a long bark had an initial penalty of 0.506 when 432	
  

β = 1. This decreased to a penalty of 0.297 for β = 0.5, and to 0.162 when β = 0.25. 433	
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This resulted in all themes increasing their self-similarity at each change in scale 434	
  

(Table II). For example, Theme 30b increased its within theme similarity to 64% at β 435	
  

= 0.25 (from 53% at β = 1, and 59% at β = 0.5). Relaxing the slope continues to 436	
  

reduce the penalty of substitution. However, there is an obvious limit to relaxing the 437	
  

penalty for substitution as a threshold was reached in this case where similarity in 438	
  

phrase length overrode content of the phrase. It was less costly to substitute all units 439	
  

then undertake any insertion or deletion operations. Using the bark/long bark example 440	
  

above, a substitution penalty of 0.162 may allow up to six substitution operations 441	
  

being equivalent to one insertion operation (insertion penalty cost=1). This threshold 442	
  

was reached at β = 0.25; phrases from Theme 25a and 28a start to be mixed together 443	
  

in a single cluster at this level of weighting (Fig. 4d). To balance the trade-off 444	
  

between reducing within-theme variability and increasing among theme similarity in 445	
  

the current study, the majority of substitution penalty scores needed be above 0.6 (i.e., 446	
  

Fig. 3b & 3c) to ensure a small number of very similar sounds could be substituted 447	
  

while the majority of sounds were costly. Investigating the distribution of penalty 448	
  

scores (Fig. 3) allowed a visualization of the potential skew in distribution that was 449	
  

particularly exacerbated by linear scaling (where there were a high number of 450	
  

extremely low [<0.2] penalty scores).  451	
  

 452	
  

B. Assigning a median unit sequence (set median) per phrase 453	
  

Utilising all Blue song strings (N = 212 phrases, each containing a string of units), the 454	
  

most representative unit sequence (string) for each theme was identified with and 455	
  

without weighting. This became the set median for each theme as this string had the 456	
  

highest summed % similarity of all strings within the theme (Table II). As analyses 457	
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were run four times (i.e., un-weighted, β = 1, β = 0.5, and β = 0.25), four set medians 458	
  

were calculated for each theme. 459	
  

The analysis was first run un-weighted to provide the initial set medians, 460	
  

followed by weighted analyses. This provides a distinction between changes in set 461	
  

medians arising as a result of weighting (un-weighted vs. weighted), or as a result of 462	
  

changing the level of beta coefficient (e.g., β = 1 vs. β = 0.5). Within a theme, 463	
  

including weighting (β = 1) resulted in a single set median string changing 464	
  

arrangement from the un-weighted set median: Theme 27 (Table II). This theme had 465	
  

the highest sample size (N=79), and it was also particularly variable in unit choice. 466	
  

Weighting allowed similar units (i.e., ‘ascending’ and ‘n-shaped trills’, ti(a) and ti(n)) 467	
  

to be substituted with a reduced penalty. Therefore, the similarity within the theme 468	
  

increased by 19%, from 42% to 61%. 469	
  

As above, the exponential coefficient was relaxed from β = 1 to β = 0.5 and β 470	
  

= 0.25 to explore the impact of weighting on set median string assignment. Weighting 471	
  

at β = 0.5 resulted in two additional themes, Themes 26b and 30b, changing their set 472	
  

medians (Table II). Both themes were lengthened by two units, instead of being 473	
  

represented by the more condensed version of the theme. Theme 27 did not change its 474	
  

set median sequence from β = 1 to β = 0.5 (Table II). Themes 30b and 26b had the 475	
  

second and third largest sample sizes in the study, respectively. When β = 0.25, 476	
  

Theme 25a included a sixth grunt (gt) in its set median, and increased its within theme 477	
  

similarity to 82% (from 81% at β = 0.5; Table II). Once a set median changed through 478	
  

weighting, it remained in the new form as the exponential coefficient was further 479	
  

relaxed.  480	
  

Cluster analysis of the un-weighted set median sequences indicated the 481	
  

similarity in arrangement among themes (Fig. 5a). Including weighting in the analysis 482	
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(β = 1, β = 0.5 and β = 0.25; Fig. 5b-d) increased the similarity among themes, as it 483	
  

was less costly to substitute between phrases of a similar length.  484	
  

 485	
  

FIG. 5. Dendrograms of bootstrapped (1000) LSI similarity average-linkage 486	
  

hierarchical clustered set medians for Blue song themes for A) un-weighted, B) β = 1, 487	
  

C) β = 0.5, and D) β = 0.25 analyses. 488	
  

 489	
  

C. Assigning a song to a song type based on the sequence of phrases 490	
  

The above analyses grouped similar strings of units together to represent a theme. 491	
  

These theme groupings can themselves be assessed at the next level in the hierarchy: 492	
  

assigning songs to song types. This top level in the analysis was run un-weighted. 493	
  

From 18 strings of phrases (including all of the phrase repetitions, e.g., 27, 27, 27, 27, 494	
  

28a, 28a, 28a, 29, etc.) that ranged in length from four to 134 phrases, two significant 495	
  

clusters were formed (Fig. 6). These corresponded to the two different song types, 496	
  

Blue and Dark Red, identified in the data (and previously classified using un-497	
  

weighted LSI of theme sequences in Garland et al., 2012, 2013). The CCC for the 498	
  

resulting un-weighted average-linkage dendrogram was 0.892, indicating a good 499	
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representation of the structure within the data despite some branches not reaching AU 500	
  

or BP significance.  501	
  

 502	
  

FIG. 6. Dendrogram of bootstrapped (1000) LSI average-linkage hierarchical 503	
  

clustered strings of phrases (i.e., a song) from all recordings. Terminal node numbers 504	
  

refer to recording number. The two clusters correspond to the two different song 505	
  

types, Dark Red and Blue. Where multi-scale bootstrap resampling (AU; left, red �) 506	
  

p-values and normal bootstrap probability (BP; right, green �) p-values did not meet 507	
  

significance (p<0.95, p<0.7, respectively), these are displayed (color online). 508	
  

 509	
  

IV. DISCUSSION  510	
  

Here, we have shown how weighting unit substitutions when calculating sequence 511	
  

similarities can better represent the biological reality that some sound units are more 512	
  

similar than others in the quantitative analysis of humpback whale song. We did this 513	
  

by incorporating direct acoustic measurements from lower levels in the song 514	
  

hierarchy into sequence similarity calculations focussed on upper levels. There is no 515	
  

perfect solution to such analytical challenges and no weighting scheme that will be 516	
  

optimal in all situations, but this does nonetheless represent a step forward by 517	
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reducing the abstract nature of sequence comparisons relative to the empirical system 518	
  

under study. We suggest that researchers think carefully about the research question at 519	
  

hand before employing a weighting scheme. Each of the three analytical tests was 520	
  

affected differently when weighted, resulting in varying levels of ‘success’. Given the 521	
  

extensive previous quantification of these two song types and themes by a number of 522	
  

different researchers (Miksis-Olds et al., 2008; Smith et al., 2008; Garland et al., 523	
  

2011, 2012, 2013, 2015; Rekdahl et al., 2013), we considered ‘success’ in this context 524	
  

as agreement with those previous studies – but such studies will not be available in 525	
  

most cases. Below we review the impact of weighting on each analysis and outline 526	
  

some potential implications and avenues for improvement. 527	
  

 528	
  

A. Assigning a sequence of units to a phrase and, by extension, a theme 529	
  

The clustering of the un-weighted unit sequences mirrored the previous qualitative 530	
  

assignment of unit sequences to phrases/themes. When weighting was applied, 531	
  

however, clustering was more defined at a higher level before reaching a tipping point 532	
  

where different themes were merged together. Weighting will favor substitution (with 533	
  

a cost of <1) over insertion or deletion (both cost 1), as the LD algorithm strives to 534	
  

find the lowest cost to turn string one into string two. Therefore, phrases of similar 535	
  

length are artificially going to be considered closer together (as was evident between 536	
  

Themes 25a and 28a). The inclusion of two themes that were closely aligned in length 537	
  

with a suite of potentially similar units was intentional. However, weighting 538	
  

continued to divide these themes into two distinct clusters with no mixing of themes 539	
  

until the coefficient was significantly relaxed (β = 0.25; Fig. 4d). This corresponded 540	
  

to the majority of substitution costs being below 0.6 (Fig. 3), indicating a tipping 541	
  

point where length may override theme content. The different location and 542	
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arrangement of themes in the song should guide the researcher in interpreting this 543	
  

structure in the context of the research question at hand.  544	
  

Utilizing all strings from the Blue song type, weighting resulted in clear 545	
  

groupings of strings into phrases and themes. While un-weighted analyses do 546	
  

represent the structure of song and should always be undertaken in the first instance, 547	
  

weighting provides a quantitative way of making and reporting decisions about 548	
  

‘similar units in similar locations’ to differentiate between themes more subtlety.  549	
  

Here, we have not binned the substitution costs (e.g., 0.25 to 0.5 = cost 0.5) or 550	
  

included a cut-off value within the cost matrix where the cost will automatically 551	
  

change to 1. One could modify our approach by deciding that any calculated 552	
  

Euclidian distance cost above 0.25 or 0.5, for example, represented a very different 553	
  

suite of sounds, and thus should have a penalty of 1. Alternative cost matrices 554	
  

generated from other analyses, such as output Euclidian or Cartesian distances among 555	
  

nodes from a self-organising map (SOM), could also provide a representative cost 556	
  

matrix if sound types were assigned using the SOM. 557	
  

 558	
  

B. Assigning a median unit sequence (set median) per phrase 559	
  

The utility of weighting is clear in this task. Here we are moving from assigning unit 560	
  

strings (phrases) to a theme, to finding the most representative unit string for the 561	
  

theme. If all strings are not going to be included in upper level analyses, this data-562	
  

condensing task to find their representative is extremely important. Weighting 563	
  

significantly increased the average within theme % of similarity, as highly similar 564	
  

units (e.g., bark vs. long bark) could be better incorporated into the analysis. This 565	
  

results in the analysis treating the barks as longer or shorter duration versions of 566	
  

another similar sound type, rather than simply as separate novel types of sound. As β 567	
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decreased, no set median string reverted back to the un-weighted set median. There 568	
  

was an interaction with sample size (N) as larger sample sizes in terms of number of 569	
  

strings, and more variable themes (i.e., 27) switched to a new set median first, 570	
  

followed by themes with a moderate sample size. This indicates that larger sample 571	
  

sizes allow the underlying variability in arrangement to be captured and longer 572	
  

phrases allow for more variability in unit sequences, and both provide more options 573	
  

for set medians. Increasing within-theme similarity to reduce this variability is 574	
  

desirable.  575	
  

As β was decreased, set medians increased in length (Table II, Themes 25a, 576	
  

26b and 30b). Weighting appears to better incorporate both the ability to quantify 577	
  

similar units and differences in length. However, the increase in unit similarity 578	
  

(through relaxing β) also resulted in the ‘incorrect’ placement of phrases into different 579	
  

themes as β passed a tipping point where similarity in phrase length appeared to be 580	
  

more important then similarity in content. This tipping point corresponded to the 581	
  

majority of substitution costs being below 0.6. There was less and less discrimination 582	
  

between units resulting in phrases with the same number of units being hard to 583	
  

differentiate. It became less costly to substitute all units then undertake any insertion 584	
  

or deletion operations. Continuing the bark/long bark example, a substitution penalty 585	
  

of 0.162 may allow up to six substitution operations to equal one insertion operation 586	
  

(insertion penalty cost=1). Therefore, caution and common sense is warranted when 587	
  

applying a weighting system. 588	
  

One application of this set median analysis is to construct median strings per 589	
  

individual. A researcher can calculate the most representative phrase for each theme 590	
  

(intra-individual), and then these can be put forward into comparisons among 591	
  

individuals to understand any differences in the cultural diversity within a population. 592	
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This could be further explored in a way analogous to genetic studies by using 593	
  

AMOVA type techniques (Meirmans, 2012) to compare diversity within and between 594	
  

populations. This could also be used in intra- and inter-group comparisons to 595	
  

quantitatively assign song (dialects).  596	
  

 597	
  

C. Assigning a song to a song type based on the sequence of phrases  598	
  

Phrases and themes were labelled using the assignments from lower levels. The 599	
  

sequence or string of phrases could then be compared to assign song types. Here, we 600	
  

utilized the raw sequence of phrases without condensing the repeated phrases down to 601	
  

a single theme label (as in previous work; Garland et al., 2012, 2013). For example, 602	
  

the sequence of phrases 27, 27, 27, 27, 28a, 28a, 28a, 29, 29, 30b, 30b, 30b, and so 603	
  

on, was used instead of removing phrase repeats and condensing the sequence to 604	
  

theme headings (e.g., 27, 28a, 29, 30b, etc.). The aim of the exercise was to assign 605	
  

songs to song types, therefore having a variable number of repeats solely impacted the 606	
  

strength of similarity and not the assignment to clusters in this instance (as there were 607	
  

no shared themes). The question at hand should dictate whether phrase repeats should 608	
  

be included or not, as the number of repeats may be impacted by behavioral context 609	
  

(Smith, 2009). The relative strength of similarity within a song type varied due to the 610	
  

number of phrase repeats. There was no impact to the ‘correct’ assignment of songs to 611	
  

song types.   612	
  

The LSI calculation at this step was un-weighted; however, a researcher 613	
  

interested in tracing the evolution of a theme through time may assign weightings to 614	
  

different evolutionary stages of a theme based on LSI scores. The utility to trace 615	
  

songs as they naturally evolve through time is extremely desirable. In the current 616	
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example representing a snapshot in time from a single year, we had no evolving 617	
  

themes but instead had two very different song types.  618	
  

As very few species rapidly change their songs through time, establishing 619	
  

differences between two different versions of a display (i.e., two ‘dialects’) was the 620	
  

initial aim of this exercise to allow the technique to be widely applicable. Within a 621	
  

season, differences in humpback whale song types can be used to identify dialect 622	
  

boundaries and populations (Garland et al., 2015). However, the dynamic 623	
  

transmission of song among populations results in a complex task to assign dialect 624	
  

boundaries through time as multiple song types transit a region (see Garland et al., 625	
  

2015). Weighting of the LD analysis will further assist in clarifying fine-scale 626	
  

differences in songs to assign dialect and population boundaries for conservation 627	
  

measures.   628	
  

 629	
  

V. CONCLUSIONS 630	
  

Here we have demonstrated that weighting the LSI analysis better incorporates the 631	
  

variability of unit choice in the song, allowing a suite of similar units to pose little 632	
  

penalty for substitution. The quantification of a previously qualitative process, and the 633	
  

merging of hierarchical levels through weightings from lower levels is an important 634	
  

step towards a robust, reportable and repeatable quantification of humpback whale 635	
  

song. Given that humpback whale song variation among populations can be used to 636	
  

both identify populations and assess connectivity between them (Payne and Guinee, 637	
  

1983; Helweg et al., 1990, 1998; Cerchio et al., 2001; Garland et al., 2015), having 638	
  

robust metrics to quantify dialect differences is essential. Understanding variation and 639	
  

how this occurs across the seascape also underpins the application of conservation 640	
  

measures to manage populations such as the endangered Oceania (South Pacific) 641	
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humpback whale subpopulations (Childerhouse et al., 2008), from which these data 642	
  

were sourced. Identifying and quantifying variation in vocalizations is also 643	
  

fundamental to advancing our understanding of processes such as speciation, sexual 644	
  

selection, and cultural evolution.  645	
  

Humpback whale song presents an extreme example in complexity and 646	
  

cultural evolution. It can serve as a model for complex animal vocalizations; ensuring 647	
  

metrics that incorporate as much information with the least amount of abstraction can 648	
  

only strengthen outcomes. The use of such sequence comparisons and weighting 649	
  

systems using acoustic feature space are nonetheless applicable to other singing 650	
  

species such as bowhead and fin whales, song birds, mice, and hyrax, to name a few. 651	
  

Humpback song shows complete population-wide changes which are replicated in 652	
  

multiple populations at a vast geographical scale (Garland et al., 2011). The level and 653	
  

rate of this cultural transmission remains unparalleled in any other non-human animal. 654	
  

Accurately and quantitatively tracing these changes will help in uncovering the 655	
  

underlying drivers of these processes and thereby contribute to our understanding of 656	
  

animal culture, vocal learning and cultural evolution, and also the roots of human 657	
  

language and culture.  658	
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 815	
  

 816	
  

 817	
  

TABLES 818	
  

TABLE I. Variables measured for each unit. 819	
  

Measurement Description 

Duration (s) Vocalization length 

Minimum frequency (Hz) Minimum frequency 

Maximum frequency (Hz) Maximum frequency 

Start frequency (Hz) Start frequency 

End frequency (Hz) End frequency  

Frequency range (as ratio) Max freq/min freq 

Frequency trend (as ratio) Start freq/end freq 

Bandwidth (Hz) Max-min freq 

Inflections Number of reversals in slope 

Peak frequency (Hz) Frequency of the spectral peak 

Pulse rate (/s) for pulsative sounds 

 820	
  

 821	
  

 822	
  

 823	
  

 824	
  

 825	
  

 826	
  

 827	
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 828	
  

 829	
  

TABLE II. Set medians from the Blue song type with and without weighting. N is the 830	
  

number of strings for each theme present in the data. Weight is un-w = un-weighted, β 831	
  

= 1 is the default weight of exponential coefficient, β = 0.5 is weighted to relax the 832	
  

exponential coefficient to 0.5, and β = 0.25 is weighted to relax the exponential 833	
  

coefficient to 0.25 (see Fig. 2). Sum similarity is the highest summed similarity score 834	
  

of a string within the set. This string became the set median string. Note the set 835	
  

median can change in arrangement between each of the four analyses (un-weighted, β 836	
  

= 1, β = 0.5 and β = 0.25). % Theme similarity is the average LSI similarity of all 837	
  

strings to all other strings within the theme. Differences between the weighted and un-838	
  

weighted set median sequences are underlined. Each letter or combination of letters 839	
  

represents a unit type*. A comma separates units.  840	
  

Theme N Weight Sum 

similarity 

% Theme 

similarity 

Set median unit string/sequence 

23 1 un-w 1.00 100 w, dws, w, nws, w, dws, w, dws, w, modws, be 

  β = 1 1.00 100 w, dws, w, nws, w, dws, w, dws, w, modws, be 

  β = 0.5 1.00 100 w, dws, w, nws, w, dws, w, dws, w, modws, be 

  β = 0.25 1.00 100 
 

w, dws, w, nws, w, dws, w, dws, w, modws, be 

24 19 un-w 13.96 62.2 as/aws, as/aws, as/aws, e 

  β = 1 14.13 64.8 
 

as/aws, as/aws, as/aws, e 

  β = 0.5 14.24 67.1 
 

as/aws, as/aws, as/aws, e 

  β = 0.25 14.363712 
 

69.5 as/aws, as/aws, as/aws, e 

25a 20 un-w 16.15 73.4 am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t 

  β = 1 16.83 78.9 
 

am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t 

  β = 0.5 17.05 80.8 
 

am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t 

  β = 0.25 17.21 
 

82.0 am(s), gt, gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t 

25b 2 un-w 1.83 91.7 am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t, sq, t, mods 
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*Unit names: am=ascending moan, am(pul)=pulsative ascending moan, am(s)=short ascending moan,  841	
  

as/aws=ascending shriek/ascending whistle, ba=bark, be=bellows, c=croak, c(w)=croak-whoop, 842	
  

dws=descending whistle, e=e-sound, gr=groan, gr/gw=groan/growl, gt=grunt, lb=long bark, 843	
  

mods=modulated shriek, modws=modulated whistle, nws=n-shaped whistle, p=purr, p(ch)=chainsaw 844	
  

purr, s=siren, sq=squeak, sq-ds=squeak-descending shriek, t=trumpet, ti(a)=ascending trill, ti(n)=n-845	
  

shaped trill, um=u-shaped moan, v=violin, w=whoop.  846	
  

 847	
  

 848	
  

 849	
  

  β = 1 1.83 91.7 
 

am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t, sq, t, mods 

  β = 0.5 1.83 91.7 
 

am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t, sq, t, mods 

  β = 0.25 1.83 
 

91.7 am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t, sq, t, mods 

26b 28 un-w 14.86 37.1 s, am, um, modws, um, modws, um, modws 

  β = 1 15.77 43.1 
 

s, am, um, modws, um, modws, um, modws 

  β = 0.5 17.74 52.2 s, am, um, modws, um, modws, am, modws, um, modws 

  β = 0.25 20.13 
 

63.0 s, am, um, modws, um, modws, am, modws, um, modws 

27 79 un-w 44.87 41.8 lb, ba, ti(a), sq-ds, ti(a), sq-ds, ti(a), sq-ds, ti(a), sq-ds 

  β = 1 57.60 60.6 
 

lb, ba, ti(a), sq-ds, ti(n), sq-ds, ti(a), sq-ds, ti(n), sq-ds 

  β = 0.5 63.81 71.2 
 

lb, ba, ti(a), sq-ds, ti(n), sq-ds, ti(a), sq-ds, ti(n), sq-ds 

  β = 0.25 68.92 
 

80.3 lb, ba, ti(a), sq-ds, ti(n), sq-ds, ti(a), sq-ds, ti(n), sq-ds 

28a 19 un-w 13.89 60.2 lb, ba, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v 

  β = 1 15.19 70.3 
 

lb, ba, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v 

  β = 0.5 15.81 75.5 
 

lb, ba, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v 

  β = 0.25 16.27 
 

79.5 lb, ba, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v 

29 11 un-w 7.85 61.4 be, c, c, c 

  β = 1 7.85 62.3 
 

be, c, c, c 

  β = 0.5 7.88 63.3 
 

be, c, c, c 

  β = 0.25 8.13 
 

66.5 be, c, c, c 

30b 33 un-w 16.52 44.0 gr/gw, p(ch), c(w), c 

  β = 1 18.52 53.0 
 

gr/gw, p(ch), c(w), c 

  β = 0.5 20.10 58.5 
 

gr, p, gr, p, c, c 

  β = 0.25 22.21 
 

63.9 gr, p, gr, p, c, c 
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 850	
  

 851	
  

TABLE III. A sample of the unit strings/sequences (i.e., phrases) assigned to Themes 852	
  

25a, 28a and 30b. The un-weighted set median unit string/sequence from Table II is 853	
  

shown below each theme. Each letter or combination of letters represents a unit type*. 854	
  

A comma separates units. Note the variety of unit types and lengths of 855	
  

sequences/strings. 856	
  

Theme  Unit string/sequence 
25a am(s), gt, gt, gt, gt, am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t, sq, t, sq 
 am(s), ba, ba, gt, gt, gt, gt, am(s), t, sq, t, sq, t 
 am(s), gt, gt, gt, gt, am(s), t, t, t, sq, t 
 w, w/ba, w/ba, ba, ba, am(s), t, sq, t, sq, t  
 am(s), gt, gt, gt, gt, am(s), gt, gt, gt, gt, am(s), t, sq, t, t 
Set median am(s), gt, gt, gt, gt, gt, am(s), t, sq, t, sq, t 
28a lb, ba, nm(pul), v, v, v, mm(pul), sq, sq, v, v, mm(pul), v, v, v  
 ba, ba, am(pul), sq, sq, sq, sq, am, sq, sq, sq, sq, sq, sq, am, v, v, sq, sq, v 
 lb, ba, am(pul), v, v, v, am(pul), v, v     
 ba, ba, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v    
 lb, ba/am, ti(a), sq, v, v, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v 
Set median lb, ba, am(pul), v, v, v, am(pul), v, v, v, am(pul), v, v, v 
30b gr/gw, p(ch), c(w), c(w) 
 gr, p, gr, p, c, c 
 gr/gw, p(ch), gr/gw, p(ch), c, c, c 
 gr/gw, p, c(w), c(w) 
 gr, p, gr, p, c, c, c(w) 
Set median gr/gw, p(ch), c(w), c 
*Unit names: am=ascending moan, am(pul)=pulsative ascending moan, am(s)=short ascending moan, 857	
  

ba=bark, ba/am= bark/ascending moan, c=croak, c(w)=croak-whoop, gr=groan, gr/gw=groan/growl, 858	
  

gt=grunt, lb=long bark, mm(pul)=pulsative modulated moan, nm(pul)=pulsative n-shaped moan, 859	
  

p=purr, p(ch)=chainsaw purr, sq=squeak, t=trumpet, ti(a)=ascending trill, v=violin, w=whoop, 860	
  

w/ba=whoop/bark. 861	
  


