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Highlights 

 Arduino-based optical instrument for explosives detection designed and prototyped 

 Few-ppb detection of 2,4-DNT achieved under laboratory conditions with simple photodiode 

circuitry and off-the-shelf microprocessor 

 Simulated buried landmines successfully detected 

 

 

Abstract 

Humanitarian demining requires a broad range of methodologies and instrumentation for reliable 

identification of landmines, antipersonnel mines, and other explosive remnants of war (ERWs). Optical 

sensing methods are ideal for this purpose due to advantages in sensitivity, time-of-response and 

small form factor. In this work we present a portable photoluminescence-based sensor for 

nitroaromatic vapours based on the conjugated polymer Super Yellow integrated into an instrument 
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comprising an excitation LED, photodiode, Arduino microprocessor and pumping mechanics for 

vapour delivery. The instrument was shown to be sensitive to few-ppb concentrations of explosive 

vapours under laboratory conditions, and responds to simulated buried landmine vapour. The results 

indicate that a lightweight, easy-to-operate, low-cost and highly-sensitive optical sensor can be readily 

constructed for landmine and ERW detection in the field, with potential to aid worldwide efforts in 

landmine mitigation. 

 

Keywords: Explosives detection; Super Yellow; Arduino; Photoluminescence; ERW; Humanitarian 

Demining 

 

 

1. Introduction 

Global conflicts over decades have seen a legacy of landmines and Explosive Remnants of War (ERWs) 

left buried and active long after the conflicts themselves may be over. In addition to their inherent 

danger, the presence of mines prevents trade, communication and land use among local peoples. 

While several demining techniques are presently used successfully, there is still a pressing need in 

current humanitarian demining for rapid-response in-situ measurement techniques appropriate to a 

wide range of environments, since existing methods are not necessarily able to operate over extended 

periods of time in the field. Common methods such as canines have stringent and limited working 

practice in the field, in addition to occasional unpredictability or fitness-to-work of the canines [1, 2]. 

Other commonly-used techniques, such as metal detection, can flag false positives like harmless 

fragments of metal [3]; others have intrinsic high danger, such as prodders which require a deminer 

to physically push at the landmine. Detection of vapours given off by landmines, such as tri-

nitrotoluene (TNT) or its derivative di-nitrotoluene (2,4-DNT), can potentially complement the above 
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methods to mitigate these issues, since the non-contact nature of vapour detection allows one to 

identify a landmine that may be missed by other methods, for instance a plastic mine being missed by 

a metal detector. A hand-held, in-situ and sensitive system based on explosive vapour sensing would 

provide an extremely useful tool in the field for demining.  

In the development of a low-cost and field-serviceable instrument, an Arduino Uno, from the Arduino 

family of off-the-shelf development kits that have been receiving increasing interest since their release 

in 2012, can be a suitable microprocessor to handle signal capture and A/D conversion. Recent work 

has shown Arduino platforms integrated into optical sensing systems, for instance for Copper (II) ions 

[4] and Volatile Organic Compounds in seawater [5]. Another advantage to these platforms is that the 

device can be flashed with firmware allowing the device to function without the need for external 

control software from e.g. a laptop computer. Simple functionality such as this allows for an “on/off” 

version of the system, where an alert can be made by buzzer or warning light to indicate the detection 

of explosive vapours, allowing a simple deployment. 

There have been extensive studies on conjugated polymer films for explosives detection [6-12]. 

Conjugated polymers have great potential for humanitarian demining due to the high sensitivity of 

their light emission to the presence of nitroaromatic compounds. The sensing mechanism is based on 

the transfer of an electron from a photo-excited exciton state in an electron-rich polymer to an 

electron-deficient adsorbed molecule from the vapours, resulting in a loss of light emission. The light 

emission is quenched, in proportion to the level of nitroaromatic vapour present, as this photo-

induced electron transfer provides a non-radiative pathway for the exciton to relax. This reduction in 

light intensity can subsequently be monitored using a photodiode, aiding development of low-cost, 

compact optical sensors. Since the polymers are typically spin-coated to give films a few tens of nm 

thickness on glass substrates, the sensor films can be produced in large enough quantities for 

disposable use after positive identification of explosives. The commercially-available polymer Merck 

Super Yellow, part of the PPV group of conjugated polymers and illustrated in Figure 1, has previously 
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been shown to have a high PLQY [13]. The chemical properties of this material has been characterised 

in other work for applications as polymer LEDs (PLEDs) [14], and displays high sensitivity to 

nitroaromatic vapours with 2,4-DNT giving a significant quenching effect [12].  

In this work we present a small-form, low-cost, robust, easy-to-use and field-serviceable optical sensor 

for explosive vapours to help address the challenges involved in humanitarian demining. It is 

anticipated to be able to be used in conjunction with established humanitarian demining technologies 

to aid in reduction of false negatives and contribute to a more comprehensive surveying suite of 

technologies. 

 

2. Experimental 

2.1 Film fabrication & characterisation 

Films based on the conjugated polymer Super Yellow (supplied by Merck) were prepared by spin-

coating, at 2000 rpm, from a 6.5 mg/ml solution of the polymer in toluene onto 1 cm x 1 cm glass 

coverslips from Agar Scientific. The film thickness was measured using a Veeco Dektak 150 surface 

profiler and films were typically 100 nm thick.  The  film thickness has previously been shown to affect 

the speed of response to vapours due to molecules penetrating the polymer matrix at a fixed rate [9], 

and so films of 100 nm thickness were chosen to allow a fast response to the vapour. 

Photoluminescence Quantum Yield (PLQY) measurements were performed in an integrating sphere 

[15], using a Hamamatsu Photonics C9920-02 measurement system with an excitation wavelength of 

440 nm. Absorption and emission spectra were measured with a Cary 300 Bio UV-Vis absorption 

spectrometer and Edinburgh Instruments FLS980 Fluorescence spectrometer respectively. 

2.2 System architecture 
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The system operates by a polymer film being loaded into an airtight sample chamber with windows 

on each side to allow excitation by an LED, and collection of photoluminescent emission by a 

photodiode. The vapour is drawn via the bottom face of the enclosure by a pump, past the polymer 

film, and out via an exhaust line. The pump and LED are switched on manually by switches on the 

enclosure, with emission data being processed on an Arduino microprocessor prior to being sent via 

USB to a laptop. 

Figure 2(a) shows a schematic of the system architecture, with a photograph of the system with lid 

removed in Figure 2(b) and a photograph of the sample-loading mechanism in Figure 2(c). The LED 

was a high-power Royal Blue LUXEON LED from Philips, driven by a 9V battery and standard LED driver 

circuitry. The emission spectrum of the LED, with a peak wavelength of 447.5 nm, closely matches the 

absorption of the Super Yellow polymer with an absorption peak at 440 nm. The detection module of 

the sensing system was constructed of a Hamamatsu S2386-44K photodiode with high-sensitivity and 

low-noise, integrated with an Analog Devices AD8015ARZ low-power transimpedence amplifier, as 

illustrated in figure 3. The DC-powered PCB was designed to fit directly on the surface of the Arduino 

via analogue input pin A0. The detector module was held in a home-made adjustable bracket to allow 

vertical and horizontal movement of the photodiode for alignment. The Arduino was addressed to a 

VI in LabView via USB connection, and communication was achieved via LabView MakerHub, a tool for 

interfacing platforms such as Arduino to National Instruments software.  The LabView Graphical User 

Interface (GUI) displays both the raw data signal and the signal smoothed by moving-average, to 

account for random noise fluctuation, in real-time and both sets of data were saved automatically in 

an Excel sheet for further data processing. The GUI is illustrated in Figure 4. 

The enclosure was an IP67-rated enclosure from FIBOX with dimensions of 188 x 188 x 130 mm. The 

enclosure was fitted with a purpose-built platform to stabilise the component parts; a USB connector 

and switches for the pump and LED were also mounted on the enclosure. An in-house built stainless 

steel sensing chamber was designed to have a lock mechanism to enable ease of sensor film 
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replacement in the field, with two windows for excitation and emission and the film aligned with the 

windows. The LED was mounted on one side of the sensing chamber to illuminate the film through 

one window. The fluorescence was collected through the other window using a 20 mm focal length 

aspheric condenser lens from Thorlabs focussed onto the photodiode.  Air samples were drawn in 

through a stainless steel tube on the bottom face of the enclosure via a path length of approximately 

1 cm, through the sample chamber and out via exhaust on the rear side of the enclosure by a 

micropump from TCS Pumps, with 600 ml/min maximum flow and powered by 9V battery. For studies 

with Super Yellow, a 550 nm long pass filter from Thorlabs was used to the signal emission from 

residual excitation light. The entire system weighs approximately 2.1 kg. 

 (a) 

 

2.3 Procedure for Measuring Response to Calibrated Flow of Explosive Vapours 

To assess the system’s response to explosive vapours, it was first attached to a benchtop vapour 

delivery apparatus, with a clean N2 line and a line with N2 gas contaminated with 1 g of 2,4-DNT (Sigma 

Aldrich) connected to the inlet of the system. The system was flushed with clean N2 for several seconds 

and the data acquisition software started before 2,4-DNT vapour was introduced to the chamber, 

bypassing the pump mechanism. The measurement was made at a sample rate of 1 Hz over 

approximately 2 minutes, and the decrease in photoluminescence emission was monitored over time. 

The system was flushed with clean N2 after each run to prevent contamination of the sensing chamber. 

2.4 Simulated buried landmines 

Simulated buried landmines were prepared with 1 g of a TNT-containing composite material or 2,4-

DNT in a metal or plastic container with holes drilled into the lid to allow for vapour release, and buried 

in soil or sand at a depth of 2 cm, 5 cm or 10 cm in clay pots. Blank samples were made by placing 

empty containers below the soil or sand surface in clay pots. The TNT samples inside the containers 
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are NESTT materials from www.xm-materials.com which are comprised of silica particles coated with 

the explosive material (~8% explosive). The samples were securely held in a glove box for one year 

prior to testing to allow diffusion of the vapour molecules to the surface, and to provide a controlled 

environment, with humidity and temperature inside the sealed box constant at 28% RTH and 23°C. To 

make a measurement the sensor system was positioned over the pot and ambient air drawn through 

the sample chamber by the pump. The LED was turned on and data collection started shortly prior to 

air pumping, with the system inlet approximately 1 cm from the sand/soil surface. Measurements 

were taken at 1 Hz sample rate for approximately 100 seconds. Clean air was pumped through the 

sample chamber between measurements to avoid contamination or residual explosive particles within 

the sensing chamber. 

 

3. Results and discussion 

 

3.1 Merck Super Yellow film characteristics  

 

To enable close spectral matching of the system excitation LED and optical emission filter with the 

photophysical properties of the polymer, the absorption and emission spectra of Super Yellow films 

of 100 nm thickness was measured. As shown in Figure 5, the absorption band of Super Yellow is quite 

broad, with a peak at 440 nm, while the emission spectrum, with ex = 440 nm, shows a peak at 590 

nm giving a relatively large Stokes’ Shift of 150 nm. This large separation between excitation and 

emission wavelengths allows optical filtering above 550 nm to readily block the vast majority of 

excitation light. The film PLQY was measured to be 40%. 

 

3.2 System response to 2,4-DNT vapour flow 

http://www.xm-materials.com/
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The detection system was attached on one side of the sensing chamber used in previous explosives 

detection studies [6-8, 12]. Clean nitrogen was purged for a few seconds through the chamber prior 

to the 2,4-DNT vapour-line being introduced. Figure 6 shows the photoluminescence quenching by 

2,4-DNT reducing emission intensity by approximately 63% over 100 seconds. The emission can be 

seen to drop by 30% in the first 10 seconds of measurement with a subsequent decrease in quenching 

over time, indicating saturation of available quenching sites. By contrast, the clean control line shows 

a drop in emission intensity by around 3.5%, attributable to minor degradation of the polymer under 

illumination. We estimate the Limit of Detection (LoD) to be 1/30th of the vapour concentration 

present in the experiment, which sets a maximum bound of 30 ppb (assuming a saturated vapour 

pressure of DNT), but is likely to be significantly lower than this. 

While some conjugated polymers can be recycled via nitrogen flushing, Super Yellow films only show 

partial reversibility with the application of heat to release the adsorbed explosive molecules.  The films 

do not return to the original intensity levels probably due to residual nitro aromatic molecules from 

the vapour retained within the polymer matrix. 

3.3 Buried explosives  

Figure 7 shows the Super Yellow emission intensity response to 2,4-DNT from several simulated buried 

landmines, with a control emission intensity. The sensing system was placed around a centimetre 

above the surface of each clay pot containing a simulated mine. The excitation LED and micropump 

were switched on, and the emission monitored in real-time at a sample rate of 1 Hz. The control 

measurement was taken by pumping ambient air in a non-explosive environment with the excitation 

LED switched on; the straight-line decrease in intensity can be attributed to degradation of the 

polymer under intense illumination in air [16, 17]. However, a much faster exponential decrease in 

intensity can be clearly observed when the film is in contact with explosive vapours. 
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TNT vapour was also readily detected by the system. It is known that TNT has a lower vapour pressure 

of 9.15 ppb compared to 411 ppb for 2,4-DNT [18], and does not have as strong a quenching effect on 

Super Yellow as does 2,4-DNT [12]. Super Yellow films were used to detect two 2,4-DNT samples, a 

TNT sample under the same conditions, and a control sample as before. Figure 8 shows the response 

for all four samples, with the Super Yellow being quenched by around 65% by 2,4-DNT, and 45% by 

TNT. The attributes of these responses are shown in Table 1, where a clear difference in Quenching 

Efficiency (QE) over 100 s and Slope at 10 s is readily apparent between the buried explosive vapours, 

including the nitroaromatic molecule, the container material, burial media, and burial depth, and the 

control mine. 

Table 2 shows the range of measured QE at 100 s and slope between 0 and 10 s for a range of 

simulated buried landmines. It can be seen that a high quenching efficiency is observed from all buried 

explosives, hence the amount of vapour present above the surface after one year is sufficient to be 

detected with the system at a distance of approximately 1 – 2 cm from the surface and the inlet of the 

system. 

 

4 Conclusion 

We have demonstrated a portable, low-cost optical explosives vapour sensor based on quenching of 

photoluminescence from the conjugated polymer Super Yellow. The hardware was designed and 

developed to be modular and user-friendly in the field by utilising off-the-shelf components, such as 

the Arduino microprocessor, in addition to low power requirements and a lightweight form. The 

photoluminescence was significantly quenched by vapours from buried simulated landmines 

containing 2,4-DNT and TNT, at concentrations of approximately 400 ppb and 9 ppb respectively. With 

the sensitivity, fast response time, the low-cost and portability exhibited by the system, it shows 

promising attributes for deployment in the field for humanitarian demining in the future.  
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Fig. 1. Chemical structure of Merck Super Yellow, with x:y:z = 1:12:12 

 

Fig. 2. (a) Schematic of instrumentation (not to scale); (b) Photograph of Enclosure with labelled parts; 

(c) Loading mechanism with a Merck Super Yellow film. 

 

A 
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C 

 

Fig. 3. Low-power transimpedance circuit for photodiode 
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Fig. 4. LabView-based GUI of the optical sensing system. 

 

Fig. 5. Absorption and emission spectra of Merck Super Yellow films spin-coated onto a glass coverslip. 

Emission spectrum recorded with ex = 440 nm. 
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Fig. 6.  Response of system to 2,4-DNT vapour delivered via nitrogen line (Black line) with clean 

nitrogen control line (red). The normalised signal response shows the drop in measured fluorescence 

from the film with time. 

 

Fig. 7. Response of Super Yellow films to 2,4-DNT buried in a plastic casing at a depth of 2 cm in soil 

(black and red lines), and in sand (purple line) against blank sample (blue line). 



17 
 

 

 

Fig. 8. Comparison of Super Yellow films with 2,4-DNT (black and red lines) and TNT (green line) against 

blank (blue line), with the explosives buried at 2cm under soil in plastic. 
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Table 1 – Attributes of sensor responses in Figure 8 

Nitroaromatic Material Media Depth QE (%) at 100 s Slope at 10 s (s-1) 

DNT Plastic Soil 2 cm 65 0.035 

DNT Plastic Soil 2 cm 65 0.039 

TNT Plastic Soil 2 cm 42 0.018 

Control Plastic Soil 2 cm 21 0.006 
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Table 2 – Matrix of simulated buried landmines and corresponding sensing attributes 

Nitroaromatic Material Media Depth QE (%) at 100 s Slope at 10s (s-1) 

DNT Plastic Sand 5 cm 68 0.048 

DNT Metal Sand 2 cm 67 0.053 

DNT Plastic Soil 10 cm 74 0.047 

DNT Metal Sand 10 cm 72 0.05 

TNT Plastic Sand 2 cm 69 0.049 

TNT Metal Soil 5 cm 73 0.048 

TNT Plastic Soil 5 cm 71 0.04 

TNT Plastic Sand 10 cm 70 0.049 

TNT Metal Sand 10 cm 74 0.051 

TNT Metal Sand 5 cm 76 0.042 

DNT Metal Soil 5 cm 74 
0.042 

 


