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Chapter 1

Introduction

A growing number of natural disasters like floods, hurricanes, or earthquakes and man-made
disasters like chemical or nuclear accidents (EM-DAT (2017)) are the reason for an increasing
relevance of disaster management. Disaster management includes a multitude of strategies to
prevent catastrophes and the arising negative effects for the residents in the affected area. These
strategies include for instance land use control to prevent that floods affect residential areas,
relief delivery to take care of the victims after a catastrophe or re-building activities in the
affected area. All these strategies and instruments must be in place prior to the occurrence of
the catastrophe thus a well organised disaster management is necessary. In the last decades
many studies in different disciplines of disaster management were executed, which consider var-
ious aspects and perspectives of this research area. Also, a significant increase in the number
of publications in operations research journals dealing with disaster management issues can be
observed (Altay and Green (2006)). This points out the increasing interest and relevance of
operations research in disaster management.
In the context of disaster management evacuation of the affected area represents an important
instrument to handle a dangerous situation. This instrument can be used in case of noticed-
and no-noticed catastrophes. In case of noticed catastrophes like for instance floods or earth-
quakes many lives can be saved if the endangered area is cleared prior to the occurrence of the
catastrophe. But also in case of no-notice catastrophes, e.g. a nuclear accident, evacuation of
the affected area can save the lives of many people and minimises the magnitude of the catas-
trophe. Since early works by Sheffi et al. (1982) and Sinuany-Stern and Stern (1993) the area
of research which uses methods of operations research for evacuation management has rapidly
grown. Various strategies are developed to optimise the evacuation of affected areas. These
strategies include aspects like traffic management, shelter positioning, and evacuation timing.
In the area of traffic management a common strategy is the use of contra-flow which was success-
fully tested when Hurricane Rita reached in the Gulf of Mexico in 2005 (Sangho et al. (2008)).
Other studies determine optimal routes to guide the residents out of the affected area, strategies
that include public traffic management or methods of staged evacuation that are used to pre-
vent traffic congestion by evacuating the affected area in different time intervals. In this research
field optimisation models as well as simulation model are used (Özdamar and Ertem (2015)).
Most of these studies assume that people follow the proposed evacuation strategies (for more
details see the review of the related literature in Chapter 2). This assumption is critical because
evacuation plans may fail when the people do not behave in the expected way. Abdelgawad and
Abdulhai (2013) point out that evacuees behave selfishly in large evacuations scenarios which
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leads to user-optimal decisions. This assumption is supported in studies by Murray-Tuite et al.
(2012) and Sadri et al. (2014). These studies interviewed people that were involved in hurricane
evacuations and, besides others, evaluated the evacuee’s route choice decisions. Most of the
evacuees stated, that they chose a familiar way and only a small part followed the instructions
of authorities. Hence, a more realistic assumption is that evacuees tend to selfish behaviour
during evacuations. To handle realistic evacuation scenarios, the behaviour of people must be
considered in the evacuation plan. To the best of our knowledge there are just a few studies that
develop strategies for evacuation traffic management and take the selfish behaviour of evacuees
into account, for example Madireddy et al. (2011) and Huibregtse et al. (2012).
In this thesis the research field of traffic flow optimisation for evacuation scenarios is linked with
the research area of selfish routing in traffic networks. As mentioned above, just a few studies
have considered this combination before. Accordingly, a research gap exits, which will be closed
by this thesis, as it studies the effects of selfish routing in evacuation scenarios and develops
strategies to counteract these effects.
With a combination of these two research areas it is hypothesised that the residents of an en-
dangered area behave selfishly. As the behaviour of people in evacuation scenarios is studied
in the literature it seems to be a relevant problem during evacuation scenarios. The literature
of traffic management (e.g. Braess (1968), Roughgarden and Tardos (2002), Cole et al. (2003))
reveals that selfish behaviour has negative effects on the traffic flow. If people choose their routes
without considering the route choice of the other network users, the traffic flow will decrease
and the travel time in the network increases. This thesis analyses whether these results can be
transferred to an evacuation scenario or not. Methods will be introduced that counteract the
observed effects and lead to an increase of traffic flow, which in turn reduces the evacuation time.
Known from the literature most people will take routes which they assume as best for themselves
in evacuation scenarios. In such situations people prefer familiar routes they know from daily
life and these are in most cases the shortest or fastest ones (Sadri et al. (2014)). Thus many
people will take the same routes which leads to congestions. The increase of traffic flow can be
achieved by forcing the evacuees to take alternative routes. In this thesis a method to regulate
the selfish evacuation traffic is developed on the basis of the Braess paradox (Braess (1968)). In
his paradox, Braess describes that the decrease of travel time in a network is achieved by adding
a time decreasing arc. The paradox occurs because the network users act selfishly and take the
best route according to their own estimates. So all network users take the same path which
results in congestions and in an increase of travel time for all network users (for a more detailed
description the reader is referred to Chapter 4). In this thesis these findings are used the other
way around and street blockages are installed to force the evacuees to use alternative routes
to optimise the overall traffic flow. The consideration that people follow proposed evacuation
strategies can be ruled out with this method and hence it is not necessary to consider expected
behaviour patterns any more. An additional advantage is that the communication effort can be
reduced in comparison to the effort that is necessary when dealing with the optimal routes for
the network users. To implement this approach only the position of the street blockages must
be communicated and the evacuees choose their selfish routes according to the optimised network.

The thesis is structured as follows: In Chapter 2 general aspects of evacuation planning are
discussed. After a short introduction to disaster management and a discussion of the relevance
on this topic in Section 2.1, Section 2.2 summarises the relevant literature of evacuation traffic
management. Section 2.3 illustrates the assumptions made for the evacuation scenario in this
thesis. Chapter 3 introduces the cell transmission model (CTM), which is applied throughout
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this thesis to model the traffic flow. In Section 3.1 the basic idea of the CTM is introduced
and the relevant assumptions are stated. Afterwards, in Section 3.2 the use of the CTM in
evacuation scenarios is explained. Herein, the related literature is summarised first, second a
basic model for evacuation traffic optimisation is introduced. Chapter 4 summarises the main
aspects of selfish routing in traffic networks. In Section 4.1 the consequences of selfish routing in
traffic networks are discussed and relevant terms and definitions are introduced. In conclusion
the related literature is presented. Section 4.2 points out and discusses Braess’s paradox, which
illustrates the negative influence of selfish routing in traffic networks. Besides the general phe-
nomenon, the relevant literature is discussed. The chapter closes with a summary of the main
aspects of selfish routing and emphasises the relevance of these aspects with regard to evacu-
ation traffic management. In Chapter 5 selfish routing and evacuation traffic management are
combined (Section 5.1) and the test bed used for the computational studies is presented (Section
5.2). Section 5.1.1 illustrates the selfish route selection of evacuees and characterises the evacuee
types considered in this thesis. Section 5.1.2 introduces the general concept of blocking street
sections, which is specified later in Chapters 6 to 8. In Section 5.2 the used test bed is introduced
and reference values are discussed. In Chapter 6 the concept of using sub-networks to guide the
selfish evacuation traffic is introduced. The general idea of this concept is illustrated in Section
6.1 and an approach on how to determine these sub-networks is proposed. In Section 6.2 a
mathematical model is presented that can be used to compute such sub-networks and in Section
6.3 a heuristic is proposed that can be utilised to compute such sub-networks for networks of re-
alistic size. In Section 6.4 variants of the construction approach, which was presented in Section
6.1, are introduced. The chapter closes with a comprehensive computational study. Chapter
7 delineates a method that uses specific street blockages to guide the selfish evacuation traffic.
The problem is formulated as a bi-level model, therefore in Section 7.1 a short introduction to
bi-level optimisation is given. Section 7.2 presents a mathematical model for the computation
of street blockages taking selfish routing evacuees into account. First, the modelling assump-
tions are discussed and than the upper- and lower level problems are introduced. In Section 7.3
three solution approaches are presented, that can be used to solve the model formulation stated
above. In the last section of this chapter the presented approaches are tested in a computational
study. Chapter 8 investigates the minimisation of street blockages which are necessary to guide
the traffic out of the affected area. To minimise the number of blockages a second objective
function is proposed for the mathematical model which is presented in Chapter 8. Section 8.1
summarises the general idea of multi-objective optimisation and presents some relevant solution
methods. Afterwards, the relevance of the second objective function is discussed and in Section
8.3 a solution approach that is based on lexicographical optimisation is developed. In Section
8.4 a solution procedure that is based on the ε-constraint method is illustrated. Following, the
presented methods are tested in a computational study and the results are analysed. Chapter 9
summarises the main aspects of this thesis and discusses the potential of further research.
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Chapter 2

Evacuation planning

Disaster management is an emerging topic in a world with a growing number of natural and
technological disasters. In this chapter the most important aspects of disaster and evacuation
management in the context of operations research are discussed. Section 2.1 gives an overview
of the phases of the disaster management life cycle and the corresponding activities. Afterwards,
the stages of evacuation management are explained and the related literature of each stage is
presented. In Section 2.2 a comprehensive review of the literature in management of evacuation
traffic is given. The chapter closes with Section 2.3, where the evacuation scenario which is
relevant for this thesis will be presented.

2.1 Disaster Management

The number of disasters is rapidly growing since the 1960s: 40 documented natural disasters
in 1960 to 526 documented disasters in the year 2000. The same trend can be observed for
technical disasters (EM-DAT (2017)). This development leads to the necessity of well-prepared
disaster management, where predefined activities should be performed during, before, and after
a disaster. The goal of the disaster management is to prevent the loss of human life, to reduce
the impact of the disaster, and to return the affected area into it’s original state (Altay and
Green (2006)). The disaster management consists of different phases, which result in a disaster
management life cycle. However, there is no unified definition on this matter, and the number
of phases in the cycle as well as their definition varies depending on the study. One concept
with four phases based on the Comprehensive Emergency Management concept was introduced
in 1978 and reported in the National Governor’s Associated Emergency Preparedness Project.
This concept contains the mitigation, preparedness, response, and recovery phases (Altay and
Green (2006)). A classification with three phases is presented by Özdamar and Ertem (2015),
including (pre-disaster) preparedness, (post-disaster) response and recovery phase. Both con-
cepts contain the same activities, just the allocation to the phases is different. Figure 2.1 depicts
the disaster management life cycle with three phases: catastrophe management can be seen as
cycle because the phases are repeated continuously. After the consequences of a disaster are
removed further activities are necessary to prevent the next disaster. This thesis focuses on
the three phases concept and discusses the most important activities as presented by Altay and
Green (2006) and Özdamar and Ertem (2015).
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2.1 DISASTER MANAGEMENT

Figure 2.1: Disaster Management Life Cycle.

The preparedness phase includes all activities which either prevent that natural/technical phe-
nomena result in catastrophes or to reduce the impact of a disaster. In order to lower the
consequences for example barriers can be constructed, land use can be controlled or building
codes can be made to improve disaster resistance of structures (Altay and Green (2006)). Also,
activities of inventory, equipment and shelter pre-positioning are included in this phase. Espe-
cially a well prepared pre-positioning of shelters results in a coordinated evacuation (Özdamar
and Ertem (2015)). The response phase contains all activities that are required to reduce the
impact of an occurred disaster: evacuation of the affected area, emergency rescue and medical
care, relief delivery, debris collection or road cleaning are just some of the activities (Altay and
Green (2006), Özdamar and Ertem (2015)). In the recovery phase, the destroyed area is restored
in the original state and humanitarian help is provided to the victims of the catastrophe. The
resulting activities are e.g. re-building of infrastructure, roads and key buildings (Altay and
Green (2006)). In the last decades, the topic of catastrophe management and humanitarian
logistics became more and more important in the field of operations research. A lot of research
is done about topics in the different phases of the disaster management life cycle. For a com-
prehensive collection of different approaches and topics in humanitarian logistics the reader is
referred to Altay and Green (2006), Van Wassenhove and Pedraza Martinez (2012) and Özdamar
and Ertem (2015).
One part of disaster management and an effective instrument to keep the consequences of a
disaster low is the evacuation of the affected area. As mentioned above, the main activities of
evacuation planning can be assigned to the (post-disaster) response phase, but there are also
activities that can be allocated to the (pre-disaster) preparedness and recovery phase. That
the instrument of evacuation is used in all phases, points out the importance of evacuation in
disaster management. To get a better understanding of evacuation management first evacuation
is defined in general and afterwards the stages of evacuation planning and the resulting activities
are explained.
According to Müller (1998) an evacuation is defined as the organised relocation of humans and
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2.1 DISASTER MANAGEMENT

animals from an affected area with transport, shelter and necessary supplies. An evacuation is
not a short term instrument of disaster management and considers more than the transport of
people out of the affected area. Before the relocation of people can take place the evacuation
area has to be defined and shelters have to be determined. Moreover, evacuation includes the
care of people in the safe areas and the transportation back to their homes when the disaster
has ended (Müller (1998)).
Figure 2.2 depicts the stages of evacuation planning processes based on ISO 22315 (ISO22315
(2014)), which illustrates all activities that will be performed in an evacuation. According to the
definition Müller (1998) and the activities presented in the stages of evacuation management,
each phase of the disaster management life cycle concerns aspects of evacuation planning.

1) Preparing the public to react effectively

2) Understandig and visualising the area at risk

3) Making the evacuation decision

4) Alerting the public of the need to react as advised

5) Analysing evacuee movement from an area at risk

6) Assessing evacuee shelter requirements

7) Evaluating and continual improvement

Figure 2.2: Stages of Evacuation Management (Based on ISO22315 (2014)).

Afterwards, the stages of an evacuation process are assigned to the phases of the disaster man-
agement life cycle. For each stage the main activities are explained and for the stages that
belong to the response phase the related literature is presented.
Stage one can be assigned to the preparedness phase and includes all activities that can be done
to be prepared for an evacuation. These activities are for example: evacuation or fire protec-
tion training in schools or public buildings, prepared and communicated evacuation plans for
instance in regions next to nuclear power plants, alignment of signs which depict escape routes
in buildings. These and further activities are possible to prepare the public for an evacuation.
The stages two to six can be assigned to the response phase and include all activities that are
necessary directly before, while and after the evacuation.
In stage two the evacuation area is defined, which is really important for the evacuation plan-
ning process. In this step the research can be divided into two main parts: the evacuation of
buildings and transportation means and the evacuation of urban areas. Since this thesis focuses
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2.1 DISASTER MANAGEMENT

on the evacuation of urban areas only, the evacuation of transportation means and buildings will
not be discussed in detail. However, for reasons of completeness, a rough overview of studies in
building evacuation are presented. A simulation model for the evacuation of buildings by fire
is introduced by Shen (2005). With a simulation model the "evacuability" of a building can be
estimated. The "evacuability" is defined as the percentage of people that can be successfully
evacuated from the building. A comprehensive review of simulation models for the evacuation
of build environments is given in Gwynne et al. (1999). Chalmet et al. (1982) present an early
optimisation model for the evacuation of buildings. The problem is modelled as a time-depended
network flow problem. They present an approach to minimise the total evacuation time and
to identify bottlenecks of the evacuation. Like in Shen (2005) they also analyse the "evacuabil-
ity" of buildings and present evacuation relevant aspects of building design and redesign. Choi
et al. (1988) also present a network flow model for building evacuation. They study maximum
flow, minimum cost and minmax objectives. In their model they have side constraints, which
consider for example variable arc capacities. For networks with "special" structure they use a
greedy algorithm to solve the model. For further aspects of optimisation models for evacuation
of buildings the reader is referred to Hamacher and Tjandra (2001).
For the evacuation of urban areas it is more complicated to define the affected area. On the
one hand, the geographical area has to be determined, and on the other hand, the evacuation
demand has do be estimated. The determination of the affected area highly depends on the dis-
aster type. For regions with critical industry like nuclear power plants or chemical industry as
well as for regions that are endangered in terms of natural disasters like hurricanes or floods the
evacuation areas can be determined preventively. The evacuation area can be determined by us-
ing postal codes or easy identifiable natural boundaries (Murray-Tuite and Wolshon (2013)). In
most cases the evacuation area is determined by expert judgement. Wilmot and Meduri (2005)
formalise this process for hurricane evacuations. Therefore, they use hurricane attributes like
track, speed and size to identify the evacuation area. Hsu and Peeta (2014) present a concept
to determine evacuation zones for staged evacuation planning. They seek risk based evacuation
sub-zones and consider characteristics of the disaster, traffic patterns and network supply condi-
tions. A further complex part of evacuation planning is the evacuation demand modelling which
depends on a wide variety of factors. Next to the number of people that has to be evacuated
the composition of the evacuee group has to be considered, e.g. which percentage has an own
vehicle, are there disabled or elderly people or children in the area that cannot evacuate them-
selves. Murray-Tuite and Wolshon (2013) identify a lot of factors that influence the evacuate
/ stay decision which influences the evacuation demand. These factors include environmental
factors (distance to threat or present injuries) personal experience of the evacuees (previous ex-
perience with hazards or evacuations) and socio-demographic factors (gender, age, income, and
children in a household). Dash and Gladwin (2007) present a comprehensive literature review
in context of evacuation decision making. They identified a lot of factors that influence the
decision of evacuees to evacuate or to stay and investigate the influence of this decision on the
evacuation. They summarise that a good evacuation demand forecast is important to estimate
the consequences of hazard that depend on evacuation rates, network clearance time or shelter
usage. In addition to the total evacuation demand, the time-dependent evacuation rate must
be considered for a successful evacuation. Besides the demand resulting from the decision to
evacuate or to stay, this demand rate represents when, how many evacuees start the evacuation.
To estimate the traffic demand it is necessary to know in which time span the evacuees will use
the street network capacities. The travellers departure choice is often modelled with response
curves which predict the percentage of departures in each time interval. In literature various
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departure time models are used: some assume instantaneous departure times (Chen and Zhan
(2008)), uniform distributed departure times (Yuan et al. (2006)) or Poisson distributed times
(Cova and Johnson (2002)). With Poisson distributed departure time Cova and Johnson (2002)
want to capture that the evacuation demand is low at the onset of evacuation, the evacuation
rate then increases to a peak and then gradually tapers off. To depict this behaviour they divide
the planning horizon into discrete time periods and determine for each interval the percentage
of vehicles that are willing to evacuate. According to Pel et al. (2012) the most realistic way to
depict the evacuation departure behaviour are the Weibull distribution and the sigmoid curve.
The models described above belong to the sequential travel demand models, where the total
evacuation demand is determined first and then the time-depended demand distribution is cal-
culated. Another way is the simultaneous demand modelling, where the processes are executed
simultaneously. The travel demand can be calculated in each time span by repeatedly applying
a binary logit model, where the evacuees decide in each period to evacuate or to stay (Pel et al.
(2012)).
In the third stage, the evacuation decision is done on the basis of the determined risk area and
estimated evacuation demand. Evacuation traffic simulation models can be used to estimate the
predictability of the evacuation under the given parameters.
The fourth stage deals with public warning. Public warning has a high influence on the num-
ber of evacuees which are willing to evacuate and this in turn affects the evacuation demand
estimated in the second stage. A lot of studies in social since deal with the right way to com-
municate the warning massage to the public. Depending on the message more or less people
decide to evacuate or stay. Hence, an effective and clear communication of the evacuation has
a high influence on the success of an evacuation. Besides the number of evacuees, the warning
massage also influences the time-depended evacuation demand, because it affects the decision of
the evacuees when to leave the endangered area (Lindell and Perry (2012)). Effective warning
is a complex system which is influenced by many factors. Different warning channels will reach
different parts of the public and need more or less time to broadcast the message. Effective
communication channels are sirens, tone alert, telephone and social media. A combination of
indoor and outdoor communication is the most effective way to reach the majority of the people
(Sorensen (2000)). A lot of studies focus on the right messages that should be communicated to
public. Drabek (1999) stated that in an evacuation message the following questions should be
answered: "Who is issuing the warning?, What is threatening?, What exact geographical area is
threatened? When is coming? How probable is the event? Are there high risk locations, such as
auto mobiles, that require special actions? What specific protection actions should be taken?".
A message that answers all these questions is not easy to communicate, particularly because the
people that receive the message understand and interpret the message in different ways (Dash
and Gladwin (2007)). In case of evacuation it is not easy to communicate with the public and
in most cases it is hard to persuade the public to evacuate. In most cases it is impossible to
communicate information like route choice, shelter selection etc. to all evacuees.
At the fifth stage the movement of evacuees is considered. This stage deals with questions like:
Which ways should the evacuees take to leave the endangered area? How can the street network
be adjusted to deal with the evacuation traffic? Or which transportation means are necessary
to evacuate the affected area? This is the main topic of this thesis, therefore a comprehensive
review of the related literature is presented in Section 2.2.
The sixth stage deals with the emergency sheltering of evacuees. This stage includes decisions
made in the preparedness and the response phase of the disaster management life cycle. Two
types of shelters have to be differentiated: permanent shelters which are facilities that are not
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specialised for evacuation, like churches, stadiums or schools but can be used as shelters in case
of emergency evacuation and temporary shelters which can be installed in case of evacuation (Li
et al. (2011)). The preparedness phase includes all activities related to the permanent shelters
and during the response phase decisions are made about the opening of shelters and the allo-
cation of evacuees to the shelters (Altay and Green (2006), Li et al. (2011)). According to the
described activities the literature can be divided into two main field: an area of research that
determines optimal locations of shelters and the other field of research deals with traffic rout-
ing to or assignment of the evacuees to predetermined shelters. Most research combines both
aspects. Sherali et al. (1991) present a location-allocation model to determine the shelters that
minimise the congestion-related evacuation time. They point out that the position of shelters
can greatly influence the network clearance time. In their model they select the shelters from a
pool of potential locations. Kulshrestha et al. (2011) present a robust approach for determining
optimal locations for public shelters and their capacities from a given set of possible shelters.
They consider demand uncertainties that are associated with the number of people that use
a public shelter in case of evacuation. Kongsomsaksakul et al. (2005) also present a location-
allocation model. They use a Stackelberg game to determine the shelters that minimise the
total evacuation time. In the game, the leader (authority) determines the shelter locations and
the follower (evacuees) chooses a destination and route to evacuate. They formulate a bi-level
program and solve it with a genetic algorithm. Li et al. (2011) present a two stage stochastic
program that considers the aspects of preparedness and response phase and also includes the
evacuation traffic. In the first stage decisions about location, capacities, and held resources
are made. The second stage allocates evacuees to the shelters and transports resources to the
shelters. One of the first models that deals with shelters in emergency evacuations is presented
by Yamada (1996). He presents a network flow approach to route the evacuees to predetermined
shelters. In a first model the capacities of shelters are not considered. In a second model, a
minimal cost flow formulation, the limited capacities of shelters are taken into account.
The seventh stage can be assigned to the recovery phase. Here, the evacuation activities are
evaluated and conclusions for later evacuations are made. Moreover, additional activities are
identified that need to be installed in the future in order to improve the disaster management.
This step then leads to the preparedness phase, clearly highlighting the cyclic character of the
disaster management.

2.2 Models for Evacuation Traffic Management

As discussed in Section 2.1 one part of the evacuation management deals with the movement
of evacuees out of the affected area. In the this section a comprehensive review about traffic
models in evacuation management is given. The literature in traffic management for evacuation
planning can be divided into simulation and optimisation models. This thesis focuses on the
optimisation models for evacuation traffic management, but for the sake of completeness also
selected topics of simulation models are presented. One of these selected topics is the analysis
of evacuee’s behaviour and here the selfish routing model is of special interest. Those models
provide some interesting insights in the topic of selfish routing evacuees considered in this thesis.
The literature review of this thesis first discusses the relevant literature of simulation models
and second the optimisation models for evacuation traffic management are discussed. The liter-
ature review on optimisation models is divided into literature that covers the optimisation of the
street network and literature that deals with evacuee routing. Studies which use the the Cell
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Transmission Model (CTM) for traffic modelling are presented in a comprehensive literature
review in Section 3.2 after the general idea of the CTM is explained.
Early models in traffic simulation are introduced by Sheffi et al. (1982) and Pidd et al. (1996).
Sheffi et al. (1982) develop the model NETVACI to simulate traffic patterns during emergency
evacuations. They estimate the network clearance time for areas surrounding nuclear power
plants. The presented model is a macro traffic simulation model that considers the network
typology and intersections. The model does not consider individual vehicles but uses mathe-
matical relationships between flow, speed, densities etc. With the model different evacuation
scenarios can be simulated and the related network clearance time can be estimated. In contrast
to NETVACI the CEMPS model by Pidd et al. (1996) is a microscopic traffic simulation model.
In this model a geographic information system (GIS) is combined with a micro-simulator. The
roads are constructed by lists of locations and vehicles can flow from one location to another if
there is space available in this location. The model is developed to determine suitable evacua-
tion plans. Sinuany-Stern and Stern (1993) present a simulation model to monitor household’s
actions in evacuations. They consider vehicle based evacuation as well as pedestrian evacuation.
They want to examine the sensitivity of network clearance time to several traffic factors and
route choice mechanisms. To make the simulation more realistic they implement the interaction
between vehicles and pedestrians. Cova and Johnson (2002) present an off-the-shelf microscopic
traffic simulator combined with a custom evacuation-scenario generator to simulate evacuation
plans for neighbourhoods in fire-prone wild-lands. With the custom scenario generator house-
hold trips, departure timing, and destination choice are determined. With the simulation model,
evacuation plans for different scenarios for wild-land evacuations are tested. Murray-Tuite and
Mahmassani (2004) present a simulation model formulation that integrates household interac-
tions in the evacuation planning. In case of an evacuation the members of a household prefer
to evacuate together in a group. This behaviour leads to additional traffic, e.g. parents pick up
their children at school or they meet at home instead of directly leaving the affected area. This
additional traffic is considered in the model by Murray-Tuite and Mahmassani (2004) and the
resulting evacuation time is simulated. Zou et al. (2005) introduce a simulation tool for hurricane
evacuation in Ocean City, Maryland. They use a microscopic simulation module and real-time
options. Moreover, they integrated an optimisation module that determines a potentially most
effective plan under the detected traffic conditions. Therefore this tool takes control strategies
like converting a one through lane to a right-turn lane into account. Tu et al. (2010) develop a
simulation model for the city of Almere. They consider the driving behaviour of the evacuees
and analyse the impact of driving behaviour on the evacuation clearance time. They develop
different scenarios in terms of acceleration rate, maximum speed, mean headway, and minimum
gap distance. They summarise that an increase in acceleration rate and maximum speed do
not have a significant influence on the evacuation time. But a reduction of mean headway and
minimum gap distance between two vehicles can reduce the evacuation time. Hence, it is impor-
tant to consider the driving behaviour by simulating realistic evacuation times. A large part of
research in traffic simulation that takes the behaviour of evacuees into account uses agent-based
or multi-agent simulation. An agent-based simulation model by Chen and Zhan (2008) analyses
the effectiveness of simultaneous and staged evacuation. The traffic flow is modelled at the level
of individual acting vehicles. They compare the concept simultaneous evacuee warning with a
staged concept where the affected area is divided into zones and the residents in the different
zones are informed at different time-point. They test their concept on three network types: a
grid road network, a ring road network, and a real network from the City of San Marcos. They
conclude that no strategy can be considered as the best across all structures. In addition to
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the network structure the performance of their concepts depends on the population density. A
further model with agent-based modelling is presented by Chen et al. (2006). They develop a
micro-simulation model for the special structure of hurricane evacuations in the Florida Keys.
With the agent-based approach they want to capture individual and collective behaviour to
create realistic scenarios which consider evacuee’s route choice and other driving decisions. By
the help of simulation they want to evaluate evacuation plans and help for emergency managers
to make decisions during the evacuation organisation. Handford and Rogers (2012) present an
agent-based simulation model that considers the specific driving behaviour of drivers in evacua-
tion scenarios. Their model is based on the social force model of crowds and includes evacuation
specific desires of drivers like following the routes taken by other drivers. Similar behaviour
is considered by Pan et al. (2007) in their simulation studies. They analyse crowd behaviours
and observe behaviour patterns like competitive, queuing or herding behaviour. They build the
simulation model for pedestrians, but as stated in Handford and Rogers (2012) some of these
behaviour patterns can also be observed for drivers in evacuation context. For a comprehensive
overview of simulation models in evacuation management the reader is referred to Pel et al.
(2012).
Next to the simulation of evacuations a large part of research is engaged in optimising the
evacuation process. First, the relevant literature that considers the optimisation of evacuation
routes and second the research that focuses on the optimisation of the given street network
for the evacuation are presented. Cova and Johnson (2003) develop a network flow model for
evacuation traffic. The developed model identifies optimal lane-based evacuation routing plans
to prevent traffic delays at intersections. The model is based on a minimum-cost flow problem
and in the generated traffic routing plans a reduction in the total travel distance is in conflict
with crossing elimination at intersections. Miller-Hooks and Sorrel (2008) introduce a maxi-
mal dynamic expected flow problem to determine paths and flows (flow pattern) that maximise
the successfully evacuated residents from an affected area in a predetermined time horizon. To
capture uncertainty in the number of evacuees that can pass through a passageway, the linked
travel times and capacities are assumed to be time-varying discrete random variables with known
distribution functions. The model is solved using a metaheuristic based on principles of noisy
greed algorithms. Stepanov and Smith (2009) design optimal egress route assignments for given
transportation networks. As a performance measure they use clearance time, total travelled
distance and blocking probability. The challenge is that the vehicle speed decreases with an
increasing number of vehicles that use a road segment and can lead to blocking of highly utilised
road segments. For the evaluation of the road dependent travel times a M/G/c/c stage de-
pendent queuing model is used. Saadatseresht et al. (2009) present an optimisation algorithm
for the assignment of evacuees to shelters under consideration of optimal routes between the
building blocks and the safe places. In the algorithm first (potential) safe areas are designed
/selected, then optimal paths between each building block and each safe area are computed and
the building blocks are assigned to the safe areas. The problem is defined as a multi-objective
problem and different methods for multi-objective optimisation are presented. The approach
is tested for an area of Tehran (Iran). Polimeni and Vitetta (2011a) present a shortest path
and route design problem in time-dependent networks. The path design formulation is based on
dynamic programming and a solution is found using a modification of the Dijkstra algorithm.
In the model paths are designed for emergency vehicles operating in the network to support
the population involved in the disaster. In the time-dependent network private and emergency
vehicles are considered. The goal of the model is to minimise the route costs for the vehicles.
To solve the problem described by Polimeni and Vitetta (2011a), Polimeni and Vitetta (2011b)
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present a further algorithm which is based on the time-generalised Bellman optimality condition
and test the algorithm on a real network. A model for traffic flow optimisation is introduced
by Bretschneider and Kimms (2011). With their model the traffic is reorganised to minimise
the evacuation time by prohibiting conflicts within intersections. The problem is modelled as a
dynamic network flow problem with additional variables for the number and direction of used
lanes. To handle problems of realistic size a relaxation based heuristic is presented. Bretschnei-
der and Kimms (2012) present a pattern-based approach for evacuating urban areas to solve the
problem that is described in Bretschneider and Kimms (2011). The objectives of the problem
are the clearance of the affected area as safe as possible and as early as possible. They develop
a two stage heuristic to solve the pattern-based evacuation problem. Lim et al. (2012) intro-
duce a capacity constraint network flow optimisation approach for finding evacuation paths that
maximise the number of evacuees in short notice evacuation planning. To consider the dynamic
character of evacuations they expand the static network flow model to a time-dependent network
flow model. For solving the problem they develop an evacuation scheduling algorithm, where
first evacuation paths with Dijkstra’s algorithm are computed and then the evacuees are assigned
to these paths by means of a greedy algorithm. Coutinho-Rodrigues et al. (2012) formulate a
multi-objective model to determine evacuation paths and shelters. They consider six objectives
like risks associated to paths and shelter location, path length or evacuation time from shelter
to other places e.g. hospitals. They test the model for the city of Coimbra (Portugal) and use
different methods of multi-objective optimisation like the weighting method or by minimising
the distance to the "ideal solution". This solution is obtained by solving the problem for each
objective separately. Hamacher et al. (2013) introduce a flow location model, which combines
dynamic network flow optimisation and location analyses. With the model they determine the
position of facilities in networks, so that the maximum flow will not decrease. They present a
single (1-FlowLoc) and a multi facility flow location model (q-FlowLoc). They develop three
exact solution approaches for the 1-FlowLoc and a heuristic for the q-FlowLoc problem. Go-
erigk et al. (2014) develop a multi-criteria optimisation model that combines different aspects
of evacuation planning which are normally solved separately. They consider location aspects
like choice of shelter location, routing aspects for bus and individual traffic and risk aspects for
the chosen routes. The objectives of the problem are the minimisation of the evacuation time,
the risk and the number of opened shelters. The problem is modelled as a combination of a
dynamic network flow model (private traffic) as well as a multicommodity network flow model
(public transport). To solve the mathematical model for realistic problem sizes they introduce
a genetic algorithm. Lim et al. (2014) present a dynamic network-based evacuation model that
considers uncertain capacities of road links. With the model they plan evacuation routes and
investigate the relationship between the clearance time, the number of evacuation paths and
congestion probability during evacuations. For a predefined time horizon the presented model
selects evacuation paths and flows that results in minimal congestions.
The literature discussed above is based on the strategy of defining optimal routes for the evac-
uees. Another way to regulate the evacuation traffic is the adjustment of the network. A
common method to increase the network capacity in case of emergency evacuations is the so
called "contra-flow" introduced by Wolshon (2001). In this concept some or all inbound lands of
a motorway are used as outbound lanes by an evacuation. Sangho et al. (2008) adopt this con-
cept of contra-flow and present a model to define the optimal driving direction for each edge in
the network. They model this problem on a macroscopic flow model without considering social
behaviour of evacuees, operational costs of contra-flow, or traffic signal settings. They focus in
their paper heuristics to solve the contra-flow problem for large transportation networks. The
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objective they consider is the minimisation of evacuation time. They present a greedy and a
bottleneck relief heuristic to solve the model formulation. Xie and Turnquist (2011) formulate
a lane-based evacuation network optimisation problem. They combine contra-flow and crossing
elimination strategies. The model is bi-level where the upper-level determines which lanes are
used for contra-flow and where crossing elimination is considered. The lower-level assigns the
traffic to routes. To solve the complex problem they use an integrated lagrangian relaxation ap-
proach and a tabu search method. Madireddy et al. (2011) present a strategy called "throttling"
to cope with selfish acting evacuees. To guide the traffic, road segments are temporarily closed
when a specific congestion level is reached and opened when the traffic falls down to a prede-
fined threshold. With this concept they can react on real-time traffic flow and they argue that
it is easy to implement in a real life situation. Hence, traffic demand forecasting is not needed
anymore. Huibregtse et al. (2012) point out that evacuees will not behave as the flows proposed
in an optimal evacuation plan. Therefore, they developed a concept that forces the evacuees
to act as the optimal evacuation flow by closing road segments. In their method they identify
streets which are not used in an optimal evacuation plan, and close these roads for evacuation
traffic. In a case study they show, that this strategy leads to a decrease in evacuation time of
up to 13.4 %. Hadas and Laor (2013) present a multi-objective model to design a network that
is ideally suited for the daily traffic and also for the evacuation traffic. The presented model
optimises both the evacuation time and the network construction costs. To cope with real-sized
networks they use a heuristic based on the minimum-cost problem.

2.3 Assumptions of the Evacuation Scenario

In Section 2.1 the stages of evacuation planning were assigned to phases of the disaster man-
agement life cycle. The described stages of evacuation planning point out that a multitude of
characteristics is necessary to define an evacuation scenario. In this section these characteris-
tics are used to define the evacuation scenario studied in this thesis. For this purpose, it is
stated which assumptions are made and why these assumptions are reasonable. The evacuation
scenario is defined as follows:

• The evacuation of urban areas is considered.

• The behaviour of the evacuees is integrated in the evacuation plan, as the subject of
research. Therefore, an evacuation scenario, which considers private vehicles, is planned.
For the sake of simplicity the interaction with the other road users is not taken into account.

• To keep it simple in the following one vehicle equals one evacuee, regardless of how many
people are in the vehicle. For planning the traffic flow it is important to take the number
of vehicles in the street into account.

• It is assumed that the area that is to be evacuated is already defined according to one of
the concepts presented in the literature. The evacuation area is composed of an affected
area, which the evacuees have to leave and predefined safe places, which the evacuees have
to reach. When the evacuees have reached a safe place, it is assumed that the evacuation
is finished for them.

• The evacuation scenario described in this thesis does not depend on a specific hazard. It
is assumed that the level of hazard is the same in the whole affected area.
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• The network and the traffic flow inside the affected area are modelled with the cell trans-
mission model (a detailed description is given in Chapter 3).

• The position of each vehicle in the network is known.

• In the scenario no preparation time for evacuees is considered. All evacuees are ready
to start the evacuation at the same time, namely at the very beginning of the planning
horizon. In the literature there are different ideas about time dependent evacuation de-
mand modelling. If necessary, these concepts, can be easily implemented in the defined
evacuation scenario (see Chapter 5).

• The main objective in the considered scenarios is the clearance of the affected area as fast
as possible. As a measure the network clearance time (NCT) is used, which is defined as
the first period where all evacuees have left the affected area.

• In the introduced evacuation scenario independent acting evacuees are considered. It is
the main contribution of this thesis that the behaviour of selfish acting agents is included
in the evacuation planning process (the evacuees are defined in detail in Chapter 5).
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Chapter 3

The Cell Transmission Model

The evacuation traffic in this thesis is modelled using the cell transmission model (CTM). The
general concept of the cell transmission model is presented in Section 3.1. Here the characteristics
of a cell are explained and it is demonstrated why it is a useful way to model traffic flow. For
this purpose the fundamental diagram of traffic flow is explained and the relation between
this diagram and the cell transmission model is highlighted. Section 3.2 explains how this
general concept of modelling / simulating traffic can be transferred to an optimisation model
for evacuation traffic management. Moreover, literature that uses the CTM in the context of
evacuation traffic management is presented.

3.1 Basics CTM

This thesis utilises the idea of the CTM as invented by Daganzo (1994) to model the traffic flow
of evacuation settings. The CTM is a macroscopic model for a traffic flow and is based on the
hydrodynamic theory of traffic flow described by Lighthill and Whitham (1955) and Richards
(1956). This theory takes the relation between traffic flow and traffic density into account. Da-
ganzo (1994) introduced a simulation model for traffic flow on a simplified highway with one
entrance and one exit. This approach is extended by Daganzo (1995) to cope with more complex
network structures like intersections. Kimms and Maassen (2011b) extend the formulation by
Daganzo (1994) to optimise evacuation traffic. This thesis makes use of the latter approach to
model the traffic flow within evacuation scenarios.
The traffic flow is modelled in the CTM with a time-scan strategy, thus the current traffic con-
ditions are updated with a tick of a clock (Daganzo (1994)). The considered time horizon is
divided into periods t = 1..|T | and in each period the traffic conditions are updated. Further-
more, the street network is divided into sections i = 1..|I| where I is the set of all sections.
These network sections are called cells, which is why the model is called cell transmission model.
These sections are applied to section and flow capacities in order to consider realistic traffic
phenomena (building of queues or shock waves). These conditions are illustrated with Figure
3.1, which depicts a simplified street network divided into sections. The length of a section is
defined as the distance a vehicle can travel by light traffic in one period. For the first street
(sections 1 to 5) in Figure 3.1 a maximum free flow speed of 50 km/h (≈ 13.9 m/s) and for the
second street (sections 6 and 7) a maximum free flow speed of 30 km/h (≈ 8.3 m/s) is assumed.
In the example the length of a period is 9 seconds. Therefore, a section in street one has a
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Figure 3.1: A Street Network Represented as Sections.

length of 13.9 m/s × 9 s ≈ 125 m and in the second street a length of appr. 75 m (8.3 m/s × 9
s) results. Thus a vehicle can drive 125 m or 75 m in one period by light traffic. The traffic flow
is modelled by updating the conditions of the section in each period. The number of vehicles
in section i in period t is xit and for the simplest situation by light traffic on a street without
intersections (e.g. flow from section 2 to 3) all vehicles that are in period t in section i were in
period t− 1 in section j

xi,t = xj,t−1. (3.1)

The number of vehicles, which is present in the sections, additionally depends on the traffic
flow variable yijt. In Daganzo (1994) only a simple highway with one entrance and one exit is
considered: in this model formulation the sections are numbered consecutively. This means the
traffic can only flow from section i to section i + 1. To model more complex networks Kimms
and Maassen (2011b) introduce the binary parameter βij which indicates connections between
sections. If two sections are connected it will be βij = βji = 1 and 0 otherwise. In a network (on
an intersection) the traffic from a section i can flow into different sections, similarly the traffic
from different sections can flow into section i. For the determination of the vehicles, which are
in section i in period t, the traffic flow between connected sections must be considered. Thus
condition 3.1 must be reformulated for each i ∈ I to

xit = xit−1 +
∑
j∈I

yjit−1βij −
∑
j∈I

yijtβij . (3.2)

The vehicles that are in section i in period t are the vehicles that were in section i in the previous
period t − 1, plus the vehicles that have entered section i from all with i connected sections j
(βij = 1) in period t − 1, less the vehicles that leave section i to sections connected with i in
period t. An incorporation of capacities is necessary to model the traffic flow more realistically
and to consider traffic phenomena such as congestions. Let Nit be the maximum number of
vehicles that can be present in section i in period t and let Qit be the maximum number of
vehicles that can flow from one section to the next section in one period. To compute the
maximum capacity of a section the length of a section must be divided by the average length
of a vehicle and a minimum distance between two vehicles. With an assumed average length
of 4.5 m per vehicle and a minimal distance between two vehicles of 1 m, the capacity of a
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section is Nit = 125m
5.5m ≈ 22 vehicles for the first street as depicted in the example in Figure 3.1.

For the flow capacity, which is Qit, a larger safety distance between two vehicles is assumed.
This depends on the speed limit in a section. For the first street a safety distance of 13.9 m is
assumed and the flow capacity is Qit = 125m

4.5m+13.9m ≈ 6 vehicles. A street with more than one
lane is modelled by multiplying the capacity by the number of lanes.
The possible traffic flow between section i and section j in period t, is additionally restricted by
the available capacity in section j: Njt−xjt. The values that restrict the traffic flow are derived
from the fundamental diagram of traffic flow (Lighthill and Whitham (1955)). The relation
between the capacities, which are defined above, and the fundamental diagram of traffic flow,
which depicts the correlation between traffic density and traffic flow, will be shortly explained
by means of the simplified illustration in Figure 3.2 (for a more detailed explanation the reader
is referred to Daganzo (1994)).

Figure 3.2: Fundamental Diagram of Traffic Flow.

The traffic flow yijt is the amount of traffic that flows in a street segment (section) in a given
time span. The traffic density xit is the number of vehicles in this street segment, Njt is the
maximum number of vehicles that fits into the street segment hence correlating to the traffic
density in a congested street. The traffic flow on a street is the product of traffic density and
the average speed v in this street segment. With a constant average speed v, the traffic flow
increases with rising up traffic density. This happens as long as there is enough capacity in a
street segment. In Figure 3.2 it is the density in the range between 0 and xcrit: the traffic flow
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increases with increasing traffic density. If there is not enough capacity in a street section, the
traffic flow will decrease with increasing traffic density. Starting from density xcrit the traffic
flow decreases as the vehicles in a street segment cannot keep the average speed and the number
of vehicles that pass through a street segment in a given time span decreases. If the traffic
density xjt is equal to Njt no vehicle can move. In this example the free flow speed is equal to
the backward moving speed, therefore the point where the traffic flow decreases with increasing
density xcrit is Njt/2. With the traffic flow Qit, further conditions of the street segment can be
considered, which are more restrictive than Njt/2, e.g. a required minimal distance between two
vehicles. In the CTM these relations are considered by means of the boundaries of the traffic
flow

yijt = min{xit, Qit, Njt − xjt}. (3.3)

The traffic flow from section i to section j cannot exceed the number of available vehicles in
section i xit. In Figure 3.2 it is the traffic flow that results from the traffic density in the range
between 0 and xa. The traffic flow is restricted by the number of the vehicles that are present
in section i. More than these vehicles cannot flow from i to j. If there are more vehicles in
section i than Qi, the flow into section j will be restricted by the flow conservation. More than
Qi vehicles cannot flow out of section i. The diagram reflects this traffic density in the range
between xa and xb. The last restriction is the available capacity in section j, which is Njt− xjt.
The number of vehicles that flow into section j cannot exceed the available capacity in this
section. It is the traffic density in the range between xb and Nj in the fundamental diagram of
traffic flow. In Daganzo (1994) the traffic flow is simulated by applying all these restrictions and
by updating the traffic conditions in each period. By considering these capacities the traffic flow
can be modelled realistically. In the next section the basic idea of the traffic flow simulation by
Daganzo (1994) is adopted to an optimisation model for traffic flow optimisation in evacuations.

3.2 CTM and Evacuation Planning

A lot of studies in the area of evacuation traffic optimisation model the traffic flow with the
CTM. This section first summarises the related literature and then a model for optimising evac-
uation traffic by Kimms and Maassen (2011b) is presented.

Literature review

One of the first optimisation models that formulates the traffic flow on the basis of the CTM is
introduced by Ziliaskopoulos (2000). It is a simple traffic assignment model without evacuation
aspects. However this formulation has been widely adopted by the studies that use the CTM
in optimisation models. Kalafatas and Peeta (2006) and Kalafatas and Peeta (2009) investigate
contra-flow and signal control strategies for an optimal capacity use of the network in an evac-
uation. Kalafatas and Peeta (2006) seek links whose capacity ought to be augmented with the
contra-flow mechanism. Moreover, they optimise the traffic signal pattern for the evacuation
traffic. In their formulation a budget restriction for the network optimisation is considered. In
Kalafatas and Peeta (2009) the budget restriction is reformulated to a predetermined number
of links that could be used for capacity augmentation with contra-flow mechanism. This re-
formulation was necessary, because it is too difficult to obtain the required data on staff and
budget in a real life situation. Tuydes and Ziliaskopoulos (2006) also propose an optimisation
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model with contra-flow. To handle real-sized models they present a tabu search-based heuristic.
Xie et al. (2010) also use a contra-flow strategy to augment the capacity in a street network.
In addition they optimise the network to eliminate crossings. They use a bi-level formulation,
where the upper-level optimises the network and the lower-level, which is based on the CTM,
assigns the traffic in the network. To solve the model they use lagrangian relaxation and tabu
search. Liu et al. (2006) present a staged evacuation planning concept. They divide the affected
area in different zones and compute optimal starting times and routes. Bish et al. (2014) also
introduce a concept with staging and routing. Additionally, they consider different evacuee types
with various destination requirements and shelter capacity restrictions. Chiu and Zheng (2007)
define an evacuation plan for multi-priority groups. Different emergency response and evacua-
tion flow groups must be routed in the same network with various destinations and priorities.
They define traffic assignment strategies and departure schedules for the complex situation with
different groups. An evacuation plan with dynamic resource allocation and movable devices is
determined by He and Peeta (2014). In the plan the evacuation resources, for instance message
sign systems, can be reallocated dynamically as reaction to the traffic conditions. Ng and Waller
(2010) propose a model with demand and capacity uncertainty. They optimise evacuation routes
and use a distribution-free approach to provide probabilistic guarantees on the resulting evac-
uation plan. Yazici and Ozbay (2010) also consider uncertainties in evacuation demand and
road capacity. They present two formulations of a stochastic optimisation model to compute a
system-optimal traffic assignment. Moreover, they consider individual chance constraints and
joint chance constraints. Most of the model formulations, which are based on the CTM, include
traffic holding. Shen et al. (2007) introduce a model formulation that prevents traffic holding.
They argue that an optimal traffic pattern without traffic holding is more cost efficient and
easier to implement in emergency response. Tuydes-Yaman and Ziliaskopoulos (2014) propose
a model that focuses on optimal demand management strategies of evacuation traffic. They
optimise the evacuation departure times, destination choice and zone scheduling. Kimms and
Maassen (2011b) determine optimal routes to guide the evacuees out of the endangered zone
with maximum security. Kimms and Maassen (2011a) extend this formulation and use multi-
ple cell sizes to handle larger networks and compute plans for realistic scenarios. Kimms and
Maassen (2012b) propose a heuristic approach for the fast computation of evacuation plans
for large networks. Kimms and Maassen (2012a) integrate rescue teams in the basic model by
Kimms and Maassen (2011b). They differentiate between two situations: in the first case the
rescue teams just have to arrive at the origin of danger and in the second case the teams have to
commute between a place in the affected area and a safe place. Street sections are reserved for
the rescue teams: in the first situation the street can be opened for the normal traffic after the
rescue teams have reached the predetermined point; for the second situation this option does
not exist. This problem is solved by a three stage heuristic, which is based on the approach
introduced by Kimms and Maassen (2012b). Kimms and Maiwald (2015a) introduce a model
that takes uncertainties in the street network into account. Furthermore, they introduce the
aspect of resilience in context of evacuation planning. The resilience of a street network should
be improved by a balanced utilisation of the network capacities. To solve the model they develop
a path generation algorithm. In Kimms and Maiwald (2015b) a model formulation is presented
that combines the advantages of the CTM with the advantages of a network flow formulation.
With the network flow approach instances of realistic size can be considered whereas with the
CTM traffic phenomena like shock waves and congestions can be represented. The basic model
by Kimms and Maassen (2011b) is at first formulated more restrictively and then transferred
into a network flow model. In a computational study they show that a significant reduction in
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computation time can be achieved, using this new formulation.

Assumptions and model formulation

The models presented in this thesis are based on Kimms and Maassen (2011b). For the sake of
completeness the assumptions of this study and the mathematical model are explained shortly:

• The network is divided into an affected area, which the evacuees have to leave and a safe
zone, which the evacuees have to reach. The safe zone is modelled as a super sink S. The
level of danger in the affected area is defined using weights cit, for i ∈ I, where cSt = 0.

• It is the objective of the model, to route the evacuees or vehicles (the terms evacuee and
vehicle are used synonymously in this thesis) out of the affected area under maximum
security.

• Only the traffic routing in the affected area is optimised, the routing outside this area is
out of scope of this study.

• The evacuees start the evacuation from an area outside the street, e.g. a parking lot
or a driveway. The number of evacuees that start evacuation in section i in period t is
represented by variable bit.

• It is assumed, that all evacuees follow the instructions of the authorities, therefore the
computed routes are accepted by all evacuees. With the optimisation model a system-
optimal solution is computed.

• In the model the optimal departure times and routes for the evacuees are determined. Also
the driving directions for the streets are optimised.

• All evacuees must be evacuated in the planning horizon T . To achieve a feasible solution,
T must be set high enough.

• The number of evacuees starting from each section, which is Ei, is known.

• The speed limits for all sections are given and it is assumed that the evacuees keep these
limits.

According to the assumptions stated above, the following model to optimise the traffic flow out
of the affected area is formulated. The objective of the model is to guide all evacuees out of the
affected area with maximum security. Let variable zit be the evacuees that are in each section
in the affected area.

min
∑
i∈I

∑
t∈T

citzit. (3.4)

The number of evacuees in a section of the affected area is weighted with the danger in a
section cit. This product is minimised by routing the evacuees with maximum safety outside
of the affected area. The number of evacuees in the street and in the area around the street is
determined with the following conditions

zit = xit +
∑
j∈I

yijt + Ei −
t∑

τ=1
biτ i ∈ I, t ∈ T, (3.5)
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xit = bit + xi,t−1 +
∑
j∈I

yji,t−1 −
∑
j∈I

yijt i ∈ I, t ∈ T, (3.6)

zit ≤ Nit + Ei −
t∑

τ=1
biτ i ∈ I, t ∈ T. (3.7)

Constraints (3.5) determine for each section i and period t the number of evacuees that use a
section. These are all evacuees that are in the street (xit and

∑
j∈I yijt) and that wait outside to

start the evacuation (Ei−
∑t
τ=1 biτ ), which is the number of evacuees that starts the evacuation

at section i less all evacuees that have entered the network until period t. Constraints (3.6) are
an extension of condition 3.2. In restriction 3.2 the traffic starts in a start section and traffic
flow is only possible between sections. With this extension vehicles can enter the street network
at each section. Let variable bit be the number of evacuees that enter the network at section i
in period t. Constraints (3.7) restrict the number of vehicles that use a section. This number
must not exceed the capacity of a section plus the number of vehicles waiting outside to enter a
street.
Besides constraints, which compute the number of evacuees in the affected area, the traffic flow
between sections is important for the optimisation of the traffic flow. From condition (3.3) the
following constraints can be derived∑

j∈I
yjit ≤ Nit − xit i ∈ I, t ∈ T, (3.8)

∑
j∈I

yjit ≤ Qit i ∈ I, t ∈ T, (3.9)

∑
j∈I

yijt ≤ Qit i ∈ I, t ∈ T. (3.10)

Constraints (3.8) restrict the incoming flows in every section with regard to the section’s capacity.
Constraints (3.9) and (3.10) are the flow capacity restrictions for the traffic flow between sections.
The traffic flow is not allowed to exceed the flow parameter Qit. Constraints (3.11) ensure that
the traffic flow takes place only between connected (βij = 1) sections

yijt ≤ Nitβij i, j ∈ I, t ∈ T. (3.11)

Constraints (3.12) and (3.13) are specific for the evacuation process∑
t∈T

bit = Ei i ∈ I, (3.12)

xS|T | =
∑
i∈I

Ei +
∑
i∈I

xi0. (3.13)

Conditions (3.12) enforce that all evacuees, who wait outside the street, drive into a street
section in the planning horizon T . Constraint (3.13) ensures that all evacuees have reached the
safe zone S at the end of the planning horizon |T |. The domains of the decision variables are
defined by (3.14) - (3.17)

zit ≥ 0 i ∈ I, t ∈ T, (3.14)
xit ≥ 0 i ∈ I, t ∈ T, (3.15)
yijt ≥ 0 i, j ∈ I, t ∈ T, (3.16)
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bit ≥ 0 i ∈ I, t ∈ T. (3.17)

With the given model formulation the traffic flow out of the affected area can be optimised. For
this purpose optimal routes for all evacuees are determined. The direction of traffic flow is not
given in the model. In fact, the used direction is a result of the optimisation, indication that
contra-flow can be captured with this mathematical model.
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Chapter 4

Selfish Routing in Traffic Networks

In this chapter the main aspects of selfish routing in traffic networks are summarised. Selfish
routing is based on the idea of independent self-optimising agents that make their route choice
without considering the behaviour of the other network users. Later this aspect will be trans-
ferred to evacuation traffic management. Hence, in the following sections the most important
aspects of selfish routing in (traffic) networks are discussed. In Section 4.1 the consequences of
selfish routing on the traffic flow are illustrated by means of an example and the concepts of user-
optimal flow, system-optimal flow and the price of anarchy are defined. Furthermore the related
literature of selfish routing in traffic networks is summarised. Section 4.2 introduces a traffic
phenomenon called "Braess’s paradox" that occurs in networks with selfishly routing network
users. This phenomenon is first explained in more detail by means of an example and then it is
shown why it exists in traffic networks. Moreover, the relevant literature on the Braess paradox
is summarised. The aspects of selfish routing in traffic networks, which are most important for
this thesis, are summarised in Section 4.3.

4.1 Basics of Selfish Routing

A well-known problem is the network’s traffic management. Many network users act indepen-
dently in an environment with limited capacity; each of them with his or her own goals. In
order to reach the defined goals most of the network users will focus on strategies that do not
consider the behaviour of the other network users. The users in a network act selfishly, only
interested in the best possible realisation of their own interests. The problem, which arises
from this behaviour, is the well-studied problem of selfish routing in networks. The first known
economist who considers selfish behaviour was Pigou (1920). He investigated a system with
different taxations on resources in industries. To illustrate the effects of selfish behaviour he
used an example of traffic flow in a network. Roughgarden (2005) adopts this example to point
out the consequences of selfish routing in networks: "Selfish behaviour by independent, non-
cooperative agents need not produce a socially desirable outcome".
Afterwards, in this section an example is used to illustrate the findings of Pigou (1920) and
the adoption by Roughgarden (2005) and the resulting effects of selfish routing in traffic net-
works are explained. The traffic network is represented by a graph G(V,E) with two nodes
V = {A,D} and two edges E = {a, b}. Node A is the source and node D the sink of the
network, the traffic flows from A to D. The fraction of traffic that use route 1 traverses edge
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Figure 4.1: Network to Illustrate Selfish Behaviour in Networks.

a and the fraction of traffic on route 2 traverses edge b. The total traffic flow, which is in the
network (x = x1 + x2 = 1), consists of the traffic that traverses the route 1 (x1) and the traffic
that traverses the route 2 (x2). The travel times are C1(x1) on route 1 and C2(x2) on route 2.
Figure 4.1 depicts the described network that is based on the example of Roughgarden (2005).
In the example it is assumed that the traffic on route 1 needs 1 hour to travel from A to D
independent of the fraction of traffic that uses this route. Hence, the travel time (in hours) is
defined as

C1(x1) = 1. (4.1)
On route 2 the travel time depends on the amount of traffic which traverses this route. The
traversing traffic is that fraction of the traffic that does not use the route 1: x2 = 1 − x1. The
travel time (in hours) on route 2 is defined as

C2(x2) = x2 (4.2)

and corresponds to the fraction of traffic that traverses route 2. In a scenario where the total
traffic flow traverses route 2 the travel time will be equal to the travel time on route 1 (1 hour).
For demonstrating the effects of a selfish behaviour, this example assumes that the traffic flow
consists of selfish agents who prefer the fastest route. Consequently, all network users will take
route 2, because the travel time on route 2 is never longer compared to the travel time on route
1. But if a fraction of the network users travel on route 1, the travel time on route 2 will be
shorter than on route 1. Therefore, route 2 is advantageous for all network users, that minimise
their own travel time. The average travel time is defined as

Cavg(x1, x1) = C1(x1)× x1 + C2(x2)× x2. (4.3)

This average travel time is used to show the negative impact of selfish behaviour on the travel
time. In the scenario with selfish acting agents the traffic flows are x2 = 1 and x1 = 0 on the
routes, the resulting average travel time is 1 hour

Cavg(x1, x2) = 1× x1 + x2 × x1 ⇔ Cavg(x1, x2) = 1. (4.4)

To demonstrate the influence of selfish routing in traffic networks, the average travel time by
selfishly routing network users is compared to the minimum average travel time in the network.
The average travel time of the network, which is Cavg, is reformulated with respect to the traffic
flow on route 1 as follows

Cavg(x1) = x1 + (1− x1)× (1− x1)⇔ Cavg(x1) = 1− x1 + x2
1. (4.5)
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The minimum travel time is reached with the traffic flows x1 = 0.5 and x2 = 1− x1 = 0.5. The
resulting minimum average travel time (in hours) is: C∗avg(x1, x2) = 1× 0.5 + 0.5× 0.5 = 0.75.
If one half of the network users takes route B the travel time of no network user increases and
the half of the network users can reduce their travel time. The example reveals the findings
by Pigou (1920), that selfish behaviour does not necessarily result in a social optimal outcome.
Wardrop (1952) later investigates the distribution of traffic on different routes in networks and
defines his well-known first and second principles of equilibria (in traffic networks).

User-optimal Flow

The first principle defines an equilibrium called the user-optimal flow. In this equilibrium the
traffic is assigned to the routes in the network in a way that all used routes have an equal travel
time and these travel times are less than the travel times of all unused routes. Hence, in this
equilibrium no network user can reduce his or her travel time by choosing a different route. The
user-optimal flows are illustrated on the example in Figure 4.1. The equilibrium travel time is
formally stated with

C1(x1) = C2(x2). (4.6)
Using the travel times, which are defined in (4.1) and (4.2), the equilibrium can be calculated as:
1 = x2 which is equivalent to x1 = 1−x2 = 0. Similar to the solution with selfish network users,
the average travel time is 1 hour. There is no incentive for the network users to switch from
route 2 to route 1, because the change from route 2 to 1 does not reduce their travel time. Thus
the user-optimal flow is equal to the traffic flow resulting from selfish routing. In the literature of
transportation science Wardrops user equilibrium (fist principle) is used synonymously with the
Nash equilibrium in the classical non-cooperative game theory (Roughgarden (2005)). Hence,
in this thesis also both terms are used synonymously.

System-optimal Flow

The second principle defines an equilibrium that is called system-optimal flow. In this equi-
librium the traffic is assigned to the given routes in such a way that the average travel time is
minimised. It is calculated according to the minimum average travel time in the example above
(fist derivation of (4.5)). The example in Figure 4.1 shows that the equilibrium is reached by
traffic flows x1 = x2 = 0.5 and the resulting average travel time is 45 minutes.
The principles have shown that the distribution of traffic is essential for the travel time in net-
works. In addition, it was shown that selfish behaviour leads to a suboptimal distribution of
traffic in the network, and also worsens the travel time throughout the network.

Price of Anarchy

Investigating the influence of selfish routing in networks on the travel time and determining
the dimension of increases in travel time compared to the system-optimal flow are important
areas of research. To quantify the consequences of selfish behaviour Koutsoupias and Papadim-
itriou (1999) introduce the coordination ratio, and Papadimitriou (2001) later defines the price
of anarchy. The coordination ratio is the ratio between the user-optimal flow and the system-
optimal flow. Papadimitriou (2001) uses the term price of anarchy because it describes the price
that results from decisions of uncoordinated and utility-maximising individuals. The price of
anarchy for selfish routing games was introduced by Roughgarden and Tardos (2002). Based
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on their definition the price of anarchy ρ depends on the travel time by system-optimal flows
C∗avg(x∗1, x∗2) as well as on the travel time by user-optimal flows Cavg(x1, x2) and is defined as
follows

ρ = Cavg(x1, x2)
C∗avg(x∗1, x∗2) . (4.7)

In the example network in Figure 4.1, the average travel times in the user- and system-optimal
solution are Cavg = 60 min and C∗avg = 45 min. The price of anarchy can be calculated as:
ρ = 60

45 = 4
3 . The price of anarchy shows the increase of travel time by selfish behaviour com-

pared to the minimum possible travel time in the network. The travel time, which arises by
selfish behaviour, equals the minimum possible travel time increased by 1

3 of this time.

Literature Review

The subsequent paragraph summarises the relevant literature on selfish routing in networks.
Besides selfish routing in traffic networks also selfish routing in communication networks is
studied. But as this thesis focuses solely on transportation networks, the second application
is not considered here. Some relevant papers that deal with selfish routing in communication
networks are published by Friedman (2004), Xiao et al. (2008), Hoefer and Souza (2010), and
Knight and Harper (2013).
Most studies about selfish routing in traffic networks either deal with the development of con-
cepts to reduce the price of anarchy or investigate network conditions that affect the price of
anarchy. Roughgarden (2003) shows that the price of anarchy does not depend on the network
topology. In Correa et al. (2004) the price of anarchy for capacitated networks is studied. They
show that additionally to the findings by Roughgarden (2003) the price of anarchy does not
depend on the network capacity. Cole et al. (2003) investigate how taxes on edges can improve
the uncoordinated behaviour of the network users. They determine taxes and minimise the total
costs for the network users (general arc costs plus taxes on edges). Roughgarden and Tardos
(2002) determine the negative impact of the price of anarchy. For linear latency functions they
prove that the travel time in the Nash equilibrium is 4

3 times the travel time in the system
optimum. Karakostas et al. (2007) analyse a system with oblivious network users. They want to
investigate a system in which network users do not consider congestion in their route selection.
They model network users who select their route only by considering the distance of the route,
i.e. the shortest route. Ferrante and Parente (2008) investigate a network with selfishly rout-
ing users where specific arcs are completely banned for some users. They analyse under which
conditions a Nash equilibrium exists and whether a different equilibrium would exist when some
arcs are forbidden in the network. Georgiou et al. (2006) study the problem of selfish routing
in networks with incomplete information. The network users route along paths with minimum
latency. The challenges of the problem are incomplete information about arc capacities, mod-
elled by user-specific pay-off functions. Karakostas and Kolliopoulos (2009) and Bonifaci et al.
(2010) capture the problem of selfish routing by using Stackelberg routing. The network users
are divided into two parts, a part of the users takes routes according to a central decision maker
strategy and the other part of the users acts selfishly. With their route choices the selfish users
react to the decisions of the coordinated ones. The central decision maker optimises the system
optimum and the selfish users minimise their own costs. Christodoulou et al. (2014) present a
coordination mechanism to reduce the price of anarchy. For the reduction, they identify arcs in
the network that result in a high price of anarchy.
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4.2 Braess’s Paradox

That the behaviour of independent acting agents with different goals does not lead to system’s
optimum is unsurprising. Braess’s paradox, a phenomenon that occurs in the theory of trans-
portation science is less intuitive. This paradox was first mentioned by Braess (1968). In his
study he investigates the traffic assignment in road networks with given start- and endpoints,
and traffic dependent travel times. He distinguishes between traffic assignments close to the
definition of the user- and system-optimal flows by Wardrop (1952). His study deals with the
construction of road networks and an optimal traffic assignment on these roads. Moreover, he
considers individual travel behaviour. He predicts that the optimal travel time for each network
user does not result in the optimal travel time for the total system, which was also illustrated
in Section 4.1. The travel time on a path does not solely depend on the characteristics of the
road e.g. the length or the maximal speed, it also depends on the traffic density on a road. As
shown in the fundamental diagram of traffic flow (Figure 3.2), the traffic flow decreases with
increasing traffic density until a certain traffic density in a road segment is reached. This high
level of traffic density leads to an increase in travel time. Besides the traffic assignment on
the given road network Braess studies network construction operations that should improve the
travel time in the system. He shows that an additional road can increase the overall travel
time in the street network. The phenomenon occurs when the additional road will lead to an
individual faster path for the network users and all individuals in the network will optimise their
own travel time. In such a situation all network users chooses this additional path. This in turn
increases the traffic density along this path, as well as the total travel time in the network. It
is not intuitive that a capacity increasing road leads to an increase of travel time, but Braess
(1968) shows that this phenomenon can occur with selfishly acting individuals depending on
the network structure. The following example, which is based on the example by Roughgarden
(2005), is used to illustrate this phenomenon.

(a) Original Network. (b) Augmented Network.

Figure 4.2: Network to Illustrate Braess’s Paradox.

The network is represented by a directed graph G = (V,E), with nodes V = {A,B,C,D} and a
set E that contains the arcs between the nodes. The traffic flow x travels from the source node
A to the destination node D. The travel time Ci(x) on an arc (i ∈ E) depends on the traffic
flow on this arc. Figure 4.2 illustrates the original network with four arcs (Figure 4.2a) and the
augmented network with five arcs (Figure 4.2b). To show the Braess paradox the average travel
time of user-optimal flows and system-optimal flows is compared between the original network
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and the augmented network.

Original network

Figure 4.2a shows the original network with four nodes and four arcs. The travel time in
the example on the arcs b and c is set to 1 hour and the travel time on the arcs a and d equals
the traffic flow x on these arcs (in hours). All network users travel from node A to node D on
the routes 1 (A-B-D) and 2 (A-C-D). The fraction of traffic that traverses route 1 is x1 and the
fraction of traffic on route 2 is x2, and the total traffic flow within the network, is x = x1+x2 = 1.
The travel time is C1(x1) = Ca + Cc = 1 + x1 on route 1 and C2(x2) = Cb + Cd = 1 + x2 on
route 2. These definitions lead to an average travel time in the network of

Cavg(x1, x2) = C1(x1)× x1 + C2(x2)× x2. (4.8)

The system-optimal flows are achieved by the minimum average travel time. With the travel
times, stated in the example, this time is reached by traffic flows x1 = x2 = 0.5. The traffic flow
is evenly distributed over both routes and this assignment leads to an average travel time of 1.5
hours. The user-optimal flow is achieved, when the travel time is the same on all used routes

C1(x1)× x1 = C2(x2)× x2. (4.9)

The user-optimal flows are achieved by distributing the traffic evenly over routes 1 and 2:
x1 = x2 = 0.5. The user-optimal flow equals the system-optimal flow, and both flows result in
a travel time of 1.5 hours in the original network. It can be summarised that in the network in
Figure 4.2a selfish routing does not affect the overall travel time.

Augmented network

In the augmented network (Figure 4.2b) an additional arc e between the nodes B and C is built
with travel time Ce(x) = 0. Intuitively this additional arc between B and C with travel time 0,
should reduce the average travel time in the network. With the new arc, an additional route 3
is created to travel from A to D: A-B-C-D, with a travel time of C3(x1, x2, x3) = x1 + x2 + 2x3.
The travel time on the existing routes 1 and 2 must be adjusted to C1(x1, x3) = x1 +x3 + 1 and
C2(x2, x3) = x2 + x3 + 1. Considering these three routes the average travel time in the network
is

Cavg(x1, x2, x3) = C1(x1, x3)× x1 + C2(x2, x3)× x2 + C3(x1, x2, x3)× x3. (4.10)

System-optimal flows are achieved by the minimum average travel time. For the presented
example these flows are reached, when the traffic will be evenly distributed over the routes
1 and 2 and no traffic will be assigned to route 3: x1 = x2 = 0.5 and x3 = 0. With this
assignment the minimum average travel time is 1.5 hours, which is the same solution as in the
original network. User-optimal flows are achieved when the travel time is the same on all used
routes

C1(x1, x3)× x1 = C2(x2, x3)× x2 = C3(x1, x2, x3)× x3. (4.11)

User-optimal flows will be reached, when all network users use route 3. The travel time on route
3 will never be longer than the travel time on routes 1 or 2. But if some network users do not use
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route 3, the travel time will be less than on the other routes. The selfishly acting network users
have an incentive to use the new route 3. But by assuming that all network users take route 3
the average travel time will be 2 hours. The selfish behaviour leads to an increased travel time
in the augmented network.
In the original network in Figure 4.2a the system- and user-optimal flows are the same and the
traffic is distributed evenly over both routes 1 and 2. In the augmented network in Figure 4.2b
the additional arc e between the nodes B and C is not part of the solution of the system-optimal
flows and the minimum average travel time remains the same as in the original network. In the
solution with user-optimal flows the network users have an incentive to take route 3: if route 3
is not used by all network users the resulting travel time on route 3 will be lower as on routes 1
and 2. But if all network users take route 3, the average travel time will be higher compared to
the system-optimal flows. The average travel time in the augmented network with user-optimal
flows is increased by half an hour compared to the travel time in the original network. The
example reveals the findings by Braess (1968), where in a worst case scenario a travel time
decreasing arc can increase the travel time for the total network. Roughgarden (2005) points
out two important aspects for selfish routing in networks, which result from the Braess paradox:

• Selfish uncoordinated routing could lead to a solution that none of the network users would
prefer and

• the structure of the network in combination with selfish routing has a significant influence
on the travel time and defies intuition.

Murchland (1970) shows that Braess’s paradox is not only a theoretical concept. The traffic
phenomenon described above happened in Stuttgart after building new roads.

Literature review

Since Braess has identified this paradox in the theory a lot of research deals with this topic. Since
the given literature review focuses on studies that deal with the Breass paradox in transportation
networks, for the sake of completeness the reader is referred to some literature about Braess’s
paradox in communication networks: Korilis et al. (1999), Huang et al. (2006), Nagurney et al.
(2007), and Hsu and Su (2011). In the research area of Braess’s paradox in transportation
management, a part of studies in the literature examines the conditions in the network that
lead to the phenomenon and another part develops methods to avoid the paradox. Early studies
that investigate network conditions that lead to the paradox are published by Frank (1981) and
Steinberg and Zangwill (1983). Frank (1981) presents a complete mathematical characterisation
of the paradox for an initial four link network and an augmented five link network. She proves
that Braess’s paradox even exist when not all arcs are used as originally anticipated in Braess
example. Moreover, she determines the critical range of flows where Braess’s paradox takes
place. Steinberg and Zangwill (1983) state two simple conditions that lead to the paradox: the
networks must be congested and the additional routes in the network must be cheaper than
the existing routes. Contrary to the simple example by Braess (1968) they investigate networks
where a new link leads to more than one additional route and networks with non-linear arc
costs. Their findings are later generalised by Dafermos and Nagurney (1984). Pas and Principio
(1997) determine the conditions and bounds that either lead or do not lead to the occurrence
of Braess’s paradox. First they examine demand levels that result in the Braess paradox and
they are able to show that this paradox does not occur when significantly low or high demand
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levels are applied. For a second condition they investigate the marginal arc costs of additional
links. They show that the paradox does not occur when particular marginal costs are applied.
Nagurney (2010) prove that, an increase in demand can prevent the Braess paradox in networks
where it originally occurred. Roughgarden (2006) investigates network designs that prevent
Braess’s paradox. He examines two cases: removing arcs from and adding arcs to an existing
network. For both cases he determines arcs that does not lead to Braess’s paradox. Valiant
and Roughgarden (2010) prove the existence of Braess’s paradox for large random networks and
show that in such networks the paradox occurs with a high probability. Moreover, they show
that removing arcs from a network can improve the overall network performance. Askoura et al.
(2011) introduce the concept of building sub-networks where Braess’s paradox does not appear.
They formulate an optimisation model that determines routes which prevent the occurrence of
the paradox and deletes all routes out of the network that are not used in the optimal solution. A
heuristic based on a genetic algorithm is developed by Bagloee et al. (2013). With the heuristic,
they detect arcs that cause the paradox of Braess and compute a combination of these arcs that
best prevents the paradox. An experimental point of view on the emergence of Braess’s paradox
is examined by Rapoport et al. (2009) and Rapoport et al. (2014). Some simulation studies are
done in Bazzan and Klügl (2005). In their study they influence the behaviour of the network
users to avoid the paradox.

4.3 Summary

Section 4.1 and Section 4.2 have illustrated the effects of selfish routing on the traffic flow in
networks and have demonstrated how the network conditions reinforce these effects. In most
cases selfish routing leads to a suboptimal distribution of traffic in networks, because the network
users take the best routes for themselves without considering the route choice of the other
network users. Under the assumption that all network users have the same preferences, this
behaviour leads to a traffic distribution where one route is extensively used while other routes
remain unused. The Braess paradox, which was discussed in Section 4.2, clearly illustrates
that the network structure intensifies the effects which arises from selfish routing. Moreover it
shows that additional arcs in the network can reinforce the effects of selfish routing, if these
arcs will lead to a route that is preferred by the network users. When all of them take this
route, the network is congested and the traffic flow decreases. The findings of this chapter can
be summarised with two points:

• Selfish routing leads to suboptimal traffic flows in a network.

• The network conditions can intensify the effect of selfish routing.

A question that arises from these findings is how these negative effects of selfish routing can be
limited. From the first aspect one can conclude that the behaviour of the network users must
be influenced, in such a way that their behaviour leads to an optimal traffic distribution. To
achieve that, some of the network users must be forced to use alternative routes (others than
their original preferences) which will then lead to an optimal traffic distribution. According to
the second aspect selfish behaviour can be limited by optimising the network. Braess’s paradox
points out, that the network structure will have a negative influence on the total traffic flow
if the network users behave selfishly. Moreover, it shows that specific arcs, which intensify the
effect of selfish routing in a network, cause this paradox. These findings reinforce the thesis that

37



4.3 SUMMARY

the traffic flow must be allocated to other routes as the selfish ones. But how can selfish acting
network users be persuaded to switch their routes? In Section 4.1 and 4.2 various studies are
presented that have investigated this question. The results of the most common approaches in
literature can be summarised as:

• Selfish acting network user can be persuaded to switch their routes by increasing the costs
on arcs which intensify the effect of selfish routing.

• The distribution of network users can be influences by prohibiting certain arcs for some of
the network users.

• The Braess paradox can be avoided by removing arcs from the network.

• The Braess paradox can be avoided by building (sub-)networks that do not contain arcs
which lead to Braess’s paradox.

The first aspect influences the preferences of network users for specific arcs. With increasing
costs some arcs become less attractive. Here, the costs are not exclusively monetary, they could
also be seen as other instruments that make an arc less attractive to some of the network users,
for example by imposing speed limits. In the second aspect an optimised traffic assignment
arises from prohibiting some arcs for some network users. The first two aspects influence the
traffic without modifying the network. In contrary the third and fourth aspect modifies the
street network. These modifications remove arcs from a network or build networks where the
Braess paradox does not occur.
This thesis transfers the aspects of selfish routing users in networks to the process of evacuating
urban areas. The evacuation is optimised, by preventing the negative effects of selfish routing
and avoiding Braess’s paradox. Some aspects of the approaches, which are described above,
are used to counteract the negative consequences of selfish routing. Chapter 5 focuses on the
strategies for temporal street network modification and provides a more detailed explanation to
the reader.
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Chapter 5

Selfish Evacuation Routing

In this chapter the general topic of selfish routing is transferred to evacuation scenarios. Section
5.1 illustrates the effects of selfish behaviour in an evacuation scenario. Section 5.1.1 discusses
why the behaviour of humans in evacuations should be assumed as selfish and the effect of selfish
behaviour on the traffic flow is shown. Moreover in this section the evacuees are defined and
a model for evacuee’s route choice is presented. Section 5.1.2 illustrates the prosed strategy of
blocking connections between street sections to guide the traffic flow out of the affected area.
Section 5.2 presents the test bed, which is used for the computational studies from Chapter 6
to Chapter 8, and proposes reference values to estimate the solution quality of the developed
strategy.

5.1 Selfish Routing in Evacuation Planning

5.1.1 Selfish Route Selection of Evacuees

In an extraordinary situation like an evacuation, it can be assumed that people behave selfishly
to protect their lives and those of their families. This general selfish behaviour can be trans-
ferred to the route selection made by evacuees. Sadri et al. (2014) investigate routing strategies
during hurricane evacuation scenarios. Thus, they have evaluated data from a household survey
conducted after hurricane Ivan in September 2004, in the western of Gulf Shores, Alabama.
The survey shows that less than 3.9 % of the interviewed people would follow the instructions
of authorities. In contrast more than 90 % of the interviewed people prefer a familiar or usual
route, which they consider as the shortest, fastest or less congested route. Similar results are
presented in Murray-Tuite et al. (2012). They compare the behaviour of people during hurricane
Katrina in 2005 and Ivan in 2004. One aspect they investigate is the route selection of evacuees.
Also during hurricane Katrina, most evacuees choose familiar routes, which they considered
as the fastest or shortest one. Moreover, most evacuees did not like to follow instructions of
authorities, which is similar to the observed behaviour during hurricane Ivan. These results fa-
cilitate the assumption that evacuees behave selfishly in evacuation scenarios. As is known from
the research in selfish routing in traffic networks (see Chapter 4) selfish behaviour has negative
effects on the traffic flow. These results have to be adopted to traffic flows in evacuations. If
the evacuees behave selfishly the resulting traffic flow will lead to an increase in the time that
is necessary to clear the affected area. Hence, it is necessary to consider the behaviour of evac-
uees when compiling evacuation plans. An example is used to point out the problem of selfish
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routing in evacuation scenarios. Therefore, the network clearance time (NCT) of a solution with
system-optimal flows is compared to the NCT that result from selfishly selected routes.

Figure 5.1: Network with Selfish Evacuees.

The network in Figure 5.1 is a simplified street network represented by sections. It is assumed
that each section has a capacity of one vehicle per period and that a vehicle can pass maximally
one section in one period. There are five sections in the affected area and super sink S depicts
the safe places. Furthermore, there are three evacuees A, B, and C in the network: evacuee A
begins the evacuation in section 3 and evacuees B and C start in section 1. In this example it is
assumed that the evacuees prefer the fastest route, which is a route with a minimum number of
sections. These routes will lead to the user-optimal flows. As illustrated in Figure 5.1 evacuee
A takes route 3 - 2 - S and evacuees B, C take route 1 - 2 - S. The NCT is 5 periods for the
example with selfish routing. In this example section 2 has a high traffic density and evacuee A
has to wait two periods before he can pass through this section. In the system-optimal solution
evacuee A traverses 3 - 4 - 5 - S and evacuees B, C take the route 1 - 2 - S. These routes lead
to an NCT of 4 periods. In the solution with selfish routing the NCT is higher compared to the
solution with system-optimal flows, although evacuee A must pass fewer sections.
The example illustrates that selfish behaviour leads to a suboptimal solution for the network
users in case of evacuation. The example detects a drawback of several evacuation plans: most
studies in evacuation planning optimise the traffic flows assuming that the evacuees follow the
guidance information from authorities, and compute optimal routes, departure times or assign-
ments to destinations. Abdelgawad and Abdulhai (2013) criticise that it cannot be assumed that
the evacuees behave as determined in these evacuation plans. They make clear that the evacuees
tend to a selfish behaviour which results in user-optimal traffic flows. Thus the behaviour of
the evacuees and the findings that most evacuees will not follow the instructions of authorities
have to be considered in evacuation traffic management. Hence, it is useful to revert to the
strategy described in Chapter 4 to prevent the consequences of selfish routing. Most methods
that were developed to prevent the consequences of selfish behaviour try to solve the problem
by modifying the street network. In contrast to the long-term modifications, which are used in
general traffic management, in evacuation planning just short-term modifications are possible.
However, modifications like the addition of arcs or the invention of taxes on certain arcs are not
practicable in the case of evacuations. In this thesis possible short-term network modifications
are proposed. One key-suggestion is to block connections between street sections to force the
evacuees to divert from their selfishly chosen routes to alternative routes, which will finally lead
to a more efficient traffic flow. In Section 5.1.2 this strategy is described in more detail.
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Definition of evacuees and route modelling

Prior to explain how the selfish routes of the evacuees are determined, the assumptions that
define the evacuees are explained. In this thesis the following evacuee characteristics are taken
as a basis for the modelling:

• Evacuees are modelled as independently acting agents which determine their routes with-
out considering the behaviour of the other network users.

• The evacuees have preferences for their routing strategy. These preferences are expressed
by the routes the evacuees take.

• Following the results of Sadri et al. (2014) it is assumed that the evacuees stick to the
chosen routes during the evacuation.

• The starting points of evacuees in the network are known.

The selfish routes are modelled as the optimal routes depending on the preferences of the evac-
uees. As know from the literature evacuees tend to take the most familiar routes, which are
in most cases the shortest or fastest ones (see Lindell and Prater (2007), Murray-Tuite et al.
(2012), Sadri et al. (2014)). A mathematical model is presented to define the route choice of
the evacuees. In this model the different preference types are expressed with weights qip for
every section i ∈ I depending on the preference type p ∈ P . Where P is the set of the different
preference types. For example if the fastest (p = 1) route should be considered in the model,
qi1 will be 1 for each section i ∈ I. One period is needed to pass through a section so the
number of sections, which is used in the route must be minimised to compute the fastest route.
If the preference type is "shortest route", the weight for the sections will be Ni/li, which is the
capacity of one lane (Ni is the capacity and li is the number of lanes of a section). The capacity
of a lane reflects the length of a section: when computing this capacity the number of vehicles
that fits into a section is multiplied with the vehicle length (plus safety distance between two
vehicles). Thus a high capacity reflects a long section. A mathematical program is formulated
that computes the best route for every evacuee e ∈ B from his start section ae ∈ I to the super
sink S ∈ I. The preference type p of an evacuee e is expressed by the binary parameter γep.
The variable rije determines the routes of the evacuees. The variable will be 1, if sections i and
j are in sequence on the route of evacuee e, otherwise it will be 0. Note that the problem to be
solved is a shortest path problem which can efficiently be solved and a mathematical model is
just given for the sake of clarity. A mathematical model formulation to find the selfish route of
evacuee e ∈ B can be stated as follows

min
∑
i∈I

∑
j∈I

∑
p∈P

rijeqipγep (5.1)

s.t.
rije ≤ βij i ∈ I, j ∈ I (5.2)∑
j∈I

raeje = 1 (5.3)

∑
i∈I

riSe = 1 (5.4)
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∑
i∈I

rije =
∑
k∈I

rjke j ∈ I\(ae ∪ S) (5.5)

rije ≥ 0 i ∈ I, j ∈ I. (5.6)

It is the objective of the model to find an optimal route (according to the preferences) for each
evacuee e from the start section ae to the super sink S. Thus the objective function (5.1)
minimises the weighted sum over the sections, which are in the route. Constraints (5.2) ensure
that two sections can be in sequence on a route if the sections are connected in the network
(βij = 1). Constraints (5.3) and (5.4) ensure that the route starts in section ae and ends in the
super sink S. Moreover, the restrictions (5.3) - (5.5) eliminate sub-tours, because it is assumed
βSi = 0 for all i ∈ I. Constraints (5.5) are the traffic flow constraints. The domain of the
variable rije is stated in (5.6). Note that evacuees who are initially located in the same section
and who have the same preference type choose the very same route. Also, other evacuees with
that preference type who are located in a section on that route would follow them. Hence,
these many shortest path problems can be solved better than just enumerating all sections and
preference types. The algorithm by Dijkstra (1959) is used to compute the best path for every
preference type and every section. From these paths the routes of the evacuees can be derived.

5.1.2 Blocking of Street Sections

As described in Section 5.1.1 selfish route selection of evacuees could result in a solution that
is unfavourable for all network users. Hence, a strategy is developed that counteracts these
negative impacts. As discussed above the network should be modified to cope with these self-
ish evacuees. In case of an evacuation network modifying possibilities are limited due to e.g. a
short time span or sparse relief units that can implement these modifications. Thus the methods
from the literature to reduce the consequences of selfish routing e.g. building of new roads or
increasing the costs for the network users with taxes, are not feasible in evacuation scenarios. To
prevent a practical solution the concept of blocking connections between street sections in the
network was developed. With such blockages the network users are forced to deviate from their
selfish routes. The Braess paradox (see Section 4.2) demonstrates that an additional, capacity
increasing link can increase the travel time in a network for all network users, if they act selfishly.
These findings are used the other way round, and street sections are blocked to decrease the
travel time and reduce the network clearance time. The temporal blockage of street sections
can be quickly implemented without high efforts of relief units.

The effect of blocking street sections

In Section 5.1.1 it is demonstrated that selfish network users choose a route, which is optimal
according to their preferences, without considering the behaviour of the other network users. In
most cases the chosen routes will lead to a suboptimal traffic distribution and result in a high
network clearance time. If a large proportion of the network users takes the same routes to leave
the network, these routes will be congested. The high traffic density will reduce the traffic flow
and the time, which the evacuees spend in the affected area, increases. Hence, it is necessary to
reduce the traffic density on congested streets to increase the traffic flow and to decrease the time
which the evacuees spend in the affected area. Accordingly, the strategy of blocking connections
between street sections is investigated in this thesis. When certain connections between street
sections are blocked some evacuees cannot maintain their selfish routes. They have to divert
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from their original routes and have to choose a new route, which is optimal according to their
preferences, but in the adjusted network. These blockages must be positioned between street
sections in such a way, that the resulting traffic flow is redirected from the affected area in a
faster way. The general concept is illustrated in the simplified street network representation in
Figure 5.2.

Figure 5.2: Network with Selfish Evacuees and one Blockage.

Figure 5.2 represents an adjusted version of the network from Figure 5.1 and induces a blockage
between sections 2 and 3 (dotted line). Without blockage the selfish route for evacuee A was 3
- 2 - S and those of the evacuees B,C were 1 - 2 - S. Now, by inducing the blockage between
sections 2 and 3, evacuee A is forced to divert from his original selfish route. When assuming
that the evacuees prefer the fastest route, in the adjusted network the new fastest route for A
is: 3 - 4 - 5 - S. Although this route is one section longer, the adjusted route leads to a shorter
NCT. The NCT in the network without any blockages was 5 periods, with the blockage the NCT
is reduced to 4 periods. By blocking the connection between sections 2 and 3 less vehicles use
the formerly highly congested street section 2 and therefore lead to an increase in total traffic
flow. In the original network (Figure 5.1) evacuee A had to wait for two periods before he could
move on to the next section of his route. In the adjusted network he can drive along his route
without any waiting time. The example points out that the induction of blockages between
street sections can regulate the traffic in a way that leads to increased traffic flow in the whole
network and reduces the time the evacuees have to spend in the affected area.
In such a simplified street network representation it is easy to determine connections that should
be blocked to adjust the network in such a way that the network clearance time is reduced. In
this example the blockage only affected one route and lead to the usage of formerly unused
sections. But in a lager network with many connections between sections it is hard to determine
the locations for blockage. In contrast to the simple example network in Figure 5.2 in a lager
network one blockage can affect many routes. Moreover, the newly determined routes that re-
sult from this blockage lead to an increased traffic flow in one part of the network while it is
decreased in another part. Furthermore, not only the traffic density would affect the NCT, also
the length of the alternative routes affects the NCT. These impacts are demonstrated by means
of the example in Figure 5.2. First it is assumed that an additional evacuee starts in section
3, who prefers the route 3 - 4 - 5 - S. The blockage of the connection between sections 2 and
3 leads to a decreased traffic flow in section 2 while it increases in section 4 and 5. Therefore,
the resulting traffic would not lead to a decreased NCT. Second it is assumed that there is an
additional section 6 between section 5 and the super sink S. Accordingly, the alternative route
that was generated for evacuee A increases in length: 3 - 4 - 5 - 6 - S (instead of 3 - 4 - 5 - S).
If evacuee A is guided via the enlarged alternative route a reduction in NCT is not possible. In
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both scenarios the blockage between sections 2 and 3 would not help to reduce the NCT. Hence
the example points out that the length of the alternative routes, the traffic flow as well as the
resulting traffic density must be considered when determining blockage positions.

Various possibilities for positioning blockades in the network

The previous paragraph described that the induction of blockages between adjacent sections
is used to re-distribute the traffic in such a way that the resulting traffic flow leads to the small-
est possible NCT. The blockage of connections between street sections can lead to a partial
blockage of a street section or to a complete blockage of a street section. Figure 5.3 illustrates
the different possibilities for positioning blockades in a network. The example shows a regular
intersection: the street sections are labelled with letters A to D. Figure 5.3a presents an inter-
section with all possible connections from the perspective of street A. Being in street A a vehicle
can drive to streets B, C, and D.

(a) Intersection with a Multitude of Connec-
tions.

(b) Intersection Represented as Sections.

Figure 5.3: Street Network to Illustrate Various Possibilities for Positioning Blockages.

In Figure 5.3b the street network from Figure 5.3a is transformed into sections. Section 3
(corresponding to street A) is connected with sections 1, 2, and 4 (bold lines). In order to block
the complete 3rd section the connections to all branching sections must be blocked: 3 - 1, 3 - 2,
and 3 - 4. As described above it is possible for instance to prohibit only the left turn, thus only
connection 3 - 4 is blocked. In those parts of the network that do not represent intersections
there is just one connection between two sections. This means, if a blockage is positioned at
this section, always the whole section will be blocked.
The blockage of connections between street sections enables an accurate traffic control without
the need to determine routes for network users. For networks with a large number of these
connections the combinatorial effort to determine the connections to be blocked is very high.
Chapter 6 induces a traffic-guiding concept that builds sub-networks with a single exit, by
blocking complete sections of the original network. In Chapters 7 and 8 a concept is introduced
where the positions of the blockages are determined more precisely.
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5.2 Components of the Computational Study

5.2.1 Data and Assumptions

In this thesis a test bed with 360 basic instances is used for the computational studies made in
Chapter 6 to 8. The computational studies are run on a standard machine with Intel (R) Core
(TM)i5-3470, 3.2 GHz and 16 GB Ram. The heuristics and the model are coded in AMPL and
the models are solved by Gurobi 6.5.2. In the following chapters the parameters of these basic
instances are adapted to different research questions. With the software tool SPSE, which was
developed in our research group, nine real-world networks were generated for the basic instances.
SPSE is a tool to determine evacuation plans on the basis of the CTM. Hence, SPSE is suitable
to generate example networks (determine the β parameter) for the computational study (for
further information about the software tool SPSE the reader is referred to SPSE (2016)). As
already mentioned the instances are constructed by using the nine real-world networks. The
networks are subdivided into three categories based on the number of sections:

(1) small networks with 50 - 80 sections,

(2) medium networks with 81 - 120 sections,

(3) large networks with 121 - 160 sections.

The number of exits in each network depends on the conditions of the real network and represents
the connections between sections within the affected area and sections outside the affected area.
Some connections that area identified as exits (by the software tool), as they connect the affected
area with the safe area, are deleted by hand because e.g. they lead to dead-end roads. The
networks are illustrated in Appendix A. For reasons of simplicity it is assumed that a maximum
speed of 30 km/h is allowed in the streets in all networks; the length of a period is set to 9
seconds. These conditions result in section capacities Ni = 14 and Qi = 6 for all i ∈ I in all
networks. Moreover, all streets are modelled with one lane only.
The evacuees in the networks are generated by means of the following conditions: there are four
sets of evacuees (500, 700, 800, and 900) which are randomly distributed over the networks.
For each network and each set of evacuees 10 different distributions are randomly computed.
The preference types are randomly distributed over the set of evacuees, too. The conducted
computational studies take three different preference types of evacuees into account: evacuees
that prefer the shortest, the fastest and a random path, while the type with the random path
should represent an evacuee without knowledge of the network. These preference types are
considered, because these are the most common behaviour patterns that are observed in the
literature (see Murray-Tuite et al. (2012) and Sadri et al. (2014)). Given that by assumption all
sections have the same length the types shortest and fastest path take the same path, which is
a path with a minimum number of sections. For the random type, a random number (uniform
distributed) between 1 and 8 is generated for each section. The sum of these random numbers
is minimised for the random path (see Section 5.1). In Table 5.1 the parameters of all instances
are summarised. The ID of each instance consists of the network name, the number of evacuees
distributed over the network and a letter a to j that indicates the different random distributions
of evacuees over the network.
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Instance
ID

Network Evacuees (x) Distribution
of Evacuees
(*)

Number of
Exits

Number
of Sections

B_x_* Berlin (B) x = 500, 700,
800, and 900

*= a - j 14 68

S_x_* Stockholm (S) x = 500, 700,
800, and 900

*= a - j 10 76

P_x_* Paris (P) x = 500, 700,
800, and 900

*= a - j 11 79

SY_x_* Sydney (SY) x = 500, 700,
800, and 900

*= a - j 14 85

M_x_* Melbourne (M) x = 500, 700,
800, and 900

*= a - j 11 100

A_x_* Auckland (A) x = 500, 700,
800, and 900

*= a - j 12 120

L_x_* Lima (L) x = 500, 700,
800, and 900

*= a - j 20 140

NY_x_* New York (NY) x = 500, 700,
800, and 900

*= a - j 20 152

D_x_* Dubai (D) x = 500, 700,
800, and 900

*= a - j 19 158

Table 5.1: Summary of the Network Parameters of the Test Bed.

5.2.2 Reference Values

To estimate the solution quality of the computed solutions reasonable reference values (bounds)
are necessary. Thus two reference values are introduced: the NCTs that result from the system-
optimal and the user-optimal flows. The computation of these values is described below. The
system-optimal traffic flow arises from the routes in the solution where the NCT is minimised. To
compute these routes a model that is closely related to the formulation presented in Section 3.2
is used. The variables νt are used to count the periods in which the evacuees stay in the network.
The variables xit determine the number of evacuees in sections, the variables yijt represent the
traffic flow between two sections and the variables bit specify the number of evacuees that starts
the evacuation in a period. The parameters Ni, Qi are used to restrict the traffic flow and Ei
is the number of evacuees which is located at a section. The model formulation that computes
the system-optimal flows reads as follows

min
∑
t∈T

νt (5.7)

s.t.
xit = bit + xi,t−1 +

∑
j∈I

yjit−1 −
∑
j∈I

yijt i ∈ I, t ∈ T (5.8)

xit +
∑
j∈I

yijt ≤ Ni i ∈ I, t ∈ T (5.9)
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∑
t∈T

bit = Ei i ∈ I (5.10)

xS|T | =
∑
i∈I

Ei (5.11)

yijt ≤ Niβij i ∈ I, j ∈ I, t ∈ T (5.12)∑
j∈I

yjit ≤ Ni − xit t ∈ T, i ∈ I (5.13)

∑
j∈I

yjit ≤ Qi i ∈ I, t ∈ T (5.14)

∑
j∈I

yijt ≤ Qi i ∈ I, t ∈ T (5.15)

νt
∑
i∈I

Ei ≥
∑
i∈I

Ei − xS,t t ∈ T (5.16)

bit ≥ 0 i ∈ I, t ∈ T (5.17)
yijt ≥ 0 i ∈ I, j ∈ I, t ∈ T (5.18)
xit ≥ 0 i ∈ I, t ∈ T (5.19)
νt ∈ {0, 1} t ∈ T. (5.20)

The objective function (5.7) minimises the number of periods where evacuees are in the network.
The variable νt indicates that evacuees either stay or do not stay in the network and constraint
(5.16) ensure that νt = 1 if evacuees are in the network and νt = 0, if all evacuees have left
the network. Constraints (5.8) - (5.11) regulate that all evacuees start the evacuation and leave
the affected area in the planning horizon. And the constraints (5.12) - (5.15) ensure that the
traffic flow conditions are considered. The domains of the decision variables are stated in (5.17)
- (5.20). The system-optimal flows are a lower bound for the network design problem with
selfishly routing evacuees. The model (5.7) - (5.20) is a relaxation of the lower-level problem
(7.10) - (7.28) (in Chapter 7), which is used to model the network design problem with selfishly
routing evacuees. By relaxing the constraints (7.11) - (7.16) and (7.21) in model (7.10) - (7.28),
the formulation stated above is created. Thus from the optimal solution of model (5.7) - (5.20)
a lower bound can be derived, for the problem of traffic routing with selfishly acting evacuees.
The user-optimal flows arise from the selfish routes of the evacuees. To compute the user-optimal
flows the model formulation above must be extended by constraints (5.21)∑

t∈T
yijt ≥

∑
e∈B

rijeβij i ∈ I, j ∈ I. (5.21)

The binary parameter rije defines the routes of the evacuees, and will be one if the sections i and j
are in sequence of a route of an evacuee (a detailed description of the computation rije is given in
Section 5.1.1). With

∑
e∈B rije, the number of evacuees whose routes encompass the connection

between sections i and j, is counted. Let B be the set of all evacuees e. These constraints
ensure that a connection is used by exact the number of evacuees whose routes encompass such
a connection. Thereby the user-optimal traffic flows are computed. The NCT that arises from
these user-optimal flows is an upper bound of the network design problem. These user-optimal
flows are a feasible solution of the model (7.10) - (7.28), which represents the lower-level problem
of the network design problem with selfishly routing evacuees (Section 5.1.1). In this formulation
the variables mij indicate the blockage of connections between sections. To compute the user-
optimal traffic flow the variables mij must be fixed to parameter βij , and the constraints (7.11) -
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(7.10) reduce to constraints (5.21). A solution with mij = βij is a feasible solution for the model
(7.6) - (7.28), because it equals to a solution without blockages. Hence, the optimal solution
of the model (5.7) - (5.21) determines an upper bound for the problem of traffic routing with
selfishly acting evacuees. In the computational studies theses bounds are used to estimate the
quality of the presented concepts and heuristics.
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Chapter 6

Using Sub-Networks to Guide the
Selfish Evacuation Traffic

In Chapter 5 the importance of traffic regulation in evacuation scenarios with selfishly routing
evacuees was described. Chapter 6 now introduces an approach that divides the original net-
work into sub-networks with one exit only. This strategy restricts the possible route choices
of the evacuees and hence guides the selfish evacuation traffic. Section 6.1 explains the gen-
eral idea of computing these sub-networks and presents a general approach to implement this
idea. Afterwards in Section 6.2 a mathematical model is introduced and the computation of
sub-networks with this model is illustrated by an example. In Section 6.3 a heuristic to com-
pute such sub-networks for networks of realistic size is presented. Section 6.4 introduces some
implementation variants of the approach developed in Section 6.1. The chapter closes with a
comprehensive computational study. The whole chapter is based on the paper by Kimms and
Seekircher (2015).

6.1 Sub-Networks to Guide Selfish Evacuation Traffic

Section 5.1 pointed out the negative impact of selfish routing evacuees on the evacuation traffic
management. Without any traffic regulation the full network capacities cannot be used and
congestions in the network lead to decreased traffic flow. Hence, traffic regulations are necessary
to optimise the evacuation process. In this section a concept is presented, that restricts the
possibilities of evacuee’s route choice by dividing the networks into sub-networks with only one
exit. These sub-networks are constructed in such a way that the resulting traffic flow leads
to a minimal NCT. Each sub-network to be constructed should be a connected graph and the
different sub-networks should have different exits. In an iterative procedure the sections are
assigned to their exit in a way, that the evacuation time is minimised. To compute the sub-
networks the sections i that are directly connected with the super sink S are used as dummy
exits, where s is the notation for the exit sections. The set of (dummy) exits A contains all
sections which are connected with the super sink S: A = {i ∈ I : βiS = 1}. The parameter gis
is used as a weight to assign section i to exit s and indicates the travel time of an evacuee that
starts in section i and leaves the dangerous area through exit s under the condition that section
i is assigned to exit s. To compute gis the traffic flow in the sub-networks is computed and gis is
set to the longest travel time an evacuee needs from section i to the exit s. The procedure works
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iteratively and for every i, s combination the largest computed value for gis is saved over all
iterations. Depending on the gis values that result from the iterative procedure, sub-networks
with minimal evacuation time can be constructed: therefore sections are assigned to the exits
in such a way that the sum over all used gis value is minimal. First the general approach on
how to compute sub-networks and to determine the gis values will be specified and then it will
be illustrated by a small example.

Step 1: Initially, all gis values are set to zero.

Step 2: Considering the original network, sections i are assigned to the exits s in such a
way that the sum over the gis values is minimised taking into account that sections leading
to the same exit must form a connected graph (see Section 6.2). The connections between
street sections are blocked when these sections are assigned to different exits. Thereby the
network is divided into sub-networks.

Step 3: The traffic flow in the sub-networks and the NCT are computed. The values for
gis are updated when a gis value is larger than in the previous iteration.

Step 4: If at least one gis value has been updated in step 3 go back to step 2 using the
new values of gis, else go to step 5.

Step 5: The solution approach stops and the best solution is saved.

Figure 6.1: Network to Illustrate the Computation of Sub-Networks.

The network in Figure 6.1 is used to illustrate the computation of the parameter gis and the
sub-networks. The sections 1 - 7 form the endangered area and the super sink S represents the
safe area. It is assumed that the evacuees B and C start at section 1 and evacuee A starts at
section 3. All evacuees prefer the fastest route, which is a route with a minimum number of
sections. Sections 6 and 7 are used as (dummy) exit sections, because they are connected with
the super sink S. For the sake of simplicity in the example only sections 1 and 3 are assigned
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to an exit. The gis values are initially set to zero. It is assumed that in the first iteration the
sections 1 and 3 are assigned to exit section 7, therefore all evacuees use exit 7 to leave the
endangered area. The resulting evacuation times for the evacuees are presented in Table 6.1a.
These times lead to an NCT of 5 periods and to an update of parameter gis. The updated values
are presented in Table 6.1b. As mentioned before for every i, s combination the longest travel
time is taken over all the evacuees that start in section i and leave the network at exit s.

Evacuee Start Section Exit Evacuation Time

B 1 7 3
C 1 7 4
A 3 7 5

(a) Evacuation Time for the Evacuees.

gis 6 7

1 0 4
3 0 5

(b) Updated gis Values.

Table 6.1: Results of the First Iteration.

According to the updated values of parameter gis, in the second iteration sections 1 and 3 are
assigned to exit 6. The new values for the evacuation times are depicted in Table 6.2a and the
updated values of parameter gis are shown in Table 6.2b. This assignment leads to a NCT of 7
periods.

Evacuee Start Section Exit Evacuation Time

B 1 6 6
C 1 6 7
A 3 6 4

(a) Evacuation Time for the Evacuees.

gis 6 7

1 7 4
3 4 5

(b) Updated gis Values.

Table 6.2: Results of the Second Iteration.

With the updated values of parameter gis, section 1 is assigned to exit 7 and section 3 is assigned
to exit 6 in the third iteration. The resulting evacuation times after the third iteration for the
evacuees are: (B) 3, (C) 4, and (A) 4. These times do not lead to an update of the values
of parameter gis and the solution approach stops. The computed sub-networks are: {1, 2, S}
and {3, 4, 5, S}. To construct these sub-networks the connection between section 2 and 3 must
be blocked in the original network. The traffic flow in the sub-networks leads to an NCT of 4
periods, the same NCT results from the system-optimal flows.
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6.2 A Mathematical Model to Compute Sub-Networks

For the optimal computation of sub-networks a mathematical model is introduced that assigns
the sections to the exits of the network depending on the parameter gis. By definition each
sub-network has exactly one exit. A is the set of exit sections and includes all sections which
are connected with the super sink S: A = {i ∈ I : βiS = 1}. For the example in Figure 6.2 this
set is: A = {2, 5}.

(a) Example Network. (b) Illustration of a Feasible Solution.

Figure 6.2: Network to Illustrate the Computation of Sub-Networks with the Model (6.1) -
(6.10).

To construct these sub-networks, directed paths are computed that connect all sections which
belong to the same exit or sub-network, respectively. Therefore, the first section of each path
is a section which is directly connected with the super sink, in the example sections 2 and 5.
Starting from these sections paths are constructed where each section can be connected with
exactly one predecessor section and with one or more successor sections. In Figure 6.2b for the
section 3, the section 2 is the predecessor and the sections 1 and 6 are the successors. Moreover,
each section belongs exactly to one path / sub-network. The arrows in Figure 6.2b depict a
feasible solution for such a partition in sub-networks of the network depicted in Figure 6.2a.
The computation of paths where each section has exactly one predecessor leads to an unique
assignment from sections to exits (sub-networks). For example if in Figure 6.2b the connection
4−3 would be also part of the solution, then section 3 would have two predecessors. In this case
section 3 would be on the paths starting from section 2 or section 5 and an unique assignment
of this section to a sub-network is not possible. Therefore, each section must be connected with
exactly one predecessor to compute sub-networks as defined above. The section W is a dummy
successor section for the border sections of the sub-networks. The dummy section is necessary
because each section needs at least one successor section. The binary variable ζis indicates
whether section i is assigned to exit s or not. And the binary variable wij indicates that section
i is the predecessor section of section j. The mathematical programming model reads as follows

min
∑
i∈I

∑
s∈A

gisζis (6.1)

s.t.

52



6.3 A HEURISTIC TO COMPUTE SUB-NETWORKS

wss = 1 s ∈ A (6.2)
ζss = 1 s ∈ A (6.3)∑
i∈I\W :βij=1

wij = 1 j ∈ I\W (6.4)

∑
i∈I\W :βij=1

wij ≤
∑

i∈I:βij=1
wji j ∈ I\W (6.5)

ζjs ≥ (wij − 1) + ζis i ∈ I, j ∈ I, s ∈ A (6.6)∑
s∈A

ζis = 1 i ∈ I\W (6.7)

wij + wji ≤ 1 i ∈ I, j ∈ I (6.8)
ζis ∈ {0, 1} i ∈ I, s ∈ A (6.9)
wij ∈ {0, 1} i ∈ I, j ∈ I (6.10)

The objective of the model is the assignment of sections to exits in such a way that the sum
over all used gis values is minimised. The sections that are combined to a sub-network have to
be connected. Hence, the general idea of the model is to compute |A| connected graphs with
minimal weights over all these sub-networks.
Constraints (6.2) set the (dummy) exit sections s ∈ A as the first sections of the sub-networks
(predecessor for themselves wss = 1) and assign them to themselves as (dummy) exits. Accord-
ingly, for these sections the binary variable ζss is set to 1 in constraints (6.3). Constraints (6.4)
ensure that every section has exactly one predecessor in a sub-network and therefore assure
that each section can be assigned to exactly one exit section. Only the dummy section W can
be connected with more than one predecessors. In the example section 4 has to be connected
with the dummy section W , because constraints (6.5) ensure that every section has more or an
equal number of successors than predecessors. In the example section 4 is not connected with
other sections than sections 3 and 5, and section 5 is already fixed as the predecessor of section
4. Constraints (6.6) determine that section i can only be assigned to exit s when section j is
assigned to exit s and when i and j are connected in the sub-network. In Figure 6.2 section
6 can be assigned to exit 2 (ζ62 ≥ 1), because w62 = 1 and ζ32 = 1 lead to a right hand side
grater or equal to 1 in constraint (6.6). If one or both conditions are violated, the right hand
side of (6.6) is greater than or equal to 0, in combination with the minimising objective function
it would lead to ζ62 = 0. Restrictions (6.7) ensure that every section i is assigned to exactly
one exit s. Constraints (6.8) avoid cycles between two sections. The domains of the decision
variables are determined in (6.9) and (6.10).

6.3 A Heuristic to Compute Sub-Networks

With the optimisation model (6.2) - (6.10) it is not possible to compute optimal solutions for
networks of practical size using commercial software. Therefore, to solve such problems the
following heuristic is proposed. In the heuristic the sections are assigned iteratively to an exit
with the best possible gis value. But a section i can just be assigned to an exit s, if this section
is connected with a section j that is already assigned to exit s. Hence, the algorithm tries to
assign a section i to the exits with the lowest gis value for a given number of iterations. If the
assignment is not successful after a predefined number of iterations the next best assignment
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(combination with the next lowest gis value) will be chosen. This procedure will be repeated
until the section is successfully assigned to an exit. The set Z includes all sections that are
connected with sections which are already assigned to an exit. Parameter ki counts the number
of iterations a section i is in set Z. Parameter r counts the number of sections that are taken
from Z per iteration. The thresholds for ki and r are denoted by K and R, respectively. For
initialisation the sections i, which are directly connected with the super sink S, are defined as
dummy exit sections. In the following the computation of sub-networks by means of a heuristic
is described.

Step 0 Define sections i that are directly connected with the super sink S as dummy exit
sections: i ∈ A : βi,S = 1.

Step 1 Assign the sections i that are directly connected with a (dummy) exit to this exit.

Step 2 Set ki = ki + 1 for all i ∈ Z and set r = 0.

Step 3 Add those sections i to Z that are connected with assigned sections and that are
not already contained in Z. Set the counter ki for these sections to 1.

Step 4 If Z = {} go to step 10.

Step 5 Assign all i ∈ Z that are connected with just one section to the exit the connected
section is related to. Remove such sections from Z.

Step 6 Randomly choose a section i from Z and set r = r + 1.

Step 7 Determine the exit s for the section i where gis has the lowest value.

Step 8 Check the following conditions for the chosen section i and the exit s:

Step 8a Section i is connected with a section that is assigned to exit s: assign section
i to exit s and remove section i from Z.
Step 8b Section i is not connected with a section that is assigned to exit s: if i is
connected with unassigned sections and ki < K then keep section i in Z.
Step 8c Section i is not connected with a section that is assigned to exit s: if ki = K
or section i is not connected with unassigned sections then set gis =∞ and ki = 0.

Step 9 When Z = {} or r = R go back to step 2, otherwise go back to step 6.

Step 10 The algorithm terminates when all sections are assigned to an exit.

With the heuristic every section should be assigned to that exit where the gis value is minimal.
All sections which are assigned to the same exit form a sub-network. Depending on the structure
of the network and the assignment of the other sections the assignment to the exit with the actual
lowest gis value may not be possible for every section. Hence, for K iterations the algorithm
tries to assign a section to the exit with the actual lowest gis value. If the assignment is not
successful in these K iterations the exit is forbidden for this section and the exit with the next
lowest gis value is chosen. After these K iterations the value gis for the chosen i, s combination
is fixed to infinity so that the exit does not have the lowest gis value any longer and another
exit will be chosen in the next iteration. To ensure that Z includes all sections that could be
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assigned to an exit the sections in Z should be updated after every assignment of a section.
In this case the heuristic would start after each assignment with step 2, this leads to a high
computational effort. To reduce this effort the sections in Z are updated after R assignments
and for less iterations all steps must be executed. This is the compromise between updating Z
after every assignment versus updating Z after all sections from Z are assigned. The counter r
is used to keep hold on how many sections from Z are chosen (per iteration) until the sections
in Z are updated. All sections that are just connected with one other section are assigned to the
same exit as the connected section, because another assignment is not possible. Depending on
the order the sections are chosen from Z it could lead to different assignments from sections to
exits and thereby to different sub-networks. To achieve a high variety in this order the sections
are randomly chosen from Z.
The example network in Figure 6.1 is taken to illustrate the algorithm. To simplify the example
parameters gis are set to the values in Table 6.3 and the thresholds R and K are set to 2.

gis 6 7

1 2 2
2 1 1
3 1 2
4 1 2
5 1 2

Table 6.3: Initialisation of Weight gis.

Step 0 The sections 6 and 7 are connected with the super sink S. So these sections are
defined as dummy exit sections.

Step 1 The sections 5 and 2 are connected with the exits 6 and 7. So these sections are
assigned to these exits.

Step 3 Add all sections that are directly connected with an assigned section (5, 2) to Z,
Z = {1, 3, 4} and set ki = 1 for i ∈ Z.

Step 5 Check which sections are connected with just one other section. In the example
section 1 is just connected with section 2. Hence, section 1 will be assigned to the same
exit as section 2 and will be removed of Z, Z = {3, 4}.

Step 6 Randomly choose a section from Z, e.g. section 3 and set r = 1.

Step 7 Determine the exit s where g3s has the lowest value. For section 3 it is exit 6 (see
Table 6.3, row 4).

Step 8b Section 3 is not connected with a section that is assigned to exit 6. Section 3
remains in Z because it is connected with unassigned sections and the threshold K is not
violated k3 < 2.

Step 9 Go back to step 6, because |Z| > 0 and r < 2.

Step 6 Randomly choose section 4 from Z and set r = 2.

Step 7 The best exit for this section is exit 6 (see Table 6.3, row 5).
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Step 8a Section 4 is connected with section 5, which is assigned to exit 6. Hence, section
4 can be assigned to exit 6. Remove section 4 from Z, Z = {3}.

Step 9 The threshold for r is violated. Go back to step 2.

Step 2 Set k3 = 2 and r = 0.

Step 6 Choose section 3 from Z and set r = 1.

Step 7 The best exit for section 3 is exit 6 (see Table 6.3, row 4).

Step 8a Section 3 is connected with section 4, and this section is assigned to exit 6. Now
section 3 can be assigned to exit 6. Remove section 3 from Z, Z = {}.

Step 10 All sections are assigned to an exit. The algorithm terminates. From the assign-
ment the sub-networks {1, 2, 7} and {3, 4, 5, 6} are obtained.

6.4 Implementation Variants of the Solution Procedure

With the heuristic described above one possible assignment from sections to exits is computed.
To find a better assignment from sections to exits, in the following implementation variants
solutions are combined. Afterwards some variants of the general implementation of the heuristic
(Section 6.1) are presented: the S-(Standard) implementation equals to the general approach
described in Section 6.1 and the implementations SFCON, SFRED, and SFRAN are extensions
of the standard implementation.

• S-implementation
In the S-implementation the heuristic from Section 6.1 (step 1 - 5) is used to compute
different sub-networks. The sub-networks (step 2) are computed with the mathematical
model which was introduced in Section 6.2 or the heuristic which was presented in Section
6.3. In this variant, in addition to the stop criterion in step 5 (heuristic in Section 6.1),
the heuristic stops after a predefined number of computed iterations. The solution with
the lowest NCT is taken as the final solution.

• Extensions of the S-implementation
The SFCON, SFRED, and SFRAN implementations are extensions of the S-implementation.
In these variants solutions computed with the S-implementation are combined to find a
further solution with a lower NCT. An iteration of these variants contains the following
steps:

Step 1: Computation of a certain number of sub-networks with the S-implementation.
Step 2: Selection of two solutions with the lowest NCT.
Step 3: Fixing the assignments from sections to exits which are equal in both solu-
tions.
Step 4: If all sections are assigned to an exit, stop. Otherwise, start at step 1 using
the network with some fixed sections.
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With this fixing a solution should be build step by step on the basis of assignments with
good objective values. This approach should increase the possibility to find good solutions
within a low number of computed iterations. The implementation variants differ in the
way the number of solutions, computed with the S-implementation (step 1), is determined
(in each iteration). All variants have in common that a part of the assignments from
sections to exits is fixed (The letter Findicates it in the short cut) in each iteration. The
differences of the variants are described below:

– SFCON-implementation : A CONstant number of solutions is computed with
the S-implementation in each iteration.

– SFRAN-implementation: The number of solutions, which is computed with the
S-implementation, is RANdomly chosen from a predefined interval in each iteration.

– SFRED-implementation: The number of solutions computed with the S- imple-
mentation is REDuced in each iteration. Hence, it starts in the first iteration with a
high number of computed solutions. This number is reduced by a predefined number
in each iteration until this number is reduced to two (the minimal number of solu-
tions which is necessary for the combination of solutions) or all sections are assigned
to an exit. This implementation variant starts with a large number of solutions at
the beginning of the computation, where a lot of different assignments from sections
to exits are possible. At the end of the computation, when the assignment is fixed
for most sections and few assignments are possible for the remaining section, only a
small number of further solutions are computed.

6.5 Computational Study

In the computational study the algorithm, which is described in Section 6.1, is tested with dif-
ferent combinations of parameters. The sub-networks are computed with the heuristic which
is introduced in Section 6.3. The mathematical model which is presented in Section 6.2 is not
used, because it is not appropriate for the network sizes that are considered in this thesis (see
Section 5.2.1). In general all tests are performed with the standard implementation, with excep-
tion of the part where the different implementation variants are compared. First the number of
computed iterations is modified and the influence on the NCT is investigated. Afterwards the
heuristic for computing sub-networks is tested with different combinations of the parameters
K and R and the influence on the NCT and the computation time is investigated. Then the
NCTs computed with the implementation variants SFCON, SFRED, and SFRAN are compared
to each other and to the S-implementation. Also the NCT computed with sub-networks, is
compared to a solution with user-optimal flows and system-optimal flows. In a last step the
number of exits in the networks is modified to investigate the influence of exits on the NCT.
The computational study runs on the instances described in Section 5.2.1

Number of computed iterations

First it is tested which NCT can be achieved according to 10, 25, and 50 computed itera-
tions. Also, the improvements that result from more computed iterations are examined. For
each instance the algorithm runs for 50 iterations. In addition the number of iterations which
can be used as a valid stop criterion in further experiments is determined in this first test. The
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parameters K and R are fixed to K = 2 and R = 5. This combination is used to test how
many iterations are necessary to achieve a (good) improvement, when considering the worst
case combination (an explanation for different K and R values is given in the next paragraph).
Table 6.4 depicts the percentage of all instances, that have reached the best NCT computed in
50 iterations after 10 or 25 iterations, respectively. These percentages are presented for each
network, evacuee group, in average for each network (row: average) and in average for each
evacuee group over all networks (column: average). The results show, that the best NCT, which
was computed in 50 iterations, was achieved for 43 % of all instances after 10 iterations and for
77 % of the instances after 25 iterations.

Network B S P SY M A L NY D Average

#-Iterations 10
Evacuees

500 90 % 40 % 20 % 100 % 70 % 80 % 50 % 10 % 30 % 54 %
700 80 % 30 % 10 % 90 % 20 % 20 % 50 % 20 % 40 % 40 %
800 50 % 70 % 10 % 90 % 50 % 40 % 30 % 0 % 10 % 38 %
900 50 % 30 % 10 % 100 % 50 % 20 % 50 % 10 % 30 % 39 %

Average 68 % 43 % 13 % 95 % 48 % 43 % 45 % 10 % 28 % 43 %

#-Iterations 25
Evacuees

500 100 % 70 % 90 % 100 % 80 % 100 % 80 % 100 % 80 % 89 %
700 90 % 70 % 90 % 100 % 60 % 80 % 80 % 50 % 70 % 77 %
800 90 % 80 % 60 % 100 % 70 % 80 % 70 % 50 % 40 % 70 %
900 70 % 70 % 80 % 100 % 60 % 90 % 60 % 40 % 60 % 70 %

Average 88 % 73 % 80 % 100 % 68 % 88 % 73 % 60 % 63 % 77 %

Table 6.4: Percentage of Instances that have Reached the Best Results After 10 or 25 Iterations.

Additionally, the improvement of the NCT (in periods) after 10 or 25 instances is analysed. The
results are presented in Table 6.5. The improvement (in periods) is presented in average for
each evacuee group and each network, in average for each evacuee group and over all networks
(row: average) and for each network over all evacuee groups (column: average). If the best NCT
was not computed after 10 or 25 iterations, then the NCT could be reduced in average by 1.7
or 1.3 periods, respectively. Thus the improvement after 10 iterations was higher than after 25
computed iterations. In summary, the best ratio between the computed number of iterations
and the resulting NCT could be achieved with 25 iterations. A doubling of iterations from 25
to 50 leads to small additional reductions of NCT for a few instances only. Hence, the stop
criterion in the S-implantation is fixed to 25 iterations for the next tests.
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Network B S P SY M A L NY D Average

#-Iterations 10
Evacuees

500 1.0 1.3 1.6 0.0 1.0 1.0 1.0 1.2 1.6 1.3
700 1.5 2.3 2.0 1.0 1.8 1.0 1.0 2.1 1.3 1.6
800 2.0 2.0 3.4 2.0 1.2 1.2 1.6 1.9 1.3 1.8
900 2.2 2.3 3.7 0.0 2.0 1.4 1.4 2.7 2.6 2.3

Average 1.7 2.0 2.7 1.5 1.5 1.1 1.2 2.0 1.7 1.7

Network B S P SY M A L NY D Average

#-Iterations 25
Evacuees

500 0.0 1.0 2.0 0.0 1.0 0.0 1.0 0.0 1.0 1.2
700 2.0 1.0 1.0 0.0 1.5 1.0 1.0 1.3 1.0 1.2
800 2.0 1.0 1.8 0.0 1.0 1.0 1.0 1.0 1.0 1.2
900 1.7 1.0 4.5 0.0 1.5 1.0 1.5 1.5 1.0 1.7

Average 1.9 1.0 2.3 0.0 1.3 1.0 1.1 1.3 1.0 1.3

Table 6.5: Improvement of NCT in Periods After 10 or 25 Iterations.

Different combinations of R and K parameters

In a next test the influence of the parameters R and K (from the heuristic to compute sub-
networks) on the NCT and on the computation time is analysed. These parameters determine
the number of iterations for which a section can be assigned to the actual best exit (K) and the
number of sections that are assigned to an exit in each iteration until the sections in set Z are
updated (R). The hypothesis states that a high K leads to a solution with a low NCT, because
many sections could be assigned to an exit with a low weight gis. In addition, a low value for R
leads to a solution with a low NCT because a frequent update of Z leads to a higher number of
sections that can be considered for the assignment. It is hypothesised that a high value for K
and a low value for R lead to better result in the NCT but to a higher computation time: either
more iterations need to be computed or more reruns per iteration are required. To proof these
hypotheses the heuristic is executed with four different combinations of values for parameters K
and R. In the test the best value for K is set to 10 and the worst is set to 2. For R the best value
is set to 1 and the worst is set to 5. By setting K and R to 10 and 2 or 1 and 5 respectively,
ensures that the difference between the best and the worst value is big enough to monitor an
effect on the heuristic.
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Combination K R

(1) 10 1
(2) 2 5
(3) 10 5
(4) 2 1

Table 6.6: Parameters for the Four Combinations of K and R.

Table 6.6 presents the different combinations of K and R which were tested in the computational
study. Combination (1) represents good values for both parameters, while the values of com-
bination (2) represent bad values for both parameters. Combination (3) assigns a good value
to parameter K and a bad one to R; in combination (4) it is the other way around. Figure 6.3
presents the average NCT of all networks for each set of evacuees (500, 700, 800, and 900). Each
bar in a 4-tuple represents the average NCT for one of the K - R combinations from Table 6.6
(from left to right 1 - 4). The hypothesis that high values for K and low values for R (combi-
nation 1) lead to the lowest NCT (best result) and that low values for K and high values for R
(combination 2) results in the highest NCT (worst result) can be confirmed, in respective of the
evacuee group considered. This is not true for combinations (3) and (4) that represent medium-
high values for K and R. Here the resulting NCT is influenced by the considered instances and
depends on the size of the evacuee group. But Figure 6.3 additionally shows that all solutions
are really close to each other. Hence, contrary to the initial hypothesis the values of K and R
do not have a significant impact on the computed NCT.
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Figure 6.3: Average NCT per Evacuee Set for Combinations K and R.
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The average computation time for each evacuee group are presented in Table 6.7. The results
show that contrary to the hypothesis stated above combination (1) leads in average to the
lowest computation time in each evacuee group. Also, the average (Avg.) computation time is
the lowest with this combination. Hence, the best (lowest) NCT with the lowest computation
time can be achieved with combination (1). According to these results, the parameters K and
R will be fixed to K = 10 and R = 1 for the following tests.

1 2 3 4

500 3.80 4.68 6.31 4.36
700 5.37 6.25 7.89 5.85
800 6.28 7.23 8.83 6.71
900 7.23 8.15 9.78 7.50

Avg. 5.67 6.58 8.20 6.11

Table 6.7: Average Computation Time (in CPU sec.) Resulting from Combinations 1 - 4 per
Evacuee Group.

Implementation variants

In Section 6.4 different implementation variants of the basic heuristic (Section 6.1) were pre-
sented. Now it will be analysed whether improvements in NCT can be realised with these dif-
ferent implementation variants. Therefore, the best NCTs computed with the S-implementation
after 25 iterations are compared with the NCTs of the variants. Furthermore, the NCTs of the
variants are compared to each other. For the variants the following parameters are used: with
the SFCON implementation 5 solutions are computed. In each iteration a constant number of
10, 8, 6, 4, and 2 solutions are combined. For the SFRAN implementation 4 solutions are com-
puted and in each iteration a random number between 2 and 10 solutions are selected. For the
SFRED implementation 5 solutions are computed. The number of solutions which are combined
is reduced in each iteration by 2 (see the description in Section 6.4). The start values for the
number of solutions which is combined are: 10, 8, 6, 4, 2.

SFCON SFRED SFRAN
< = > < = > < = >

S 39 % 41 % 20 % 29 % 46 % 25 % 43 % 38 % 19 %
SFCON 14 % 53 % 33 % 33 % 44 % 23 %
SFRED 41 % 41 % 18 %

Table 6.8: Comparison of the NCT Between the Four Implementation Variants.

The results of the different implementation variants compared against each other and against the
S-implementation are summarised in Table 6.8. The table depicts the direct comparison between
two variants and it is shown for which percentage of all instances an NCT is reached that is
better (<), equal (=) or worse (>) than in the other variant. For example the S-implementation
leads in 39 % of all instances to a better NCT than the SFCON-implementation, in 41 % to an
equal NCT and in 20 % to a worse NCT. The other way around the SFCON-implementation
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leads in 20 % of all instances to solutions with a better NCT than the S-implementation. The
results show, that the S-implementation leads to the best results. The implementation variants
SFCON and SRFRED lead to better results than the implementation variant SFRAN. In the
test the variants SFCON and SFRED were run with a higher number of computed solutions
in each iteration. So it can be stated, that the combination of more solutions leads to better
results than the combination of a few solutions. In summary the S-implementation works best
for most instances in the test whereas the variants do not lead to convincing results. Hence, for
most instances the S-implementation should be preferred.

User-optimal flows vs. flows in sub-networks

So far the influence of different parameters on the heuristic has been tested and the imple-
mentation variants have been compared to each other. In the following, it will be analysed in
which extent the NCT of the user-optimal flows can be influenced by subdividing the whole
network into sub-networks. Therefore the NCTs of the user-optimal flows, the system-optimal
flows and the best solutions computed with the method of sub-networks are compared. In Figure
6.4 to 6.7 the results are plotted as box plots. The NCTs of the system-optimal flows are fixed to
100 % and the NCTs of the user-optimal flows and the solution with blockages (sub-networks)
are set in relation to these values. The box plots with the dashed lines represent the NCT which
results from user-optimal flows and the box plots with continuous lines depict the NCT which
results from the networks with blockages. Each box plot contains the NCT of one evacuee group
for one network and presents the results of the different distributions of evacuees in the network.
So each box plot depicts the spread of the NCT that results from the different distributions of
evacuees in the networks. The results can be summarised as follows: the distribution of evacuees
in the network has an influence on the NCT. This influence is higher for the solution with user-
optimal flows as in the solution with sub-networks. Hence, the differences in the NCTs resulting
from the distribution of evacuees in the network can be adjusted by computing sub-networks.
Thus the NCT is only minimally influenced by the distribution of evacuees. Each Figure 6.4 to
6.7 presents the results for all networks for one evacuee group. The figures show that the intro-
duction of blockages significantly reduces the NCT. The box plots show that the NCT resulting
from the blocked networks leads to a lower % of system-optimal flows than the NCT resulting
from user-optimal flows. A further observation is that in instances with a higher number of
evacuees the distance between the user-optimal solutions and the solution with sub-networks
is higher. This leads to the conclusion that a strict coordination of the traffic flow is more
important for networks with a high number of evacuees than for networks with a low number
of evacuees. Therefore, in case of an evacuation, with extraordinary traffic in the network, the
use of sub-networks is an appropriate way to guide the traffic.
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Figure 6.4: NCT for the User-Optimal Solution and the Solution with Sub-Networks in Relation
to the System-Optimal Solution (SO); Instances with 500 Evacuees.

B S P SY M A L NY D

100

150

200

Instance

N
C
T

in
%

of
S
O

so
lu
ti
o
n

Figure 6.5: NCT for the User-Optimal Solution and the Solution with Sub-Networks in Relation
to the System-Optimal Solution (SO); Instances with 700 Evacuees.
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Figure 6.6: NCT for the User-Optimal Solution and the Solution with Sub-Networks in Relation
to the System-Optimal Solution (SO); Instances with 800 Evacuees.
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Figure 6.7: NCT for the User-Optimal Solution and the Solution with Sub-Networks in Relation
to the System-Optimal Solution (SO); Instances with 900 Evacuees.

Modification of exits in the networks

Additionally, the influence of the number of exits on the NCT either generated by user-optimal
flows or by the introduction of sub-networks is investigated. It is hypothesised that a reduction
of exits leads to an increase of NCT, because the exits are the bottlenecks of the system. With
less exits, less evacuees can leave the endangered zone per period. Moreover, it is analysed
whether the number of exits has a larger impact on the NCT resulting from the user-optimal
solution or on the NCT resulting from the introduction of sub-networks. In the test bed for
each network (represented by abbreviations B - D) the number of exits is reduced to 75 % and
50 % of the original number of exits (the removed number of exits is always rounded down).
The test is executed for each network with the instance X_800_a. The exits which are removed
from the networks are chosen randomly and three different exit sets (a - c) for each network are
tested. The removed exits for each instance are presented in Table 6.9. In the tests, where 50
% of the original number of exits is removed, the set of exits which is stated in the row 50 %
and additionally the set of exits which is stated in the row 75 % is removed. The sum over the
number of both sets yields to 50 % of the original number of exits.
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Network (a) (b) (c)

B 75 % {14, 27, 34, 58} {1, 16, 32, 53} {18, 27, 32, 53}
50 % {18, 26, 45} {21, 38, 41} {1, 45, 58}

S 75 % {11, 44, 63} {50, 57, 74} {8, 55, 66}
50 % {8, 66} {53, 55} {11, 74}

P 75 % {17, 40, 47} {18, 44, 56} {23, 56, 65}
50 % {6, 23, 65} {40, 65, 66} {17, 44, 47}

SY 75 % {1, 18, 42, 51} {4, 6, 13, 14} {4, 13, 42, 46}
50 % {60, 64, 70} {46, 61, 79} {18, 51, 70}

M 75 % {10, 22, 51} {17, 62, 52} {37, 52, 65}
50 % {20, 37, 60} {10, 65, 75} {20, 22, 26}

A 75 % {16, 29, 35} {22, 40, 46} {29, 40, 98}
50 % {46, 93, 98} {29, 53, 79} {22, 79, 93}

L 75 % {9, 20, 98, 106, 108} {32, 42, 54, 62, 71} {9, 42, 62, 101, 139}
50 % {93, 101, 116, 126, 127} {20, 133, 134, 136, 139} {32, 98, 106, 126, 133}

NY 75 % {14, 31, 41, 68, 71} {37, 85, 97, 98, 99} {4, 31, 41, 111, 136}
50 % {4, 29, 45, 61, 69} {103, 111, 136, 140, 145} {29, 45, 85, 99, 103}

D 75 % {7, 17, 22, 83} {14, 19, 87, 137} {19, 22, 45, 90}
50 % {38, 45, 46, 57} {7, 84, 90, 143} {46, 57, 84, 137}

Table 6.9: Sets of Removed Exits.

In Table 6.10 the NCTs of the networks with 75 % and 50 % remaining exits are compared to
the NCTs of the original networks. The increase in the NCT resulting from the sub-networks
are presented in the row denoted by "Sub-Net." and from the user-optimal flows in row "User".
For each instance the percentage increase in NCT of the modified network compared to the un-
modified network is presented. The results in Table 6.10 show that the NCT increases when the
number of exits is reduced. For example in instance B_800_a, for the network with blockages
the number of exits is reduced by maximally 25 % and the NCT is increased for (a) by 39 %,
for (b) by 17 % and for (c) by 61 %. The results confirm the hypothesis, that less exits result
in a higher NCT. In the instances (a) - (c) for each network different exits are removed. In each
instance the remaining exits are at different positions in the network. The results demonstrate
that in addition to the number of exits the position of exits has a significant influence on the
NCT. For example in instance M_800_a, network divided into sub-networks: in instance (a) the
reduction of the number of exits by 25 % results in an increase of the NCT by 79 %; in (c) the
same number of removed exits leads to an increase of the NCT by only 32 %. In the solution re-
sulting from user-optimal flows for instance B_800_a, the same NCT as in the original network
with less exits was computed in instance (b). In average, in the solutions with sub-networks the
NCT is increased by 44 % or 95 % and in the solutions resulting from user-optimal flows the
NCT is increased by 36 % or 90 % for the networks with 75 % or 50 % remaining exit. Thus,
in the solutions with user-optimal flows, the number of exits has a lower impact on the NCT
compared to the solution with sub-networks.
In summary, the number of exits represents an important factor for the NCT. The tested in-

65



6.5 COMPUTATIONAL STUDY

stances show, that more exits lead to a faster evacuation in most cases. Additionally, the
significant difference in the NCT resulting from the removal of different exits shows that the
position of the exits also plays a crucial role for the NCT. Moreover, the method of computing
sub-networks works better with more exits in the network. Thus, with more exits the original
network can be divided into more sub-networks and the traffic can be routed more specifically.

Instance (a) (b) (c)

B_800_a Sub-Net. 75 39 % 17 % 61 %
50 61 % 56 % 122 %

User 75 9 % 0 % 27 %
50 91 % 50 % 109 %

S_800_a Sub-Net. 75 33 % 29 % 57 %
50 124 % 76 % 67 %

User 75 31 % 46 % 42 %
50 65 % 100 % 42 %

P_800_a Sub-Net. 75 33 % 38 % 19 %
50 90 % 100 % 110 %

User 75 10 % 3 % 0 %
50 24 % 69 % 107 %

SY_800_a Sub-Net. 75 27 % 73 % 73 %
50 53 % 87 % 87 %

User 75 37 % 53 % 53 %
50 68 % 58 % 89 %

M_800_a Sub-Net. 75 79 % 47 % 32 %
50 126 % 216 % 100 %

User 75 109 % 41 % 50 %
50 114 % 159 % 82 %

A_800_a Sub-Net. 75 40 % 20 % 24 %
50 108 % 80 % 68 %

User 75 44 % 7 % 30 %
50 111 % 130 % 70 %

L_800_a Sub-Net. 75 77 % 46 % 54 %
50 100 % - 200 %

User 75 89 % 22 % 11 %
50 117 % - 217 %

NY_800_a Sub-Net. 75 42 % 33 % 50 %
50 75 % 83 % 58 %

User 75 36 % 36 % 36 %
50 43 % 86 % 50 %

D_800_a Sub-Net. 75 67 % 40 % 33 %
50 113 % 153 % 147 %

User 75 41 % 53 % 53 %
50 153 % 135 % 194 %

Table 6.10: Increase in NCT by Remaining 75 % and 50 % of Exits.
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Chapter 7

Using Street Blockages to Guide the
Selfish Evacuation Traffic

In Chapter 6 the idea of dividing a network into smaller sub-networks with one exit to regulate
the traffic flow was presented. To obtain these sub-networks the connections between street
sections that belong to different sub-networks are blocked. One drawback of forming such sub-
networks is the lack of traffic regulation inside these networks. Thus only inaccurate traffic
regulation is possible with this concept of sub-networks. Therefore, this concept is improved
and specific connections between street sections are blocked to regulate the traffic flow more pre-
cisely. To determine the positions of blockages a bi-level model is formulated. First the general
concept of bi-level optimisation is explained in Section 7.1. Afterwards a mathematical model
to determine the position of blockages is presented in Section 7.2. In this bi-level formulation
the routes of the evacuees are computed in the upper-level problem while the lower-level prob-
lem determines the blockages as a reaction on these routes. The model formulation based on
the paper by Kimms and Seekircher (2016). In Section 7.3 three heuristic solution approaches
are presented. Section 7.3.1 introduces an iterative solution approach, which is extended in
Section 7.3.2 by a preprocessing step. Both approaches are taken from the paper by Kimms
and Seekircher (2016). In Section 7.3.3 another heuristic is presented where further blockage
combinations are tested. This section is based on the paper by Kimms and Seekircher (2017).
The chapter closes with a comprehensive computational study.

7.1 Bi-Level Optimisation

Bi-level optimisation is an important field of research in mathematical programming (Talbi
(2013)) and affects problems with two or more decision makers with individual objective func-
tions that act and react in a non-cooperative sequential manner (Bard (2011)). The decisions of
one party affect the decisions of the other one and vice versa. The concept was first introduced
by Bracken and McGill (1973) as optimisation models with optimisation problems in the con-
straints. The name bi-level or multi-level optimisation was introduced by Candler and Norton
(1977).
A bi-level optimisation model has a hierarchical structure of two levels, with an optimisation
problem on each level: the upper-level and the lower-level problem (Talbi (2013)). The structure
of the model leads to a comparison with a Stackelberg game (Stackelberg (1952)) in the game
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theory, where a leader makes a decision and a follower decides on the basis of the leaders deci-
sion. A bi-level model is a static, non-cooperative version of this game (Bard (2011)). Hence,
the upper- and the lower-level problems are often called leader and follower problems. In bi-
level models each decision maker optimises his own objective function, without considering the
objective functions of the other players, but his objective value and his decision space depend
on their decisions (Talbi (2013)).
A formal description of the problem can be given with the following notation: the decision maker
on the upper-level has his own objective function F (x, y(x)) and so does the decision maker on
the lower-level f(x, y(x)). The variables x ∈ X ⊆ Rn1 and y(x) ∈ Y ⊆ Rn2 are the decision
variables of the upper-level and lower-level problem, respectively. Where y(x), points out that
the decision on the lower-level depends on the decision (variables) of the upper-level problem.
General formulations of bi-level models are presented for example by Colson et al. (2007) or Bard
(2011). These formulations are summarised, to the following general formulation of a bi-level
model

minx∈X F (x, y(x)) (7.1)
s.t. G(x, y(x)) ≤ 0, (7.2)

miny(x)∈Y f(x, y(x)) (7.3)
s.t. g(x, y(x)) ≤ 0. (7.4)

The upper-level problem optimises over the decision variables x and indirectly on y(x). In the
lower-level problem decisions are only made via the y(x) variables. The constraint sets of the
upper- and lower-level problems are G(x, y(x)) and g(x, y(x)). In a static bi-level model each
player has only one move. The upper-level model is solved first with the objective function
and the constraint set of this problem. The lower-level problem is solved by considering the
solution of the upper-level problem. Hence, in bi-level models the upper-level decision maker
can influence the behaviour of the lower-level decision maker but cannot completely control him.

7.2 A Bi-Level Model for Emergency Evacuation Planning

As described above, connections between sections are blocked to regulate the selfish evacuation
traffic in a network. When determining the position of blockages the behaviour of evacuees
must be considered. The blockages have to be positioned in a way that they influence the
route choice of the evacuees during an evacuation. To compute the position of these blockages
a bi-level model is introduced. Bi-level optimisation is a common method for network design
problems in traffic networks. In the related studies the network (re-)design decisions are made
in the upper-level problem and the traffic assignments are computed in the lower-level as a reac-
tion on the upper-level decisions (Abdelgawad and Abdulhai (2013)). In the bi-level formulation
presented in this chapter the route choice decisions of the evacuees are made in the upper-level
problem. In the lower-level problem a decision maker introduces network optimisations as a re-
action to the previous route choices in order to regulate the evacuation traffic. In this thesis the
network will be improved as reaction on the behaviour of the evacuees. Therefore it is modelled
the other way around, compared with the usual practice: the routes which are computed in an
upper-level problem are selfish routes that optimise the preferences of each network user without
considering the behaviour of the other network users. In a lower-level problem the positions of
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blockages are determined taking these route choices into account.

Assumptions and notation

The bi-level model which is based on the cell transmission model and the traffic flow formulations
(flow capacities, formulation of the affected area / safe zone) are taken from the formulation by
Kimms and Maassen (2011b). To deal with selfishly routing evacuees and network blockages
the flowing assumptions are made and additional notations are necessary.

• The set B contains all evacuees e which are in the affected area. The route choice of
evacuees is defined in Section 5.1.1.

• Each connection (i, j) between sections can be blocked separately. But if such a connection
is blocked, the connection (j, i) will be blocked as well.

• The blockages are determined with mij . In the lower-level problem mij is defined as a
binary variable. If a connection between two sections i, j is blocked then is mij = 0,
otherwise is mij = 1 and it has no influence on the network structure. In the upper-level
problem mij is used as a (binary) parameter and forms the network which was computed
in the lower-level problem.

• The routes of the evacuees are represented with rije. In the upper-level problem rije is a
binary variable. If two sections i and j are in sequence on a route rije = 1, 0 otherwise. In
the lower-level problem rije is a binary parameter to consider the route choice of evacuees
in the network design problem.

• The individual start position of each evacuee e is given with ae. The number of evacuees
that starts the evacuation in a section i ∈ I are Ei = |{e ∈ B|ae = i}|.

• The binary variable se indicates that a part of the route of evacuee e computed in the
upper-level problem is either blocked (se = 1) or not (se = 0) in the lower-level problem.
Routes with blockages are determined in the lower-level problem according to the objective
of the lower-level problem.

• The objectives of the upper-level problems are the individual objectives of the network
users, who determine routes according to their preferences. The objective of the lower-
level model is the minimisation of the NCT.

Formulation of the upper-level problem

The upper-level problem determines the route for every evacuee. As described in Section 5.1.1
the evacuees choose their routes without considering the behaviour of the other evacuees. It
is assumed that the evacuees make their decisions on the basis of the network structure and
their private preferences. Most of the evacuees will take a familiar way and they are not willing
to take an unknown route. These familiar routes may be the shortest or fastest ways. Beside
that also different types of routes can be integrated into the modelling approach, for example a
way with maximum security. To compute these routes the upper-level problem for each evacuee
e ∈ B is the mathematical model (5.1) - (5.6) which was described in Section 5.1.1. The prob-
lem is formulated in an iterative bi-level optimisation framework (see Section 7.3). Therefore
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constraints (5.2) are substituted by constraints (7.5) to consider in this iterative framework the
network improvements which are determined in the lower-level problem

rije ≤ βijmij i ∈ I, j ∈ I. (7.5)

As described above mij is used as a parameter in the upper-level problem and indicates the
blocked connections between sections, which are computed in the lower-level problem. The re-
designed network is represented by multiplying βij withmij . Connections which can be passed in
the original network (represented by βij = 1) cannot be passed if these connections are blocked
mij = 0.

Formulation of the lower-level problem

In this lower-level problem positions for street blockages will be determined to guide the selfish
evacuation traffic. If a blocked connection is part of the selfish route of an evacuee then the route
of this evacuee will be determined according to the objective of the lower-level problem, which
minimises the number of periods where evacuees are in the network. The resulting number of
periods is a period less than the NCT defined in this thesis. As stated above the blockages are
determined by considering the selfish routes of evacuees. In this way, the blockades should lead
to a traffic flow which corresponds to that of the system-optimal flow. No blockages will be
necessary, if the selfish behaviour automatically leads to these flows. The blockages are used
to force the evacuees to use alternative routes that result in more efficient traffic flow. Hence,
blockages must be determined on routes where the alternative routes of the evacuees lead to an
optimisation of traffic flow. But blockages that force a part of the evacuees to better alterna-
tive routes on the one side (from the view of the system-optimal flows) can, on the other side,
prohibit good routes for other evacuees. An example is used to illustrate the general idea of
blockage determination in the mathematical model. Further it is used to clarify the problem
that is described above. Figure 7.1 depicts a network with five sections and three evacuees in
the affected area. The user-optimal and system-optimal routes are presented on the right hand
side of the figure. In this example the user-optimal routes all pass through connection 2−S. To
influence the routing of all evacuees, one possible blockage could be positioned between section
2 and the super sink S. In this case all evacuees have to take an alternative route. For evacuee
A this blockage would result in the same route like in the system-optimal solution. But the use
of the alternative routes for evacuees B, C would increase the NCT compared to the NCT by
user-optimal flows. This blockage would prevent the use of the fastest routes for evacuees B,
C. Alternatively the connection between sections 2 and 3 could be blocked. For evacuee A this
blockage would lead to the same route as in system-optimal solution, but would not block the
fastest routes for the evacuees B and C. Moreover, the blockage of the connection 2 − 3 would
result in system-optimal flows. If connections in the network are blocked, the alternative routes
and the resulting traffic flow from these routes must be considered.
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Figure 7.1: Network to Illustrate the Positioning of Blockages.

In the following a mathematical model is introduced to determine the best possible position
of blockages to regulate the selfish evacuation traffic. To count the number of periods where
evacuees are in the affected area the binary variable νt is used. If evacuees are in the network
in period t then is νt = 1, and 0 otherwise. The mathematical model formulation can be stated
as follows

min
∑
t∈T

νt (7.6)

s.t.
xit = bit + xit−1 +

∑
j∈I

yjit−1 −
∑
j∈I

yijt i ∈ I, t ∈ T (7.7)

xit +
∑
j∈I

yijt ≤ Ni i ∈ I, t ∈ T (7.8)

∑
t∈T

bit = Ei i ∈ I (7.9)

∑
t∈T

yijt ≥
∑
e∈B

rijeβijmij −
∑
e∈E

serije i ∈ I, j ∈ I (7.10)

se
∑
i∈I

∑
j∈I

rije ≥
∑
i∈I

∑
j∈I

(βij −mij)rije e ∈ B (7.11)

se ≤
∑
i∈I

∑
j∈I

(βij −mij)rije e ∈ B (7.12)

mij = 0 (i, j) ∈ Fix0 (7.13)
mij = 1 (i, j) ∈ Fix1 (7.14)
yijt ≤ mij

∑
τ∈I

Eτ i ∈ I, j ∈ I, t ∈ T (7.15)

xS|T | =
∑
i∈I

Ei (7.16)

yijt ≤ Niβij i ∈ I, j ∈ I, t ∈ T (7.17)∑
j∈I

yjit ≤ Ni − xit t ∈ T, i ∈ I (7.18)

∑
j∈I

yjit ≤ Qi i ∈ I, t ∈ T (7.19)
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∑
j∈I

yijt ≤ Qi i ∈ I, t ∈ T (7.20)

mij = mji i ∈ I, j ∈ I (7.21)
νt

∑
i∈I

Ei ≥
∑
i∈I

Ei − xS,t t ∈ T (7.22)

bit ≥ 0 i ∈ I, t ∈ T (7.23)
yijt ≥ 0 i ∈ I, j ∈ I, t ∈ T (7.24)
xit ≥ 0 i ∈ I, t ∈ T (7.25)
νt ∈ {0, 1} t ∈ T (7.26)
mij ∈ {0, 1} i ∈ I, j ∈ I (7.27)
se ∈ {0, 1} e ∈ B (7.28)

Objective function (7.6) minimises the number of periods in which evacuees are in the affected
area. Constraints (7.7) - (7.8) determine the amount of traffic in the sections. Variable xit
indicates the number of evacuees which is in a section at the end of a period. This number is
determined with constraints (7.7) and includes all evacuees that start evacuation in a period bit,
which have remained in a section (xit−1) or have reached a section (

∑
j∈I yjit−1) in the previous

period (t−1). The evacuees who left a section in period t must be subtracted (
∑
j∈I yijt). With

constraints (7.8) the adherence of section capacity is ensured. No more vehicles may be present
in a section than the maximum capacity allows. Constraints (7.9) make sure that all evacuees
start the evacuation within the planning horizon T .
Constraints (7.10) - (7.12) determine the blockage of connections between sections and the
resulting traffic flow. If there are no blockages in the network the traffic will be routed along the
selfish routes of evacuees. In this case, the last sum in constraints (7.10) will be 0. Therefore,
the number of evacuees that flows from section i to section j must be equal to the number of
evacuees that uses this connection in their route (

∑
e∈B rije). When blockages are positioned

in the network this number must be reduced by the number of evacuees which uses a blocked
connection in their selfish routes (se = 1). These evacuees have to take an alternative route.
Constraints (7.11) in combination with (7.12) determine whether a part of the route of evacuee
e is blocked (se = 1) or not (se = 0). If connections are blocked alternative routes can be
determined for all evacuees that have these connections in their routes. These alternative routes
are determined according to the objective function of the lower-level problem. Therefore, in
constraints (7.10) the number of evacuees that has to use a specific connection i, j is reduced.
The routes that lead the evacuees out of the affected area are then determined independently of
their selfish routes. Figure 7.2 is used to illustrate the functionality of constraints (7.10) - (7.12).
In the network depicted in Figure 7.2a no connection is blocked. According to the selfish routes
of evacuees (stated on the left hand side of Figure 7.2a) two evacuees have to travel from section
1 to section 2, one from 3 to 2 and three from section 2 to S. For example constraint (7.10)
with i = 2, j = S is

∑
t∈T y2St ≥ 3. This number can be reduced by the number of evacuees that

has a blocked connection on their route. For all evacuees e, which have a blocked connection
on their route is the variable se = 1. In constraints (7.10), the number of evacuees, that has to
use connection i, j is reduced by all evacuees who have a blocked connection (se = 1) and the
connection i, j on their route (rije = 1). In the network in Figure 7.2b the connection between
sections 2 and 3 is blocked. This connection is part of the route of evacuee A. The blocked
connection is determined by m23 = 0 and m32 = 0. In constraints (7.11) the blockage leads to
a right hand side greater than 0 for evacuee A. To satisfy this constraint the variable sA must
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equal 1 and the variable indicates that there is a blockage on the route of evacuee A.

(a) Network without Blockage. (b) Network with Blockage.

Figure 7.2: Example to Clarify the Functionality of Constraints (7.10) - (7.12).

Constraints (7.12) ensure that variable se = 0, when no connection is blocked in a route of an
evacuee e. For all i, j which are part of the route of evacuee A in constraints (7.10) the right hand
sides are reduced by one and an alternative route for evacuee A can be computed according to
the objective function of the lower-level problem. By blocking the connections between sections
the number of evacuees that has to use specific connections can be reduced, but these blockages
also reduce the number of usable paths.
Later the upper- and lower-level problems will be solved iteratively. For this purpose additional
notations are introduced. The set Fix0 contains all pairs (i, j) for which mij has turned out to
be zero in previous iterations. Initially the set Fix0 is empty. In an improved version of the
solution approach, a set Fix1 will be determined which contains pairs (i, j) for which mij must
equal one, see (7.13) and (7.14).
Constraints (7.15) ensure that there is no traffic flow between blocked connections. Constraint
(7.16) assures that all evacuees have reached the super sink S (safe area) at the end of the
planning horizon |T |.
With (7.17) - (7.20) the traffic flow is restricted. Constraints (7.17) state that traffic flow is only
possible between connected sections. Constraints (7.18) ensure that not more evacuees flow into
a section than capacity is available in this section. Moreover, the traffic flow between sections
is restricted by the flow capacity constraints (7.19) and (7.20).
It is assumed that a connection between two sections is blocked in both directions if it is blocked
at all. This is regulated by constraints (7.21). Constraints (7.22) ensure that the variable νt
takes the value 1 if evacuees are still in the network in period t. If all evacuees are in the super
sink S, the right hand side of (7.22) will be 0, and νt will become 0, too. The domains of the
decision variables are stated in (7.23) - (7.28).
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7.3 Solution Procedures

7.3.1 A Basic Solution Procedure

An iterative optimisation framework is used to optimise the network taking into account the
selfish routes of the evacuees. When the lower-level problem is solved and the routes from
the recent upper-level problem have been considered, it cannot be guaranteed that all necessary
connections are blocked that would force the evacuees to use the alternative routes that minimise
the overall NCT. If in the lower-level problem connections between sections are blocked then
those evacuees that use routes that contain these connections, will be routed according to the
objective function of the lower-level problem. These routes can vary from the alternative selfish
routes the evacuees would take in the re-designed network. Hence, the selfish routes of the
evacuees must be computed again for the network with blockages. If the selfish routes of the
evacuees and the alternative routes which are determined in the lower-level problem are identical,
then no additional blockages are necessary. If this is not the case, additional blockages are
required to force the evacuees to use the alternative routes. The iterative solution procedure
stops, when no additional blockages are computed in the lower-level problem. Otherwise, the
algorithm starts again with computing new routes in the lower-level problem. The iterative
procedure can be summarised by the following steps:

Initialisation: Let mij = 1 for all i, j ∈ I. Fix0 = {}.

Step 1: Take the current values mij (blockage of connections) as parameters, and solve
the upper-level problem. As a result get new values for rije (routes of the evacuees).

Step 2: Take the current values rije (routes of the evacuees) as parameters and solve the
lower-level problem. Result: further blockages mij = 0, update Fix0 = {(i, j)|mij = 0}
with these values.

Step 3: If there are no changes in the variable mij then stop. Else start with step 1.

Figure 7.3: Network to Illustrate the Determination of Blockages with the Iterative Solution
Approach.
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A numerical example is given to explain the iterative procedure: Figure 7.3 depicts a network
with sections 1 - 6 in the affected area and the safe area super sink S. It is assumed that there
are seven evacuees in the network, where 3 evacuees start in section 2 and 6, and 1 evacuee
starts in section 1. The algorithm begins in the first iteration with a network without blockages,
so mij = 1 for all i, j ∈ I and Fix0 = {} .

• In step 1 the selfish routes with the upper-level problem are computed. Under the assump-
tion that all evacuees prefer to take the fastest route (i.e. with the minimum number of
sections), the following routes are computed: the evacuees B, C, and D take the route 2 -
S, the evacuees E, F, and G the route 6-S and evacuee A takes the route 1 - 3 - 2 - S.

• In the second step by considering these routes the lower-level problem is solved. Without
any blockage the evacuees have to take their selfish routes and the NCT would be 5 periods.
By introducing a blockage between section 2 and section 3, the route of evacuee A can be
modified. The alternative route for evacuee A is 1 - 3 - 4 - 5 - S. That leads to a NCT of
4 periods. Hence, it is set m23 = 0 and m32 = 0, Fix0 = {(2, 3), (3, 2)}.

• From step 3 go back to step 1, due to the change in variable mij .

• In step 1 the routes of the evacuees for the new network are computed. There are no
changes in the routes for the evacuees B, C, D, E, F, and G. The new (fastest) route for
A is 1 - 3 - 6 - S.

• In step 2 the blockage from the first iteration is fixed for variables m23 = 0, m32 = 0
and a blockage of the connection between section 3 and 6 is determined to force evacuee
A to use the alternative route 1 - 3 - 4 - 5 - S. It is fixed m36 = 0, m63 = 0 and set
Fix0 = {(2, 3), (3, 2), (3, 6), (6, 3)} is updated.

• From step 3 go back to step 1 again, due to changes in values of mij .

• In step 1 the routes for the evacuees B, C, D, E, F, and G are the same as in the previous
iteration. The new (fastest) route for A is 1 - 3 - 4 - 5 - S. In step 2 these routes do not
lead to additional blockages and the algorithm stops in step 3.

In the network blockages between sections 2 and 3 and also between 3 and 6 are determined.
With these blockages the traffic flows according to the system-optimal solution.

7.3.2 A Preprocessing Procedure

Each network contains connections whose blockage prevents that a part of the evacuees can
leave the network. Hence, the blockage of these connection is not possible and in order to
reduce the computational effort these connections are identified in a preprocessing step. The
variables mij are fixed to 1 for these connections before the lower-level problem is solved. As
already defined Fix1 represents the set of connections that must not be blocked. There are two
cases that prevent the blockage of connections: sections have just one connection to another
section or have just one connection to a path that leads to an exit. These properties are used
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to identify all connections in the network that must not be blocked. The network modifications
are considered with parameter β0

ij in the iterative solution procedure

β0
ij =

{
0, for (i,j) ∈ Fix0

βij , otherwise
. (7.29)

After each network modification the preprocessing step must be executed again in the iterative
solution approach. If it is determined that a connection cannot be blocked then the decision
applies to all subsequent iterations. Hence, in β0

ij all decisions are stored, so fewer connections
must be tested in the following iterations.
To identify connections that must not be blocked for each section the number of connections
to other sections is counted. Therefore, the row sum ωi of β0

ij is computed. It is obvious that
each section that has only one connection to another section, this connection cannot be blocked.
Thus the algorithm starts with the sections where ωi = 1 and adds these sections to ∆, the set
of sections where the blockage of connections is not possible. Then a section i ∈ ∆ is chosen
and deleted from the set ∆, and mij = 1 and mji = 1 are fixed for the existing connection
(βij = βji = 1), Fix1 = {(i, j), (j, i)}. The value ωj is reduced by one for section j that is
connected with section i. The connection to section i does not lead to an exit. Hence, section j
has ωj−1 connections that could lead to an exit. If section j has only one remaining connection
to another section, then section j will be added to the set ∆, because the connection cannot
be blocked. If there is more than one connection, then it is possible to block some of these
connections, and section j is not added to the set ∆. The number of connections that could
lead to an exit is iteratively reduced. In this way all connections that must not be blocked
are identified. The procedure is repeated for all sections in ∆ until the set is empty. The
preprocessing procedure can be summarised with the following steps:

Initialisation: ∆ = {} and Fix1 = {}; Compute the row sum ωi of β0
ij for all i ∈ I. If

ωi = 1 then add section i to set the ∆.
Repeat:

- Select a section i from ∆ and eliminate this section from set ∆.

- For β0
ij = 1: let Fix1 = Fix1 ∪ {(i, j), (j, i)} .

- Let ωj := ωj − 1.

- If ωj = 1 then add j to ∆.

until ∆ = ∅.

The network in Figure 7.3 is used to explain the algorithm by means of an example. The
parameters β0

ij , represent the connections between sections in the network (see Table 7.1):
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i
j 1 2 3 4 5 6 S ωi

1 0 0 1 0 0 0 0 1
2 0 0 1 0 0 0 1 2
3 1 1 0 1 0 1 0 4
4 0 0 1 0 1 0 0 2
5 0 0 0 1 0 0 1 2
6 0 0 1 0 0 0 1 2
S 0 1 0 0 1 1 0 3

Table 7.1: Parameter β0
ij and the Row Sum for Every Section i.

First the row sum ωi of β0
ij is computed for every section i ∈ I (last column of Table 7.1).

Section 1 is added to the set ∆, because this section is connected with only one other section,
thus ω1 = 1. For all other sections is ωi > 1. Then section i = 1 is taken from the set ∆ and
j = 3 is chosen because of β13 = 1. Parameter ω3 is reduced by 1 and it is ω3 = 4−1 = 3. There
is more than one connection that can lead to an exit, thus section 3 is not added to the set ∆.
The algorithm stops, because the set ∆ is empty. A look at Figure 7.3 makes clear, that the
connection between section 1 and 3 is the only connection whose blockage would prevent that
all evacuees can leave the dangerous area. The set Fix1 which results from the preprocessing
procedure is Fix1 = {(1, 3), (3, 1)}.

The algorithm from Section 7.3.1 extended by the preprocessing has the following steps:

Initialisation: Let mij = 1 for all i, j ∈ I, Fix0 = {} and Fix1 = {}.

Step 1: Take the current values mij (blockage of connections) as parameters, and solve
the upper-level problem.

Step 2: Execute the preprocessing procedure to determine Fix1.

Step 3: Take the current values rije (routes of the evacuees) as parameters, solve the
lower-level problem and update Fix0 = {(i, j)|mij = 0}.

Step 4: If there are no changes in the variable mij then stop, else start with step 1.

7.3.3 A Blockage-Combination Heuristic

In Section 7.3.1 an iterative solution approach was used to solve the bi-level problem. Blockages
that guide the selfishly routing evacuees are determined to optimise the NCT. The blockages
which are necessary to guide the traffic determine the network structure. Thus different block-
age combinations will lead to different solutions for the network design problem and result in
different NCTs. Therefore, a particular solution of the network design problem is a specific
combination of blockages. To compute such a blockage combination the upper- and the lower-
level problems (Section 7.2) are solved iteratively until either the traffic can be guided with the
blockages according to the objective of the lower-level problem or no further blockages can be
introduced, due to the network structure.
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In each iteration the optimal solution of the lower-level problem is computed with the routes
of the evacuees (optimal solutions of the upper-level problems). But the optimal solution of
the lower-level problem per iteration does not automatically lead to the optimal blockage com-
bination for the total network. In fact, computing further blockages by means of the iterative
approach is detrimental, because the iterations do not consider the global view of the optimisa-
tion problem. The blockages are computed on the basis of the routes computed in the previous
iteration without considering the resulting selfish route choice in the following iterations of the
solution approach.

General idea of the heuristic

To deal with this drawback a heuristic that computes additional blockage combinations on
the basis of the blockages determined in the optimal solution of the lower-level problem is in-
troduced. In the following a specific blockage combination is denoted by g. In each iteration of
the solution approach for each blockage combination g the upper- and the lower-level problems
are solved once. As described above the upper- and the lower-level problems have to be solved
alternately until all blockages for the network design problem are determined. A blockage combi-
nation is complete, when no additional blockages can be determined in the lower-level problem.
To distinguish between blockage combinations where all necessary blockages are computed and
not all blockages are computed, they are designated as complete and incomplete blockage combi-
nations. So it is the general idea of the heuristic to compute different combination of blockages
to identify the combination that leads to the lowest NCT .

Elimination of non-promising combinations

In order to prevent that all possible combinations of blockages are tested, blockage combi-
nations with a non-promising NCT are eliminated in the algorithm. Therefore, the reference
value NCT ∗ is introduced. NCT ∗ is the NCT of the best complete blockage-combination that
is already determined. Beginning the heuristic NCT ∗ must be initialised. For the initialisation
two possibilities are proposed:

• NCT 1
init is set to the best solution that is computed with the iterative procedure described

in Section 7.3.1. In this case the blockage-combination heuristic is used to improve the
best solution which is computed with the iterative approach.

• NCT 2
init is set to the user-optimal solution described in Section 5.2.2. Then the heuristic

is used to find a solution with blockages.

In the best case both initialisations result in the same blockage combination, with a minimal
NCT . If NCT ∗ is initialised with NCT 2

init, in most cases more iterations have to be computed
compared to the initialisation with NCT 1

init. The value NCT 1
init is closer to the minimal NCT

than NCT 2
init. When NCT 1

init is used for initialisation the heuristic is a post-optimisation pro-
cess, when NCT2init is used the heuristic is an independent solution approach.
Incomplete blockage combinations whose NCT is not better than NCT ∗ can be deleted, because
the resulting complete blockage combination will mainly result in the same but not in a lower
NCT . With each iteration that is computed for g the NCT becomes worse or remains the same,
because the solution space is reduced with each determined blockage.
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In the following the before mentioned statements will be illustrated by an example. In the net-
work in Figure 7.3 (without any blockages) the selfish route of evacuee A is 1 - 3 - 2 - S. In a
system-optimal solution evacuee A has to take route 1 - 3 - 4 - 5 - S. When one connection in
the route of evacuee A is blocked, in the lower-level problem for A the best possible alternative
route according to the objective of the lower-level problem can be computed. This route leads
to the lowest possible NCT for the given network. With any additionally determined blockage
the number of possible routes is reduced, which either results in a worse or the same NCT than
in the iteration before.

Building new blockage combinations

A blockage combination g can be defined with sets Fix0
g (connections between sections that

are blocked) and Fix1
g (connections that are not allowed to be blocked). These sets exist for

each blockage combination g and substituted the sets Fix0 and Fix1 in constraints (7.13) and
(7.14) in the iterative procedure of this heuristic. The bi-level model will be separately solved
for each blockage combination g within this heuristic.
As described above in each iteration for each blockage combination g the upper- and lower-
level problems are solved once. After each run, the solution of the lower-level problem pro-
vides additional blockages for those pairs i, j where mij = 0. These blockages are denoted by
AFix0

g = {(i, j) ∈ I|(i, j) /∈ Fix0
g ∧ i > j ∧mij = 0}. For each blocked connection (i, j) ∈ AFix0

g

a new blockage combination g′ is derived. Every new blockage combination g′ is derived from
a current g in such a way that only one blocked connection at a time is additionally forbid-
den to be blocked in a new solution. Therefore, g and g′ differs in a status of one partic-
ular connection between (i, j). So g′ can be defined with Fix0

g′ = Fix0
g \ {(i, j), (j, i)} and

Fix1
g′ = Fix1

g ∪ {(i, j), (j, i)}.
For each newly defined blockage combination g′ the NCT from g (i.e. NCTg) is used as ini-
tialisation for the NCT of g′ (i.e. NCTg′). Solution g′ cannot get a better NCT than the
incomplete blockage combination g, because the solution space is more restricted in g′. By ini-
tialising NCTg′ with NCTg, blockage combination g′ can be deleted if a complete solution with
a better NCT is found and if for blockage combination g′ no iteration has been executed yet.

Figure 7.4: Network to Illustrate the Building of a New Blockage Combination.
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Figure 7.4 illustrates the formation of a new blockage combination. When the upper- and
lower-level problems (Figure 7.4, first network) are solved once this is assumed to result in one
blockage only which is located between sections 2 and 3, AFix0

g = {(2, 3)} (Figure 7.4, second
network). The blockage combination g = 0 can be expressed with the sets Fix0

0 = {(2, 3), (3, 2)}
and Fix1

0 = {}, with NCT0 = 4. On the basis of the solution computed for g = 0 one further
blockage combination g′ = 1 is build. Which is g′ = 1 with Fix0

1 = {} and Fix1
1 = {(2, 3), (3, 2)}

and the NCT is set to NCT1 = NCT0 = 4 (Figure 7.4, third network). For this blockage
combination it is forbidden to block the connection between section 2 and 3 (bold line).

Heuristic procedure

In each iteration of the heuristic the upper- and lower-level problems are solved only once
for several blockage combinations. The incomplete blockage combinations are stored in the lists
F and F ′ . Complete combinations are just saved, if the resulting NCT is better than NCT ∗.
The list F contains all incomplete blockage combinations that already exist at the beginning of
an iteration. List F ′ contains all incomplete blockage combinations that are newly defined by an
iteration. Both lists are necessary, because the upper- and lower-level problems are only solved
for those blockage combinations that already exist at the beginning of an iteration. In each
iteration for several blockage combinations in list F the upper- and lower-level problems are
solved and further blockage combinations are determined until a stop criterion is reached. List
F is initialised with a blockage combination g = 0 and F =< 0 >. The blockage combination
g = 0 represents the network without any fixed blockages. Initially list F ′ is defined empty (i.e.
F ′ =<>), because new solutions will be computed in the first iteration and thus do not exist at
this point of time. After each iteration the new defined solutions in list F ′ are added to list F
and are deleted from F ′.

Stop criterion

It is expected that the blockage combinations which are in the front part of list F lead to the
best results. Hence, it is desirable to compute fast a complete solution for these combinations.
Moreover, it is useful to compute a complete blockage combination at the very beginning which
then updates NCT ∗ in order to eliminate non-promising incomplete combinations. Therefore,
in each iteration of the algorithm the upper- and lower-level problems are solved once again only
for a part of the blockage combination in list F .
The number of blockage combinations which is taken from F is defined in each iteration and
depends on the criterion |F ′| ≥ |F |b . Let |F | and |F ′| be the number of items in lists F and F ′,
respectively. Hence, the number of blockage combinations considered in each iteration depends
on the existing incomplete blockage combinations in list F and on the new defined combinations
in list F ′. Thus in each iteration just a fraction of the already existing combinations can be
newly defined. This fraction is determined with parameter b. With b ≥ 1 fewer or equivalent
new blockage combinations than the already existing combinations are needed to stop an it-
eration; with b < 1 more combinations than the existing ones are required. Parameter b will
be determined according to the respective network. The parameter must be set to a number
grater than zero. With this criterion the balance between quickly computing complete blockage
combinations for a small part of the items in list F and between computing a lot of different
combinations, is considered. At the beginning multiple new blockages are determined for each
g leading to a significant increase in new blockage combinations in list F ′ . By doing so the

80



7.3 SOLUTION PROCEDURES

condition |F ′ | ≥ |F | is rapidly achieved, and the heuristic starts again with the first item in
list F . If g tends to a complete blockage combination, a lower number of additional blockages
are computed and less combinations are added to F ′ . In subsequent iterations the number of
elements in list F would be higher than in preceding iterations and therefore additional blockage
combinations can be added to F ′ until it reaches the criterion |F ′ | ≥ |F | and for a greater part
of solutions the upper- and lower-level problem is solved. Additionally an iteration stops, if all
solutions are chosen from list F .

Example

Figure 7.5 illustrates the second iteration of the blockage-combination heuristic. The NCT ∗
is initialised with the user-optimal solution NCT 2

init = 5 and b = 0.4. The lists are F =< 0, 1 >
and F ′ =<>.

Figure 7.5: Example for the Second Iteration of the Blockage-Combination Heuristic.

The algorithm starts with the first blockage combination in list F g = 0 and solves the upper-
and the lower-level problems once. It leads to one additional blockage between sections 3 and
6 (AFix0

0 = {(3, 6)}) and NCT0 = 4 (Figure 7.5 second network in the first row). It is not a
complete blockage combination (because of the additional blockage) and NCT0 < NCT ∗, thus
g = 0 remains in list F . The sets are Fix0

0 = {(2, 3), (3, 2), (3, 6), (6, 3)} and Fix1
0 = {}. For

each new pair (i, j) in AFix0
0 a new blockage combination is derived, so one combination g′ = 2

is built with Fix0
2 = {(2, 3), (3, 2)} and Fix1

2 = {(3, 6), (6, 3)} and is added to list F ′ =< 2 >
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(Figure 7.5, third network in the first row). The stop criterion is not reached |F | = 2 ≥ |F
′|=1
0.4 .

The next g from list F is taken (g = 1) and the upper- and the lower-level problems are solved
once for g = 1 (Figure 7.5 first network in the second row). For this combination no additional
blockages are computed: it is not allowed to block the connection between section 2 and 3 and
the blockage of any other connection does not affect the route of evacuee A (1 - 3 - 2 - S) or
does lead to an infeasible / worse solution. This blockage combination results in NCT1 = 5. It
is a complete combination with NCT1 ≥ NCT ∗, thus g = 1 is deleted from list F =< 0 >.
At the end of each iteration the new computed solutions from list F ′ are transferred to the end
of list F . The lists are F =< 0, 2 > and F ′ =<>. The algorithm is repeated until list F is empty.

With this heuristic a lot of different blockage combinations are tested to identify one that leads
to the lowest NCT . The pseudocode for the blockage combination heuristic is presented in
Algorithm 1.

Algorithm 1 Blockage-Combination Heuristic
1: Initialisation: NCT ∗, F =< 0 >,F ′ =<>,Fix0

0 = {}, F ix1
0 = {}.

2: repeat
3: Take the next g from list F ,
4: solve the upper- and the lower-level problem once for g and
5: update NCTg.
6: repeat
7: if NCTg ≥ NCT ∗ then delete g out of list F
8: else if g is a complete blockage combination then
9: update NCT ∗ = NCTg and

10: delete all g with NCTg ≥ NCT ∗ out of list F .
11: else
12: for all (i, j) ∈ I|(i, j) /∈ Fix0

g ∧ i > j ∧mij = 0 do
13: let Fix0

g = Fix0
g ∪ {(i, j), (j, i)}

14: let AFix0
g = AFix0

g ∪ {(i, j)}
15: end for
16: for all {(i, j) ∈ AFix0

g} do
17: Define g′:
18: let Fix0

g′ = Fix0
g \ {(i, j), (j, i)}

19: let Fix1
g′ = Fix1

g ∪ {(i, j), (j, i)}
20: let NCTg′ = NCTg
21: let AFix0

g = AFix0
g \ {(i, j)}

22: Add g′ at the end of list F ′

23: end for
24: end if
25: until |F | ≥ |F

′ |
b or all items from list F are considered

26: Add all g′ of list F ′ at the end of list F .
27: Delete all g′ out of list F ′ .
28: until list F =<>
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7.4 Computational Study

In this section several aspects of the presented solution approaches are investigated. As test
bed the instances presented in Section 5.2 are used. First, the solution approaches in Section
7.3.1 and Section 7.3.2 are compared to each other regarding the computation time and the
NCT. The algorithm in Section 7.3.2 is an extension of the algorithm in Section 7.3.1, where
connections that cannot be blocked are identified by means of a preprocessing procedure and
the decision variables are fixed for these connections. It is expected that the reduced number of
decisions reduces the computation time. Afterwards, an additional test bed is used to investigate
at which evacuation demand the blockage of sections is useful. Then, the solutions computed by
means of the iterative approach are improved by applying the blockage-combination heuristic.
Finally, the NCTs either computed with the sub-network method (Section 6) or with the specific
blockage method (Section 7) are compared to each other.

Solution approach with and without preprocessing

In a first test all instances are solved with the basic iterative solution approach (Section 7.3.1)
and with the preprocessing approach (Section 7.3.2). In this test the NCT, the computation time
that is necessary to solve the lower-level problem (solver time), the time that is used to run all
the other processes (run-time for iterations) and the sum of both times (which is the necessary
time to run the complete approach) are compared. Both approaches lead to solutions with the
same NCT, thus the results are not discussed here. The computation times are compared to each
other: the absolute (in CPU seconds) and percentage deviation of the results computed with
and without preprocessing are presented in Table 7.2. The average values of each set of evacuees
for each network are presented. The columns with PT (absolute (abs) and relative (%)) present
the process time, the columns with ST (absolute (abs) and relative (%)) the solve time and
in the columns with SUM (absolute (abs) and relative (%)) the total computation time of the
algorithms. A positive deviation states that the computation time in the approach with prepro-
cessing is less than the computation time in the approach without preprocessing. For example
in instance B_500_* the solve time of the approach with preprocessing is in average 3.83 CPU
seconds (abs.) less than in the approach without preprocessing, which is a reduction of 12 %. In
summary in approx. 90 % of all instances the computation time (PT, ST, and SUM) could be
reduced by preprocessing and in average a reduction of approx. 10 % of the computation time
could be achieved. For the instances with small- and medium-sized networks the preprocessing
approach always reduces the computation time. Just for instances with large-sized networks the
preprocessing approach leads to an increased computation time. Here, the additional time that
is required to run the preprocessing approach is higher then the reduction in solve time by fixing
variables. For example this is the case for the instances L_900_* or D_700_*.
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NCT PT_abs PT_% ST_abs ST_% SUM_abs SUM_%

B_500_* 10.60 3.83 12% 9.75 13 % 13.58 13 %
B_700_* 16.70 5.83 12 % 17.62 12 % 23.45 13 %
B_800_* 21.50 7.20 11 % 28.99 12 % 36.19 12 %
B_900_* 22.10 8.32 11 % 35.11 12 % 43.43 12 %
S_500_* 12.00 4.90 14 % 7.88 13 % 12.77 13 %
S_700_* 16.30 8.10 17 % 12.28 13 % 20.38 14 %
S_800_* 22.80 9.60 11 % 30.71 12 % 40.31 12 %
S_900_* 22.20 13.64 16 % 23.47 12 % 37.11 13 %
P_500_* 12.20 6.23 16 % 11.38 13 % 17.61 14 %
P_700_* 16.10 12.05 17 % 16.38 12 % 28.44 14 %
P_800_* 20.00 19.89 19 % 25.54 12 % 45.43 14 %
P_900_* 21.20 17.86 14 % 33.69 12 % 51.55 13 %

SY_500_* 10.00 6.27 20 % 3.97 13 % 10.24 16 %
SY_700_* 13.20 8.08 18 % 5.13 13 % 13.21 16 %
SY_800_* 16.40 19.44 26 % 13.10 12 % 32.54 18 %
SY_900_* 18.90 15.15 15 % 13.56 12 % 28.71 14 %
M_500_* 12.50 13.20 16 % 13.11 13 % 26.31 14 %
M_700_* 15.80 20.40 12 % 31.47 12 % 51.87 12 %
M_800_* 20.30 31.41 12 % 59.08 12 % 90.49 12 %
M_900_* 23.30 15.58 5 % 56.63 12 % 72.21 9 %
A_500_* 14.30 4.67 5 % 6.66 13 % 11.32 8 %
A_700_* 17.80 8.65 4 % 24.39 12 % 33.04 7 %
A_800_* 21.90 15.35 4 % 37.62 13 % 52.97 8 %
A_900_* 24.50 14.61 4 % 68.75 13 % 83.36 9 %

L_500_* 9.20 12.04 6 % 0.41 0 % 12.44 5 %
L_700_* 11.20 2.01 -3 % 0.17 0 % 2.18 -1 %
L_800_* 13.50 -0.98 -1 % 2.28 1 % 1.31 0 %
L_900_* 14.10 -8.64 -5 % 1.38 0 % -7.27 -2 %
NY_500_* 8.10 13.94 4 % 17.29 12 % 31.23 6 %
NY_700_* 10.20 31.30 4 % 42.02 13 % 73.32 7 %
NY_800_* 10.90 30.13 8 % 56.04 13 % 86.17 10 %
NY_900_* 12.00 41.23 8 % 86.46 13 % 127.69 11 %
D_500_* 10.80 6.59 1 % 0.20 0 % 6.79 1 %
D_700_* 12.30 -3.78 -3 % 2.89 1 % -0.89 -1 %
D_800_* 14.10 13.97 3 % 1.22 0 % 15.19 2 %
D_900_* 15.50 -0.77 -1 % 3.63 0 % 2.87 0 %

Table 7.2: Summary and Comparison of the Results Computed with the Iterative Solution
Approaches with and without Preprocessing.
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Modification of demand levels

The next step analyses if the blockage of street sections always reduces the NCT. Pas and
Principio (1997) present some criteria that induce the Braess paradox. Only if Braess’s paradox
occurs in the network, it will be useful to guide the traffic by blocking connections between street
sections. One criterion that was mentioned by Pas and Principio (1997) is the demand level of
network users. If this level is significantly low or high Braess’s paradox does not occur in the
network. Hence, in the computational study different demand levels are tested to investigate
at which level the blockage of street sections does not lead to a reduction of the NCT . In
this thesis the demand level is defined as the proportion between the network capacity and the
number of evacuees in the network. The network capacity is set to the total free-flow capacity
Capfree =

∑
i∈I Qi. The demand level (NetDem) is defined as follows

NetDem = |B|∑
i∈I Qi

. (7.30)

For the computational study all networks presented in Section 5.2.1 are used and four demand
levels NetDem ∈ {0.5; 1; 2; 3} are defined. The number of evacuees for the different demand
levels in each network is summarised in Table 7.3.

Network Capfree NetDem = 0.5 NetDem = 1 NetDem = 2 NetDem = 3

Berlin (B) 402 201 402 804 1206
Stockholm (S) 450 225 450 900 1350
Paris (P) 468 234 468 936 1404
Sydney (SY) 504 252 504 1008 1512
Melbourne (M) 594 297 594 1188 1782
Auckland (A) 714 357 714 1428 2142
Lima (L) 834 417 834 1668 2502
New York (NY) 906 453 906 1812 2718
Dubai (D) 942 471 942 1884 2826

Table 7.3: Number of Evacuees for the Four Demand Levels and Different Networks.

For the instances in Table 7.3 the NCTs of the solution with blockages (NCTblock) are compared
to the NCTs of the user-optimal solution (NCTuser). In Figure 7.6 the ratio between NCTuser
and NCTblock for the instances given in Table 7.3 are plotted. A ratio equal to 1 says that both
solutions have the same NCT, a ratio lower than 1 indicates that the NCT in the solution with
blockages is less than the NCT of the user-optimal solution and a ratio greater than 1 indicates
that the NCT in the user-optimal solution is lower than the NCT in the solution with blockages.
Due to the high computation time, only a limited set of instances could be tested. Especially
those instances with a high demand level result in high computation times, e.g. for the network
D with NetDem = 3 the computation time constituted more than 48 hours. Hence, it is difficult
to state whether different demand levels generally impact the suitability of blockages or not. But
the comparison between the results at demand levels 0.5 / 1 and 2 / 3 tents to the assumption
that the induction of blockages does not significantly decrease the NCT when the demand levels
are high. In most cases the induction of blockages results in an increased NCT when the demand
level equals 3.
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Figure 7.6: Computed Ratios between NCTuser and NCTblock.

With regard to the tested instances, a medium demand level (1 or 2) will lead to the best results.
Moreover, on average the induction of blockages works better for the instances with small-sized
networks (B, S, P, SY) than for the instances with large-sized networks (M, A, L, NY, D). In
summary the results correspond to the findings by Pas and Principio (1997) that the Braess
paradox does not occur if the demand level is significantly low or high.

Blockage-combination heuristic

The blockage-combination heuristic, which is introduced in Section 7.3.3, is operated with all
test instances. The NCT ∗ is initialised with NCT 1

init, thus the heuristic is used to improve the
solutions computed with the basic approach. Parameter b = 5 is fixed in the stop criterion as
previous studies already showed that this value is best suited. As an additional stop criterion a
maximum computation time of 1800 sec. is used. If the maximum computation time is reached
in the test, the best solution computed within these 1800 sec. is chosen as a result. The results
are summarised in Table 7.4:
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B S P SY M A L NY D

500
# 7 5 5 4 6 2 0 0 0

Average 1 1 1 1 1 0 0 0 0
Min 0 0 0 0 0 0 0 0 0
Max 4 2 2 2 1 1 0 0 0

700
# 8 8 6 4 4 3 0 0 1

Average 3 1 1 0 1 0 0 0 0
Min 0 0 0 0 0 0 0 0 0
Max 10 3 6 1 2 2 0 0 1

800
# 8 10 7 5 5 1 0 0 0

Average 4 5 2 2 2 0 0 0 0
Min 0 1 0 0 0 0 0 0 0
Max 11 9 8 9 10 2 0 0 0

900
# 7 8 6 4 5 3 0 0 0

Average 3 2 2 2 2 1 0 0 0
Min 0 0 0 0 0 0 0 0 0
Max 7 6 5 7 4 3 0 0 0

#-Network 30 31 24 17 20 9 0 0 1

Table 7.4: Improvements in the NCT with the Blockage-Combination Heuristic.

Table 7.4 depicts the number of improvements (#), the average improvement (Average) in pe-
riods as well as the minimum (Min) and maximum (Max) improvement in periods for each
network and each set of evacuees. Moreover, the number of improvements per network (#-
Network) is presented. The results show, that considerable improvements could be achieved in
those instances with small- and medium-sized networks (B - A). In 131 out of 240 instances
improvements could be observed. In the instances with large-sized networks (L - D) only one
instance could be improved. For most of these instances the heuristic stopped, because the max-
imum computation time was exceeded. On average only small improvements of 1 or 2 periods
could be achieved. But each data set contains instances where an improvement of more than 5
periods could be achieved. An superior improvement of more than 10 periods was achieved for
the instances of network B with 700 and 800 evacuees.

Sub-networks vs. specific blockages

In the last part of the computational study the results computed with sub-networks (Chap-
ter 6) and the best solutions computed with the specific blockages are compared. The NCTs of
all instances resulting from both methods (sub-networks and specific blockage computing) are
compared to the NCTs resulting from the system-optimal flows. The box plots in Figures 7.7
- 7.10 represent the NCTs resulting from the solution approach with sub-networks and specific
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blockages in relation to the NCTs resulting from system-optimal flows. The box plots with
dotted lines represent the NCTs of the approach with specific blockages and the box plots with
continuous lines depict the NCTs of the approach with sub-networks.
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Figure 7.7: NCT of the Method with Sub-Networks and with Specific Blockages in Relation to
the System-Optimal Solution (SO); Instances with 500 Evacuees.
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Figure 7.8: NCT of the Method with Sub-Networks and with Specific Blockages in Relation to
the System-Optimal Solution (SO); Instances with 700 Evacuees.

Figure 7.7 depicts the results for all instances with 500 evacuees. For the instances with small-
and medium-sized networks (B - A) the specific blockage approach leads to better results than
the introduction of sub-networks. In case of the instances with large-sized networks (L - D)
there is no significant difference between both approaches.
A similar picture can be seen with the instances of 700 evacuees in Figure 7.8. When considering
700 evacuees a significant difference between both solution approaches can be observed with the
small- and medium-sized networks, here the approach of specific blockages works best. In
contrast to that the results of both approaches are similar for the instances with large-sized
networks as already seen with 500 evacuees.
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Figure 7.9: NCT of the Method with Sub-Networks and with Specific Blockages in Relation to
the System-Optimal Solution (SO); Instances with 800 Evacuees.
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Figure 7.10: NCT of the Method with Sub-Networks and with Specific Blockages in Relation to
the System-Optimal Solution (SO); Instances with 900 Evacuees.

For the data sets with 800 and 900 evacuees (Figure 7.9 and 7.10), both approaches lead to similar
results for all tested instances. In summary, the approach with specific blockages resulted in
average in better NCTs than the method of sub-networks.
The results show, traffic can be guided out of the affected area more efficiently when specific
connections between sections are blocked. But it is supposed that many blockages are required
to do so. The next chapter analyses how many blockages are invented by the computed solutions
and to which extent this number can be minimised. Therefore, an additional objective function
is proposed for the bi-level model.
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Chapter 8

Guiding Selfish Evacuees with a
Minimum Number of Street
Blockages

The number of blockages which are used to guide the selfish evacuation traffic have a significant
influence on the solution quality. With more blockages the traffic can be routed more precisely.
But each blockage leads to high organisational effort, because relief units are necessary to block
the connections between street sections. Moreover, the positions of blockages have to be commu-
nicated to the residents in the affected area. Hence the number of blockages should be as small
as possible taking into account that the NCT is minimised. Therefore, this chapter induces an
additional objective function that minimises the number of installed blockages. In Section 8.1
general aspects of multi-objective optimisation are illustrated and solution methods, which are
relevant for this thesis, are presented. In Section 8.2 the impact of different blockage combi-
nations on the solution is discussed and a second objective function is introduced. Section 8.3
presents a solution method that is based on lexicographic optimisation and Section 8.4 presents
a heuristic that computes solution sets on the basis of the ε-constraint method. The chapter
closes with a computational study in Section 8.5. The Sections 8.2 and 8.3 are based on the
paper by Kimms and Seekircher (2017).

8.1 Multi-Objective Optimisation

Many real-world problems cannot be captured with a single objective function. Therefore,
in the field of research in multi-objective optimisation a collection of objective functions is
systematically and simultaneously optimised (Marler and Arora (2004)). In contrast to the
single-objective optimisation for a majority of the cases it is not possible to find a generally
accepted optimum. The best solution depends on the preferences of a (human) decision maker
(Coello Coello, C. A. (1999)). A multi-objective problem (Marler and Arora (2004)) can formally
be state as follows

minx∈X F(x) = [F1(x), F2(x), ..., Fk(x)]T (8.1)
s.t.
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gj(x) ≤ 0, j = 1, 2, ...,m, (8.2)
hl(x) = 0, l = 1, 2, ..., e. (8.3)

Let k be the number of objective functions, m the number of inequality constraints, e the number
of equality constraints andX be the feasible decision space. F(x) is a vector of objective functions
Fi(x), x is a vector of decision variables, and x∗i is the point that minimises the objective function
Fi(x). In a bi-objective model, the vector F(x) includes two objective functions. For a multi-
objective optimisation problem a single global solution can typically not be specified. Marler and
Arora (2004) describe the solution as a set of points and the definition of an optimum depends
on the decision makers preferences. In context of multi-objective optimisation the concept of
the Pareto optimum is used to define a solution. A vector x* ∈ X is Pareto optimal, if there
exist no feasible vector x ∈ X which would decrease some objective functions without causing
an increase by at least one other objective function. A multitude of Pareto optimal solutions
exists for one problem, the Pareto optimal set (Coello Coello, C. A. (1999)).
The following paragraph defines solution concepts which can be used to determine solution sets
depending on the preferences of the decision makers. Here, the most common methods and
those that are relevant to this thesis are briefly summarised (for a comprehensive survey of
various methods the reader is referred to Coello Coello, C. A. (1999) and Marler and Arora
(2004)). Marler and Arora (2004) group the concepts into methods with a priori articulation of
preferences, a posteriori articulation of preferences and without any articulation of preferences.
In the following the methods with preferences articulation are presented. The methods without
preference articulation are not relevant for the problem considered in this thesis.
For many optimisation problems the decision maker can specify preferences for the considered
objective functions. In this case, the preference order can be integrated into the optimisation.
One class of methods are scalarisation methods, where all objective functions are aggregated
to one function. The most common method in this class is the weighted sum approach. Here,
all objective functions are aggregated to one, each weighted with a coefficient that expresses
the relative importance of the objective (Coello Coello, C. A. (1999)). Formally the objective
function (8.1) can be aggregated to

min
k∑
i=1

wiFi(x). (8.4)

Let wi ≥ 0 (
∑k
i=1wi = 1) be the weighting coefficient representing the relative importance of

objective i.
Another method is the lexicographic approach (Marler and Arora (2004)). In this approach the
objective functions are ordered by their importance and the optimisation problem is solved sep-
arately with each objective function. The objective functions and values of the more important
objectives are considered as constraints. Formally the problem is defined as

minx∈ X Fi(x) (8.5)
s.t.
Fj(x) ≤ Fj(x∗j ), j = 1, 2, .., i− 1, i > 1, i = 1, 2, .., k. (8.6)
gj(x) ≤ 0, j = 1, 2, ...,m, (8.7)
hl(x) = 0, l = 1, 2, ..., e. (8.8)

Let i be the function’s position in the preference order and Fj(x∗j ) is the optimal value of the
j-th objective function. Other methods, which are applicable to a given preference order, are
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for example the weighted min-max method or goal programming (Marler and Arora (2004)).
For some optimisation problems it is difficult to determine a preference ranking a priori. In
this cases solution methods based on a posteriori preference articulation can be used. In these
methods a representation of the Pareto optimal set is computed and the decision maker can
choose from a wide range of solutions (Marler and Arora (2004)). The ε-constraint method, is
such a method (Coello Coello, C. A. (1999)). In this method one objective function is minimised,
and the other objective functions are considered as constraints. These objective functions are
restricted by parameter εr, which is a predefined goal that the decision maker wants to comply
with. The method can be formally expressed as follows

minx∈X Fi(x) (8.9)
s.t.
Fr(x) ≤ εr r = 1, 2, ..., k and r 6= i. (8.10)
gj(x) ≤ 0, j = 1, 2, ...,m, (8.11)
hl(x) = 0, l = 1, 2, ..., e. (8.12)

Let r be all objectives without objective i, which is determined as the most important objective.
For computing the Pareto optimal (sub)set the problem is solved with different values for pa-
rameter εr. The decision maker can choose a solution from this (sub)set that fits best for him.
By using a posteriori methods, the decision maker can choose alternatives, on the basis of the
stated results. Other a posteriori methods for example are physical programming or the normal
constraint method (Marler and Arora (2004)). In addition to these methods, the methods with
a priori preference articulation can be used to compute a set of solutions by using different
parameter combinations.

8.2 Problem Description

In this thesis, evacuation plans are developed with the aim to evacuate the affected area as fast
as possible and to minimise the NCT. To reach this goal, connections between street sections
are blocked which in turn to guide the evacuation traffic. The number of blockages, which are
necessary to lead the selfish evacuation traffic, was not yet considered for the optimisation. But
in a real-life situation it is useful to compute solutions that have a minimum number of these
blockages installed; especially when different numbers of blockages result in the same NCT.
Moreover, in an emergency evacuation it is assumed that limited relief units are available that
can block these connections. This limitation must be considered when a solution is developed.
An additional objective function is defined that minimises the number of installed blockages.
Before the second objective function is introduced, the problem that arises from different block-
age combinations is illustrated in Figure 8.1. Figure 8.1a shows a network with three evacuees
(A, B, and C) and two blockages. The first blockage is installed between sections 3 and 2 and
the second one between sections 3 and 4. In the network without blockages all evacuees would
take routes that include section 2 (1 - 2 - S and 3 - 2 - S) if it is assumed that all evacuees
prefer the fastest way. These routes would lead to a NCT of 5 periods. When the blockages
as depicted in Figure 8.1a are installed evacuee A is forced to take the alternative route 3 - 6
- 7 - S. In this case there is no need for evacuee A to wait until the evacuation starts and thus
the NCT is reduced to 4 periods. As depicted in Figure 8.1b the same network is shown but
only one connection between sections 3 and 2 is blocked. In this network evacuee A can choose
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between routes 3 - 4 - 5 - S and 3 - 6 - 7 - S. Both route choices will lead to the same NCT,
because the routes have the same length and there are no other evacuees that take one of these
routes. The solutions with one or two blockages lead to the same NCT.

(a) Network with Two Blockages. (b) Network with One Blockage.

Figure 8.1: Example to Illustrate the Impact of Different Numbers of Blockages on the NCT.

The example points out that different blockage combinations can lead to the same NCT, because
the number of used blockages is not taken into account when minimising the NCT. But as stated
above in a real-life scenario each blockage leads to organisational costs; e.g. communication
efforts or relief units that block the street sections. To consider the number of blockages in the
optimisation problem, a second objective function is formulated for the bi-level model, which
was presented in Section 7.2. The blockages are determined in the lower-level problem. Thus,
the second objective function is added to the mathematical model (7.6) - (7.28)

min
∑
i∈I

∑
j∈I

(1−mij)βij . (8.13)

The blockage of connections is determined withmij , and for each determined blockage ismij = 0.
As a reminder: the parameter βij indicates the connections between sections, thus this parameter
determines the network structure. In the objective function (8.13) the number of blocked sections
is counted and minimised. The additionally formulated objective function is contrary to the
objective function (7.6). With more blockages the traffic can be guided more precisely but these
blockages lead to a higher organisational effort and higher costs. By computing a solution for
this problem the contradiction of the objectives must be considered.

8.3 A Solution Procedure with Lexicographic Optimisation

In order to precisely guide the traffic it is recommended to use blockages. However, it is discussed
in Section 8.2 that as little blockages as possible should be invented in a network to minimise
the organisational effort. Contrary the invention of a limited number of blockages will result in a
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more disordered traffic guidance. Thus the two objectives, which are considered in this chapter,
are contrary to each other. Therefore a solution method, which considers the compromise
between both objective functions is used. This thesis is motivated by the main objective of an
evacuation plan: the affected area should be cleared as fast as possible. Based on this motivation
an obvious preference ranking between both objective function arises. In Section 8.1 different
methods, which deal with bi-objective models with a priori preference articulation, are presented.
To capture the clear preference ranking and to counteract the problem that the same NCT can be
reached with different numbers of blockages, the method of lexicographical optimisation is used.
The problem is solved for the first objective function without considering the second objective
function. If the problem with the first objective function will lead to multiple solutions, then
a solution is determined that is in minimum for the second objective. First, a solution with a
minimum NCT is identified and if it is possible to reach this NCT by applying different blockage
combinations, a solution with a minimum number of blocked connections will be computed. To
do so, the bi-level problem (7.6) - (7.28) is solved first. The resulting NCT determines the
threshold that has to be considered when the number of blockages is minimised. Therefore, the
model (7.6) - (7.28) is extended by constraint (8.14)∑

t∈T
νt ≤ NCT ∗. (8.14)

The additional constraint states that the number of periods where evacuees are still in the
network has to be smaller or equal to NCT ∗. Herein, NCT ∗ is the best NCT that is computed
with the first objective function model. The solution approach for the described problem can
be summarised with the following steps:

Step 1: Compute a solution for the bi-level problem (5.1), (5.3) - (5.6), (7.5), and (7.6) -
(7.28). Get as a result a (minimum) NCT ∗.

Step 2: Compute a solution for the bi-level problem (5.1), (5.3) - (5.6), (7.5), and (7.7) -
(7.28), (8.13), (8.14). The (minimum) NCT ∗ is considered in constraint (8.14).

The solutions for the bi-level model in step 1 and step 2 can be computed with one of the
solution approaches, which are presented in Section 7.3.
The NCT that is used as a threshold in the model formulation in step 2 is the objective value
of a feasible solution for the network design problem, computed in step 1. Thus it is generally
possible to find a solution for the model formulation in step 2 which complies with this NCT.
But, as a cause of the iterative solution approach, it is possible that the blockage combination
computed in step 1 cannot be found. The model in step 2 is solved iteratively and in each
iteration a solution with a minimum number of blockages is computed. This can lead to a
blockage combination, which does not comply with the NCT computed in the first step and a
feasible solution cannot be found.
To deal with this problem, the solution approach is extended by the possibility to reverse a part
of the computed blockages. The extension ensures that the solution approach always leads to a
feasible solution. The variable η ≥ 0 is introduced to increases the NCT computed in step 1, if
constraint (8.14) cannot be met. Constraint (8.14) is extended by η ≥ 0∑

t∈T
νt ≤ NCT ∗ + η. (8.15)
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8.4 AN ε-CONSTRAINT BASED SOLUTION METHOD

With η the constraint will be relaxed, if it is not possible to compute a solution with the given
NCT ∗ and the blockages computed in the previous iterations (for reminder, in each iteration
additional blockages are computed, see Section 7.3). To prevent that a solution with a lower
number of blockages and with a higher NCT is computed, the use of η is punished in the objective
function. Thus the NCT ∗ is only relaxed (η > 0) when no feasible solution with the given NCT ∗
and in the previous iterations computed blockages can be computed. The parameter λη is added
to objective function (8.13)

min
∑
i∈I

∑
j∈I

(1−mij)βij + λη. (8.16)

To ensure that η is only used to prevent infeasible solutions the parameter λ is set to a large
number. η > 0 indicates that with the blockages made in previous iterations a solution with
NCT ∗ cannot be found. Thus in the solution approach some of the determined blockages have
to be reversed to get a feasible solution that yields NCT ∗. The extended solution approach
consists of the following steps:

Step 1: Compute a solution for the bi-level problem (5.1), (5.3) - (5.6), (7.5), and (7.6) -
(7.28). Get as a result a (minimum) NCT ∗.

Step 2: Compute a solution for the bi-level problem (5.1), (5.3) - (5.6), (7.5), and (7.7) -
(7.28), (8.15), (8.16). The objective value from step 1 is considered in constraint (8.15). To
get a solution the upper- and the lower-level problems are solved iteratively. The following
decisions are made in dependence on η:

(a) There is a solution with η = 0:
∗ The solution is a complete solution: go to step 4.
∗ The solution is an incomplete solution: a feasible solution is still possible, start
again with step 2.

(b) There is a solution with η > 0. The determined blockage combination cannot lead to
a feasible solution with the given NCT ∗: go to step 3.

Step 3: Identify all blockages, Fix0. Choose a random percentage h (h ∈ [0, 1]) of the
determined blockages for example |Fix0| × h blockages and reverse them. Go to step 2
and compute the next step with the remaining blockages.

Step 4: The algorithm stops, if a complete feasible solution is found.

The complete and incomplete solutions (step 2) have the same meaning as the complete and
incomplete blockage combinations defined in Section 7.3.3.

8.4 An ε-Constraint Based Solution Method

In Section 8.1 different methods for multi-objective models are described. One part of the
methods deals with problems without an clear preference ranking. Hence, in these methods a
set of solutions are computed and the decision maker can choose one solution that fits best. A
solution approach that is based on the ε-constraint method is introduced to compute such a set of
solutions. As discussed in Section 8.2 the possibilities to install blockages between street sections
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8.5 COMPUTATIONAL STUDY

could be limited for example by the available number of relief units. Hence, these limitations
have to be considered when developing evacuation plans. With the ε-constraint method the
best possible NCT is computed for a maximum number of predetermined street blockages. The
second objective function (8.13), which is introduced in Section 8.2, is added as a constraint to
model (7.6) - (7.28). The additional constraint is∑

i∈I

∑
j∈I

(1−mij)βij ≤ ε. (8.17)

With various values for parameter ε a set of solutions is computed and the decision maker can
chose one of these solutions. With this solution approach the effect of additional blockages on
the NCT, can be considered by the evacuation planner. While minimising the NCT is the main
objective, other solutions can be taken into account to get a more detailed view on the problem.
The problem can be solved with one of the heuristics introduced in Section 7.3.
Useful values for ε can be determined in the range between 0 (user-optimal solution) and the
number of blockages, which are determined with the solution approach in Section 8.3. More
than these blockages are not needed because they would not lead to a reduction in NCT. To get
the complete set of solutions for each number of blockages in the determined range, the bi-level
model (5.1), (5.3) -(5.6), and (7.6) - (7.28), (8.17) has to be solved. Depending on the particular
problem it could be reasonable to vary the values for ε in larger steps and to compute only a
subset of all possible solutions.

8.5 Computational Study

This chapter focuses the number of blockages that are needed to guide the traffic. As illus-
trated in Section 5.1.2 the proposed method from Chapter 7 enables a very detailed blockage
of connections between street sections because the blockage of individual lanes is considered. It
is hypothesised that a lot of blockages are necessary to guide the traffic in an ordered way and
to achieve low NCTs. Table 8.1 presents the number of connections in each network (βij and
βji are counted as one connection) and the computed blockages that results from minimising
the NCT. The values are computed with the basic solution approach for the bi-level model (see
Section 7.3.1). For each network and each set of evacuees the average, the minimum (Min) and
the maximum (Max) number of used blockages is presented. The results show, that the number
of evacuees does not have a significant influence on the number of blockages. For each network
the number of blockages are close to each other irrespective of the number of evacuees. In
contrast the number of connections in the network has an influence on the number of necessary
blockages. In the networks with less connections (B - A) also less blockages are necessary in
comparison to the network with more connections (L - D). But the number of connections is
not the only factor that affects the number of blockages. When comparing the blockages and
connections in network B with those in network SY it is obvious that both networks have 126
connections, but in network B an average of abound 50 blockages and in network SY an average
of about 22 blockages are used to guide the traffic. Thus further factors like the number of
alternative routes or exits influence the number of used blockages. At first glance it seems that
a lot of blockages are necessary for the traffic guidance. But the number of blocked connections
presented in Table 8.1 does not necessarily correlate to the number of blockages that have to
be positioned in a real street network. A lot of blocked connections could be summed up to
one blockage. Reminder: when it is forbidden to leave street section A in Figure 5.3 then three
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B S P SY M A L NY D
#-Connections 126 131 133 126 164 168 250 303 254

500
Average 45 46 40 22 47 29 51 79 56
Min 37 37 33 16 42 23 39 47 42
Max 55 52 50 30 52 35 65 109 71

700
Average 50 45 40 21 47 31 81 122 69
Min 41 39 32 19 39 24 70 87 55
Max 55 49 44 26 57 36 89 140 83

800
Average 50 48 45 24 24 36 88 126 73
Min 39 45 40 13 40 30 80 114 61
Max 57 51 53 30 60 42 97 134 81

900
Average 52 47 44 22 57 37 86 128 77
Min 47 43 32 10 53 34 73 121 63
Max 58 50 48 28 59 41 97 135 90

Table 8.1: Number of Blocked Connections by Minimising the NCT.

blockages are determined in the model. But in a real street network just one blockage has to be
positioned. Nonetheless for some networks a lot of blockages are required. In the instances of
network NY more than hundred blockages are computed. In such networks it could be useful to
follow a different strategy to guide the traffic. In contrast to that, in the instances of network
SY, an average of about 20 blocked connections is determined. In such networks the blockage
of street sections is a good way to cope with selfish evacuation traffic.

Blockage minimisation with lexicographic optimisation

With the methods presented in this chapter the number of blockages that are necessary to
guide the traffic can be significantly reduced. Due to high computational effort the solution
approach introduced in Section 8.3 is tested only for selected instances. In this test the maxi-
mum computation time is set to 3 hours. The percentage of blockages that are reversed in the
algorithm in step 3 is fixed to h = 1

3 . If the determined number of reversed sections is not an
integer number, this number will be rounded. The approach has been run for each network and
each set of evacuees with instance ∗_∗_a. The NCT ∗ is fixed to the results computed with the
basic solution approach presented in Section 7.3.1. In 3 hours for 23 out of 36 instances a result
could be computed. In Table 8.2 the number of blockages for instances ∗_500_a are presented
exemplary. The second column depicts the number of blocked connections computed with the
iterative approach by minimising the NCT, and the third column depicts the blockages with the
solution approach which is based on lexicographical optimisation.
The results point out, that the number of blockages that are used to guide the traffic can be
significantly reduced. In the lower-level problem (Section 7.2) the number of used blockages
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Instance NCT Minimisation Blockage Minimisation

B_500_a 40 26
S_500_a 52 (-)
P_500_a 36 32
SY_500_a 19 8
M_500_a 47 25
A_500_a 35 23
L_500_a 43 18
NY_500_a 63 25
D_500_a 55 6

Table 8.2: Number of Blockages by Minimising the NCT and the Number of Blockages.

is not relevant. Thus a lot of unnecessary blockages are determined. This effect is intensified
by the iterative approach. By minimising the number of blockages for a predefined NCT, a
solution with a significantly lower number of blockages can be computed. Hence, it is useful
to consider the additional objective function to minimise the used blockages. A drawback that
results from the second objective function is the increase in computation time. For example the
computation time for instance S_500_a solved with the iterative approach, was round about
96.1 CPU seconds. By considering the second objective function and using the proposed solution
method it was not possible to compute a result for this instance within 3 hours. For nearly all
the instances where a solution could be computed in the given time span, the number of blocked
connections could be halved. A different way to reduce the number of blocked connections is
introduced with the ε-constrained based method.

Solution sets computed with the ε-constraint based method

Additionally to the results computed with the solution procedure based on lexicographical opti-
misation, where the minimal number of blockages is focused, now a set of solutions is computed.
Therefore, the ε-constraint based heuristic proposed in Section 8.4 is tested. To compute a set
of solutions seven different values for parameter ε are used. The method is computed exem-
plarily for each network with the instance ∗_800_a. For the ε-values the number of blockages
computed by the minimisation of the NCT are used as thresholds. The resulting numbers are
reduced by 20 % to 80 % (rounded up to the next integer) in steps of 10 percent points. The
seven data-points (1 - 7) for parameter ε, and the initial number of blockages for the used in-
stances are listed in Table 8.3. Several values of ε lead to the same NCT with different numbers
of blockages or a higher NCT is computed with more blockages than in other instances. Thus,
for each instance at most 5 solutions are considered, as can be seen in Figures 8.2 - 8.4. In these
figures, the NCT and the used number of blockages are illustrated. The NCT with 0 blockages
is the solution with user-optimal flows. With these results a decision maker can choose between
different numbers of blocked connections and the resulting NCT.
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#- ε-values
Instance Blockages 1 2 3 4 5 6 7

B_800_a 48 39 34 29 24 20 15 10
S_800_a 45 36 32 27 23 18 14 9
P _800_a 43 35 31 26 22 18 13 9
SY_800_a 13 11 10 8 7 6 4 3
M_800_a 54 44 38 33 27 22 17 11
A_800_a 34 28 24 21 17 14 11 7
L_800_a 96 77 68 58 48 39 29 20
NY_800_a 134 108 94 81 67 54 40 27
D_800_a 77 62 54 47 39 31 24 16

Table 8.3: Dataset for Parameter ε.

Figure 8.2 depicts the results of the small networks. For instance B_800_a five combinations of
blockages and NCTs are computed. Without blocking the NCT is 22 periods, with 24 blockages
the NCT could be reduced to 18 periods and with 33 blockages to 15 periods. A decision maker
can choose which blockages should be positioned in the network, taking the available number of
relief units into account.

16 18 20 22 24 26 28 30
0

10

20

30

40

NCT

#
-B

lo
ck
ag
es

B
S
P

Figure 8.2: Illustration of the Solution Sets of the Instances with Small-Sized Networks.

In Figure 8.3 the illustration of the results from instance M_800_a points out, that only a small
decrease of NCT can be achieved by blocking sections: 22 blockages lead to a NCT of 21 periods
and further 11 blockages lead to a NCT of 20 periods. The evacuation planner can decide whether
the benefits (minimal savings in NCT) justify the costs (additional efforts to block sections).
The results show that it is advantageous to consider the number of blockages when making
evacuations plans. The results computed with the solution approach based on lexicographical
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optimisation make clear, that the same NCT can be reached with various blockage combinations
and numbers of blocked connections. To reduce the organisational effort the number of blockages
should be as small as possible. Furthermore, the combinations of different numbers of blockages
and resulting NCTs show, that it could be useful to take a closer look at these combinations. If
a high number of additional blockages is needed to achieve a minimal reduction of the NCT, it
might be reasonable to chose an unfavourable NCT that goes along with a reduced number of
blockages.
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Figure 8.3: Illustration of the Solution Sets of the Instances with Medium-Sized Networks.
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Figure 8.4: Illustration of the Solution Sets of the Instances with Large-Sized Networks.
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For example in Figure 8.4, in instance NY_800_a 54 blockages are necessary to reduce the
NCT from 14 to 13 periods. The opposite is given in Figure 8.3 for instance A_800_a: three
additional blockages (from 14 to 17 blockages) can reduce the NCT from 21 to 24 periods - a
small additional effort of installing blockages leads to a significant reduction in NCT.
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Chapter 9

Conclusions

The route selection, which people make to reach a destination, has a significant impact on the
traffic flow in a network. If all the network users choose the same routes, these routes will be
congested and the traffic flow in the network decreases. These findings are relevant for daily
traffic routing as well as for the traffic flow in extraordinary situations like in evacuation scenar-
ios. However, just a few studies in the literature of evacuation traffic management consider this
relevant aspect.
This thesis studies the evacuation of urban areas taking into account selfishly acting evacuees.
In case of an evacuation the traffic must be routed out of the affected area to protect the lives of
the residents. In such a situation, the capacity demand most certainly exceeds the network ca-
pacity planned for daily traffic. Hence, evacuation plans which guide the evacuees are necessary
to make the most of the scarce capacities. In most of these plans optimal routing or timing-
strategies are developed to clear the affected area. But various studies show that people do not
follow the instructions of authorities in evacuations. Accordingly, those evacuation plans that
require the evacuees to adhere to optimal strategies may fail. Therefore, this thesis proposes
an evacuation strategy that considers the behaviour of evacuees. With this strategy the street
network is adjusted to guide the evacuees out of the affected area and the evacuation routing
is optimised. These plans are applicable even when the evacuees choose their routes selfishly
and do not follow the instructions from authorities. The proposed method is based on Braess’s
paradox. Contrary to the findings from Braess street sections were blocked to guide the traffic
flow. The position of the blockages was determined in response to the route choice preferences of
the evacuees. Thus, at first various behaviour patterns as described in the literature were inves-
tigated and in a subsequent step the evacuee’s route selection was modelled according to these
patterns. The first method that was proposed in this thesis followed the idea of sub-networks
to restrict the possibilities of the evacuees. Thus, the network was divided into sub-networks
with one exit in such a way that the NCT was minimised. As a drawback of this method it
was found that the traffic cannot be guided within these sub-networks. Hence, another idea had
been introduced, which blocked specific connections between sections to achieve a more precise
traffic routing. The main assumption of this thesis is, that the routes of the evacuees cannot be
determined by a central decision maker. Thus, the route choice and the network optimisation
were considered separately and the problems were formulated as a bi-level model. The optimal
routes of the evacuees were computed by the upper-level problem and the network was optimised
by the lower-level problem. Taking into account that each blockade leads to organisational effort
a second objective function, which minimises the number of required blockages was introduced.
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With an additional objective function in the bi-level model a solution with a minimum number
of blockages, was determined. Moreover, a set of different combinations of blockage numbers and
resulting NCT was computed to support the decision making process of the evacuation planner.
Furthermore, a multitude of heuristic solution approaches was developed to find solutions for
the proposed strategies and comprehensive computational studies were conducted to test them.

Chapter 6 introduced the concept of sub-network formation to guide the traffic flow. As stated
above in this concept the network is divided into sub-networks with just one exit. The sub-
networks are computed on the basis of the weights gis that indicate the worst possible evacuation
time necessary to leave the affected area, when section i is assigned to the sub-network with exit
s. Each section of the network is assigned to exactly one sub-network with exit s and considering
the minimisation of the sum over the related gis values. To implement these sub-networks all
connections between sections that belong to different networks are blocked. To determine the
weights gis an iterative solution procedure was presented and for the assignment from sections
to sub-networks, a mathematical model as well as a heuristic approach were introduced. Fur-
thermore, an iterative solution approach was proposed that combines the computation of the
weights gis with the assignment of sections to sub-networks. In a computational study, first
different parameters of the solution approach were tested to fine-tune the heuristic’s parameters
and afterwards the influences of network modifications on the NCT were investigated. The re-
sults of the computational study show that the computation of sub-networks leads to a reduction
in NCT when comparing it to the user-optimal solution. Moreover, the spread in the NCT for
various distributions of evacuees in the network is reduced with these sub-networks. A test with
different numbers of exits in the network was executed and the results show, that besides the
number of exits also the position of the exits has an impact on the NCT.

Chapter 7 presented the method of blocking specific connections between sections. This method
is a countermeasure to overcome the drawback from the method that was introduced in Chap-
ter 6 which stated the traffic cannot be routed within the sub-networks. To consider that the
route choice of evacuees and the determination of blockages was processed by independent de-
cision makers, a bi-level optimisation approach was applied. Several heuristics were presented
to solve the bi-level model and to determine the position of blockages that guide the selfish
evacuation traffic. In a basic heuristic the upper- and lower-level problems were solved itera-
tively until no additional blockages were needed anymore to route the traffic. Additionally, a
preprocessing algorithm was developed to identify connections that must not be blocked. To
reduce the computational effort the decision variables were fixed for these connections. In the
basic solution approach the upper- and lower-level problems are solved iteratively, and in each
iteration the optimal solution of the upper- and lower-level problems is considered. Tests show,
that the optimal solution of each problem does not always lead to the best evacuation plan.
Therefore, another heuristic was developed that considers different combinations of blockages.
The results of the computational study show that the blockage of specific connections leads
to more favourable results than the sub-network method. Moreover, it was shown that the
preprocessing procedure reduces the computation time for the majority of the tested instances.
Only for some instances related to the large-sized networks preprocessing leads to an increase
of computation time. With the blockage-combination heuristic for instances of the small- and
medium-sized networks an improvement of the NCT was achieved. For the instances of large
networks, only for one network an improvement was computed. In this test the computation
time was fixed to 1800 sec. For the instances with large-sized networks, the maximum computa-
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tion time was not high enough to achieve improvements with the blockage-combination heuristic.

In addition to the objective function which was considered in Chapter 6 and Chapter 7 in
Chapter 8 the number of street blockages was minimised. Every installed blockage leads to or-
ganisational cost, hence a solution with a minimum of street blockages is preferred considering
the minimisation of the NCT. According to the problem definition there is a clear preference
ranking between both objective functions which is best suited for the application of a lexico-
graphical optimisation. Therefore, a heuristic based on this method was developed. With this
method a solution with a minimum NCT was computed. If different blockage combinations
lead to the same NCT, the solution with the minimum number of blockages was chosen. Ad-
ditionally, a solution procedure that is based on the ε-constraint method was presented. This
method computes a set of solutions with different numbers of blockages and their corresponding
NCTs. This sub-set of solutions represents an instrument that supports the decision-making
process. It provides a closer view on the computed solutions and also considers aspects like the
limited numbers of relief units. The computational study compared the number of blockages
that was computed by a) minimising the NCT and by b) minimising the number of blockages.
When the additional objective function is considered the number of used blockages could be
halved in most test instances. The computed solution set shows, that for some instances a
lot of blockages are necessary to achieve a small reduction in the NCT. When not all block-
ages can be positioned in the networks that are needed to achieve the minimum NCT it can be
useful for an evacuation planner to compare different numbers of blockages and the related NCT.

This thesis makes clear how important it is to consider the selfish behaviour of the evacuees
in the evacuation planning. Only a few studies exist that combine both topics, thus it is obvious
that further research is necessary in this area. Most of the methods that are applied in case
of selfish routing in general traffic scenarios cannot be adopted to selfish routing in evacuation
scenarios. Due to extensive modifications of the street network these methods cannot be realised
in case of an evacuation. Therefore, strategies are developed which can be quickly implemented.
The conducted computational studies show that the blockage strategy to guide the traffic out of
the affected area is a proper way to tackle the problem of selfishly acting evacuees. These net-
work modifications can be quickly implemented and the effort to communicate the adjustments
to the evacuees is small. The positions of the blockages can be illustrated for example on a
map and the network users can choose their routes considering these blockages. Although good
results can be achieved by blocking street sections the implementation of such blockades can be
very costly for certain network structures. Future research should address the development of
other strategies for such networks to be able to cope with selfish routing in evacuation scenarios.
In this thesis it is assumed, that all networks users behave selfishly. This assumption is realistic,
because various studies showed, that most of the evacuees choose their routes according to their
preferences and do not follow the instructions of authorities. But it is also realistic to assume
that a part of the evacuees follow the instructions of authorities. Thus, the problem could be
extended by considering two types of evacuees. With this additional evacuee type, the concept
of Stackelberg routing can be applied. For the evacuees that follow the instructions of the evac-
uation planner a (Stackelberg) routing strategy can be implemented and the remaining network
users route selfishly (see for example Roughgarden (2004), Bonifaci et al. (2010)). As known
from the literature this strategy reduces the consequences of selfish routing.
In this thesis multiple heuristics were developed to cope with the concept of sub-networks and
the bi-level model for network optimisation with selfishly acting evacuation traffic. In future
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research a question of efficient optimal procedures for the described problem may be investi-
gated. To develop an optimal solution method for the bi-level model presented in Chapter 7 in a
first consideration the bi-level model can be transformed into an integrated form. Furthermore,
criteria can be developed to identify street sections that lead to Braess’s paradox. By blocking
these sections the occurrence of the Braess paradox can be prevented.
The optimisation of evacuation plans is an important research area in the field of operations
research. With these optimal plans evacuations can be performed more successfully and the
consequences of disasters can be reduced. In this thesis a further aspect of the research area
of evacuation planning using methods of operations research was investigated. It was demon-
strated that it is important and reasonable to consider the people’s behaviour when planning
evacuation scenarios. To the best of our knowledge, this thesis belongs to one of the few studies
that combine evacuation planning and selfish routing using optimisation methods. Most stud-
ies that combine evacuation planning with selfish acting evacuees, focus on the simulation of
the traffic flow and not on its optimisation. Therefore, further research is needed to compute
realistic evacuation plans which can be implemented in real-life scenarios.
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Appendix A

Test Networks

The Figures A.1 to A.9 illustrate the networks, which are used in the computational studies. In
each figure first the original networks generated with the software tool SPSE (SPSE (2016)) are
presented and second the networks transformed into sections are depicted. With the exits signs
/ pentagons (S) the sections, which are connected with the super sink S, are marked.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.1: Network Berlin.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.2: Network Stockholm.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.3: Network Paris.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.4: Network Sydney.

110



(a) Original Network.

(b) Network Transformed into Sections.

Figure A.5: Network Melbourne.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.6: Network Auckland.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.7: Network Lima.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.8: Network New York.
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(a) Original Network.

(b) Network Transformed into Sections.

Figure A.9: Network Dubai.
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