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16 Abstract
17 Taiwan’s setting of high mountains, steep gradients, frequent earthquakes, erodible 
18 lithology, and heavy rainfall represents an ideal site to focus on sedimentary processes 
19 of the deltas of small mountainous rivers (SMRs). Several SMRs in southwestern 
20 Taiwan have deposited a thick sedimentary succession in the composite Southwest 
21 Taiwan Delta (SWTD) since the middle Holocene. Evidence from the SWTD can 
22 help to determine its trapping efficiency and assess the role of SMRs in sediment 
23 transport to the sea. We used historical nautical charts, bathymetric data, satellite 
24 radar data, and 14C dates to calculate the sediment volume of the SWTD on millennial 
25 and decadal scales. The 14C dates of core samples indicate deposition of thick deltaic 
26 sediment in subsiding areas since the time of the maximum flooding surface about 7 
27 cal ka BP. The paleo-shoreline changes of the SWTD suggest a steady westward 
28 progradation since 7 cal ka BP. In contrast, the nautical charts suggest minor volume 
29 reduction of the offshore part of the SWTD, with a deepening trend and retreating 
30 shorelines, during the last seven decades. The results show that at least 201.72 ± 13.90 
31 km3 (~3.23 × 105 Mt) of sediment has been trapped in the SWTD since 7 cal ka BP, 
32 and that the delta has shifted to a destructive phase during the past seven decades as 
33 human influences such as construction of reservoirs, dams, and weirs in the hills have 
34 reduced the sediment supply. The birth of the Taiwan Warm Current and following 
35 continuous sediment supply from the western rivers of Taiwan to the East China Sea 
36 since ~7.3 cal ka BP have played a crucial role in the sedimentation of the East China 
37 Sea, particularly in the Okinawa Trough, and the Japan Sea through the Tsushima 
38 Warm Current.
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42
43 1. Introduction
44
45 Deltas form in coastal environments where river-borne sediment builds 
46 sedimentary bodies that extend by aggradation into receiving basins. Wright (1977) 
47 defined deltas as “coastal accumulations, both subaqueous and subaerial, of river-
48 derived sediments adjacent to, or in close proximity to, the source stream,” and Elliott 
49 (1978) defined them as “discrete shoreline protuberances formed where rivers enter 
50 oceans, semi-enclosed seas, lakes or barrier-sheltered lagoons and supply sediment 
51 more rapidly than it can be redistributed by indigenous basinal processes.” Modern 
52 deltas are widely variable in terms of scale, processes and the nature of the sediment 
53 deposits. Deltas are commonly classified as dominated by rivers, waves or tides 
54 (Galloway, 1975) and are also classified using grain-size factors (Orton and Reading, 
55 1993).
56 Most modern deltas have been built since 7.5–8.0 cal ka BP, following the 
57 decrease of Holocene sea-level rise (Stanley and Warne, 1994; Olariu, 2014). High-
58 resolution studies of deltas and sea-level changes have revealed that delta initiation 
59 occurred after a rapid rise of sea level during 9.0–8.2 cal ka BP, and the timing of 
60 delta initiation depended on the sediment supply between 8.2 and 6.5 cal ka BP (e.g., 
61 Tamura et al., 2009; Hijma and Cohen, 2010; Smith et al., 2011; Li et al., 2012b; 
62 Wang et al., 2013; Song et al., 2013; Tjallingii et al., 2014). Large deltas are major 
63 sinks of terrestrial sediment in coastal areas (e.g., Bianchi and Allison, 2009), and 
64 deltas usually have higher accumulation rates than other marine environments 
65 (Syvitski, 2003).
66 Rivers in Asia and Oceania deliver huge amounts of sediment, amounting to ~70% 
67 of the global discharge of suspended sediment (Milliman and Farnsworth, 2011), with 
68 large rivers on the Asian continent and small rivers on islands contributing roughly 
69 equal portions. Many recent studies of the Holocene deltas of large Asian rivers have 
70 focused on delta evolution, sediment facies, paleo-environments, and sediment flux 
71 and fate (e.g., Woodroffe et al., 2006; Liu et al., 2009; Woodroffe and Saito, 2011; 
72 Wang et al., 2011; Wilson and Goodbred, 2015). The East Indies (Oceania) 
73 constitutes one of the largest regional sources of sediment to the global ocean 
74 (Milliman et al., 1999). The Fly River delta of New Guinea, one of the largest deltas 
75 in Oceania in terms of sediment discharge, is comparable to large river deltas and has 
76 been well characterized (Dalrymple et al., 2003). However, deltas associated with 
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77 small mountainous rivers (SMRs) are not well studied. In this study we examined the 
78 large composite Holocene delta of southwestern Taiwan, which is a good example of 
79 SMR deltas, to characterize its sediment trapping and delta evolution at millennial and 
80 decadal time scales.
81 Taiwan’s natural setting of high mountains, steep gradients, frequent earthquakes, 
82 erodible lithology, and heavy rainfall makes it a natural laboratory for studying the 
83 fate of sediment transport by SMRs. For example, events including typhoons, 
84 earthquakes and extreme rainfall trigger erosion and weathering of rocks that in turn 
85 promote sediment output. Landslides induced by earthquakes mobilize large volumes 
86 of sediment that is susceptible to erosion during typhoon and monsoon seasons 
87 (Dadson et al., 2004; Milliman et al., 2007). Consequently, the mountain ranges of 
88 Taiwan deliver very large quantities of sediment to the coast. Estimates of the average 
89 amounts of sediment delivered to the ocean by Taiwanese rivers include one of 384 
90 Mt/y during 1970–1998 (Dadson et al., 2003) and another of 180 Mt/y of sediment 
91 between the 1980s and 2005, with a range of 16 to 440 Mt/y (Kao and Milliman, 
92 2008). These estimates rival the sediment discharges of the Mekong (160 Mt/y) and 
93 Red (130 Mt/y) rivers, as well as that of the Yangtze River (~150 Mt/y) after 
94 completion of the Three Gorges Dam and the Yellow River (~150 Mt) after 
95 completion of the Xiaolangdi Dam (Wang et al., 2011). This study focused on 
96 sediment trapping in the Chianan Plain, a wide compound delta plain (Fig. 1) in 
97 southwestern Taiwan, and the influence of sediment from this area on sedimentation 
98 in the East China Sea.
99

100 2. Geological background
101
102 The Taiwan orogen, resulting from oblique collision between the Luzon Arc and 
103 the Eurasian continent (Fig. 1), manifests as a mountain belt reaching elevations of 4 
104 km (Bowin et al., 1978; Ho, 1988; Teng, 1990). The denudation rate of the Central 
105 Range of Taiwan has averaged at least 1.4 g/cm2/y since the Pliocene (Li, 1976). 
106 Furthermore, the erosion rate ranges from 3 to 6 mm/y for an average annual sediment 
107 yield of 500 Mt/y, and much of the bedload in Taiwanese rivers is trapped in 
108 floodplains before reaching the sea (Dadson et al., 2003). Under precipitation totals of 
109 ~2500 mm/y, the SMRs of Taiwan are strongly affected by periodic floods, typhoons, 
110 and earthquakes (Dadson et al., 2003; Kao and Milliman, 2008). Sediment transport in 
111 SMR catchments is substantially influenced by landslide debris produced by hillslope 
112 mass wasting (Hovius et al., 2000). The SMRs of western Taiwan run perpendicular 
113 to the strike of the Taiwan orogen in short, straight routes across low-gradient deltaic 
114 plains (Fig. 1) and thus tend to discharge larger percentages of their sediment loads 
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115 directly to the sea than do larger rivers. However, eight of these SMRs (the Choshui, 
116 Peikang, Potzu, Pachang, Chishui, Tsengwen, Yenshui, and Erhjen rivers; see Table 1) 
117 have collectively built up a compound delta, called here the Southwest Taiwan Delta 
118 (SWTD), in the western and southwestern coastal plains (Fig. 1). The Choshui and 
119 Tsengwen rivers are major rivers longer than 100 km whereas the others are shorter 
120 (Table 1). The total drainage basin area of the eight SMRs is 6953 km2. The SWTD 
121 consists of a subaerial portion with an area of about 5000 km2 and a subaqueous 
122 portion amounting to 2000 km2 (Fig. 1).
123 The SWTD owes its elongated form partly to its multiple sediment supplies and 
124 partly to the tectonic and structural restrictions posed by the Chukou and Chelungpu 
125 thrust faults to the east, the Changhua-Pakuashan anticline to the north and the 
126 Laonung fault to the south (Shyu et al., 2005). To the west, the Taiwan Strait is a 
127 seaway about 140 km wide with a mean water depth around 60 m, connecting the East 
128 China Sea and the South China Sea (Fig. 2). Features on the floor of the Taiwan Strait, 
129 including the west and east Changyun sand ridges, Penghu Channel and Taiwan Bank, 
130 are products of the modern tidal current system (Chern and Wang, 2000; Yu and 
131 Huang, 2003; Liao and Yu, 2005). The south part of the Taiwan Strait is relatively 
132 shallow by the Taiwan Bank and Penghu Islands. The east Changyun sand ridge lies 
133 directly off the northern part of the subaqueous delta. To its south, the funnel-shaped 
134 Penghu Channel runs N–S between the Penghu Islands and southwestern Taiwan 
135 (Liao and Yu, 2005). The northern part of the subaqueous delta extends to about 40 m 
136 depth in front of the east Changyun sand ridge, and the southern part extends down to 
137 about 100 m east of the Penghu Channel (Fig. 2). The southwestern part of the delta 
138 near Tainan includes a series of lagoons and lakes along the current shoreline (Yang 
139 and Su, 2001). The average tidal current in the Taiwan Strait is 0.46 m/s with a range 
140 of 0.2–0.8 m/s, and the average mean current is about 0.40 m/s (Wang et al., 2003).
141 The sea level in the Taiwan Strait west of Taiwan has been relatively stable since 7 
142 cal ka BP (Chen and Liu, 1996, 2000). In southwestern Taiwan, the first major 
143 transgression began prior to ~8.5 cal ka BP (7.68 14C ka BP) and the maximum 
144 transgression occurred about ~6.8 cal ka BP (6.0 14C ka BP) (Taira, 1975). For 
145 example, Figure 3 shows that the chronology in core TN-SF was determined from six 
146 14C ages. The interval from 20 to 85 m core depth was characterized by marine facies, 
147 and the maximum flooding surface was identified at 46.3 m with an age of 7 cal ka 
148 BP. The Holocene sediments of the SWTD consist mainly of sand, gravel, and some 
149 clay plus substantial soil carbonate (Lin, 1969; Ho, 1988; Dadson et al., 2003). The 
150 Holocene and late Pleistocene stratigraphy of the Choshui and Tsengwen river deltas 
151 has been derived from core drilling in the Choshui Delta, which yielded numerous 14C 
152 dates (Chen and Liu, 2003; Chen et al., 2010) that are listed in Table 2.
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153
154 3. Data and methods
155
156 3.1 Paleo-bathymetry evaluation on a decadal timescale
157 We compiled historical charts made by organizations in Taiwan and Japan to map 
158 the shorelines and bathymetry off western Taiwan in 1930 (Fig. 4a) and 2002 (Fig. 
159 4b). We also used the present-day bathymetry (about 2010) to evaluate bathymetric 
160 changes. Decadal-scale coastal changes can be discerned during the intervals 1930–
161 2002 and 2002–present (Fig. 4c). We calculated sediment volume changes from these 
162 charts with respect to the modern shoreline, using MATLAB functions in the 
163 Statistical toolbox and Mapping toolbox. We digitized each water depth of the 1930 
164 and 2002 nautical charts (Figs. 4a and 4b) to evaluate bathymetry changes and 
165 shoreline changes of the western Taiwan coast at decadal intervals (Figs. 5b and 5e). 
166 We placed the western edge of the subaqueous SWTD at the 40 m or 100 m isobath 
167 (red lines in Figs. 5c and 5f) to mark the seaward edge (zero thickness) of the delta 
168 bottomset beds (Fig. 2, pink area).
169
170 3.2 Sediment volume and paleo-bathymetry evaluation on a millennial timescale 
171 We constructed and analyzed digital elevation models derived from Shuttle Radar 
172 Topography Mission (SRTM) data, 14C dates of borehole cores from the delta, and 
173 bathymetric and lithologic core data to make determinations of sediment storage in 
174 the SWTD. To accurately measure the delta volume in southwestern Taiwan, we 
175 made use of data from 80 cores and 112 14C dates from previous studies (Chen et al., 
176 2010; Lu, 2006) and the Central Geological Survey, Taiwan. The 14C ages were 
177 calibrated using CALIB 7.0 and marine reservoir ages from Yoneda and Uno (2007), 
178 and the paleotopography as of 2 cal ka BP and 7 cal ka BP was reconstructed. We 
179 referred the core descriptions from hydrogeological data bank, MOEA, Taiwan, ROC 
180 (http://hydro.moeacgs.gov.tw/index.htm; in Chinese). The present-day bathymetry 
181 (Ocean Data Bank, Institute of Oceanography, National Taiwan University) is 
182 combined with the SRTM 3 arc-second topographic data 
183 (http://www2.jpl.nasa.gov/srtm/) in Fig. 6a.
184 We used the modern topography generated by SRTM and bathymetric data to 
185 identify subaerial and subaqueous delta regions (Fig. 6a). We determined that the area 
186 of the whole delta (Figs. 6b and 6c) is 6646 km2, consisting of a subaerial delta of 
187 4693 km2 and a subaqueous delta of 1953 km2. For the convenience of comparisons, 
188 the area was set to be the same in every logical perspective, leaving only input 
189 parameters variable. The sediment thickness was defined as zero along the western 
190 boundary of the study area, and the area higher than 100 m on the eastern boundary of 
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191 area was considered as the point of zero thickness for the delta topset beds (Figs. 6b 
192 and 6c). 
193 To assess the sediment storage in the SWTD, the volumes of the subaerial and 
194 subaqueous deltas were calculated from 7 cal ka BP to the present by using MATLAB. 
195 Volumes were converted to masses by using a dry bulk density of 1.6 g/cm3 based on 
196 in situ measurements (Liu et al., 2008). We used sediment discharge data for the eight 
197 rivers feeding the SWTD in calculations of the deltaic volume since 7 cal ka BP. 
198 Parameters such as gradient and length of the eight rivers were obtained mainly from 
199 the Water Resources Agency of Taiwan (Table 1). The 2-ka and 7-ka shorelines were 
200 determined as the 0 m level of the paleo-topography considering Holocene changes in 
201 sea level. We neglected the effects of sediment compaction and tectonic uplift or 
202 subsidence. Finally, we evaluated the volumes of delta sediment at millennial 
203 intervals over the last 7 cal ka and at decadal intervals since 1930. 
204
205 4. Results
206
207 4.1 Morphological and shoreline changes on a decadal timescale
208 Our evaluation showed that between 1930 and 2002, the shoreline migrated 
209 landward and removed about 132.33 km2 of the subaerial SWTD at an average rate of 
210 1.83 km2 per year (Fig. 4c). The shift in the low-tide lines shows a clear southward 
211 shift of the Waisandin Sandbar (Fig. 4c). The shoreline did not change much near 
212 Kaohsiung. Other historical maps also document a retreating shoreline over the past 
213 three decades (Hsu et al., 2007; http://gissrv4.sinica.edu.tw/gis/twhgis_zh_TW.aspx#). 
214
215 The Taiwan Strait and South China Sea shelf off the SWTD are relatively narrow 
216 (Fig. 2), so for calculation purposes we held the area of the subaqueous delta region 
217 constant at 1953.30 km2 and used the water depths in the nautical charts to estimate 
218 the rate and magnitude of the sediment-volume changes in the subaqueous SWTD for 
219 the 1930–2002 and 2002–2010 intervals. Between 1930 and 2002, the average annual 
220 sediment-volume loss was 8.07 ± 0.43 km3 (Fig. 5c), corresponding to a deepening 
221 rate of 5.74 ± 0.30 cm/y. Between 2002 and 2010, the annual sediment-volume loss 
222 was 2.99 ± 0.21 km3 (Fig. 5f) and the deepening rate was 15.30 ± 1.08 cm/y. The 
223 results of inconsistent deepening rates and sediment-volume loss rate indicate 
224 deepening bathymetry in response to a dominantly erosional environment during the 
225 last seven decades. 
226
227 4.2 Shoreline changes and sediment trapping on a millennial timescale
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228 The sediment storage within deltaic deposits since 2 cal ka BP amounted to 60.14 
229 ± 7.40 km3 or an average sediment thickness of about 8.2 m (Fig. 6b). Storage since 7 
230 cal ka BP was 201.72 ± 13.90 km3 for an average thickness of about 28.2 m (Fig. 6c). 
231 The depocenter was at the mouth of the Tsengwen River at both during 0–2 cal ka BP 
232 and 0–7 cal ka BP (Figs. 6b and 6c), where sediment deposition reached a maximum 
233 of ~75.1 m since 7 cal ka BP (calculated from core TN-TN, Table 2). Several small 
234 depocenters with sediment fill more than 50 m thick are distributed along the coast 
235 south of the Tsengwen River. The second largest depocenter is at the mouth of the 
236 Choshui River, where a maximum of ~52.9 m of sediment has accumulated since 7 
237 cal ka BP (calculated from core CH-HA, Table 2). However, since 2 cal ka BP this 
238 depocenter has been less localized, displaying an elongated distribution along the 
239 coast (Fig. 6b).
240 Based on our evaluations of sediment thickness for the last 2 and 7 cal ka (Figs. 6b 
241 and 6c), we reconstructed the paleo-topography as of these dates (Figs. 6e and 6f). 
242 The shoreline at 7 cal ka BP closely follows the modern boundary of the western 
243 foothills, indicating that the area of the delta plain was limited by the basement 
244 geology and topography (Fig. 6f). At 2 cal ka BP, the delta plain expanded westward 
245 to the area of the paleo-Choshui river, and the shoreline was about 20 km east of its 
246 modern location (Fig. 6e). The area between the modern and 2-ka shorelines is about 
247 1972 km2, and the area between the 2-ka and 7-ka shorelines is about 1728 km2 (Fig. 
248 6d). These results show that from 7 to 2 cal ka BP, the SWTD expanded seaward and 
249 westward and the shoreline shifted about 20 km seaward. Since 2 cal ka BP, this 
250 westward progradation has rapidly increased while the delta has continuously 
251 expanded. 
252 Estimated sediment volumes of the subaerial and subaqueous parts of the SWTD 
253 are listed in Table 3 at 1-ka intervals for the last 7 cal ka. These are calculated on the 
254 basis of the present sea level, because sea level has been approximately stable over 
255 that time. A total of 201.72 ± 13.90 km3 of sediment has been trapped in the SWTD 
256 over the last 7 cal ka, indicating accumulation rates of 28.82 ± 1.90 Mm3/y and 46.11 
257 ± 3.30 Mt/y. Millennial volume changes were slightly higher during 6–7 cal ka BP 
258 and 0–2 cal ka BP and slightly lower during 2–5 cal ka BP. The subaerial delta was 
259 20.7–26.4% of the total volume, proportions that were relatively large during 6–7 cal 
260 ka BP and 0–1 cal ka BP. The subaqueous delta constituted 73.6–79.3% of the total 
261 volume, and the proportion was relatively small during 2–4 cal ka BP. The increasing 
262 volume below sea level for the last 5 cal ka, particularly for the last 2 cal ka BP, may 
263 imply an increase in sediment supply and discharge, resulting in rapid shoreline 
264 migration seaward.
265
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266 5. Discussion
267
268 5.1. Morphological and shoreline changes
269 Our results clearly document coastal regression due to delta progradation along the 
270 western coast of Taiwan for the last 7 ka (Fig. 6). They are concordant with the 
271 distribution of prehistoric sites and shell mounds in the Tainan area that contain 
272 various proportions of marine and estuarine mollusks (Chang, 1970). Different 
273 patterns of sediment accumulation are apparent to the north and south of ca. 23.5°N. 
274 In the northern segment, simple delta progradation results in a westward increase in 
275 sediment thickness toward the present shoreline, corresponding to the delta front of 
276 the Choshui and Peikang rivers. In the southern segment, patches of very thick 
277 sediment are found in depocenters along the delta front. Active subsidence and uplift 
278 have been well documented in the southern segment, particularly between Tainan and 
279 Kaohsiung (Chen and Liu, 2000; Fruneau et al., 2001; Lu, 2006). The Holocene 
280 marine and fluvial sediments of the Tainan Tableland, with elevations of 20–30 m, 
281 have been uplifted at about 5–7 mm/y during the Holocene (Chen and Liu, 2000). The 
282 presence near the tableland of middle Holocene eolian dune sediment 20–25 m below 
283 sea level is evidence of subsidence at similar rates (Lu, 2006). 
284 Historical records show that a barrier and lagoon system existed along the coastline 
285 near Tainan in the 17th century, referred to by Chang (2000) as the Taijiang Inner Sea. 
286 The Tsengwen River emptied into the lagoons of this system. Active subsidence and 
287 effective sediment trapping by similar barrier and lagoon systems may account for the 
288 thick succession associated with a depocenter at the mouth of the Tsengwen River. 
289 Modern observations show that the shoreline is undergoing minor retreat (Chen 
290 and Rau, 1998). The Tsengwen River delta front displays erosional features (Hong et 
291 al., 2004). The shoreline retreat of the past three decades is strongly affected by 
292 human influences, such as the building of various impoundments in the hills and the 
293 construction of artificial sea walls and fish ponds in the coastal zone (Lin, 1996; Hsu 
294 et al., 2007). In particular, the southwestward migration and reduction in size of the 
295 Waisandin Sandbar are consequences of coastal reclamation projects (Kung et al., 
296 1994; Chen and Rau, 1998). Our analysis also documents this degradation of the 
297 shoreline, contrasting an average shoreline migration of about 2 m/y seaward since 7 
298 cal ka with an average migration of 2 m/y landward during the past 70 years. 
299 In our analysis, the sediment volume below sea level decreased from 2–1 cal ka to 
300 1–0 cal ka. In our interpretation, the warm current on the eastern side of Taiwan Strait 
301 has affected delta-front sedimentation and dispersed mud to the north (Fig. 7). Our 
302 results also show that sediment deposition in recent decades is mainly in the 
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303 northeastern part of Taiwan Strait (Fig. 5c). The retreating modern shoreline implies 
304 that sediment will continue to be dispersed from the SWTD to the north.
305
306 5.2. Sediment accumulation in SMR deltas and past sediment discharge
307 Our analysis indicates that the SWTD has trapped an average of ~46.11 Mt/y of 
308 sediment during the last 7 ka, of which 6.58 Mt/y is above sea level and 22.24 Mt/y 
309 below sea level (Table 3). These values include bedload materials. In large rivers, 
310 bedload is estimated to be ~10% of total sediment load (Milliman and Meade, 1983). 
311 However, the proportion of bedload is much greater in SMRs as a result of their 
312 steeper gradients and coarser materials, because SMRs are located near the 
313 mountainous source regions (Orton and Reading, 1993). The abundance of sand-size 
314 and coarser grains in core logs (e.g., Fig. 3) supports this idea.
315 Kao et al. (2008) estimated that sediment accumulation from the delta front to 
316 Taiwan Strait is currently 18 Mt/y (of which 12 ± 10 Mt/y is sand and 6 ± 5 Mt/y is 
317 mud) for a set of major Taiwanese rivers that included six “northwestern rivers” 
318 (Tanshui, Touchien, Houlung, Taan, Tachia and Wu rivers) and two “middle western 
319 rivers” (Choshui and Tsengwen). Our estimated sediment accumulation is ~35.6 Mt/y 
320 below sea level in the Choshui, Tsengwen, Yenshui and Erhjen rivers combined. As 
321 the “middle western rivers” account for roughly two-thirds of the sediment discharge 
322 in the SWTD, we estimate sediment trapping for the middle western rivers to be ~24 
323 Mt/y. This value contains bedload materials and does not include mud deposition in 
324 the northern Taiwan Strait. Our estimate is greater than that of Kao et al. (2008). We 
325 ascribe the difference to the decrease in bedload transport and sediment trapping in 
326 reservoirs for the present data, resulting in the current erosional environment on the 
327 delta front and shoreline retreat. 
328 Kao et al. (2008) also show that sand from rivers is trapped in Taiwan Strait, but 
329 mud accumulation is far smaller than the mud supply of 42 ± 11 Mt/y, indicating that 
330 ~85% of the fluvial mud from the SMRs left the Taiwan Strait and was transported 
331 further offshore where it is a significant contributor to sedimentation in the East China 
332 Sea. Besides, the sediments in the Taiwan Strait are intensely influenced by mixing 
333 process based on the radionuclides profiles (Huh and Su, 1999; Su and Huh, 2002). 
334 The modern transportation and deposition of sediments in the Taiwan Strait still need 
335 to be clarified.
336 Hsu et al. (2014) made similar estimates of offshore sediment transport for the 
337 Tsengwen and Erhjen rivers and found that 22% of the fluvial sediment supply (30 
338 Mt/y, Tsengwen; 25 Mt/y, Erhjen) has accumulated in the delta front to shelf areas 
339 (12.1 Mt/y). Because the delta front of the Tsengwen River is currently erosional 
340 (Hong et al., 2004), the sediment must be mainly deposited on the shelf. 



10

341 Sediment trapping of western Taiwanese rivers from the delta front to the prodelta 
342 has been estimated as ~100% for sand and ~15% for mud, and sand has occupied 30% 
343 of total sediment input for the last 50 years (Kao et al., 2008). If these proportions are 
344 applicable to the last 7 ka, the amount of mud dispersal to the offshore is estimated to 
345 be ~36 Mt/y from the “middle western rivers”. It will be sure that significant amount 
346 of muddy sediment has been transported northward to the East China Sea. 
347 We cannot evaluate the sediment dispersal on a millennial time scale for the 
348 Tsengwen and Erhjen rivers; however, if the sediment is partitioned equally within 
349 deltas and beyond deltas, and if historical sediment discharges are typical of the 
350 Holocene, then offshore sediment dispersal from the Tsengwen and Erhjen rivers 
351 would be ~12 Mt/y and delta trapping would also be ~12 Mt/y. Given our limited 
352 knowledge of past sediment discharge and dispersal for Taiwanese rivers, further 
353 study is needed for a wide region including the East China Sea and South China Sea. 
354
355 5.3. Sediment trapping and dispersal of SMR deltas in southwest Taiwan
356 The river-mouth systems of SMRs vary in different settings. In compressional 
357 plate settings, rivers commonly feed offshore canyon/gully systems cutting directly 
358 across a narrow shelf. The Kaoping River of Taiwan is a good example, in which 50% 
359 of fluvial sediments are deposited within 120 km of the river mouth (up to ~2000 m 
360 depth beyond the shelf edge), and the rest is dispersed farther away (Kao et al., 2006). 
361 Flood-driven hyperpycnal flows or turbidity currents are frequent, and most riverine 
362 sediment is transported directly to a deep-sea basin (Liu et al., 2016). Similarly, ~90% 
363 of the sediment from the Sepik River of New Guinea and the Kurobe River of central 
364 Japan is transported by an offshore canyon (Walsh and Nittrouer, 2003) and gullies 
365 (Saito, 2011), respectively. Although the Tsengwen and Erhjen rivers in our study 
366 area formed a Holocene delta, at present ~80% of the fluvial sediment discharge is 
367 transported beyond the shelf edge (Hsu et al., 2014). After the SWTD was filled up 
368 and bypassed, the delta has shifted to a destruction phase (Hong et al., 2004). The 
369 shelf is also narrow off these rivers, measuring <30 km from the shore to the shelf 
370 edge or the Penghu Channel.
371 The SWTD lies on a relatively wide shelf, but the Taiwan Warm Current (TwWC) 
372 flows near shore. In the eastern Taiwan Strait, sediment trapping between the delta 
373 front and prodelta during the last 50 years has captured almost all of the sand and 
374 ~15% the mud from the SWTD (Kao et al., 2008). Most of the mud instead is 
375 transported by the TwWC to the East China Sea or beyond. Rivers on the west side of 
376 the Taiwan orogen are in a foreland basin or back-arc basin setting. Many other SMR 
377 deltas in Southeast Asia occupy these geological settings, for instance north of Java 
378 (Rimbaman, 1992; Wolanski and Spagnol, 2000). Well-developed river-dominated 
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379 deltas trap sediment effectively. Relatively stable island margins also have well-
380 developed delta systems in Southeast Asia, such as the Mahakam and Rajang deltas in 
381 Borneo (Staub and Esterle, 1993; Staub et al., 2000; Storms et al., 2005). The Fly, 
382 Kikori and Purari rivers entering the Gulf of Papua southeast of New Guinea form 
383 deltas and clinoforms; there, most of the sediment discharged by the rivers is trapped 
384 in the delta to shelf areas and <5% is transported off the continental shelf (Walsh and 
385 Nittrouer, 2003; Walsh et al., 2004). 
386 Tectonic subsidence in southwestern Taiwan accounts for the rapid accumulation 
387 of deltaic sediment deposits (Chen and Liu, 2000; Fruneau et al., 2001). More than 70 
388 m has accumulated during the last 7 cal ka, for an average rate of ~10.73 m/ka. 
389 Compared to other deltas in foreland or back-arc basin settings, the trapping 
390 efficiency of the SWTD is relatively low due to the influence of the TwWC and steep 
391 river gradients, but rapid subsidence provides substantial accommodation space 
392 within a limited area. The thickness of the deltaic sediments of southwestern Taiwan 
393 may indicate high preservation potential since 7 cal ka BP.
394
395 5.4. Sediment supply to East China Sea and establishment of modern ocean 
396 circulation
397 As shown by Kao et al. (2008), ~36 Mt/y of muddy sediment delivered by major 
398 rivers of western Taiwan for the last 50 years is missing. Mud accumulation on the 
399 middle to outer shelf of the ECS is rare (Huh and Su, 1999; Su and Huh, 2002), where 
400 active and moribund sand ridges are widely developed at present (Liu et al., 2007b; 
401 Wu et al., 2016). Tidal and monsoon-induced currents, reported by in-situ 
402 measurement (e.g., Hoshika et al., 2003; Liu et al., 2007b), prevent the accumulation 
403 of fine particles on the middle to outer shelf of the ECS, resulting in sediment 
404 bypassing on the shelf. Provenance studies of sediment in the Okinawa Trough based 
405 on clay mineralogy and geochemical analyses have shown that significant quantities 
406 of riverine sediment from northern and eastern Taiwan are transported by the 
407 Kuroshio to the middle Okinawa Trough (Dou et al., 2010a, 2010b, 2012; Wang et al., 
408 2015) and by the Tsushima Warm Current (TsWC) to the northern Okinawa Trough 
409 (Xu et al., 2012b, 2012c, 2014). However, these studies have presented little basic 
410 information on the character of Taiwanese rivers. A basic dataset of Taiwanese rivers 
411 (Li et al., 2012a, 2013) has been used to show the similarity between sediments of the 
412 western or southwestern Taiwanese rivers and the middle Okinawa Trough (Li et al., 
413 2013) and southern Okinawa Trough (Dou et al., 2016). Figure 8 presents the dates of 
414 this abrupt shift at core locations around the East China Sea. The provenance of 
415 sediment in cores from the Okinawa Trough and the Japan Sea shifted abruptly to its 
416 modern character at 7.1–7.3 cal ka BP. Similarly, an abrupt change in accumulation 
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417 rates has been reported in the southern and northern Okinawa Trough (Jian et al., 
418 2000). On the other hand, it occurred later (6.0–6.5 cal ka BP) in the Yellow Sea and 
419 East China Sea continental shelf. This shift is considered to represent the 
420 establishment of the modern ocean current system in the Yellow Sea and East China 
421 Sea continental shelf.
422 The TsWC is a branch of the Kuroshio (Nitani, 1972; Ichikawa and Beardsley, 
423 2002). It is hard to explain the abrupt shift in sediment provenance and accumulation 
424 rates under a scenario in which the Kuroshio alone transports sediment from the 
425 western Taiwanese rivers. Current monitoring data and simulations show that the 
426 TsWC can be linked with the TwWC regularly in summer and episodically in winter 
427 (Beardsley et al., 1985; Fang et al., 1991; Ichikawa and Beardsley, 2002; Zhu et al., 
428 2004; Isobe, 2008; Zheng, 2009; Park et al., 2013). The Kuroshio and TwWC are the 
429 two dominant sources of water flowing through the Tsushima Strait into the Japan Sea, 
430 the TwWC being dominant in summer (66% of the total volume) and the Kuroshio in 
431 winter (83%) (Cho et al., 2009).
432 As the TwWC flows north through the Taiwan Strait into the East China Sea, the 
433 bathymetry of the Taiwan Strait is a key factor influencing the birth of the TwWC. 
434 The south entrance of the Taiwan Strait is a wide, shallow shoal with water depths of 
435 ~10–20 m named the Taiwan Shoal or Taiwan Bank. During the early Holocene 
436 lowstand of sea level at –50 m, the Taiwan Strait was restricted to a narrow, sinuous 
437 channel only ~20–30 km wide between the South China Sea and East China Sea. The 
438 TwWC arose after the rise of sea level and submergence of the Taiwan Shoal to 
439 appropriate depths.
440 Early Holocene sea-level rise took place in three stages: a gradual rise during 13.0–
441 9.0 cal ka BP (Bard et al., 2010; Tjallingii et al., 2014), a rapid rise from 9.0 to 8.2 (or 
442 8.0) cal ka BP (Hori and Saito, 2007; Tamura et al., 2009; Bird et al., 2010; Hijma 
443 and Cohen, 2010; Wang et al., 2013; Tjallingii et al., 2014), and a slow rise from 8.0 
444 to 6.5 cal ka BP (Yu et al., 2007; Cronin et al., 2007; Tamura et al., 2009; Hijma and 
445 Cohen, 2010; Bird et al., 2010; Li et al., 2012b; Tjallingii et al., 2014). The third stage 
446 ended with the final phase of North America deglaciation (Carlson et al., 2007; 
447 Lambeck et al., 2014) and is documented by evidence from several regions: ~4 m rise 
448 during 7.5–6.5 cal ka BP in Singapore (Bird et al., 2010), ~4.5 m rise at ~7.6 cal ka 
449 BP in the Baltic Sea (Yu et al., 2007), ~6 m rise during 8.2–7.6 cal ka BP in 
450 Chesapeake Bay (Cronin et al., 2007), ~5 m rise during 8.0–7.1 cal ka BP in the 
451 Mekong delta (Tamura et al., 2009; Li et al., 2012b), and a 3.6 m rise during 8.0–7.6 
452 cal ka BP in Kolleru Lake, India (Nageswara Rao et al., submitted). In the Taiwan 
453 Strait, sea level reached its present level at 7.0 cal ka BP (Chen and Liu, 1996). 
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454 We correlate the abrupt provenance shift in Okinawa Trough sediment with the 
455 birth of the TwWC following the early Holocene sea-level rise, after which the 
456 TwWC began to deliver sediment derived from western Taiwanese rivers to the East 
457 China Sea. The synchronous change of sedimentation along the Okinawa Trough to 
458 the Japan Sea is explained by the linkage between the TwWC and TsWC, as is the 
459 strengthening of the TsWC. In the other idea on indirect relationship between the 
460 TwWC and TsWC, the TwWC flows northward towards the Yangtze River mouth, 
461 and the TsWC is only a branch of the Kuroshio (Ichikawa and Beardsley, 2002). In 
462 this case, it is hard to explain sediment source and dispersal in the middle to northern 
463 Okinawa Trough, and synchronization of the abrupt change at 7.3 cal ka BP.
464 The abrupt shift in sediment provenance in the Yellow Sea and East China Sea 
465 continental shelf occurred slightly later at 6.5–6.0 cal ka BP. The Yellow Sea Warm 
466 Current (YSWC), an episodic event forced by northerly winter monsoon winds (Isobe, 
467 2008), can be linked to the strength of the winter monsoon or the direction of 
468 northerly winds after the middle Holocene warm period. However, the East Asian 
469 Winter Monsoon had a weakening trend from the early to late Holocene with its most 
470 significant transition at ~6.2 cal ka BP, in phase with a weakening trend of the East 
471 Asian Summer Monsoon (Jia et al., 2015). Thus the rise of the YSWC may instead 
472 reflect the changing balance between the winter and summer monsoons, or the 
473 stabilization of a further sea-level rise after the birth of the TwWC. The establishment 
474 of the modern ocean current system in the Yellow Sea remains a topic in need of 
475 explanation.
476
477 6. Conclusion
478
479 This study showed that the SMRs of western Taiwan have provided a large 
480 sediment supply to the coast and also built the thick deltaic deposits of the SWTD in 
481 the coastal plain. We used historical charts, bathymetric data, SRTM observations and 
482 14C dates to evaluate the sediment volume in this area on millennial and decadal 
483 scales. We calculate that 201.72 ± 13.90 km3 of stored sediment has accumulated 
484 within the SWTD since ~7 cal ka BP. Sediment trapping amounts to an average of 
485 46.11 ± 3.30 Mt/y since ~7 cal ka BP, of which approximately 20–25% has been 
486 trapped above sea level. Whereas the paleo-shoreline has steadily prograded on a 
487 millennial scale since 7 cal ka BP, the modern shoreline has been eroding landward 
488 by about 2 m/y in the last seven decades. Nautical charts document minor reduction in 
489 the volume of the offshore delta along with a deepening rate of about 10 cm/y, 
490 consistent with an erosional environment during the last seven decades. We ascribe 
491 this shoreline retreat to delta destruction in response to human activities. Today a 
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492 significant portion of the sediment historically supplied by western Taiwanese rivers 
493 has been cut off. This sediment was formerly transported northward into the East 
494 China Sea after the abrupt birth of the TwWC, which arose after a rapid sea-level rise 
495 in the early to middle Holocene. Abrupt changes of sediment provenance in the 
496 Okinawa Trough at ~7.3 cal ka BP are explained by the birth of the TwWC, its close 
497 link with the TsWC, and its interaction with the Kuroshio. 
498
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863 Figure and Table captions
864 Fig. 1. Location map showing topography, bathymetry, and catchments and deltas 
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865 (subaerial and subaqueous) in western Taiwan. The inset map shows the 
866 regional setting. Eight small mountainous rivers flowing westward across the 
867 subaerial delta are numbered as follows: 1, Choshui; 2, Peikang; 3, Potzu; 4, 
868 Pachang; 5, Chishui; 6, Tsengwen; 7, Yenshui; 8, Erhjen (see Table 1). Upland 
869 catchments are shown for the Choshui and Tsengwen rivers. Major structure 
870 lines (brown) are identified as follows: a, Chukou fault; b, Lishan fault; c, 
871 Chauzhou fault; d, Laonung fault; e, Chiuchih fault; f, Chelungpu fault; g, 
872 Changhua fault; h, Longitudinal Valley suture. The study area is outlined by the 
873 box and enlarged in Figs. 4, 5 and 6. Topography in the catchment areas is 
874 omitted.
875 Fig. 2. Map showing regional bathymetry (contour interval 10 m) and main 
876 morphological features of Taiwan Strait near western Taiwan. The subaqueous 
877 delta is separated into northern (green) and southern parts (pink). The northern 
878 subaqueous delta is a narrow belt about 10 km wide on a relatively flat shelf 
879 east of the Changyun sand ridges. The southern subaqueous delta extends along 
880 a narrow shelf east of the Penghu Channel and has a relatively steep distal slope. 
881 Red triangles are borehole core sites on land, the black square is core site TN-
882 SF. The Changyun sand ridges and depocenters (blue) are modified from Liao et 
883 al. (2005) and Liu et al. (2008).
884 Fig. 3. Simplified lithostratigraphic section of core TN-SF (location in Fig. 2) 
885 showing facies successions from latest Pleistocene to Holocene and calibrated 
886 14C ages. Interpolated ages of 2 cal ka BP and 7 cal ka BP are placed at 9.62 m 
887 and 46.30 m core depth, respectively. The base of an upward-coarsening deltaic 
888 succession in the marine facies is identified at 7 cal ka BP (Lu, 2006).
889 Fig. 4. (a) Nautical chart of the study area circa 1930 compiled from surveys by the 
890 Imperial Japanese Navy (charts 088632, 088633, 088640 and 088706). (b) 
891 Nautical chart of the study area circa 2002 compiled from Taiwanese surveys 
892 (charts 3231 and 2409). (c) Shorelines and low tide lines derived from the 1930 
893 and 2002 charts. Note the changing position of the Waisandin Sandbar (WS).
894 Fig. 5. (a) Nautical chart of the study area circa 1930 showing the shoreline and low 
895 tide line. (b) Regional bathymetry digitized from Fig. 5a. (c) Changes in 
896 bathymetry between 1930 and 2002. (d) Nautical chart circa 2002 showing the 
897 shoreline and low tide line. (e) Regional bathymetry digitized from Fig. 6a. (f) 
898 Changes in bathymetry between 2002 and 2010. The red line in (c) and (f) is the 
899 western boundary of the delta, which is the same with Fig. 6. 
900 Fig. 6. Maps showing present and inferred paleo-topography and paleo-bathymetry of 
901 the study area. (a) Modern topography (from SRTM data) and bathymetry (from 
902 2010 data). Core sites are marked by red triangles. (b) Isopach map of deltaic 
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903 sediment deposited since 2 cal ka BP. (c) Isopach map of deltaic sediment 
904 deposited since 7 cal ka BP. Both (b) and (c) are based on 80 core samples with 
905 112 14C ages. (d) Locations of the modern shoreline (red line) and paleo-
906 shorelines (dotted lines). (e) Reconstructed paleo-topography and paleo-
907 bathymetry at 2 cal ka BP. (f) Reconstructed paleo-topography and paleo-
908 bathymetry at 7 cal ka BP.
909 Fig. 7. (a) Map showing regional sediment transport, surface currents and the 
910 distribution of mud around the Taiwan Strait (modified from Jan et al., 2002; 
911 Liu et al., 2008; and Xu et al., 2009). (b) Map showing the distribution of 
912 surficial sediment in the eastern Taiwan Strait (modified from Liao et al., 2005; 
913 Huh et al., 2011; and K. Xu et al., 2012).
914 Fig. 8. Regional bathymetric map showing schematic ocean circulation during 
915 summer in the Yellow Sea and East China Sea and ages of abrupt changes in 
916 sediment sources (cal ka BP and core name). Red arrows depict the directions 
917 and magnitudes of currents, including the interaction between the Taiwan Warm 
918 Current (TwWC) and the Kuroshio resulting in the formation of the Tsushima 
919 Warm Current (TsWC). Currents are modified after Isobe (2008) and Hong et al. 
920 (2011). Age data are from Yellow Sea cores NYS-101 and 102 (Liu et al., 
921 2007a, 2009), B-L44 and B-U35 (Li et al., 2012a), HMB-102 and HMB-103 
922 (Um et al., 2015), YSC-1 and YSC-4 (Li et al., 2014), C02 (Fang et al., 2013), 
923 CC02 and DH4-1 (Kim and Kennett, 1998), YS01A (Wang et al., 2014), and 
924 DSDP102 (Li et al., 2000), Japan Sea core ROV07-2 (Xu et al., 2014), East 
925 China Sea shelf cores MZ02 (Liu et al., 2014) and B3 (Hu et al., 2014), and 
926 Okinawa Trough cores B-3GC, 255 (Jian et al., 2000), PC-1 (Xu et al., 2012a; 
927 Xu et al., 2014), CSH1 (Xu et al., 2012b), OKI04 (Wang et al., 2015), 
928 DGKS9604 (Duo et al., 2010b; 2012; Li et al., 2013), and 1202B (Duo et al., 
929 2016). Core 1202B is located in the south flank of the Okinawa Trough, 
930 therefore the influence of the TwWC is not clear.
931
932 Table 1. Summary of the eight small mountainous rivers in the west and southwest 
933 Taiwan.
934
935 Table 2 14C data in the study area in the west and southwest Taiwan. Core 
936 descriptions and related information are collected from hydrogeological data 
937 bank, MOEA, Taiwan, ROC. http://hydro.moeacgs.gov.tw/index.htm. 
938
939 Table 3 The total volumes and partial volumes above/below the present sea level of 
940 the Southwest Taiwan Delta.



















Table 1 Summary of the eight small mountainous rivers in the west and southwest Taiwan.
River name Choshui Peikang Potzu Pachang Chishui Tsengwen Yenshui Erhjen Total

Drainage basin area (km2) 3157 645 427 475 379 1177 343 350 6953

River length (km) 186.6 82.0 75.9 80.9 65.0 138.5 41.3 63.2 

Gradient in average 1/190 1/59 1/53 1/42 1/118 1/200 1/295 1/786

Reservoir and dam 8 0 1 3 2 5 2 1

Max elevation (m) 3400 520 1400 1900 550 2400 140 460

Water discharge  (km3/y) 
Milliman & Farnsworth 2011 6.1 1 0.55 0.74 0.52 2.4 0.3 0.5 12.11

Sediment discharge (Mt/y)

Milliman & Farnsworth, 2011 38 1.4 0.83 2.5 2.1 12 2.2 10

Kao & Milliman, 2008 40 ± 5.7 1.4 ± 0.3 - 2.5 ± 0.5 - 12 ± 2.4 10 ± 2.1 -

Lin et al., 2008 93.81 - - - - 17.37 - 15.53

Dadson et al., 2003 54 2 - 6 - 25 - 30

Sediment discharge ranges 34.3 – 93.81 1.1- 2 0.83 2 - 6 2.1 9.6 - 25 2.2 – 12.1 10 - 30 62.1 – 171.84

References: Water Resources Agency, MOEA, Taiwan, ROC; Milliman & Farnsworth, 2011; Kao & Milliman, 2008; Lin et al., 2008; Dadson et al., 2003.



Table 2 Radiocarbon data in the Southwest Taiwan Delta.

Core ID
Sample 

Depth

from core 

top (m)

14C ages

(a BP)

Calibrated age

a BP (2 sigma)
Material Reference

CH-SS 20.4 4410 ± 100 5184 - 5272 wood Chen, 2010
CH-SS 49.8 13680 ± 170 16257 - 16781 wood 　
CH-DF 34.95 7980 ± 50 8299 - 8394 shell 　
CH-HB 19.2 1730 ± 80 2795 - 2629 shell 　
CH-HB 46.6 7250 ± 110 7971 - 8174 wood 　
CH-HT 19.2 12700 ± 80 14994 - 15265 wood 　
CH-FY 27.6 3990 ± 70 4401 - 4570 wood 　
CH-FY 42.5 6259 ± 86 6483 - 6689 shell 　
CH JJ 80.0 3370 ± 80 3549 - 3700 wood 　
CH JJ 280.0 22500 ± 280 26476 - 27147 wood 　

CH-SH 33.1 7820 ± 90 8738 - 8752 wood 　
CH-YL 33.2 6670 ± 70 7482 - 7592 wood 　
CH-LS 64.2 12500 ± 80 14490 - 14989 wood 　
CH-YD 37.8 7200 ± 100 7484 - 7663 shell 　
CH-HH 38.6 8900 ± 70 10111 - 10173 organic mud 　
CH-SG 41.5 6140 ± 70 6377 - 6549 shell 　
CH-YA 35.8 8440 ± 60 9432 - 9524 organic mud 　
CH-HA 23.4 2930 ± 70 2971 - 3171 wood 　
CH-HA 31.0 4170 ± 65 3999 - 4203 shell 　
CH-FR 14.5 5500 ± 70 5696 - 5864 shell 　
CH-GH 27.1 6510 ± 40 7416 - 7476 organic carbon 　
CH-SU 51.0 9610 ± 200 10686 - 11212 wood 　
CY-GT 43.8 9410 ± 60 10571 - 10713 wood Wu, 2007

CY-MDH 50.2 10340 ± 160 12478 - 12521 organic mud 　
CY-NJ 9.6 4622 ± 57 5164 - 5281 organic mud 　
CY-NJ 38.9 9517 ± 67 10953 - 11071 wood 　
CY-SM 61.2 9880 ± 40 11235 - 11308 plant 　
CY-LT 16.5 5070 ± 40 5368 - 5389 shell 　
CY-LT 29.7 8490 ± 40 9485 - 9528 wood 　
CY-BD 20.8 4360 ± 40 4867 - 4963 wood 　
CY-BD 66.6 11800 ± 40 13659 - 13710 organic mud 　
CY-BH 25.5 7250 ± 100 7982 - 8168 organic mud 　
CY-AN 36.8 8180 ± 250 8326 - 8924 shell 　
CY-TS 26.35 7277 ± 66 8028 - 8162 wood 　
CY-SS 21.0 6653 ± 56 6998 - 7146 shell 　
CY-SY 32.7 7415 ± 162 8152 - 8379 wood 　
CY-LJ 21.2 7770 ± 40 8062 - 8175 shell 　
CY-JH 31.5 5145 ± 57 5316 - 5452 shell 　
CY-JH 86.3 9806 ± 57 11190 - 11253 wood 　
CY-WS 30.3 4452 ± 59 4406 - 4566 shell 　
CY-WS 70.7 9030 ± 57 9513 - 9649 shell 　
CY-SW 17.3 2620 ± 80 2099 - 2296 shell 　
CY-YA 35.8 8420 ± 60 9407 - 9520 organic mud 　

TN-SK 44.7 7780 ± 40 8068 - 8186 shell Lu, 2006
TN-AC 78.4 8970 ± 60 9458 - 9575 shell 　



TN-GX 44.7 2822 ± 56 2332 - 2505 shell 　
TN-GX 91.45 9661 ± 71 10321 - 10524 shell 　
TN-TN 34.5 3150 ± 40 2758 - 2852 shell 　
TN-TN 129.5 11190 ± 80 12556 - 12681 shell 　
TN-YG 51.4 5359 ± 62 6240 - 6272 wood 　
TN-XG 21.2 6956 ± 77 7293 - 7434 shell 　
TN-DW 40.4 6355 ± 66 6625 - 6787 shell 　
TN-SG 35.6 4001 ± 56 3803 - 3965 shell 　
TN-SG 118.4 11957 ± 63 13257 - 13389 shell 　
TN-SF 11.1 1240 ± 62 3261 - 3154 shell 　
TN-SF 61.5 8253 ± 67 8535 - 8740 shell 　
TN-NK 18.85 2440 ± 60 2635 - 2696 wood 　
TN-NK 34.8 7850 ± 60 8159 - 8295 shell 　
TN-NH 75.3 9375 ± 59 10021 - 10191 shell 　
TN-ZD 34.6 8350 ± 60 8673 - 8897 shell 　
TN-ZH 12.5 8050 ± 70 8341 - 8483 shell 　
TN-YZ 22.3 7350 ± 40 7660 - 7757 shell 　
TN-CH 31.8 7220 ± 60 7545 - 7654 shell 　
TN-YC 9.65 6000 ± 60 6775 - 6911 wood 　
TN-SL 8.15 6570 ± 60 6879 - 7055 shell 　
TN-NZ 22.3 5360 ± 60 5568 - 5688 shell 　
TN-NZ 45.1 9920 ± 60 10642 - 10837 shell 　
TN-CC 38.4 37420 ± 480 41503 - 42200 wood 　
TN-WC 9.7 5800 ± 60 6020 - 6181 shell 　
TN-XG 6.7 6070 ± 70 6298 - 6446 shell 　
TN-DS 1.62 6250 ± 60 7156 - 7260 wood 　
TN-GS 16.69 5330 ± 60 5524 - 5656 shell 　
TN-GS 55.29 9690 ± 70 10367 - 10563 shell 　
TN-WL 45.55 5410 ± 60 6181 - 6291 wood 　
TN-AL 25.01 5970 ± 60 6218 - 6347 shell 　
TN-YJ 8.67 6160 ± 40 6417 - 6530 shell 　
TN-JH 50.7 8780 ± 40 9839 - 9888 wood 　
TN-CG 29.4 4440 ± 60 4397 - 4559 shell 　
TN-CG 105.1 8940 ± 60 10121 - 10197 wood 　
TN-YH 6.8 1760 ± 40 2287 - 2183 wood 　
TN-YH 103.1 9420 ± 50 10586 - 10704 wood 　
TN-MT 4.8 4640 ± 60 4672 - 4823 shell 　
TN-MT 30.4 6540 ± 60 6837 - 7007 shell 　
TN-CJ 14.5 3420 ± 60 3067 - 3247 shell 　
TN-CJ 18.19 6470 ± 130 7264 - 7494 organic mud 　
TN-XD 20.6 3300 ± 60 2908 - 3102 shell 　
TN-XD 27.2 4480 ± 40 5164 - 5282 wood 　



Table 3 The total volumes and partial volumes above/below modern sea level of the 
Southwest Taiwan Delta (SWTD)

cal ka BP 

age interval

Total 

Volume 

(km3)

Weight 

(Mt/y)

Volume 

above sea 

level (km3)

Volume 

above sea 

level 

Percentage 

(%)

Volume 

below sea 

level (km3)

Volume 

below sea 

level 

Percentage 

(%)

0–7 201.72 46.11 46.03 22.8 155.69 77.2

0–1 29.81 47.69 7.87 26.4 21.94 73.6

1–2 30.33 48.54 6.61 21.8 23.73 78.2

2–3 26.46 42.33 5.48 20.7 20.98 79.3

3–4 26.47 42.35 5.54 20.9 20.93 79.1

4–5 26.73 42.76 5.77 21.6 20.96 78.4

5–6 27.94 44.71 6.18 22.1 21.76 77.9

6–7 33.98 54.37 8.58 25.2 25.40 74.8

average/ka 28.82 46.11 6.58 22.8 22.24 77.2


