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Abstract

A subgroup H of G is called Mp-embedded in G, if there exists a p-nilpotent subgroup
B of G such that Hp ∈ Sylp(B) and B is Mp-supplemented in G. In this paper, we use
Mp-embedded subgroups to study the structure of finite groups.

1. Introduction

All groups considered in this paper will be finite. We shall adhere to
the notation employed in [3, 5]. In particular, let |G| denote the order of
a group G, and let π(G) denote the set of all prime divisors of |G|. In
addition, U denotes the class of all supersoluble groups.

The topic of the embedding properties of subgroups is one of the most
fruitful fields in Finite Group Theory. This idea provides a new approach
to characterize the structure of a group by borrowing some local proper-
ties of subgroups. By using the embedding properties of subgroups, many
scholars have deeply studied the structure of a group. For instance, in 1998,
Ballester-Bolinches and Pedraza–Aguilera [2] introduced the following defi-
nition: A subgroup H of G is S-quasinormally embedded (normally embed-
ded) in G if, for every Sylow subgroup P of H, there is an S-quasinormal
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(normal) subgroup K in G such that P is also a Sylow subgroup of K.
Furthermore, they proved that if all maximal subgroups of all Sylow sub-
groups of G are S-quasinormally embedded in G, then G is supersoluble.
Further, in 2001, Asaad and Heliel [1] obtained an interesting result about
p-nilpotency of a group. Moreover, in 2009, Shemetkov and Skiba [10] in-
troduced FΦ-hypercentral subgroup of a group. In 2012, Guo and Skiba [7]
stated FΦ∗-hypercentral subgroups of a group. They obtained some new
results about the structure of finite groups by using these embedding prop-
erties of subgroups.

It is well known that the generalized supplementation of subgroups is
significant to determine the structure of a group. In 2007, Skiba [12] de-
fined weakly s-permutable subgroups and studied the structure of a group.
In 2008, Guo [6] gave the concept of F-supplemented subgroups and in-
vestigated solubility and supersolubility of a group. In 2009, Miao and
Lempken [8] considered M-supplemented subgroups of a group and obtained
some characterizations of saturated formations containing all supersoluble
groups. In 2009, Monakhov and Shnyparkov [11] introduced the definition
of Mp-supplemented subgroups and obtained some interesting results about
p-supersoluble groups.

As a continuation of above work, naturally, we should consider a ques-
tion that we construct new embedding properties of subgroups by using the
generalized supplementation of subgroups to study the structure of a group.
Based on this point, we will introduce the following concept ofMp-embedded
subgroups which is closely related to Mp-supplementation. Our motivation
is to investigate the construction of a group extensively and obtain some
new characterizations about p-supersolubility and supersolubility with the
embedding property of subgroups.

Definition 1.1. Let π be a set of primes. A subgroup H of a group
G is called Mπ-supplemented in G, if there exists a subgroup B of G such
that G = HB and H1B < G for every maximal subgroup H1 of H with
π
( |H : H1|

)
� π. In particular, if π={p}, thenH is calledMp-supplemented

in G.

Definition 1.2. A subgroup H of G is called Mp-embedded in G, if
there exists a p-nilpotent subgroup B of G such that Hp ∈ Sylp(B) and B is
Mp-supplemented in G.

It is not necessary for an Mp-embedded subgruop to be Mp-supple-
mented.

Example 1.3. Consider the groupG = A5. LetH =
〈
(12345), (15)(24)

〉

with |H| = 10 and B =
〈
(12345)

〉
a Sylow 5-subgroup of H.

Clearly, B is M5-supplemented in G and hence H is M5-embedded in G.
Furthermore, it is easy to verify that H is not M5-supplemented in G.
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2. Preliminaries

For the sake of convenience, we first list here some known results which
will be useful in the sequel.

Lemma 2.1. Let G be a group. Then
(1) Let N � G and N � H. If H is Mp-embedded in G, then H/N is

Mp-embedded in G/N .
(2) Let π be a set of primes. Let N be a normal π′-subgroup and H

be a π-subgroup of G. If H is Mp-embedded in G, then HN/N is Mp-
embedded in G/N .

Proof. The claims are easy exercises left to the reader. �

Lemma 2.2 (see [9, Lemma 2.6]). If H is a subgroup of a group G with
|G : H| = p, where p is the smallest prime divisor of |G|, then H � G.

Lemma 2.3 (see [5, Gaschütz]). Let G be a group. Suppose that N and
D are normal subgroups of G, and also D � N , D � Φ(G). Then N/D is
nilpotent if and only if N is nilpotent.

Lemma 2.4 (see [5, Theorem 1.8.17]). Let N be a nontrivial soluble nor-
mal subgroup of a group G. If N ∩ Φ(G) = 1, then the Fitting subgroup
F (N) of N is the direct product of minimal normal subgroups of G which
are contained in N .

Lemma 2.5. Let R be a soluble minimal normal subgroup of a group G.
If there exists a maximal subgroup R1 of R such that R1 is Mp-embedded
in G, then R is a cyclic group of prime order.

Proof. Since R is a soluble minimal normal subgroup of G, R is an el-
ementary abelian p-group for some prime p ∈ π(G). By hypothesis, R1 is
Mp-embedded in G, then there exists a p-nilpotent subgroup B of G such
that R1 ∈ Sylp(B) and B is Mp-supplemented in G. That is, there exists
a subgroup K of G such that G = BK = R1Bp′K where Bp′ is the normal
p-complement of B and TBp′K < G for every maximal subgroup T of R1.
It follows from R is a minimal normal subgroup of G that R � TBp′K or
R∩ TBp′K = 1. If R � TBp′K, then TBp′K = RTBp′K = BK = G, a con-
tradiction. If R ∩ TBp′K = 1, then we have |G : TBp′K| = p and hence
|R| = p. �

Lemma 2.6 (see [11, Lemma 4]). Let H be a Mπ-supplemented subgroup
in a group G and B be a Mπ-supplement to H. If H1 is a maximal subgroup
in H and π(H : H1) � π, then |G : H1B| = |H : H1|.

Lemma 2.7 (see [13, Theorem 3.1]). Let F be a saturated formation con-
taining U , G a group with a soluble normal subgroup H such that G/H ∈ F .
If for every maximal subgroup M of G, either F (H) � M or F (H) ∩M is
a maximal subgroup of F (H), then G ∈ F . The converse also holds, in the
case where F = U .
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Lemma 2.8 (see [11, Theorem 1]). Let p be the smallest prime divisor
of |G| and H be a p-nilpotent subgroup containing a Sylow p-subgroup of G.
If H is Mp-supplemented in G, then G is p-nilpotent.

Lemma 2.9 (see [11, Theorem 2]). Let G be a group, π(G) = {p1, p2 =
p, . . . , pn}, p1 < p2 = p < · · · < pn and H be a p-nilpotent subgroup contain-
ing a Sylow p-subgroup of G. If H is Mp-supplemented in G, then G is
p-supersoluble.

Lemma 2.10 (see [4]). Let G be a group and N a subgroup of G. The
generalized Fitting subgroup F ∗(G) of G is the unique maximal normal
quasinilpotent subgroup of G. Then

(1) If N is normal in G, then F ∗(N) � F ∗(G).
(2) F ∗(G) �= 1 if G �= 1; in fact,

F ∗(G)/F (G) = Soc (F (G)CG

(
F (G)

)
/F (G)).

(3) F ∗(F ∗(G)
)
= F ∗(G) � F (G); if F ∗(G) is soluble, then F ∗(G) =

F (G).

(4) CG

(
F ∗(G)

)
� F (G).

(5) If P � G with P � Op(G), then F ∗(G/Φ(P )
)
= F ∗(G)/Φ(P ).

(6) If K � Z(G), then F ∗(G/K) = F ∗(G)/K.

3. Main results

Theorem 3.1. Let G be a p-soluble group and P be a Sylow p-subgroup
of G. If every maximal subgroup of P is Mp-embedded in G, then G is
p-supersoluble.

Proof. Assume that the assertion is false and choose G to be a coun-
terexample of minimal order. Furthermore, we have

(1) Op′(G) = 1.
If L = Op′(G) �= 1, we consider the factor group G/L. By Lemma 2.1(2),

G/L satisfies the condition of the theorem, the minimal choice of G implies
that G/L is p-supersoluble, and hence G is p-supersoluble, a contradiction.

(2) Op(G) �= 1.
Since G is p-soluble and Op′(G)=1, we have that the minimal normal

subgroup of G is abelian p-group and hence Op(G) �= 1.
(3) Final contradiction.
By (2), we pick a minimal normal subgroup N of G contained in Op(G).

By Lemma 2.1(1), we know that G/N satisfies the hypothesis of the theorem,
the minimal choice of G implies that G/N is p-supersoluble. On the other
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hand, since the class of all p-supersoluble groups is a saturated formation,
we have N is the unique minimal normal subgroup of G contained in Op(G)

and N = Op(G) = F (G) � Φ(G) = 1 by Lemma 2.4. Clearly, by [3, Theo-

rem A.9.2], there exists a maximal subgroup M of G such that G = NM
and N ∩M = 1, P = NMp where Mp is a Sylow p-subgroup of M . We may

choose a maximal subgroup P1 with N � P1, then Mp � P1. By hypothe-

sis, P1 is Mp-embedded in G, there exists a p-nilpotent subgroup B of G
such that P1 ∈ Sylp(B) and B is Mp-supplemented in G. That is, there
exists a subgroup K of G, G = BK = P1Bp′K where Bp′ is the normal p-
complement of B and TBp′K < G for every maximal subgroup T of P1. If
N � Φ(P1), then N � Φ(G) and hence G is p-supersoluble, a contradiction.

Then there exists a maximal subgroup T ∗ of P1 such that N � T ∗. Since

T ∗Bp′K is a maximal subgroup of G, N � T ∗Bp′K or N ∩ T ∗Bp′K = 1.
If N � T ∗Bp′K, then T ∗Bp′K = NT ∗Bp′K � P1Bp′K = G, a contradiction.
On the other hand, if N ∩ T ∗Bp′K = 1, then |N | = p and hence G is p-
supersoluble.

The final contradiction completes the proof. �
Corollary 3.2. Let G be a group and P a Sylow p-subgroup of G where

p is the smallest prime divisor of |G|. If every maximal subgroup of P is
Mp-embedded in G, then G is p-nilpotent.

Proof. Let P1 be a maximal subgroup of P . Then there exists a p-nilpo-
tent subgroup B of G such that P1 ∈ Sylp(B) and B is Mp-supplemented
in G. That is, there exists a subgroup K of G, G = BK = P1Bp′K where
Bp′ is the normal p-complement of B and |G : TBp′K| = p for every maximal
subgroup T of P1. Then TBp′K�G by Lemma 2.2. Let L = (TBp′K)p. Ob-

viously, L is a maximal subgroup of P . By hypothesis, L is Mp-embedded
in G, there exists a p-nilpotent subgroup B1 of G such that L ∈ Sylp(B1) and

B1 is Mp-supplemented in G. If B1 � TBp′K, then we have G = B1TBp′K

and p = |G : TBp′K| = |B1 : B1 ∩ TBp′K|, but |B1 : B1 ∩ TBp′K| is a p′-
number, a contradiction. Thus we have B1 � TBp′K. It is easy to see that
L is Mp-embedded in TBp′K, and hence TBp′K is p-nilpotent by Lemma
2.8 and G is p-soluble. By Theorem 3.1, G is p-nilpotent. �

Corollary 3.3. Suppose that G is a group. π(G) = {p1, p2 = p, . . . , pn},
p1 < p2 < · · · < pn. If every maximal subgroup of P is Mp-embedded in G,
then G is p-supersoluble.

Proof. Let P ∗ be a maximal subgroup of P . By hypothesis, there
exists a p-nilpotent subgroup B of G such that P ∗ ∈ Sylp(B) and B is Mp-
supplemented in G. That is, there exists a subgroup K of G, G = BK =
P ∗Bp′K where Bp′ is the normal p-complement of B and BiK = PiBp′K < G
with |P ∗ : Pi| = p. By Lemma 2.6, |G : BiK| = p. Now, G/(BiK)G is a sub-

group of the symmetric group Sp and hence
∣
∣G : (BiK)G

∣
∣ = pα1 p. Then
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G/(BiK)G is p-supersoluble. Let A = (BiK)G and Ap =
(
(BiK)G

)
p
. Since

Ap is a maximal subgroup of P , Ap is Mp-embedded in G, there exists
a p-nilpotent subgroup B∗ of G such that Ap ∈ Sylp(B

∗) and B∗ is Mp-
supplemented in G. We consider the group AB∗. Obviously, Ap is a sylow
p-subgroup of AB∗. Thus we have AB∗ is p-supersoluble by Lemma 2.9
and hence (BiK)G is p-supersoluble. Then G is p-soluble and hence G is p-
supersoluble by Theorem 3.1. �

Theorem 3.4. Let G be a group. If for each p ∈ π(G) every maximal
subgroup of a Sylow p-subgroup of G is Mp-embedded in G, then G is su-
persoluble.

Proof. Assume that the assertion is false and choose G to be a coun-
terexample of minimal order. Furthermore, we have

(1) G is soluble and there exists p ∈ π(G) such that Op(G) �= 1.
By Corollary 3.2, G is q-nilpotent where q is the smallest prime di-

visor of |G|. Hence G is soluble and there exists p ∈ π(G) such that
N � Op(G) �= 1.

(2) G has the unique minimal normal subgroup N with G = N �M . M is
supersoluble and CG(N) = N = F (G).

Let N be a minimal normal subgroup of G contained in Op(G). Then
N is an elementary abelian p-group. We claim that G/N is supersoluble.
Suppose that P ∈ Sylp(G) with N � P . If N = P , then |N | = p by Lemma

2.5, a contradiction. Assume that N < P . Let P1/N < ·P/N , P1 < ·P .
By Lemma 2.1(1), P1/N is Mp-embedded in G/N . Now consider p �= q.
Let QN/N ∈ Sylq(G/N) and we can assume that Q1N/N < ·QN/N with

Q1 < ·Q. By hypothesis, Q1 is Mq-embedded in G, then Q1N/N is Mq-
embedded in G/N by Lemma 2.1(2). Hence G/N satisfies the hypothesis
of G. The minimal choice of G implies that G/N is supersoluble. Since the
class of supersoluble groups is a saturated formation, we have N is a unique

minimal normal subgroup of G contained in Op(G) and N � Φ(G). Hence

there exists a maximal subgroup M of G such that G = NM and N ∩M = 1
by [3, Theorem A.9.2]. The supersolubility of G/N implies that M is super-
soluble.

(3) Final contradiction.
By (2), G = NM and P = NMp. By hypothesis, P1 is Mp-embedded

in G, there exists a p-nilpotent subgroup B of G such that P1 ∈ Sylp(B) and
B is Mp-supplemented in G. That is, there exists a subgroup K of G, G =
BK = P1Bp′K where Bp′ is the normal p-complement of B and TiBp′K <
G for every maximal subgroup Ti of P1. We choose a maximal subgroup
Tj of P1 such that Mp � Tj and |G : TjBp′K| = p. Then N � TjBp′K or
N ∩ TjBp′K = 1. If N � TjBp′K, then TjBp′K = NTjBp′K = PBp′K = G,
a contradiction. If N ∩ TjBp′K = 1, then |N | = |G : TjBp′K| = p and hence
G is supersoluble, a contradiction.
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The final contradiction completes the proof. �

Theorem 3.5. Let G be a p-soluble group and p a prime divisor of |G|.
If every maximal subgroup of each noncyclic Sylow p-subgroup of Fp(G) is
Mp-embedded in G, then G is p-supersoluble.

Proof. Assume that the assertion is false and choose G to be a coun-
terexample of minimal order. Let P be a Sylow p-subgroup of Fp(G). Fur-
thermore, we have

(1) Op′(G)=1.
In fact, if Op′(G) = L �= 1, we consider G/L. Since Fp(G/L) = Fp(G)/L

and Fp(G) = Op′p(G), we have Fp(G)/L = Op(G/L) = PL/L and hence
Fp(G)/L is a p-group. Clearly, there exists a maximal subgroup P1 of P such
that P1L/L = H/L for every maximal subgroup H/L of Fp(G)/L. By hy-
pothesis, every maximal subgroup of P isMp-embedded inG, P1L/L = H/L
is also Mp-embedded in G/L by Lemma 2.1(2). Hence G/L satisfies the
condition of the theorem. The minimal choice of G implies that G/L is
p-supersoluble, a contradiction.

(2) Φ(G)=1.
Assume that Φ(G) �= 1. The p-solubility of G/Φ(G) implies that

Fp

(
G/Φ(G)

) �= 1.

By (1), Fp(G) = F (G) = P . Since Fp

(
G/Φ(G)

)
= Fp(G)/Φ(G), we see that

P1/Φ(G) is Mp-embedded in G/Φ(G) for every maximal subgroup P1/Φ(G)
of P/Φ(G). The minimal choice of G implies that G/Φ(G) is p-supersoluble.
Since the class of all p-supersoluble groups is a saturated formation, G is
p-supersoluble, a contradiction.

(3) Every minimal normal subgroup of G contained in F (G) is cyclic of
order p.

By Lemma 2.4, F (G) is the direct product of minimal normal sub-
groups of G contained in F (G). Since G is p-soluble and Op′(G)=1, we

have CG

(
F (G)

)
� F (G). Now Φ(G) = 1 implies that F (G) is nontrivial

elementary abelian p-group and CG

(
F (G)

)
= F (G). Thus we may assume

that P = F (G) = R1×· · ·×Rt where Ri (i = 1,2, . . . , t) is a minimal normal
subgroup of G contained in F (G) and we will show that all are cyclic of or-
der p. Let R∗

1 be a maximal subgroup of R1, then P1 = R∗
1 ×R2 × · · · ×Rt is

a maximal subgroup of P . Set M = R2×· · ·×Rt. Since P1 is Mp-embedded
in G, there exists a p-nilpotent subgroup B of G such that P1 ∈ Sylp(B) and
B is Mp-supplemented in G. That is, there exists a subgroup K of G such
that G = BK = P1Bp′K where Bp′ is the normal p-complement of B and
TBp′K < G for every maximal subgroup T of P1. Let B1 = R∗

1Bp′ is p-
nilpotent and R∗

1 ∈ Sylp(B1), there exists a subgroup K1 = MK such that
G = B1K1 and T ∗Bp′K1 < G for every maximal subgroup T ∗ of R∗

1. It fol-



436 J. ZHANG and L. MIAO

lows that R∗
1 is Mp-embedded in G, then |R1| = p by Lemma 2.5. Similarly,

Ri (i = 2, . . . , t) are also cyclic of order p.
(4) Final contradiction.
Since P = F (G) = R1 × · · · ×Rt where Ri is the minimal normal sub-

group of G of order p, G/CG(Ri) is isomorphic to a subgroup of Aut(Ri),
G/CG(Ri) is cyclic and it is p-supersoluble for each i. This implies that

G/
⋂t

i=1CG(Ri) is p-supersoluble. Again, since CG

(
F (G)

)
=

⋂t
i=1CG(Ri) =

F (G), we have G/F (G) is p-supersoluble for each i. But all chief factors of G
below F (G) are cyclic groups of order p and hence G is p-supersoluble.

The final contradiction completes our proof. �
Theorem 3.6. Let F be a saturated formation containing U , suppose

that G has a soluble normal subgroup N with G/N ∈ F . If every maximal
subgroup of each noncyclic Sylow p-subgroup P of F (N) is Mp-embedded

in G for all p ∈ π
(
F (N)

)
, then G ∈ F .

Proof. Assume that the theorem is false and let G be a counterexample
of minimal order. Furthermore, we have

(1) N ∩ Φ(G) = 1.
If N ∩ Φ(G) �= 1, then there exists a minimal normal subgroup R of G

such that R � N ∩ Φ(G). Since N is soluble, we know that R is an ele-
mentary abelian p-group. We will show that G/R satisfies the hypothe-
sis of the theorem. Clearly, (G/R)/(N/R) ∼= G/N ∈ F . By Lemma 2.3,
F (N/R) = F (N)/R. Let P1/R be a maximal subgroup of P/R. Then P1

is a maximal subgroup of P . By the hypothesis, P1 is Mp-embedded in G,
hence P1/R is Mp-embedded in G/R by Lemma 2.1(1). Now, let Q/R be
a maximal subgroup of the Sylow q-subgroup of F (N)/R where q �= p. Then
Q = Q1R, whereQ1 is a maximal subgroup of the Sylow q-subgroup of F (N).
By hypothesis, Q1 is Mq-embedded in G and hence Q/R = Q1R/R is Mq-
embedded in G/R by Lemma 2.1(2). By the minimality of G, G/R ∈ F .
Since F is a saturated formation, it follows that G ∈ F , a contradiction.

(2) Every minimal normal subgroup of G contained in Op(N) is cyclic
of order p where p is a prime divisor of |N |.

If N = 1, the assertion is trivially true. Thus we may assume that N �= 1,
the solubility of N implies that F (N) �= 1. By Lemma 2.4, F (N) is the direct
product of minimal normal subgroups of G contained in N . There at least
exists a maximal subgroup W of G not containing F (N) and hence there at

least exists a prime p of π(N) with Op(N) � W by Lemma 2.7. Applying

Lemma 2.7 again, we have |G : W | is not of prime order.
Denote P = Op(N). Then P is the direct product of some minimal

normal subgroups of G. We assume that P = R1 ×R2 × · · · ×Rt where
Ri is a minimal normal subgroup of G, i = 1, 2, . . . , t and we will show
that all are cyclic of order p. Let R∗

1 be a maximal subgroup of R1, then
P1 = R∗

1×R2×· · ·×Rt is a maximal subgroup of P . Set M = R2×· · ·×Rt.
Since P1 is Mp-embedded in G, there exists a p-nilpotent subgroup B of G
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such that P1 ∈ Sylp(B) and B is Mp-supplemented in G. That is, there
exists a subgroup K of G such that G = BK = P1Bp′K where Bp′ is the
normal p-complement of B and TBp′K < G for every maximal subgroup T
of P1. Let B1 = R∗

1Bp′ is p-nilpotent and R∗
1 ∈ Sylp(B1), there exists a sub-

group K1 = MK such that G = B1K1 and T ∗Bp′K1 < G for every maximal
subgroup T ∗ of R∗

1. It follows that R
∗
1 is Mp-embedded in G, then |R1| = p

by Lemma 2.5. Similarly, Ri (i = 2, . . . , t) are also cyclic of order p.
(3) Final contradiction.
Since N ∩ Φ(G) = 1, for every minimal normal subgroup R of G con-

tained in P , there exists a maximal subgroup M of G such that G = RM
and R ∩M=1 by [3, Theorem A.9.2]. It is clear that |G : M | = p and hence
G ∈ F by Lemma 2.7, a contradiction.

The final contradiction completes the proof. �

Corollary 3.7. Let F be a saturated formation containing U and G
be a soluble group. If every maximal subgroup of each noncyclic Sylow p-
subgroup of F (G) is Mp-embedded in G for all p ∈ π

(
F (G)

)
, then G ∈ F .

Theorem 3.8. Let G be a group. If F ∗(G) is soluble and every maxi-
mal subgroup of every noncyclic Sylow p-subgroup of F ∗(G) is Mp-embedded

in G for all p ∈ π
(
F ∗(G)

)
, then G is supersoluble.

Proof. Assume that the assertion is false and let G be a counterexample
of minimal order. Furthermore, we have

(1) Φ
(
Op(G)

)
= 1 for any p ∈ π

(
F ∗(G)

)
and F ∗(G) = F (G) is abelian.

If Φ
(
Op(G)

) �= 1, we consider the quotient group G/Φ
(
Op(G)

)
. By

Lemma 2.10(5), we have F ∗(G/Φ
(
Op(G)

)
) = F ∗(G)/Φ

(
Op(G)

)
. Clearly,

G/Φ
(
Op(G)

)
satisfies the condition of the theorem, the minimal choice

of G implies that G/Φ
(
Op(G)

)
is supersoluble, and hence G is supersol-

uble, a contradiction. Furthermore, we know that Op(G) is an elementary
abelian group and F ∗(G) = F (G) is abelian because F ∗(G) is soluble group.

(2) There exists a noncyclic Sylow p-subgroup P of F ∗(G) where p is

a prime divisor of
∣∣F ∗(G)

∣∣ .
If every Sylow subgroup of F ∗(G) is cyclic, then we denote that F ∗(G) =

T1 × · · · × Tr where Ti (i = 1, 2, . . . , r) is the cyclic Sylow subgroup of F ∗(G)
and hence G/CG(Ti) is abelian for each i. This implies that G/

⋂r
i=1CG(Ti)

is supersoluble. Morever, we have G/F (G) is supersoluble since CG

(
F ∗(G)

)

=
⋂r

i=1CG(Ti) = F ∗(G) = F (G). Therefore G is supersoluble, a contradic-
tion. Then we may assume that P is a noncyclic Sylow p-subgroup of F ∗(G).

(3) P ∩ Φ(G) = 1.
If P ∩Φ(G) �=1, then there exists a minimal normal subgroup L of G con-

tained in P ∩ Φ(G). It is easy to see that there exists a maximal subgroup

P1 of P such that L � P1. Clearly, L � Φ(P1) by (1). By hypothesis, P1 is
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Mp-embedded in G, there exists a p-nilpotent subgroup B of G such that
P1 ∈ Sylp(B) and B is Mp-supplemented in G. That is, there exists a sub-
group K of G, G = BK = P1Bp′K where Bp′ is the normal p-complement

of B and
∣∣G : P ∗

1Bp′K
∣∣ = p for every maximal subgroup P ∗

1 of P1. Since

L � Φ(P1), there exists a maximal subgroup T of P1 such that P1 = LT .

Obviously, we have TBp′K = LTBp′K = P1Bp′K = G, a contradiction.
(4) Every minimal normal subgroup of G contained in the noncyclic Sy-

low subgroup of F ∗(G) is cyclic of prime order.
By (2) and Lemma 2.4, P is the direct product of minimal normal sub-

groups of G contained in P . Hence we assume that P = R1 ×R2 × · · · ×Rt

where Ri is a minimal normal subgroup of G contained in P , i = 1, 2, . . . , t
and we will show that all are cyclic of order p. Let R∗

1 be a maximal sub-
group of R1, then P1 = R∗

1 ×R2 × · · · ×Rt is a maximal subgroup of P . Set
M = R2×· · ·×Rt. Since P1 isMp-embedded in G, there exists a p-nilpotent
subgroup B of G such that P1 ∈ Sylp(B) and B is Mp-supplemented in G.
That is, there exists a subgroup K of G such that G = BK = P1Bp′K where
Bp′ is the normal p-complement of B and TBp′K < G for every maximal
subgroup T of P1. Let B1 = R∗

1Bp′ is p-nilpotent and R∗
1 ∈ Sylp(B1), there

exists a subgroup K1 = MK such that G = B1K1 and T ∗Bp′K1 < G for ev-
ery maximal subgroup T ∗ of R∗

1. It follows that R∗
1 is Mp-embedded in G,

then |R1| = p by Lemma 2.5. Similarly, Ri (i = 2, . . . , t) are also cyclic of
order p. On the other hand, we see that F ∗(G) is the direct product of Sy-
low subgroups of F ∗(G). Thus we may assume that every Sylow subgroup
of F ∗(G) is the direct product of minimal normal subgroups of prime order.

(5) Final contradiction.
By (3), we have F ∗(G) = H1 ×H2 × · · · ×Hn where Hi is a minimal

normal subgroup of G of prime order of
∣
∣F ∗(G)

∣
∣ . Therefore, F (G) � ZU (G).

Since CG

(
F ∗(G)

)
= CG

(
F (G)

)
=

⋂n
i=1CG(Hi) = F ∗(G) = F (G), we have

G/F (G) is supersoluble and hence G is supersoluble, a contradiction.
The final contradiction completes the proof. �
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