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Abstract

Surface tension, the tendency of fluid interfaces to behave elastically and minimize their

surface, is routinely calculated as the difference between the lateral and normal com-

ponents of the pressure or, invoking isotropy in momentum space, of the virial tensor.

Here we show that the anisotropy of the kinetic energy tensor close to a liquid/vapour

interface can be responsible for a large part of its surface tension (about 15% for water,

independently from temperature).
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The surface tension of a fluid can be obtained in several ways from the microscopic variables

describing the system: the so-called mechanical route links the surface tension of a planar

interface to the imbalance between the normal (pN) and lateral (pT ) components of the

pressure tensor, γp =
∫∞
−∞ pN − pT (z)dz. In a periodic system of size L one can use the

volume average of the pressure tensor to write the surface tension as γp = L(pN − pT )/2,

where the factor 1/2 takes into account the presence of two interfaces. For a system of

point-like particles, the pressure tensor p can be accessed through the virial route,1,2 p =

2 (K−Ξ) /V , where V is the system volume, K = 1/2
∑

imivi ⊗ vi is the kinetic energy

tensor (corresponding to the ideal gas contribution) and Ξ is the virial tensor, which, for

pairwise-additive forces fij between particle i and j can be written as Ξ = −1/2
∑

i>j rij ⊗

fij. If no constraints are present in the system, it is possible to invoke the equipartition

theorem,3 〈x∂H/∂x〉 = kBT (H being the Hamiltonian, kB Boltzmann’s constant, and T the

absolute temperature) for the elements of the kinetic energy tensor, and write the (average)

pressure tensor as p = ρkBT1 − 2Ξ/V , where ρ is the number density of atoms, and 1

is the unit tensor. This allows to write an alternative expression for the surface tension,

γΞ = −L/(2V ) (ΞN − ΞT ), which is, on average, completely equivalent to the one involving

the full pressure tensor, γp, but has the advantage of not requiring to sample velocities.

The equivalence γp = γΞ, in other words, means that only the virial part of the pressure

contributes to the surface tension, whereas the ideal gas contribution is zero. This, one

should stress, is only true in absence of constraints.

In water, however, the softest internal degree of freedom, the bending mode, has a fre-

quency of about 1640 cm−1. This corresponds, at room temperature, to an activation energy

for the first excited state of roughly 7.8 kBT , and a corresponding average energy of about

3 × 10−3kBT . Excited stretching modes have even higher energies, and in this sense water

molecules are, for the sake of computing the surface tension, just rigid bodies. In this case,

the partition function is not separable any more into a kinetic and a configurational part,4–7

and the corresponding constraints acting on Cartesian coordinates and velocities appear in
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Figure 1: Ideal gas rotational contribution γid to the surface tension profile as computed from
the kinetic energy tensor (solid line) and from Eq. (1) (full circles); contribution of successive
molecular layers calculated from the kinetic energy tensor (shaded areas) and from Eq. (1)
(open circles).

the expression for the pressure tensor, as it is well known for liquid crystals.8 Small molec-

ular liquids, on the contrary, do not usually enjoy long-range order in the bulk, and the

effect of this coupling vanishes due to isotropy. The presence of an interface, introducing a

preferential direction in the system, can, however, change this picture substantially, so that

in principle the equivalence between γp and γΞ is not guaranteed any more, and a finite ideal

gas contribution to the surface tension could appear.

In the course of extensive testing for the calculation of the surface tension of the SPC/E

water model9 we found that the difference between γp and γΞ amounts to about 15% at am-

bient temperature. We were able to reproduce the same discrepancy with different software

packages, integrators (including quaternions to describe the rigid body motion), thermostats,
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and electrostatic treatments. In particular, we reproduced the same behaviour also in the

microcanonical ensemble, guaranteeing conservation of the total energy to within at least

1 ppm, with no evident drift within one nanosecond of simulation. The asymmetry of the

kinetic energy tensor does not show any dependence on system size or timestep, ruling out

other known effects that seemingly violate equipartition.10–14 Although this effect does not

depend on the implementation of the constraints, substituting them with harmonic springs

completely removes the asymmetry, and allows to recover the equality γp = γΞ, confirming

that it is the rigid arrangement of atoms in the molecules that is at the origin of this apparent

violation of equipartition.

Since the properties of water molecules at the liquid/vapour interface differ from the bulk

ones only in the first two or three layers,15,16 it is reasonable to expect the kinetic energy

tensor to be anisotropic only in proximity to the interface. The kinetic energy tensor is a

well-defined local quantity, therefore it is possible to calculate, without the ambiguity that

characterizes the configurational part of the pressure,17 its profile along the surface normal,

K(z) = 〈1/2∑
imivi ⊗ viδ(z − zi)〉, where it is assumed that the center of mass of the liquid

phase is shifted at the origin of the coordinate system. The difference between the normal

and the lateral components of K(z) can be used to compute the ideal gas contribution

γid(z) = γp(z)− γΞ(z) to the surface tension, shown in Fig. 1, which is indeed concentrated

in proximity to the interfaces. The ideal gas contribution originates only from the rotational

degrees of freedom of the molecules, as the translational ones (that is, the molecular centers

of mass positions) behave isotropically.

The coupling of the kinetic degrees of freedom to the positional ones can be exploited

to derive an expression for the ideal gas surface tension profile of rigid molecules, as a

function of molecular orientations. Using the atomic positions r′i and the angular velocity

vector ω in the molecular co-moving frame, the velocity of each atom in the lab frame can

be written as vi = ω × R(φ, θ, ψ)r′i, where R is the Euler rotation matrix parametrized

by the three Euler angles φ, θ, ψ. With the help of the equipartition theorem, quadratic
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Figure 2: Upper panel: kinetic energy density profile τ(z) calculated using the atomic expres-
sion kBτ(z) = TrK(z)/ρ(z) (blue squares), using Eq.2 (red circles), and using the molecular
expression (yellow triangles), as described in the text. Lower panel: atomic density profile of
the whole system and of the first three layers, normalized to the density in the liquid region.

terms in the components of ω appearing in the average can be expressed as functions of the

components of the inertia tensor I associated to the molecular structure. For a symmetric

top, corresponding to the case of a linear molecule, such as O2, where I = diag(I, I, 0),

the ideal gas surface tension contribution of the i−th atom is γid
i = −kBTLP2(cos θi)/2V ,

where P2(cos θ) = 3/2 cos2(θ)−1/2 is the second order Legendre polynomial and θi identifies

the angle between the molecular axis and the macroscopic surface normal ẑ. For a flat,

asymmetric top like water, initially laying in the xz plane with the dipole vector oriented

along the z axis, I = diag(Ix, Ix + Iz, Iz), and the ideal gas contribution of the i−th atom

located, in the molecular frame, at (x′i, 0, z
′
i), takes the form

γid
i =

LkBTmi

2V IxIyIz
[f(I)P2(cos θ) + g(I)P2(cos δ)] , (1)
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Figure 3: Upper panel: surface tension γp and virial contribution γΞ as a function of tem-
perature. Lower panel: ratio γid/γp = 1 − γΞ/γp. Error bars are always smaller than the
symbols in the upper panel, and are for all temperatures of the order of 0.1-0.2 mN/m.

Table 1: Temperature-independent ratio γid/γp (%) for different water models.

spc spc/e tip3p tip4p tip4p-2005 tip5p tip5p/e
14.3(2) 15.0(1) 15.4(2) 11.5(1) 11.4(1) 9.2(5) 8.7(4)

where f(I) = IxIy(x
′2
i − z′2i ), g(I) = IxIyx

′2
i + I2

z z
′2
i , and δ, the angle between the molecular

plane and the surface normal, is related to the Euler angles through the expression cos(δ) =

cos(ψ) sin(θ). The derivation of 1 can be found in the Supporting Information.

The surface tension profile calculated using Eq. (1) as γ(z) =
∑

i 〈γiδ(z − zi)〉 reproduces

strikingly well the ideal gas rotational contribution obtained using the kinetic energy tensor,

as reported in Fig. 1 with full circles and solid line, respectively. The integral of the two

curves differ only by 0.5%.

This shows that, in fact, equipartition is not violated, as it has been used to derive Eq. (1),

taking into account the correlations between kinetic and positional degrees of freedom, intro-

duced by the presence of constraints. The explicit relation between the ideal gas contribution
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and the molecular ordering can be now used to look from a different perspective some other

results related to the surface tension. More precise structural information can be gained by

identifying the molecules composing successive molecular layers below the interface,18,19 and

calculating their contribution to the ideal surface tension γid. Such an decomposition, also

shown in Fig.1, shows that the difference between the normal and lateral kinetic components

of the stress tensor is indeed located mainly at the first molecular layer, with some minor

deviations showing up in the second one, and with the third layer being already characterized

by nearly zero-sum oscillations, which have a modest contribution to the total value of γid.

We already observed this kind of oscillations in the full surface tension profile of water,16 but

their physical significance was not clear because of the virial contribution to the pressure

profile not being a well-defined quantity.20 The kinetic part of the profile, however, does

not suffer from these interpretation problems, and the profile obtained by using Eq. (1) to

compute the contribution of different layers (Fig.1, open circles) shows that the oscillations

are the result of the correlation between molecular orientation and deviation from the mean

layer position.

Not only the surface tension, but also the kinetic energy density shows departure from the

constant value one would expect. For water molecules, the relation between kinetic energy

E, number of atoms N and temperature is kBT = 〈E/N〉, which can be written naively

in a local form as kBτ(z) = TrK(z)/ρ(z), with τ(z) representing the kinetic energy density

profile. The profile so defined departs from the constant value T in the proximity of the

interface (see Fig. 2). This, again, is not a violation of the equipartition theorem, which can

be used to derive the correct expression for the average kinetic energy contribution of the

i−th atom in the water molecule

ei = mi
kBT

2

{
3

M
+
x′2i
Iy

+
x′2i
Iz

+
z′2i
Ix

+
z′2i
Iy

}
, (2)

where M is the mass of the molecule, and the term 3/M is the molecular center of mass
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velocity (translational) contribution to the atom’s kinetic energy, while the remaining terms

are the rotational contributions (interestingly, for the symmetric top, the rotational contri-

bution of each atom is simply kBT/2). The atomic kinetic energy density profile can thus be

written using only atomic positions as kBτ(z) =
∑

i〈eiδ(z− zi)〉/ρ(z), and is shown in Fig. 2

to reproduce very well the kinetic definition. Obviously, this quantity does not correspond

to the usual thermodynamic temperature, which is expected to be constant across the in-

terface. The temperature so defined loses its meaning once correlations between momenta

and atomic positions occur. However, by using a molecular-based definition of the kinetic

energy, in which the translational and rotational contributions are concentrated at the centre

of mass of the molecule, one obtains the expected constant profile, as shown also in Fig. 2.

As it is clear that the kinetic part of the pressure tensor is needed to compute the correct

value of the surface tension if rigid molecules are present in the system, one might wonder if

this can create problems for methods like Monte Carlo, which do not provide explicit access

to momenta. In fact, if one wants to compute the surface tension through explicit calculation

of the pressure tensor elements, there is no other way but to include the kinetic contribution

through formulae like Eq. 1. However, this is not the only possible route to the surface

tension: the test-area method21 (of which also local variants exist22), for example, follows a

thermodynamic route to compute the surface tension as the limit towards vanishing cross-

sectional surface area perturbations ∆A (at constant volume) of the associated changes

in Helmholtz free energy F , so that γ = lim∆A→0 ∆F/∆A = −kBT ln 〈exp(−∆U/kBT )〉,

where ∆U is the change in potential energy between the perturbed and not perturbed state,

and the ensemble average is performed over configurations sampled from the unperturbed

state. Since this is (in the limit of small perturbations) the thermodynamic definition of the

surface tension, one might expect it to yield the total surface tension, including the kinetic

contributions. To test this, we computed the surface tension for water at T = 300K using the

test area method with area changes of 0.1, 0.05 and 0.01%, respectively, and extrapolated

the results to vanishing area changes using a linear fit, resulting in a surface tension estimate
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of 59.5 ± 0.1 mN/m. This has to be compared with the mechanical route results of 59.9 ±

0.2 mN/m (full pressure tensor) and 51.2 ± 0.2 mN/m (virial contribution only). The test

area method is therefore an appropriate way to obtain the surface tension with Monte Carlo

methods when rigid molecules are present.

Finally, we report a surprising result obtained from the analysis of the temperature depen-

dence of the ideal gas contribution on the surface tension. Since the orientational preference

of water molecules at the surface has to vanish when approaching the critical point, one

can expect γid to decrease when the temperature increases. The values of γp and γΞ show,

in fact, a similar decreasing pattern, reaching convergence as the temperature approaches

the critical value, as shown in Fig. 3. What is quite remarkable, however, is that the rela-

tive contribution γid/γp is, to a good approximation, independent of the temperature, and

oscillates within few fractions of a percent around 15%. We tested different rigid water mod-

els (SPC,23TIP3P,24TIP4P,24TIP4P- 2005,25 TIP5P,26TIP5P/E27), obtaining in all cases a

temperature independent ratio of γid/γp, although the value itself is model-dependent, rang-

ing from about 9 to 15%, as it is shown in Tab. 1. There is, therefore, a direct proportionality

between the orientational order of molecules, of which γid is representative, and the surface

tension of the system, γp ∝ γid.

Methods

Simulations have been performed using the GROMACS 5.1,28 LAMMPS,29 and ESPResSo30

molecular simulation packages using either single or double precision. Water molecules have

been kept rigid by either solving the constrained equation of motion using the SHAKE31 or

SETTLE32 algorithms or, in case of ESPResSo, by solving the rigid-body dynamics using

quaternions. The difference between γΞ and γp has been shown to persist independently from

short-range forces at the cutoff distance (force truncation vs. potential shift); mesh size and

accuracy in the smooth Particle Mesh Ewald33 (sPME) or Particle-Particle Particle-Mesh
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Ewald34 method; number of reciprocal vectors and β parameter in plain Ewald method);

integration timestep from 0.1 fs to 1 fs ; simulation box size; type of thermostat (Berend-

sen35 vs. Nosé–Hoover36,37) ; ensemble (microcanonical vs. canonical). The actual value of

the surface tension depends on the short-range interactions cut-off value as well as on the

parameters used to compute the electrostatic interaction. The data reported in Figs. 1 and

2 are obtained by simulating 1488 water molecules in a 3.6 × 3.6 × 9.6 nm3 simulation box

with the velocity-Verlet algorithm, smoothly switching the short-range forces to zero in the

interval between 1.55 and 1.6 nm, using sPME with an accuracy of 10−8 for the real part of

the screened electrostatic potential at 1.55 nm and a reciprocal space grid of 128×128×256,

the Nosé–Hoover thermostat with the reference temperature of T = 300 K and relaxation

constant 0.5 ps, and an integration timestep of 0.1 ps. The data reported in Fig. 3 and Ta-

ble 1 were obtained by simulating 1000 water molecules in a 3× 3× 3.5 nm3 simulation box

with the leapfrog algorithm, the sPME algorithm with an accuracy of 10−5 at the real- space

cut-off of 1.3 nm, which is also used as a cut-off for the van-der-Waals interactions, without

using switching functions for the force, and an integration step of 1 fs. The calculation of

the surface tension profiles and the layer-by-layer analysis have been performed using the

itim algorithm18,38 for the identification of surface molecules, with a probe sphere radius

of 0.2 nm. The liquid and gas phases have been distinguished before determining the layer

structure using a cut-off (0.35 nm) based cluster search that associates the liquid phase to

the largest cluster in the system.39 The low inaccuracies for the values of the surface tension

as well as smooth profiles were obtained by analysing 30000 samples over 3 ns for the data

reported in Figs. 1 and 2, and 50000 samples over 50 ns for each system and temperature

for the data reported in Fig. 3 and Tab. 1.
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