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Abstract: Development of direct late-stage installation of key fluorinated functional groups into aromatic systems 

is an important and challenging task of current organic chemistry. Herein, we report a novel palladium catalyzed 

trifluoroethylation process by C-H activation for the access of ortho trifluoroethylated aromatic ureas. The 

application of novel, highly active trifluoroethyl(mesityl)iodonium salt enables the efficient introduction of the 

trifluoroethyl group at 25 °C in 3 hours in high yields (up to 95%) with good functional group tolerance. 
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Abstract: Development of direct late-stage installation of key fluorinated functional groups into aromatic systems is an 

important and challenging task of current organic chemistry. Herein, we report a novel palladium catalyzed 

trifluoroethylation process by C-H activation for the access of ortho trifluoroethylated aromatic ureas. The application of 

novel, highly active trifluoroethyl(mesityl)iodonium salt enables the efficient introduction of the trifluoroethyl group at 25 

°C in 3 hours in high yields (up to 95%) with good functional group tolerance. 

 

Functionalization of aromatic systems for the construction of new carbon-carbon bond is one of the 

most important transformations in organic chemistry. The traditional Friedel-Crafts-type and cross-

coupling reactions offer several synthetic tools to achieve the desired C-C bond formations efficiently. 

Recently, the activation of C-H bond by transition metal catalysts using directing groups has become an 

important tool for the functionalization of aromatic compounds.1 Beside various groups capable for 

coordination, the urea function serves as excellent ortho directing functional group. With their utilization, 

the implementation of direct ortho arylation,2 carbonylation,3 alkenylation4 and cyclization5 is 

straightforwardly achievable, even under mild reaction conditions. Interestingly, the direct alkylation of 
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aromatic ureas is unprecedented, considering not only the modern transition metal mediated C-H 

activation reactions, but the classic organic synthetic tools. 

Fluorine substituted alkyl groups have great importance in medicinal and agricultural chemistry due to 

their desirable biological and chemical effects.6 In fact, a large number of robust trifluoromethylation 

methods have been developed.7 In contrast the introduction of trifluoroethyl group into aromatic systems 

is less investigated. In the literature only limited number of examples can be found for the installation of 

trifluoroethyl group into the aromatic systems with the aid of transition metal catalysis via cross-coupling8 

and C-H activation9 under relatively harsh reaction conditions, and via radical functionalization.10 

In our research, we aimed to develop a novel, mild and simple alkylation procedure for the direct 

functionalization of aromatic ureas in the aromatic core, focusing on the introduction of trifluoroethyl 

group. The importance of this methodology is two-fold. It provides a new synthetic tool for organic 

chemistry, and offers a possibility for the late-stage functionalization of arylurea derivatives having 

biological activity for medicinal chemistry.11 To fulfill our goals, we intended to utilize hypervalent 

iodonium salts.12 Among the available versatile reagents the mesityl(2,2,2-trifluoroethyl)iodonium salt as 

an excellent fluoroalkylating agent, developed in our laboratory for mild C-H functionalization (Scheme 

1).13 We envisioned that the chemical properties of the reagent could enable straightforward palladium 

catalyzed trifluoroethylation of the target arylurea derivatives by C-H activation under mild reaction 

conditions. 

Scheme 1. Desired direct alkylation of arylureas 

 

During the optimization phase, in the model reaction of N,N-dimethyl-N’-(3-methylphenyl)urea and 

mesityl(trifluoroethyl)-iodonium triflate we tested the feasibility of several protic and aprotic solvents, 



4 

 

different catalysts and additives to find the optimal reaction conditions for this transformation. The 

reaction of 1c with the iodonium salt in dichloromethane (DCM) without catalyst resulted in only the N-

trifluoroethylated by-product 4c in 94% conversion (Table 1, Entry 1). The application of Pd(OAc)2 

catalyst provided the ortho substituted product 3c in 50% and 45% 4c. The presence of acetic acid (AcOH) 

as additive did not affect the coupling. Changing the acid to trifluoroacetic acid (TFA) caused significant 

improvement and the desired product was formed in 99:1 ratio with full conversion. Screening the 

different solvents, we found that beside DCM, ethyl acetate (EtOAc) and toluene are also suitable for the 

reaction, but the conversions are slightly lower. Different palladium sources were also tested in the 

trifluoroethylation: PdCl2 did not catalyze the reaction, while Pd2dba3 and palladium(II) trifluoroacetate 

gave similar results to Pd(OAc)2 catalyst. The application of 2 equivalent of TFA resulted in selectively 

the trifluoroethylated product with full conversion after 3 hours.  

After the thorough optimization we tested the applicability of the developed trifluoroethylation method 

using a wide variety of N,N-dimethyl-N’-arylureas in DCM at 25 °C, in the presence of 7.5% Pd(OAc)2 

and 2 equivalents of TFA (Scheme 2). In the case of para substituted arylureas we used 1.05 equivalent 

of iodonium salt to avoid the formation of bis(trifluoroethyl) product. 

The urea containing unsubstituted phenyl ring reacted smoothly with 2 to form the trifluoroethylated 

product 3a in 74% yield. Electron donating methyl- and methoxy groups in ortho, meta and para positions 

were well tolerated and the corresponding products formed in good and excellent yield (3b-g). 

Remarkably, sterically more hindered isopropyl and benzyl moiety in ortho and para position on the 

phenyl ring were also feasible for the transformation, and the reaction provided products 3h-j in excellent 

and good yields. The coupling of electron rich dimethoxy derivative (1k) afforded the mono-

trifluoroethylated product in 70% yield. In the case of substrate 1l the O-protecting benzyl group was not 

stable under the reaction conditions and we obtained the free hydroxy derivative of the trifluoroethylated 

product (3l) in 53% yield. 
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Table 1. Optimization of the reaction conditionsa 

 

Entry Catalyst Solvent Acid 

GC yield (%)b 

3c 4c 

1 - DCM - 0 94 

2 Pd(OAc)2 DCM - 50 45 

3 Pd(OAc)2 DCM AcOH 46 47 

4 Pd(OAc)2 DCM TFA 99 1 

5 Pd(OAc)2 MeOH TFA 0 0 

6 Pd(OAc)2 THF TFA 32 23 

7 Pd(OAc)2 EtOAc TFA 90 7 

8 Pd(OAc)2 toluene TFA 96 3 

9 PdCl2 DCM TFA 12 44 

10 Pd2dba3 DCM TFA 96 4 

11 Pd(OTFA)2 DCM TFA 80 13 

12c Pd(OAc)2 DCM TFA 100 0 

a Reaction conditions: 1c (0.05 mmol, 1 equiv), 2 (1.2 equiv), Pd(OAc)2 (7.5 mol%), acid (1 equiv), solvent (0.5 mL), 25 °C, 3 hours. b 

Conversions determined by GC-MS analysis. c 2 equiv TFA was used, TFA: trifluoroacetic acid. 

The trifluoroethylation of 3a was achieved and the appropriate 2,6-bis(trifluoroethyl)phenylurea 

derivative (3m) was isolated in 89% yield. Naphthylureas were also successfully applied in the reaction, 

and products 3n and 3o were prepared with 80% and 66% yields, respectively. Halide substituted arylureas 

were also utilized in this C-H bond activation reaction to obtain cross-coupling-ready 2-

trifluoroethylarylurea building blocks. Chloro- and bromo substituents were well tolerated in each 

positions of the aromatic ring and the trifluoroethylated derivatives were obtained in good to excellent 
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yields (3p-u). To our delight, 4-iodo- and 4-fluorophenylureas also underwent this fluoroalkylation 

reaction.  

Scheme 2. Palladium catalyzed trifluoroethylation of N,N-dimethyl N’-arylureasa 

 

a Reaction conditions: 1 (1 mmol, 1 equiv), 2 (1.05-1.2 equiv), Pd(OAc)2 (7.5 mol%), TFA (2-3 equiv), DCM (0.5 mL), 25 °C, 3 hours. 
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Electron withdrawing acetyl-, ester- and nitro- groups in meta and para positions of the aromatic moiety 

were remarkably suitable for the reaction and the desired products 3x-ab were formed in 79-90% yields. 

Next, we investigated the application of ureas equipped with different alkyl substituents on the nitrogen 

atom. Changing the dimethylamino moiety to cyclic diamines had no influence on the coupling and 

thereby piperidine and morpholine urea derivatives reacted excellently to provide 3ac and 3ad in 95% 

and 87% yields. 

Scheme 3. Mechanistic proposals for the catalytic process. Reaction (blue) and transition-state (TS) Gibbs free energies 

(red, kcal/mol) are indicated. They are consistently referenced to the energy of the preceding stable state 

 

 

 

In preparation of the starting ureas primer amines were also studied. We found that N-methyl and N-

cyclohexyl ureas can be transformed smoothly under the catalytic conditions (3ae-3ag). 

Trifluoroethylation of heterocyclic indoline structure (1ah) was also achieved effectively and the 

transformation selectively provided the product (3ah) in 93% yield. 
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In order to understand the mechanism of the process, we have performed theoretical calculations applying 

density functional theory (DFT).14 We examined the reaction between N-phenylurea and 

phenyl(trifluoroethyl)-iodonium triflate in the presence of Pd(OAc)2 and TFA in DCM solvent. Earlier 

studies have convincingly shown that in palladium catalyzed C-H activation processes, various forms of 

the Pd catalyst, in particular the more likely binuclear forms show high reactivity.15 Therefore, we sought 

feasible reaction routes featuring both monomeric and dimeric Pd complexes and compare the solvent 

corrected free energy profiles of the reaction paths. Based on the experiments we have constructed 

reaction routes, which are depicted in Scheme 3. The reaction free energy changes and barrier heights are 

given in Scheme 3 while full profiles can be found in the SI. The reaction is initiated by the formation of 

the catalytically more reactive Pd(OTFA)2 species from the initial compound Pd(OAc)2 in the presence 

of excess TFA,16 which then forms complex S2m with substrate S1 in a slightly endergonic process (+5.3 

kcal/mol). The oxidative C-H insertion step takes place in a concerted fashion (featuring a single TS, 14.8 

kcal/mol) where a triflate anion assists the metalation process by deprotonating the aryl ligand via an 

outer-sphere mechanism. The reaction can then propagate in two different directions: S3m proceeds along 

the monomeric cycle or after dimerization (-12.5 kcal/mol) S3d enters into the dimeric cycle. In both 

catalytic cycles the next step is the electrophilic attack of the iodonium cation and the transfer of the 

CF3CH2 ligand to palladium forming high-valent S4m and S4d with 28.5 and 22.1 kcal/mol activation 

energy, respectively.15 The following step is the rapid reductive elimination step yielding intermediates 

S5m or S5d where migration of the trifluoroethyl group from the Pd centers to the aryl ring requires 

moderate activation energy (9-10 kcal/mol) with high exergonicity on both paths. The S2 complexes are 

recovered by ligand exchange reaction on the palladium center, when a reactant S1 replaces the 

coordinated product S6. In agreement with the monomeric route, along the dimer path the C-H activation 

takes place in a concerted fashion on the dimeric Pd center in an intermolecular fashion. Small activation 

energy (12.5 kcal/mol) is necessary for this C-H activation, where a triflate anion serves as base to capture 

the detaching proton when the Pd-C bond is forming because the available CF3COO- anion is limited by 
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the catalyst. Comparison of the monomeric and dimer profiles shows that the dimeric route is more 

favorable than the monomeric one. This is primarily due to the exergonic formation of S3d complex from 

the monomeric S3m species (-12.5 kcal/mol). In addition, the Pd-Pd interaction has beneficial effect on 

the energetics of both the C-H activation and the CF3CH2 ligand transfer: for both steps, the dimer route 

features remarkably lower activation barriers. Comparison of the barriers for the C-H activation and the 

trifluoroethyl migration steps along the dimer route shows that the rate-determining step is the CF3CH2 

group transfer from the iodonium salt to the palladium center with an energetic span of 22.1 kcal/mol. 

This is in nice accord with earlier experimental18 and theoretical predictions for analogous reactions.17d,19 

As a proof of the favored formation of the dimeric palladium species, we were able to prepare the desired 

complex from the reaction of arylurea and palladium(II) acetate in the presence of trifluoroacetic acid. 

The crystals were grown from hexane acetone solution mixture. The structure of the obtained dimeric 

palladium complex (5, N,N-dimethyl-substituted analogue of S3d) was established by X-ray 

crystallography (Figure 1). In order to study the reactivity of complex 5, it was reacted with the 

trifluoroethyliodonium salt (2) in DCM at 25 °C. After couple of minutes reaction time we observed 

complete consumption of the palladium complex and the formation of the trifluoroethylated urea.14 

Figure 1. Molecular structure of compound 5.20 Displacement ellipsoids are drawn at the 50% probability level21 

 

In summary, we have developed a novel procedure for the trifluoroethylation of aromatic ureas with 

hypervalent iodonium salt via palladium catalyzed C-H activation. This synthetic strategy allows the 

simple, direct, late-stage fluoroalkylation of urea derivatives with high efficiency and excellent functional 
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group tolerance, under mild reaction conditions. We proposed catalytic cycles for the transformation with 

DFT calculations. The mechanistic studies revealed that the formation of bimetallic palladium species (5) 

is a crucial step of the reaction, which has an important role in the mild catalytic transformation. 
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