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Abstract

We show that for a conformal local net of observables on the circle, the split
property is automatic. Both full conformal covariance (i.e. diffeomorphism covariance)
and the circle-setting play essential roles in this fact, while by previously constructed
examples it was already known that even on the circle, Möbius covariance does not
imply the split property.

On the other hand, here we also provide an example of a local conformal net living
on the two-dimensional Minkowski space, which — although being diffeomorphism
covariant — does not have the split property.

1 Introduction

More than half a century passed away since the first formulation of an axiomatic quan-
tum field theory. There are several existing different settings (differing e.g. on the chosen
spacetime, or whether their fundamental notion is that of a quantum field or a local observ-
able) with many “additional” properties that are sometimes included among the defining
axioms. For an introduction and overview of the topic we refer to the book of Haag [24].
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Whereas properties like locality are unquestionably among the basic axioms, some other
properties are less motivated and accepted. Haag-duality has an appealing mathematical
elegance, but there seems to be no clear physical motivation for that assumption. Techni-
calities, like the separability of the underlying Hilbert space are sometimes required with
no evident physical reason.

The split property is the statistical independence of local algebras associated to regions
with a positive (spacelike) separation. It might be viewed as a stronger version of locality,
and contrary to the previous two examples, it was formulated on direct physical grounds.
However, traditionally it is not included among the defining axioms, as in the beginning it
was unclear how much one can believe in it. Indeed, many years passed till this stronger
version of locality was first established at least for the massive free field by Buchholz [2].
Only after the introduction of the nuclearity condition (which was originally motivated by
the need of a particle interpretation [25]) it became more of a routine to verify the split
property in various models, when its connection to nuclearity was discovered [6]. Another
important step was the general mathematical understanding of split inclusions brought by
the work of Doplicher and Longo [15].

In the meantime, interest rose in conformal quantum field theories, especially in the
low dimensional case; i.e. conformal models given on the 2-dimensional Minkowski space
and their chiral components that can be naturally extended onto the compactified lightray,
the circle. The theory of conformal net of local algebras on S1 is rich in examples and it
provides an essential “playground” to people studying operator algebras as it turned out to
have incredibly deep connections to the modular theory of von Neumann algebras as well
as to subfactor theory; see e.g. [19, 41, 29]. In particular, the modular group associated
to a local algebra and the vacuum vector always acts in a certain geometric manner: the
so-called Bisognano-Wichmann property is automatic. In turn, this was used to conclude
that several further important structural properties — e.g. Haag-duality and Additivity —
are also automatic in this setting. We refer to the original works [19, 18, 1, 4] for more
details on this topic.

The case of the split property seemed to be different — but there is an important detail
to mention here. Initially, when studying chiral conformal nets, in the so-far cited works
only Möbius covariance was exploited. There were several reasons behind this choice. First,
because it is a spacetime symmetry implemented by a unitary representation for which the
vacuum is an invariant vector. This is exactly how things go in higher dimension, but
this is not how diffeomorphism covariance is implemented (no invariant vectors and one
is forced to consider projective representations rather than true ones). Second, because
the mentioned connection to modular theory of von Neumann algebras relies on Möbius
covariance only. Thus, the listed structural properties — with the exception of the split
property — are already automatic even if diffeomorphism covariance is not assumed.

From the physical point of view, however, diffeomorphism covariance is natural in
the low dimensional conformal setting; by an argument of Lüscher and Mack, it should
merely be a consequence of the existence of a stress-energy tensor [20]. All important
models are diffeomorphism covariant with the exception of some “pathological” counter-
examples; see [30, 9]. It is worth noting that the example constructed in [9] by infinite
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tensor products, has neither diffeomorphism symmetry nor the split property. Thus, unlike
the mentioned other properties, the split property surely cannot be derived in the Möbius
covariant setting. However, as we shall prove it here, the split property is automatic if
diffeomorphism covariance is assumed. Note that together with the result of Longo and
Xu in [34] regarding strong additivity, this shows that a diffeomorphism covariant local net
on S1 is completely rational if and only if its µ-index is finite.

The crucial points of our proof are the following. We consider a conformal net A on the
circle with conformal Hamiltonian L0, and fix two (open, proper) intervals Ia, Ib ∈ I with
positive distance from each other. Inspired by the complex analytic argument used in [18]
to prove the conformal cluster theorem, for an element X of the ∗-algebra A(Ia)∨alg A(Ib)
generated by A(Ia) and A(Ib) with decomposition X =

∑n
k=1AkBk (where n ∈ N, Ak ∈

A(Ia), Bk ∈ A(Ib)), we consider the function on the complex unit disc

z 7→
n∑

k=1

〈Ω, Akz
L0BkΩ〉.

For every |z| ≤ 1, this defines a functional φz on A(Ia)∨alg A(Ib). For z = 1 this is simply
the vacuum state ω, but for z = 0 this is the product vacuum state AB 7→ ω(A)ω(B)
(A ∈ A(Ia), B ∈ A(Ib)). The split property is essentially equivalent to saying that φ0 is
normal (actually, here some care is needed: in general one needs the product state to be
normal and faithful. Fortunately, general results on normality and conormality in a Möbius
covariant net [23] of the inclusions A(I1) ⊂ A(I2) for an I1 ⊂ I2 imply that A(Ia) ∨A(Ib)
is a factor; see more details in the preliminaries. It then turns out that the normality of
φ0 is indeed equivalent to the split property).

However, we do not have a direct method to show that φz is normal at z = 0. On
the other hand, we can treat several points inside the disc. Using the positive energy
projective representation U of Diff+(S1) given with the theory, for example for any (fixed)
r ∈ (0, 1) and Ic, Id ∈ I covering the full circle we find a decomposition rL0 = CD in which
Cr ∈ A(Ic) and Dr ∈ A(Id). Choosing the intervals Ic and Id carefully, C will commute
with the Ak operators while D will commute with the Bk operators and hence

φr(X) =
n∑

k=1

〈Ω, Akr
L0BkΩ〉 =

n∑

k=1

〈Ω, AkCDBkΩ〉

=
n∑

k=1

〈C∗Ω, AkBkDΩ〉 = 〈C∗Ω, X DΩ〉

showing that for our real r ∈ (0, 1), the functional φr is normal as it is given by two
vectors. Note that the origin of the decomposition rL0 = CD is the fact that a rotation
can be decomposed as a product of local diffeomorphisms; something that using Möbius
transformations alone, cannot be achieved (as all nontrivial Möbius transformations are
global). However, even using the full diffeomorphism group, the issue is tricky, since we
need a decomposition that can be analytically continued over to some imaginary parameters
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— and of course the words “local” and “analytical” are usually in conflict with each other.
Nevertheless, this kind of problem was already treated in [39], and the methods there
developed were also used in the proof of [7, Theorem 2.16], so all we needed here was some
adaptation of earlier arguments.

We then proceed by “deforming” our decomposition using the work [36] of Neretin,
which allows us to access further regions inside the unit disk. In this way we establish
normality along a ring encircling the origin, and thus we can use the Cauchy integral
formula to conclude normality of φz at z = 0.

Note that we have really made use of the fact that the conformal Hamiltonian L0

generates a compact group. Indeed, for a generic complex number z, the very expression
zL0 is meaningful only because Sp(L0) contains integer values only. However, unlike with
chiral nets, in the 2-dimensional conformal case the theory does not necessarily extends in
a natural way to the compactified spacetime. Thus one might wonder whether our result
will remain valid or not: is this compactness of the spacetime just some technicality, or is
it an essential ingredient of our proof? The answer turns out to be the latter one.

In fact, we manage to present an example of a diffeomorphism covariant local net on
the 2-dimensional spacetime, which does not have the split property. More concretely, we
consider a local extension B ⊃ A of the net A = AU(1) ⊗ AU(1) obtained by taking two
copies of the U(1)-current net (here considered as “left” and “right” chiral parts). Irreducible
sectors of the U(1)-current net are classified by a certain charge q ∈ R. Our construction is
such that when considered as a representation of AU(1)⊗AU(1), the net A ⊂ B decomposes
as a direct sum ⊕q∈R (σq ⊗ σq) where σq is the representation corresponding to the sector
with charge q. This model is naturally diffeomorphism covariant, but because its Hilbert
space is not separable, it cannot have the split property. Note that here “diffeomorphism

covariance” means only that we have an action of ˜Diff+(S1) × ˜Diff+(S1) which factors
through the spacelike 2π-rotation, but not that of Diff+(S1)×Diff+(S1). This is in complete
accordance with our earlier remark on the spectrum of L0.

This paper is organized as follows. In Section 2 we introduce our operator-algebraic
setting for conformal field theory and recall relevant technical results concerning conformal
covariance and the split property. Sections 3 and 4 provide our technical ingredients,
namely certain decompositions of zL0 into local elements. In Section 5 we prove our main
result, that the split property follows from diffeomorphism covariance, by proving the
normality of φ0. A two-dimensional counterexample is provided in Section 6. In Section 7
we conclude with open problems.

2 Preliminaries

Let I be the set of nonempty, nondense, open connected intervals of the unit circle
S1 = {z ∈ C : |z| = 1}. A Möbius covariant net is a map A which assigns to every
interval of the circle I ∈ I a von Neumann algebra A(I) acting on a fixed Hilbert space H
satisfying the following properties:

4



1. Isotony: if I1, I2 ∈ I and I1 ⊂ I2, then A(I1) ⊂ A(I2);

2. Möbius covariance: there exists a strongly continuous, unitary representation U
of the Möbius group Möb (≃ PSL(2,R)) on H such that

U(g)A(I)U(g)∗ = A(gI), I ∈ I, g ∈ Möb;

3. Positivity of the energy: the conformal Hamiltonian L0, i.e. the generator
of the rotation one-parameter subgroup has a non negative spectrum.

4. Existence and uniqueness of the vacuum: there exists a unique (up to a
phase) unit U -invariant vector Ω ∈ H, i.e. U(g)Ω = Ω for g ∈ Möb;

5. Cyclicity: Ω is cyclic for the von Neumann algebra
∨

I∈I A(I).

6. Locality: if I1, I2 ∈ I and I1 ∩ I2 = ∅, then A(I1) ⊂ A(I2)
′.

We will denote a Möbius covariant net with the triple (A, U,Ω). Some consequences of
the axioms are (see e.g. [19, 18, 22]):

7. Reeh-Schlieder property: Ω is a cyclic and separating vector for each A(I),
I ∈ I;

8. Haag duality: A(I ′)′ = A(I), where I ∈ I and I ′ is the interior of S1\I;

9. Bisognano-Wichmann property: U(δI(−2πt)) = ∆it
A(I),Ω where δI is the dilation

subgroup associated to the interval I and ∆it
A(I),Ω is the modular group of A(I) with

respect to Ω;

10. Irreducibility:
∨

i∈I A(I) = B(H);

11. Factoriality: algebras A(I) are type III1 factors;

12. Additivity: let {Iκ} ⊂ I be a covering of I, namely I ⊂ ⋃
κ Iκ, then A(I) ⊂∨

κA(Iκ).

The following seems relatively less known, yet it follows from Möbius covariance and
has an important implication [23, Theorem 1.6].

13. Normality and conormality: for any inclusion I1 ⊂ I2, it holds that A(I1) =
A(I2) ∩ (A(I1)

′ ∩A(I2))
′ and A(I2) = A(I1) ∨ (A(I1)

′ ∩ A(I2))

From conormality, it follows that two-interval algebras are factors. Indeed, take I1 ⊂ I2
such that they have no common end points. Then I1 and I ′2 are disjoint intervals with a
finite distance. By Haag duality it follows that (A(I1) ∨ A(I ′2))

′ = A(I1)
′ ∩ A(I2), and by

conormality we have

(A(I1) ∨A(I ′2))
∨

(A(I1) ∨A(I ′2))
′
= A(I1) ∨A(I ′2) ∨ (A(I1)

′ ∩ A(I2))

= A(I2) ∨A(I ′2) = B(H),
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where the last equality is a consequence of Haag duality and factoriality. Let us add this
to the list of consequences.

14. Factoriality of two-interval algebras: for disjoint intervals I1 and I2 with
a finite distance, A(I1) ∨ A(I2) is a factor.

Now, we briefly discuss diffeomorphism covariance. Let Diff+(S1) be the group of
orientation preserving diffeomorphisms of the circle. It is an infinite dimensional Lie group
modelled on the real topological vector space Vect(S1) of smooth real vector fields on S1

with the C∞-topology [35]. Its Lie algebra has to be considered with the negative of the
usual bracket on vector fields, in order to have the proper exponentiation of vector fields.
We shall identify the vector field f(eiθ) d

dθ
∈ Vect(S1) with the corresponding real function

f ∈ C∞(S1,R). We denote with Diff+(I) the subgroup of Diff+(S1) acting identically on
I ′, namely the diffeomorphisms of S1 with support included in I.

A strongly continuous, projective unitary representation U of Diff+(S1) on a
Hilbert space H is a strongly continuous homomorphism of Diff+(S1) into U(H)/T, the
quotient of the group of unitaries in B(H) by T. The restriction of U to Möb ⊂ Diff+(S1)
always lifts to a unique strongly continuous unitary representation of the universal covering
group M̃öb of Möb. U is said to have positive energy, if the generator L0 of rotations, the
conformal Hamiltonian, has a nonnegative spectrum in this lift. Let γ ∈ Diff+(S1). Note
that expressions AdU(γ) makes sense as an action on B(H). We also write U(γ) ∈ M
although U(γ) is defined only up to a scalar.

When one has a strongly continuous projective unitary representation U of Diff+(S1)
with positive energy, ei2πL0 is a multiple of the identity and therefore L0 has a pure point-
spectrum. It follows that the linear span Dfin of eigenvectors of L0 (the so-called “finite
energy vectors”) form a dense set. U can then be “differentiated” to obtain a represen-
tation at the Lie algebra level [8, Appendix A] (see also [31]). Any smooth function
f ∈ C∞(S1,R), as a vector field on S1, defines a one-parameter group of diffeomorphisms
R ∋ t 7→ γt=̇Exp(tf) ∈ Diff+(S1), hence, up to an additive constant, defines the self-
adjoint generator T (f) of the unitary group t 7→ U(γt). For any real smooth function f as
above, T (f) is essentially self-adjoint on the set C∞(L0) :=

⋂
n∈N0

Dom(Ln
0 ). T shall be

called the stress energy tensor.
Irreducible, projective, unitary positive energy representation of Diff+(S1) are labelled

by certain values of the central charge c > 0 and the lowest weight h ≥ 0. h is the
lowest point in the discrete spectrum of the conformal Hamiltonian L0. There is a unique
(up to a phase) vector Φ ∈ H corresponding to the lowest eigenvalue. See [21, 26] for a
detailed description of such representations.

One considers particular elements {Ln : n ∈ Z}, Ln = iT (yn)− T (xn), L−n = iT (yn) +
T (xn) for n ∈ N, where xn(θ) := − 1

n
sin nθ and yn(θ) := − 1

n
cosnθ (there is a canonical

way to fix the scalar part of T (xn), T (yn), as Ln, L−n and L0 generate a (projective) repre-

sentation of M̃öb). These operators satisfy the so-called Virasoro algebra on finite energy
vectors Dfin. In particular for all n,m ∈ Z: Dfin is an invariant common core for any closed
operator Ln; if n > 0 then LnΦ = 0; L−n ⊂ L∗

n; the family {Ln}n∈Z satisfies the Virasoro
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algebra relations on Dfin:

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δ−m,n1.

Let f ∈ C∞(S1,R) be a vector field on S1, with Fourier coefficients

f̂n =
1

2π

∫ 2π

0

f(θ)e−inθdθ, n ∈ Z,

then, one can recover the stress-energy tensor by

T (f) =
∑

n∈Z

f̂nLn (1)

and
eiT (f) = U(Exp(f))

gives the correspondence between the infinitesimal generators and the representation of
Diff+(S1) (up to a scalar).

Throughout the next few sections we shall often consider the net of von Neumann
algebras

AU(I) = {eiT (f)| f ∈ C∞(S1,R), supp(f) ⊂ I}′′ (I ∈ I). (2)

Note that when U is a so-called vacuum representation associated to central charge c, AU

is nothing else than the well-known Virasoro net with central charge c. In general though,
AU is not a conformal net in the sense we are introducing them in this preliminary; e.g.
we might not have a vacuum vector. Nevertheless, we still have the locality relation
AU(I1) ⊂ AU(I2)

′ whenever I1 ∩ I2 = ∅.
The stress energy tensor can be evaluated on a larger set of functions [9]. For a contin-

uous function f : S1 → R with Fourier coefficients {f̂n}n∈Z we shall set

‖f‖ 3

2

=
∑

n∈Z

|f̂n|
(
1 + |n| 32

)
.

Then ‖ · ‖ 3

2

is a norm on the space {f ∈ C(S1,R)| ‖f‖ 3

2

< ∞}. By [9], if f ∈ C(S1,R)

with ‖f‖ 3

2

< ∞, then T (f), defined as in (1), is self-adjoint and moreover if fk → f in

the norm ‖ · ‖ 3

2

, then T (fk) → T (f) in the strong resolvent sense. In particular, even for

a non necessarily smooth function f with ‖f‖ 3

2

< ∞, supp f ⊂ I, the self-adjoint T (f) is

still affiliated to AU(I).
We shall say that a Möbius covariant net (A,U,Ω) is conformal (or diffeomorphism

covariant) if the Möb representation U extends to a projective unitary representation
Diff+(S1) → U(H)/T of Diff+(S1) (that with a little abuse of notation we continue to
indicate the extension with U) and satisfying

• AdU(γ)(A(I)) = A(γI), for γ ∈ Diff+(S1)
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• AdU(γ)(x) = x, for γ ∈ Diff+(I), x ∈ A(I ′)

Now we recall the definition of the split property for von Neumann algebra inclusions
and conformal nets.

Definition 2.1. Let (N ⊂ M,Ω) be an standard inclusion of von Neumann algebras,
i.e. Ω is a cyclic and separating vector for N, M and N ′ ∩M .

A standard inclusion (N ⊂ M,Ω) is split if there exists a type I factor R such that
N ⊂ R ⊂ M.

A Möbius covariant net (A, U,Ω) satisfies the split property if the von Neumann
algebra inclusion A(I1) ⊂ A(I2) is split, for any inclusion of intervals I1 ⋐ I2, namely
when I1 and I2 have no common end points.

The following proposition provides an equivalent condition to the split property. Al-
though similar statements are quite well-known to experts (see [11] and [15, Below Defini-
tion 1.4]), the precise assumptions we need are difficult to find in the literature (note, for
example, that we do not assume neither the separability of the underlying Hilbert space 1

nor the faithfulness of the split state in the implication 2 ⇒ 1 below).

Proposition 2.2. Let (N ⊂ M,Ω) be a standard inclusion of von Neumann algebras. We
further assume that that N ∨M′ is a factor. Then the following are equivalent.

1. N ⊂ M is split;

2. there exists a normal state φ on N ∨M′ such that the restrictions φN and φM′ are
faithful and φ is split, namely,

φ(xy) = φ(x)φ(y), x ∈ N , y ∈ M′.

Proof. If N ⊂ M is split, namely if there is an intermediate type I factor R ≃ B(K), then
N ∨M′ is isomorphic to N ⊗M′, from which the implication 1 ⇒ 2 follows.

Conversely, let there be a split state as in 2. First of all, as φ are faithful on N
and M′, their GNS representations πN , πM′ are faithful and have a cyclic and separating
vector. Next, as φ is normal on N ∨ M′, its GNS representation πN∨M′ is also normal.
The Hilbert space supporting πN∨M′ is isomorphic to the closure of N ∨alg M′ w.r.t. the
scalar product inherited by the normal state φ as 〈x, y〉φ = φ(x∗y). By the factorization
assumption on φ, the Hilbert space is the tensor product L2(N , 〈·, ·〉φ)⊗L2(M′, 〈·, ·〉φ) and
the GNS representation πN∨M′ restricted to N and M′ are of the form πN ⊗1 and 1⊗πM′ ,
respectively. Furthermore, as both N and M′ have a cyclic and separating vector Ω, their
GNS representations πN , πM′ are actually unitary equivalences [37, Corollary 10.15]. As a
consequence, by normality, we can assume that πN∨M′(N ∨M′) = N ⊗M′. Furthermore,
by assumption N ∨M′ is a factor, hence the GNS representation is an isomorphism. Now,
both N ∨M′ and N ⊗M′ have a cyclic and separating vector (Ω and Ω⊗Ω respectively),
therefore, the GNS representation is actually a unitary equivalence. Then the preimage
R = π−1

N∨M′ (B(H)⊗ C1) gives the intermediate subfactor N ⊂ R ⊂ M.

1If the Hilbert spaces are not separable, several well-known statements no longer hold. For example,

an isomorphism between type III algebras might be not a unitary equivalence.
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Remark 2.3. The split property implies separability of the Hilbert space. Indeed, if we
have a standard split inclusion of von Neumann algebra on an Hilbert space H, then H
has to be separable: Ω is a cyclic and separating vector for the intermediate type I factor
R. By considering the cardinality of the basis, either R or R′ must be isomorphic to B(H)
and Ω defines a faithful vector state on it, hence B(H) is σ-finite, which is only possible if
H is separable.

3 Local decompositions of e−βL0

Throughout this section, we shall not need a conformal net, as we only work with a
strongly continuous projective unitary representation U of Diff+(S1) with positive energy.
We shall use the notations introduced in the preliminaries for all associated objects (i.e.
Ln, (n ∈ N) will stand for the associated Virasoro algebra representation, T for the stress-
energy tensor, AU for the system of von Neumann-algebras appearing at (2) etc.).

In what follows, for a β > 0, r = e−β and two open proper arcs (intervals) Ic, Id ∈ I
that cover the circle: Ic ∪ Id = S1, we shall find a decomposition e−βL0 = rL0 = CrDr with
the bounded operators Cr ∈ AU(Ic) and Dr ∈ AU(Id). The main idea for producing such a
decomposition was already presented and exploited in [39] and in the proof of [7, Theorem
2.16]. Here we shall recall the essential points of the argument presented there and then
adjust and refine it to our purposes.

Proposition 3.1. Let Ic, Id ∈ I be two open proper arcs covering the circle: Ic ∪ Id = S1.
Then there exist two norm-continuous families of operators (0, 1) ∋ r 7→ Cr ∈ AU(Ic) and
(0, 1) ∋ r 7→ Dr ∈ AU(Id) such that

rL0 = CrDr and ‖Cr‖, ‖Dr‖ ≤ 1

rq

where the exponent q = c
48
(N2 − 1) with N being a positive integer such that 6π/N is

smaller than the lengths of both arcs that are obtained by taking the intersection Ic ∩ Id
(note that N must be at least 4).

Proof. Let us fix a positive integer N satisfying the condition of the proposition (see Figure
1). The operators H := 1

N
L0 +

c
24
(N − 1

N
)1, L+ := 1

N
L−N and L− := 1

N
LN satisfy the

following relations on Dfin:

[H,L±] = ∓L±, [L−, L+] = 2H, L± = L∗
∓.

Moreover H is diagonalizable with non-negative eigenvalues only, the span of its eigenvec-
tors is exactly Dfin which is an invariant core for the operators L±. It then follows that
these operators generate a strongly continuous, positive energy unitary representation of
the universal cover M̃öb of the Möbius group. This construction — both at the Lie algebra
as well as the Lie group level — was already considered and used by various authors; see
e.g. the work [34]. In particular,

P =
1

4
(2H − L+ − L−) and P̃ =

1

4
(2H + L+ + L−)

9



Id Ic

Ik
Ĩk

Figure 1: Intervals Ic, Id covering S1 and Ik, Ĩk with N = 36.

are conjugate to each other by the unitary operator eiπH , with P being the self-adjoint
generator of “translations” with spectrum Sp(P ) = Sp(P̃ ) = R+ ∪ {0}. Moreover, by [4,
Theorem 3.3] we have the relation

e−2sH = e−tanh( s
2
)P e−sinh(s)P̃ e−tanh( s

2
)P (3)

for all s > 0. Let us now consider how P and P̃ can be written in terms of the stress-energy
T . We have

P =
1

4n
(2L0 − L−N − LN) +

c

48

(
N − 1

N

)
1 = T (p) + b1

and likewise P̃ = T (p̃) + b1, where

b =
c

48

(
N − 1

N

)

and p and p̃ are the functions defined by the formulas p(z) = 1
4n
(2 − zN − z−N ) and

p̃(z) = 1
4N

(2 + zN + z−N ).
The function p is nonnegative on S1 and it has exactly N points where its value is zero:

p(z) = 0 ⇐⇒ z = ei
2π
N

k for k = 1, . . . N.

All these null-points are of course local (and also global) minima, where the derivative is
zero. We can thus “cut” p into N “nice” pieces: p = p1 + . . .+ pN where the support of the
nonnegative function pk is the closure of the arc

Ik =

{
eiθ :

k − 1

N
<

θ

2π
<

k

N

}
,
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and ‖pk‖ 3

2

< ∞. This latter follows from the fact that pk is once differentiable and its

derivative is of bounded variations; see the similar considerations at [9, Lemma 5.3]. Thus
for every k = 1, . . .N ,

Pk = T (pk) +
b

N
1

is a well-defined self-adjoint operator affiliated to AU(Ik) and we have P = P1 + . . .+ PN .
Since the terms in this decomposition are affiliated to commuting factors, just as in the
proof [39, Proposition 3.2], we have that

Sp(P1) + . . .+ Sp(PN) = Sp(P ) = R+ ∪ {0}.

On the other hand, the spectrum of the operators Pk (k = 1, . . .N) must all coincide, since
using rotations one can easily show that they are all unitary conjugate to each other. It
then follows that each of them must be a positive operator. Thus for the bounded operator
e−tanh( s

2
)P appearing in formula (3), we have the local decomposition into a product of

commuting bounded operators

e−tanh( s
2
)P =

N∏

k=1

e−tanh( s
2
)Pk

where the norm of each term is smaller or equal than 1.
Let us turn to P̃ . As we have P̃ = Ad ei

π
N
L0(P ), the localization of P̃k = Ad ei

π
N
L0(Pk)

are different from that of P : P̃k is affiliated to AU(Ĩk) where Ĩk = ei
π
N Ik and AU is defined

in Section 2 (we are considering the intervals as subsets in C). With this localization, we
can still assure the strong commutation between Pk and P̃j whenever k 6= j, j + 1 (mod
N). So in the decomposition

e−2sH = e−tanh( s
2
)P e−sinh(s)P̃ e−tanh( s

2
)P

=

(
N∏

k=1

e−tanh( s
2
)Pk

)(
N∏

k=1

e−sinh(s)P̃k

)(
N∏

k=1

e−tanh( s
2
)P̃k

)

we can make some rearrangements. Note that e−2sH = r−L0r2q, where q = c
48
(N2 − 1)

if we set r = e−2s/N . To shorten notations, let us introduce the self-adjoint contractions
Xk = e−tanh( s

2
)Pk and Yk = e−sinh(s)P̃k . For simplicity, we did not indicate their dependence

on r, but note that in the range 0 < r < 1 they depend norm-continuously on r (for
t > 0, x ≥ 0, the function e−tx is uniformly continuous in t).

All X-operators and separately, all Y -operators commute between themselves, and
moreover [Xl, Ym] = 0 whenever l 6= m,m+1 (mod N). Recall that 6π

N
is smaller than the

length of each of the intervals of Ic∩Id. Therefore, by cyclically renaming the intervals (but
keeping the relation between Ik and Ĩk and the corresponding localization of the operators),
we may assume that there are 1 ≤ k < j ≤ N such that Ik∪Ik+1 and Ij ∪Ij+1 are included
in the different connected components of Ic ∩ Id. Furthermore, to fix the notation, we

11



Ic

Id

Ik

Ĩk

Ik+1

Ij+1

Ĩj
Ij

Figure 2: Localization of the factors of Cr. The indicated intervals I•, Ĩ• correspond to
thick segments. The operators

∏j+1
l=k Xl,

∏j
l=k Yl,

∏j
l=k+1Xl are localized in the arcs, from

the inside, respectively. The corresponding factors in Dr are localized in the complements
of these arcs, respectively.

may assume that Ik ∪ · · · ∪ Ij+1 ⊂ Ic, while Ij ∪ · · · ∪ IN ∪ I1 · · · ∪ Ik ⊂ Id. Note that
Ĩk ∪ · · · ∪ Ĩj ⊂ Ic and Ĩj ∪ · · · ∪ IN ∪ I1 · · · ∪ Ĩk−1 ⊂ Id (see Figure 2).

By the localization explained above, we obtain

r−L0r2q =

(
N∏

l=1

Xl

) (
N∏

l=1

Yl

) (
N∏

l=1

Xl

)

=

(
k−1∏

l=1

Xl

j+1∏

l=k

Xl

N∏

l=j+2

Xl

) (
k−1∏

l=1

Yl

j∏

l=k

Yl

N∏

l=j+1

Yl

) (
k∏

l=1

Xl

j∏

l=k+1

Xl

N∏

l=j+1

Xl

)

=

(
j+1∏

l=k

Xl

j∏

l=k

Yl

j∏

l=k+1

Xl

) (
k−1∏

l=1

Xl

N∏

l=j+2

Xl

k−1∏

l=1

Yl

N∏

l=j+1

Yl

k∏

l=1

Xl

N∏

l=j+1

Xl

)
. (4)

Here the first part Cr =
(∏j+1

l=k Xl

∏j
l=k Yl

∏j
l=k+1Xl

)
is an element of AU(Ic), where

whereas the second part Dr =
(∏k−1

l=1 Xl

∏N
l=j+2Xl

∏k−1
l=1 Yl

∏N
l=j+1 Yl

∏k
l=1Xl

∏N
l=j+1Xl

)

is an element of AU(Id).
By construction, ‖Cr‖, ‖Dr‖ ≤ 1. Thus, we have obtained the desired decomposition

r−L0 = ( 1
rq
Cr)(

1
rq
Dr).
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In the above proposition we specifically worked with L0. However, by considering the
adjoint actions of U(γ) for all diffeomorphisms γ ∈ Diff+(S1) on the decompositions found
above, it is now easy to draw the following conclusion.

Corollary 3.2. Let Ic, Id ∈ I be two open proper arcs such that Ic ∪ Id = S1, and f a
strictly positive smooth function on S1. Then there exist two norm-continuous families of
operators (0, 1) ∋ r 7→ Cr ∈ AU(Ic) and (0, 1) ∋ r 7→ Dr ∈ AU(Id) such that rT (f) = CrDr.

4 Further decompositions

In this section, we shall consider further decompositions of rL0, for which the crucial
ingredient will be a result of Neretin [36]. Though in his work the relevant theorem is stated
for representations which are direct sums of those highest weight ones, as was already
mentioned, a positive energy, strongly continuous, projective unitary representation of
Diff+(S1) can only be of that form. For better readability, we shall recall the statement
that we are going to exploit. We will need the concept of analytic diffeomorphism; we will
denote by Diff+

a (S
1) the set of γ ∈ Diff+(S1) that extends to an annulus around S1 ⊂ C

in a complex analytic manner.

Theorem 4.1. [36, Theorem 2] Let U be a positive energy, strongly continuous, projec-
tive unitary representation of Diff+(S1) with the associated conformal Hamiltonian L0.
Then elements of the form U(γ)rL0U(γ̃) (r ∈ (0, 1], γ, γ̃ ∈ Diff+

a (S
1)) form a projec-

tive semigroup: for any γ1, γ2, γ̃1, γ̃2 ∈ Diff+
a (S

1) and r1, r2 ∈ (0, 1] there exist some
γ3, γ̃3 ∈ Diff+

a (S
1)), r3 ∈ (0, 1] such that

(
U(γ1)r

L0

1 U(γ̃1)
) (
U(γ2)r

L0

2 U(γ̃2)
)
= U(γ3)r

L0

3 U(γ̃3),

where of course equality is meant in the projective sense.

Actually, what we shall really use is a certain adaptation of the above result for the
case of true (and not just projective) representations of the Möbius group. Note that every
Möbius transformation is of course analytic. To make the necessary modifications, we shall
first make an observation2.

Lemma 4.2. Let (A, U,Ω) be a conformal net. Then U(γ)Ω ∈ CΩ if and only if γ ∈ Möb.

Proof. We need to show the “only if” part; the other direction is true by definition. If
γ = id, the statement immediately follows, otherwise, by composing a Möbius element g,
we may assume that γ fixes three points on S1. Let I1, I2, I3 be three intervals with such
end points.

2Roberto Longo suggested another idea for the proof of Lemma 4.2: as in the proof in the main text,

we may assume that γ preserves three points. As U(γ) preserves the vacuum vector, it commutes with

the modular group of the three intervals between these points, hence with the whole Möbius group. From

this it is straightforward that γ = id.

13



By contradiction, let us assume that γ 6= id. Then there is a point s ∈ S1 such that
γ(s) 6= s. As γ fixes three points on S1, it also preserves each interval bounded by any
pair of these points. Say limn γ

n(s) =: s∞ (for a single element γ ∈ Diff+(S1), S1 can be
decomposed into intervals such that γ is monotone on each interval, hence such a limit
exists).

It is not restrictive to assume that I1, the closure of I1, contains neither {γn(s)} nor
s∞. Let us go to the real line picture (which is only necessary below, in order to simplify
the conformal distance) and call I1 := (t1, t2), and I := (s, s∞) (or (s∞, s) depending on
in which direction s is moved, without losing the generality, we may assume the former
case). Assume that I1 and I are bounded intervals on the line. Now they are separated by
a finite distance.

We can pick x ∈ A(I1) and y ∈ A(I) such that 〈xΩ, yΩ〉 6= 0 by Reeh-Schlieder
property. We may further assume that 〈Ω, xΩ〉 = 0 = 〈Ω, yΩ〉, as we can subtract their
vacuum expectation. By the assumption that U(γ)Ω ∈ CΩ and [18, Conformal cluster
theorem], we obtain

|〈xΩ, yΩ〉| = |〈x(U(γ)∗)nΩ, y(U(γ)∗)nΩ〉|
= |〈AdU(γ)n(x)Ω,AdU(γ)n(y)Ω〉|

≤ (t2 − t1)(s∞ − γn(s))

(γn(s)− t1)(s∞ − t2)
‖x‖‖y‖ → 0,

as γn(s) → s∞, while other distances remain finite. This is a contradiction, hence γ = id
under the assumption that γ fixes three points.

Corollary 4.3. Let V be a strongly continuous, unitary representation of Möb with pos-
itive energy, with the associated conformal Hamiltonian L0. Then elements of the form
V (γ)rL0V (γ̃) consist a semigroup: for any g1, g2, g̃1, g̃2 ∈ Möb and r1, r2 ∈ (0, 1], there
exist some g3, g̃3 ∈ Möb, r3 ∈ (0, 1) such that

(
V (g1)r

L0

1 V (g̃1)
) (
V (g2)r

L0

2 V (g̃2)
)
= V (g3)r

L0

3 V (g̃3)

in the proper (not only projective) sense.

Proof. Consider the well-known conformal net usually referred as the U(1)-current net
[5]. One may restrict its projective unitary representation U of Diff+(S1) to the Möbius
group and arrange its phase factors in such a way that the vacuum Ω will be an invariant
vector (see Section 2). In this way we get a positive energy, strongly continuous, unitary
representation V of Möb in which all such irreducible representations (i.e. every possible
integer highest weight) appear: this is evident because for every n ≥ 1, the dimension
of (n + 1)th energy space is strictly larger than the dimension of the nth one. Thus, if
we can show the statement for our particular representation V , we have proved it for all
positive energy representations of Möb. By applying Theorem 4.1 to U of the U(1)-current
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net, we obtain that for every g1, g2, g̃1, g̃2 ∈ Möb and r1, r2 ∈ (0, 1] there must exist some
γ3, γ̃3 ∈ Diff+

a (S
1) and an r3 ∈ (0, 1] such that
(
U(g1)r

L0

1 U(g̃1)
) (
U(g2)r

L0

2 U(g̃2)
)
= U(γ3)r

L0

3 U(γ̃3)

in the projective sense. If r1 = r2 = 1, then of course g3 and g̃3 can be chosen to be in
Möb. On the other hand, if r1r2 < 1, then they must be in Möb. Indeed, in such a case r
must be strictly smaller than 1 (the right hand side cannot be unitary as the left hand side
does decrease the length of some vectors). Then “sandwiching” the left hand sides by Ω —
i.e. considering the scalar product 〈Ω, ·Ω〉 for the left hand side (which is of course only
defined up-to-phase) — gives a complex number of modulus 1, whereas by Lemma 4.2 and
the fact CΩ is the unique eigenvector of L0 with the eigenvalue 0, the same sandwiching
of the right hand side gives a number of modulus 1 if and only if γ3, γ̃3 ∈ Möb.

Considering the relevant unitary operators rather than projective ones, we therefore
have that for every g1, g2, g̃1, g̃2 ∈ Möb and r1, r2 ∈ (0, 1] there must exist some g3, g̃3 ∈ Möb
and an r3 ∈ (0, 1] such that

(
V (γ1)r

L0

1 V (γ̃1)
) (
V (γ2)r

L0

2 V (γ̃2)
)

and V (γ3)r
L0

3 V (γ̃3) are
proportional to each other. The proof is then finished by evaluating both sides on Ω and
concluding that this proportion must be 1.

Corollary 4.4. Let V be a positive energy, strongly continuous, unitary representation of
Möb with associated conformal Hamiltonian L0. There exists some r, r1, r2 ∈ (0, 1) and
g, g1, g2 ∈ Möb, g 6= id, such that

rL0 = rH1

1 rH2

2 V (g)

in the proper sense, where Hj = AdU(gk)(L0) (k = 1, 2).

Proof. We choose two elements g̃1, g̃2 ∈ Möb such that H̃k = AdV (g̃k)(L0), and H̃1 and H̃2

do not strongly commute: such choices are actually abundant, since L0 is maximally abelian

in the Lie algebra. Then there must exist some r1, r2 ∈ (0, 1) such that rH̃1

1 and rH̃2

2 do not
commute (otherwise their generators would strongly commute by analytic continuation).

Now we apply Corollary 4.3 to rH̃1

1 rH̃2

2 = V (g̃1)r
L0

1 V (g̃1)
∗V (g̃2)r2L0V (g̃2)

∗ to obtain
g3, g̃3 ∈ Möb and r ∈ (0, 1) such that

V (g̃1)r
L0

1 V (g̃1)
∗V (g̃2)r

L0

2 V (g̃2)
∗ = V (g3)r

L0V (g̃3)
∗,

in the proper sense, or equivalently,

rL0 = V (g−1
3 g̃1)r

L0

1 V (g−1
3 g̃1)

∗V (g−1
3 g̃2)r

L0

2 V (g−1
3 g̃2)

∗V (g3g̃3).

By defining gk = g−1
3 g̃k, hence accordingly Hk := AdV (g−1

3 g̃k)(L0) and g := g3g̃3, we obtain
the desired equality. To check that g 6= id, note that by our choice of H̃k, r

H1

1 and rH2

2 do
not commute as well. Yet, in the equality

rL0 = rH1

1 rH2

2 V (g),

the left-hand side is self-adjoint, while if g = id, the right-hand side would not be self-
adjoint. Therefore, g 6= id.
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Proposition 4.5. Let A be a conformal net, U be the associated projective unitary rep-
resentation of Diff+(S1), and L0 the conformal Hamiltonian. For some r ∈ (0, 1), there
exists a Möbius transformation g 6= id, such that for any Ic, Id ∈ I be two open proper arcs
such that Ic ∪ Id = S1 we have two bounded operators C ∈ AU(Ic) and D ∈ AU(Id) such
that we have the decomposition

rL0 = CDU(g)

in the proper sense.

Proof. We apply Corollary 4.4 to obtain r, r1, r2 ∈ (0, 1), g ∈ Möb, g 6= id and H1, H2 such
that

rL0 = rH1

1 rH2

2 U(g).

Then we apply Corollary 3.2 to Hk with the intervals Kk,c, Kk,d such that Kk,c ⊂ Ic, Kk,d ⊂
Id and K1,d ∩K2,c = ∅ (see Figure 3), to obtain operators Ck, Dk such that rHk

k = CkDk.
By the localization, C2 and D1 commute.

Hence it holds that rL0 = rH1

1 rH2

2 U(g) = C1D1C2D2U(g) = C1C2D1D2U(g), and C :=
C1C2 is localized in K1,c ∪K2,c ⊂ Ic, while D := D1D2 is localized in K1,d ∪K2,d ⊂ Id, as
desired.

Id

Ic

K1,c

K1,d

K2,c

K2,d

Figure 3: Intervals Ic, Id, K1,c, K1,d, K2,c, K2,d.
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5 Normality of the product vacuum state

We can now prove our main claim: for a conformal net on S1 — where by “conformal”
we mean that it has the full diffeomorphism covariance (see Section 2) — the split property
is automatic. Let (A, U,Ω) be a conformal net, and assume Ia, Ib ∈ I are two open proper
arcs separated by a positive distance.

Consider the ∗-algebra A(Ia)∨alg A(Ib) generated by the commuting factors A(Ia) and
A(Ib). We shall now introduce a family {φz} of functionals on this algebra indexed by a
complex number z, |z| ≤ 1. For a generic element X ∈ A(Ia) ∨alg A(Ib),

X =

n∑

k=1

AkBk (n ∈ N, Ak ∈ A(Ia), Bk ∈ A(Ib)) (5)

and a complex number z in the closed unit disk D1 = {z ∈ C : |z| < 1}, let

φz(X) =
n∑

k=1

〈Ω, Akz
L0BkΩ〉.

The above quantity is well-defined in the sense that it indeed depends only on z and X,
but not on the particular decomposition chosen for X. Indeed, since A(Ia) and A(Ib) are
commuting factors, there is a natural isomorphism between the algebraic tensor product
A(Ia)⊙A(Ib) and A(Ia)∨algA(Ib), see [38, Proposition IV.4.20]. In particular, the bilinear
form A(Ia)×A(Ib) ∋ (A,B) 7→ 〈Ω, AzL0BΩ〉 ∈ C extends to a unique linear functional φz

on A(Ia) ∨alg A(Ib).
Note that the expression zL0 is indeed a well-defined bounded operator for every z ∈ D1

(for z = 0, we define it by continuity in the strong operator topology, hence to be the
projection P0 onto CΩ): this is because Sp(L0) ⊂ N. That is, we are using not just the

positivity of L0, but also that elements of its spectrum are all integers (e.g. z
1

2 =
√
z would

be ambiguous).
For every X ∈ A(I1)∨algA(I3), the map z 7→ φz(X) is analytic in D1. In fact, denoting

by Pm the spectral projection of L0 associated to the eigenvalue m, we have the power
series decomposition of φz(X)

φz(X) =

n∑

k=1

∞∑

m=0

〈Ω, AkPmBkΩ〉zm.

Since P0 = 〈Ω, · 〉Ω is the one-dimensional projection on the vacuum vector, we have that

φ0(X) =

n∑

k=1

ω(Ak)ω(Bk),

i.e. φ0 is the product vacuum state, whereas φ1 = ω. Thus, in view of Proposition 2.2,
in order to prove the split property, we need to show that while “changing” the parameter
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z from 1 to 0, the functional φz remains normal. In particular, it would be desirable to
obtain estimates on ‖φ1 − φ0‖.

The idea of considering φz not only at the points z = 1 and z = 0, but on a larger area
(so that its analytic dependence on z can be exploited) comes from [18]. There the authors
work with the function z 7→ φz(AB) to obtain a bound on |φ1(AB) − φ0(AB)| for a pair
of elements A ∈ A(I1) and B ∈ A(Ib) thereby proving the conformal cluster theorem for
a Möbius covariant net. However, their estimate involves the product of norms ‖A‖ ‖B‖;
when it is reformulated for an element X of the considered form (5), we get some bounds
in terms of

∑
k ‖Ak‖ ‖Bk‖, rather than in terms of the norm of X. Hence their method

does not give a useful estimate on ‖φ1 − φ0‖. In fact, they cannot obtain anything that
would imply the split property: this is because they only use Möbius covariance, and
as was mentioned in the introduction, counterexamples to the split property exist when
diffeomorphism covariance is not assumed [9, Section 6].

Instead, our idea is the following: using diffeomorphism covariance and in particular the
decompositions of rL0 established in the previous sections, we can show that φz depends
norm-continuously on z and is normal (i.e. extends to a normal linear functional of the
von Neumann algebra A(Ia) ∨ A(Ib)) when z is in a certain region. Unfortunately, the
region directly obtainable by such decompositions do not contain the desired point z = 0.
However, if this region contains a ring encircling the point z = 0 (and as we shall see, this
will exactly be the case) we can use general complex analytic arguments (essentially the
Cauchy theorem) to deduce normality of φ0:

Lemma 5.1. Let r0 ∈ (0, 1) be a fixed radius and suppose that φz is normal whenever
|z| = r0 and that on the circle with radius r0, r0S

1 ∋ z 7→ φz is norm-continuous. Then φ0

is also normal.

Proof. We shall use some well-known technical facts. In particular, we shall exploit that
the norm-limit of a sequence of normal functionals on a von Neumann algebra M is normal
(see e.g. [27, Corollary 7.1.13]). To apply this fact, one should note that the norm is defined
on the von Neumann algebra M, but by the Kaplansky density theorem, the norm of a
normal functional on A(Ia)∨A(Ib) is equal to the norm of its restriction to A(Ia)∨algA(Ib).
Therefore, in the following we do not distinguish them.

Thus one has — e.g. by considering Riemann-sums — that if ϕ : [s1, s2] ∋ t 7→ ϕt ∈ M∗

is a norm-continuous family of normal linear functionals, then ϕ(·) =
∫ s2
s1
ϕt(·)dt is also a

well-defined normal functional on M.
Since D1 ∋ z 7→ φz(X) is analytic, by the Cauchy integral formula we have

φ0(X) =
1

2πi

∮

r0S1

φr0eiθ(X)
dz

z

for every X ∈ A(Ia) ∨alg A(Ib).

Let us now discuss how the decompositions rL0 help us out in different regions of D1.
Let Ic = I ′a, and Id be an (open) interval containing the closure of Ia but not intersecting Ib.
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(Such an “enlargement” of Ib exists as Ia and Ib were assumed to have a positive distance
from each other). We then have that Ic ∪ Id = S1 and we can consider the decomposition
of rL0 given by Proposition 3.1 with {Cr}r∈(0,1) ⊂ A(Ic) and {Dr}r∈(0,1) ⊂ A(Id). Let us
denote by Rθ the rotation by θ. Then, as long as z = reiθ is such that r ∈ (0, 1) and the
angle θ satisfies the condition

Id ∩Rθ(Ib) = ∅, (6)

we have that the action of ρθ ≡ Ad eiθL0 leaves A(Ib) inside A(Id)
′ and thus for an X ∈

A(Ia) ∨alg A(Ib) with decomposition (5), we can use locality to rewrite φz(X) as

φz(X) =
n∑

k=1

〈
Ω, Akr

L0eiθL0BkΩ
〉
=

n∑

k=1

〈
Ω, Akr

L0eiθL0Bke
−iθL0Ω

〉

=
n∑

k=1

〈Ω, AkCrDrρθ(Bk)Ω〉 =
〈
C∗

rΩ,

(
n∑

k=1

Akρθ(Bk)

)
DrΩ

〉
. (7)

Let (θ−, θ+) be the largest open interval of angles satisfying our condition (6) and containing
0, i.e., θ± is the smallest positive / largest negative angle for which Rθ±(Ib) intersects Id.
We can obviously find a smooth function f : S1 → R such that f on Ia is zero, but is
constant 1 on the complement of Id (i.e. on the complement of the “enlarged” version of
Ia). Viewing f as the vector field on S1 formally written as f(eiθ) d

dθ
, it gives rise to a one

parameter group of diffeomorphisms

R ∋ θ 7→ γθ ≡ Exp(θf)

such that γθ is “localized” in I ′a, but if θ− < θ < θ+, then the action of γθ on Ib coincides
with that of the rotation by θ. Thus, eiθT (f) commutes with elements of A(Ia) but for
θ ∈ (θ−, θ+), its adjoint action on A(Ib) coincides with the action of ρθ and hence we can
write

n∑

k=1

Akρθ(Bk) =

n∑

k=1

Ake
iθT (f)Bke

−iθT (f) = eiθT (f)

n∑

k=1

AkBke
−iθT (f) =

= eiθT (f)Xe−iθT (f).

Putting this back in (7), we get that for θ ∈ (θ−, θ+),

φreiθ(X) = 〈ηθ, Xζθ〉

where the vectors ηθ = e−iθT (f)C∗
rΩ and ζθ = e−iθT (f)DrΩ.

Corollary 5.2. {φz} is a norm-continuous family of normal functionals in the region
{reiθ|r ∈ (0, 1) and Id ∩ Rθ(Ib) = ∅}.

Note that Proposition 3.1 gives some bounds on the norms of Cr andDr, and so actually
with the constant q > 0 defined there, in the discussed region we have

‖φreiθ‖ ≤ ‖C∗
rΩ‖ ‖DrΩ‖ ≤ 1

r2q
.
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Unfortunately, though this estimate is nicely uniform in θ, it “blows up” at r → 0 and
hence in itself it does not show that φr converges to φ0 in norm as r → 0.

However, so far we have only used our first decomposition of rL0. We shall now exploit
the second one derived in Section 4. Consider a radius r0 ∈ (0, 1) such that the decom-
position in Proposition 4.5 holds; that is, we have two bounded elements C ∈ A(Ic) and
D ∈ A(Id) and g 6= id a Möbius transformation such that rL0

0 = CDU(g) (recall that this
is valid in the proper sense, namely one can fix the phase of U(g) for g ∈ Möb unam-
biguously). Then, repeating the steps we did before with our previous decomposition and
setting instead of (7), this time we get

φr0eiθ(X) =
n∑

k=1

〈
Ω, AkCDU(g)e

iθL0BkΩ
〉
=

〈
C∗Ω,

(
n∑

k=1

Akρθ(Bk)

)
DΩ

〉

whenever the disjointness condition

Id ∩ g ◦Rθ(Ib) = ∅

holds. It is an easy exercise to show, that we can continue exactly as in the first case, and
hence this time obtain the following.

Corollary 5.3. {φz} is a norm-continuous family of normal functionals in the region
{r0eiθ|Id ∩ g ◦Rθ(Ib) = ∅}.

Does the union of the two treated regions encircle the point 0? This might not be
the case. However, note that the Möbius transformation g given by Proposition 4.5 is an
“absolute” one; i.e. it does not depend on the intervals Ic and Id (whereas of course the
elements C and D obviously do). And though for some choices of Ia, Ib and Id ⊃ Ia might
lead to nowhere, it is enough for us to show that there is a “right” choice.

Theorem 5.4. A conformal net (A, U,Ω) on the circle automatically has the split property.

Proof. By conformal covariance, we may assume that Ia, Ib and even the enlargement
Id ⊃ Ia are “tiny”; almost point-like intervals around two points which we will conveniently
call a and b. Then the region guaranteed by Corollary 5.2 is D1 minus a slightly enlarged
version of the half-line {teiα|t ≥ 0} where α is the angle for which Rα(b) = a. On the other
hand, the region guaranteed by Corollary 5.3 is the circle r0S

1 minus a slightly enlarged
version of the point r0e

iα̃, where α̃ is the angle for which g ◦Rα̃(b) = a, which is of course
equivalent to saying that Rα̃(b) = g−1(a). Since g is a certain fixed, non trivial Möbius
transformation, we might even assume that our choice of a is such that g−1(a) 6= a. Then
α 6= α̃ and the union of the two regions covers the circle r0S

1.
Lemma 5.1 shows that φ0 is a normal linear functional on A(I1)∨A(I3). Now our claim

is concluded by Proposition 2.2 and a technical Lemma 5.5 below, by noting that

• A(Ia) ∨ A(Ib) is a factor (Section 2, Factoriality of two-interval algebras)
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• The restrictions of φ0 to A(Ia) and A(Ib) are equal to the vacuum state, hence
faithful.

Lemma 5.5. φ0 is a positive normal functional on A(Ia) ∨ A(Ib).

Proof. We first consider φ0 on A(Ia) ∨alg A(Ib). By [38, Proposition 4.20], the map τ :∑
k xkyk 7→ ∑

xk ⊗ yk is well-defined and is a ∗-isomorphism from A(I1) ∨alg A(I3) onto
A(Ia) ⊙ A(Ib). Now the linear functional φ0(

∑
k xkyk) translates into A(Ia) ⊙ A(Ib) as

〈Ω ⊗ Ω, · Ω ⊗ Ω〉. Namely, φ0 = (ω ⊗ ω) ◦ τ−1. Now, ω ⊗ ω is clearly positive, and
τ−1(x∗x) = τ−1(x)∗τ−1(x), therefore, φ0(x

∗x) ≥ 0 for any x ∈ A(Ia) ∨alg A(Ib).
We claim that, also on A(Ia)∨algA(Ib), φ0 is positive 3. Indeed, take a positive element

a ∈ A(Ia)∨algA(Ib). The function f(x) = x
1

2 , x ∈ [0, ‖a‖] can be arbitrarily approximated
by polynomials fn with real coefficients, uniformly on [0, ‖a‖] and fn(a)

2 tends to a in
norm. We saw that φ0 is a normal linear functionals, hence it is in particular continuous
in norm. Since φ0(x

∗x) ≥ 0 for x ∈ A(Ia) ∨alg A(Ib) then φ0(fn(a)
2) ≥ 0, hence φ0(a) ≥ 0

by norm continuity of φ0.
Now, by the Kaplansky density theorem and the normality of φ0, φ0 is a positive

functional.

6 A non-split conformal net in two-dimensions

Conformal nets on S1 constitute the building blocks of two-dimensional conformal nets.
Let us recall the relevant definitions. A locally normal, positive energy, Möbius covariant
representation ρ of a conformal net (A, U,Ω) on S1 is a family of normal representations
{ρI : I ∈ I} of the von Neumann algebras {A(I) : I ∈ I} on a fixed Hilbert space Hρ and
a unitary, positive energy unitary representation Uρ on Hρ of the universal covering group

of the Möbius group M̃öb:

1. Compatibility: if I1, I2 ∈ I and I1 ⊂ I2 then ρI2|A(I1) = ρI1

2. Covariance: AdUρ(g) ◦ ρI = ρgI ◦ AdU(g), g ∈ M̃öb

A representation ρ is irreducible if
∨

I∈I ρ(A(I)) = B(Hρ). The defining representation
{idA(I)} is called the vacuum representation.

A representation of a conformal net ρ is said to be localizable in I0 if ρI′
0
≃ id, where

≃ means unitary equivalence. The unitary equivalence class of ρ defines a superselection
sector, also called a DHR (Doplicher-Haag-Roberts) sector [14]. By Haag duality
we have that ρ(A(I)) ⊂ A(I) if I0 ⊂ I. Thus we can always choose, within the sector of ρ,
a representation ρ0 on the defining Hilbert space H such that ρ0,I0 is an endomorphism of

3A(Ia)∨alg A(Ib) is not a C∗-algebra, in particular, a positive element a ∈ A(Ia)∨alg A(Ib) in the sense

of B(H) is not necessarily of the form x∗x, where x ∈ A(Ia) ∨alg A(Ib).
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A(I0). If each ρI is an automorphism of A(I), we call ρ an automorphism of (A, U,Ω).
Automorphisms can be composed in a natural way.

Let (A, U,Ω) be the U(1)-current net [5]. The main ingredients are (see [40] for a more
detailed review):

• The Weyl operators W (f) parametrized by real smooth functions f on S1 which

satisfy the commutation relations W (f)W (g) = e
i
2
Im(f,g)W (f + g), where (f, g) :=

1
2π

∫ 2π

0
dθ f ′(eiθ)g(eiθ).

• There is a distinguished realization (“vacuum representation”) of the Weyl operators
(which we denote again by W (f)) with a unitary positive energy representation of
Möb which extends to a projective unitary representation U of Diff+(S1), and the
vacuum vector Ω such that AdU(γ)(W (f)) =W (f ◦ γ) and U(g)Ω = Ω if g ∈ Möb.

• The U(1)-current net A(I) := {W (f) : supp f ⊂ I}′′.

• Irreducible sectors parametrized by q ∈ R: we fix a real smooth function ϕ such that
1
2π

∫ 2π

0
dθ ϕ(eiθ) = 1. The map W (f) → eiqϕ(f)W (f) extends to an automorphism

σq,I of A(I), where supp f ⊂ I and ϕ(f) = 1
2π

∫ 2π

0
dθ f(eiθ)ϕ(eiθ). We call this

automorphism of the net σq. Different functions ϕ with the conditions above with
the same q give the equivalent sectors, while sectors with different q are inequivalent.
It holds that σq ◦ σq′ = σq+q′.

• Each irreducible sector is covariant: the projective representation γ 7→ Uq(γ) :=

σq(U(γ)) of local diffeomorphisms extends to ˜Diff+(S1), hence makes the automor-
phism σq covariant [10, Proposition 2] (in an irreducible representation σq, the choice
of Uq(γ) is unique up to a scalar [10, Remark after Proposition 2]): AdUq(γ)(σq(x)) =
σq(AdU(γ)(x)). Furthermore, we can fix the phase of Uq(γ) and consider them as
unitary operators (see [17, Proposition 5.1], where the phase does not depend on h,
hence one can take the direct sum of multiplier representations (projective representa-
tions with fixed phases)). In this case, it holds that Uq(γ1)Uq(γ2) = c(γ1, γ2)U(γ1, γ2)
where c(γ1, γ2) ∈ C1. c(γ1, γ2) can be chosen without dependence on q, and continu-
ous in a neighborhood of the unit element. This projective representation (restricted

to M̃öb) has positive energy [9].

• For two equivalent automorphisms ρ, ρ̃ localized in I, Ĩ, respectively, an operator
which intertwines them is called a charge transporter. In the present case, as both
ρ, ρ̃ are irreducible, such a charge transporter is unique up to a scalar. A charge
transporter acts trivially on A((I ∪ Ĩ)′), hence belongs to A((I ∪ Ĩ)′)′. In particular,
it can be considered as an element in a local algebra containing I and Ĩ.

• The operator zq(γ) := U(γ)Uq(γ)
∗ is a charge transporter between σq and αγσqαγ−1 .

• For a given pair of automorphisms ρ1, ρ2, one defines the braiding ǫρ1,ρ2 : one chooses
equivalent automorphisms ρ̃1, ρ̃2 localized in Ĩ1, Ĩ2, respectively, such that Ĩ1∩ Ĩ2 = ∅
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and charge transporters V1, V2 between ρ1 and ρ̃1, and ρ2 and ρ̃2, respectively. Define
ǫ±ρ1,ρ2 := ρ2(V

∗
1 )V

∗
2 V1ρ1(V

∗
2 ), where + or − depends on the choice whether Ĩ1 is on the

left/right of Ĩ2 (which results from the choice of localization of the charge transporter
above), but ǫ±ρ1,ρ2 do not depend on the choice of ρ̃k, Vk under such a configuration.

• For our concrete automorphisms σq, σq′ on the U(1)-current net, one can take the
charge transporters Vq, Vq′ as Weyl operators and finds that the braiding satisfies
ǫ±σq ,σq′

∈ C1, ǫ+σq ,σq′
= ǫ−σq ,σq′

.

The following is may be well known to experts, but it is difficult to find the right
reference (for example, [32, Proposition 1.4] is proved for Möbius covariance). We note
that a systematic formulation, closer to our needs, is to appear in [13]. Nevertheless, in
part because we deal with multiplier representations, and in part for better readability, we
include a formal statement with a proof.

Proposition 6.1 (Tensoriality of cocycles). It holds that zq(γ)σq(zq′(γ)) = zq+q′(γ).

Proof. First recall that zq(γ) is an intertwiner between σq and αγσqαγ−1 , hence the prod-
uct zq(γ)σq(zq′(γ)) is an intertwiner between σqσq′ = σq+q′ and αγσqαγ−1 ◦ αγσq′αγ−1 =
αγσq+q′αγ−1 . zq+q′(γ) also intertwines σq+q′ and αγσq+q′αγ−1 . As they are automorphisms,
hence irreducible, the difference between zq(γ)σq(zq′(γ)) and zq+q′(γ) must be a scalar.

Next we show that U ′
q+q′(γ) := (zq(γ)σq(zq′(γ)))

∗U(γ) is a multiplier representation

of ˜Diff+(S1) such that U ′
q+q′(γ1)U

′
q+q′(γ2) = c(γ1, γ2)U

′
q+q′(γ1γ2), namely it has the same

2-cocycle c as Uq+q′ . Indeed,

U ′
q+q′(γ1)U

′
q+q′(γ2) = (zq(γ1)σq(zq′(γ1)))

∗U(γ1)(zq(γ2)σq(zq′(γ2)))
∗U(γ2)

= σq(zq′(γ1))
∗Uq(γ1)σq(zq′(γ2))

∗Uq(γ2)

= σq(zq′(γ1))
∗σq(αγ1(zq′(γ2)))

∗ · c(γ1, γ2)Uq(γ1γ2)

= σq(zq′(γ1)
∗αγ1(zq′(γ2))

∗) · c(γ1, γ2)Uq(γ1γ2)

= σq (Uq′(γ1)U(γ1)
∗U(γ1)Uq′(γ2)U(γ2)

∗U(γ1)
∗) · c(γ1, γ2)Uq(γ1γ2)

= σq(Uq′(γ1γ2)U(γ1γ2)
∗) · c(γ1, γ2)zq(γ1γ2)∗U(γ1γ2)

= c(γ1, γ2)U
′
q+q′(γ1γ2),

where in the 3rd and 6th equalities we used that U and Uq share the same 2-cocycle c.
Now let us define U ′′(γ) := U ′

q(γ)
∗Uq(γ). As the difference between U ′

q(γ) and Uq(γ) is
just a phase and they share the same 2-cocycle c, it is easy to show that U ′′ is a C-valued

true (with trivial multiplier) representation of ˜Diff+(S1). It is well-known that then U ′′

must be trivial, U ′′(γ) = 1. From this the claim immediately follows.

Let G be the quotient of M̃öb×M̃öb by the normal subgroup generated by (R2π, R−2π),
where Möb naturally includes the universal covering R of the rotation subgroup S1 and
R2π, R−2π are the elements corresponding to 2π,−2π rotations, respectively. We call R×S1

the Einstein cylinder E , where the Minkowski space is identified with a maximal square
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(−π, π)× (−π, π) (see [1]) 4. The group G acts naturally on it. Furthermore, let Diff0(R)
be the group of diffeomorphisms of the real line R with compact support. Then Diff0(R)×
Diff0(R) acts naturally on the Minkowski space as the product of two lightrays 5, and its
action naturally extends to E by periodicity. Let us denote by Conf(E) the group generated
by G and Diff0(R) × Diff0(R). A two-dimensional conformal net (Ã, Ũ , Ω̃) consists of
a family {Ã(O)} of von Neumann algebras parametrized by double cones {O} in the
Minkowski space R2, a strongly-continuous unitary representation of G which extends to
a projective unitary representation of Conf(E), and a vector Ω̃ such that the following
axioms are satisfied [28, Section 2]:

• Isotony. If O1 ⊂ O2, then Ã(O1) ⊂ Ã(O2).

• Locality. If O1 and O2 are spacelike separated, then Ã(O1) and Ã(O2) commute.

• Covariance. For a double cone O, it holds that Ad Ũ(γ)(Ã(O)) = Ã(γO) for
γ ∈ V ⊂ Conf(E), where V is a neighborhood of the unit element of Conf(E) such
that γO ⊂ R2 for γ ∈ V. For x ∈ Ã(O) and if γ ∈ Diff0(R)×Diff0(R) acts identically
on O, then Ad Ũ(γ)(x) = x.

• Existence and uniqueness of vacuum. Ω̃ is a unique (up to a scalar) invariant
vector for Ũ |G.

• Cyclicity. Ω̃ is cyclic for
∨

O⊂R2 Ã(O).

• Positivity of energy. The restriction of Ũ to the group of translations has the
spectrum contained in V+ := {(x0, x1) : x0 ≥ |x1|}.

Now we construct a two-dimensional conformal net as follows, following the ideas of
[16, 33]. Let us fix an interval I ⊂ R ⊂ S1 and a real smooth function ϕ as above. On
the Hilbert space Hq = H, we take the automorphism σq of the U(1)-current net A. The
full Hilbert space is the non-separable direct sum H̃ =

⊕
q∈R Hq ⊗Hq. The observable net

A ⊗ A acts on H̃ as the direct sum σ̃(x ⊗ y) =
⊕

q σq(x) ⊗ σq(y). We can also define a

multiplier representation of ˜Diff+(S1) × ˜Diff+(S1) by Ũ(γ+, γ−) :=
⊕

q Uq(γ+) ⊗ Uq(γ−).

The representation Ũ actually factors through Conf(E). This can be seen by noting that
in each component Uq ⊗Uq the generator of spacelike rotations is L

σq

0 ⊗ 1− 1⊗L
σq

0 whose

spectrum is included in Z, since the spectrum of L
σq

0 is included in N+ q2

2
.

As all the components are the same Hq⊗Hq = H⊗H, the shift operators {ψq} (“fields”)
act naturally on H̃: for Ψ ∈ H, where (Ψ)q ∈ Hq ⊗Hq,

(ψq′Ψ)q = (Ψ)q+q′.

4Here the segments (−π, π) × {0} and {0} × (−π, π) are identified with the time and space axis,

respectively.
5The lightray decomposition R2 = R × R is not compatible with the above identification of R with

(−π, π)× (−π, π), where the components correspond to the time and space axis.
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It is useful to note how they behave under covariance:

(Ad Ũ(γ+, γ−)(ψ
q′)Ψ)q = Uq(γ+)⊗ Uq(γ−)(ψ

q′ · Ũ(γ+, γ−)∗Ψ)q

= Uq(γ+)⊗ Uq(γ−)(Ũ(γ+, γ−)
∗Ψ)q+q′

= (Uq(γ+)⊗ Uq(γ−)) · (Uq+q′(γ+)
∗ ⊗ Uq+q′(γ−)

∗) (Ψ)q+q′

= (zq(γ+)
∗zq+q′(γ+))⊗ (zq(γ−)

∗zq+q′(γ−))(Ψ)q+q′

= (σq(zq′(γ+)))⊗ (σq(zq′(γ−))) (Ψ)q+q′

= (σ̃(zq′(γ+)⊗ zq′(γ−))ψ
q′Ψ)q

where we used tensoriality of cocycles in the 5th equality.
We define the local algebra, first for I × I ⊂ R × R ⊂ R2, where the real lines are

identified with the lightrays x0 ± x1 = 0, by

Ã(I × I) = {σ̃(x⊗ y), ψq : x, y ∈ A(I), q ∈ R}′′,

and for other bounded regions by covariance: take γ± ∈ Diff0(R) such that γ±I = I± and

Ã(I+ × I−) = {σ̃(x⊗ y), ψq : x, y ∈ A(I), q ∈ R}′′.

This does not depend on the choice of γ±. Indeed, if γ± preserves I, then zq′(γ+)⊗zq′(γ−) ∈
A(I)⊗A(I) and Ad Ũ(γ+, γ−)(ψ

q′) ∈ Ã(I × I) by above computation.

• Covariance. Ad Ũ(γ+, γ−)(Ã(O)) = Ã((γ+, γ−) ·O) holds by definition. If (γ+, γ−) ∈
Diff0(R)×Diff0(R) acts trivially on I × I, then Ũ(γ+, γ−) = σ̃(U(γ+)⊗ U(γ−)) and
this commutes with Ã(I × I), as supp γ± are disjoint from I.

• Isotony. By covariance, we may assume that I± ⊃ I. Take γ± such that γ±I = I±.
From the expression

Ad Ũ(γ+, γ−)(ψ
q′) = (σ̃(zq′(γ+)⊗ zq′(γ−))ψ

q′Ψ)q

and from the fact that zq′(γ±) ∈ A(I±), the isotony follows.

• Positivity of energy. Each component Uq ⊗ Uq has positive energy.

• Existence and uniqueness of the vacuum. Only U0 ⊗U0 contains the vacuum vector.

• Cyclicity. The fields ψq brings H0 ⊗ H0 to any Hq ⊗ Hq, while the local algebra
σ̃(A(I)⊗A(I)) acts irreducibly on each Hq ⊗Hq.

• Locality. In the two-dimensional situation, the spacelike separation of I × I and
I+ × I− means either I+ sits on the left of I and I− on the right, or vice versa. We
may assume the former case, as the latter is parallel.

The commutativity between the observables σ̃(x⊗y) is trivial. As for the observables
and the fields {ψq}, if x, y ∈ A(I±) respectively, as I± are disjoint from I and σq are
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localized in I, we have σ̃(x⊗y) =⊕q x⊗y and this commutes with shifts ψq. Finally,
we need to check the commutativity between fields ψq1,AdU(γ+)⊗U(γ−)(ψq2), where
γ±I = I±. We can compute the commutator explicitly:

([ψq1, (Ad Ũ(γ+)⊗ Ũ(γ−)(ψ
q2)]Ψ)q

= (ψq1σ̃(zq2(γ+)⊗ zq2(γ−))ψ
q2Ψ− σ̃(zq2(γ+)⊗ zq2(γ−))ψ

q2ψq1Ψ)q

= (σ̃(σq1(zq2(γ+))⊗ σq1(zq2(γ−)))ψ
q1+q2Ψ− σ̃(zq2(γ+)⊗ zq2(γ−))ψ

q1+q2Ψ)q,

and this vanishes because zq2(γ+)
∗σq1(zq2(γ+))⊗zq2(γ−)∗σq1(zq2(γ−)) = ǫ+q1,q2⊗ǫ−q1,q2 =

1, as the braidings ǫ±q1,q2 are scalar and conjugate to each other.

This net cannot satisfy the split property. Namely, if there were a type I factor R such
that Ã(D1) ⊂ R ⊂ Ã(D2), 〈Ω, ·Ω〉 would define a faithful normal state on R, as it is
separating for R. As the full Hilbert space H̃ is non-separable, by conformal covariance
R must be isomorphic to B(H̃). But this is impossible because the existence of a faithful
normal state implies that B(H̃) is σ-finite, while it is not when H̃ is non separable.

7 Outlook

In general, a standard technique to prove the split property is to verify certain nuclearity
conditions for the dynamics. In the Möbius covariant case, the most handy one is the trace
class condition of the conformal Hamiltonian e−βL0 [4]. The split property in turn implies
certain compactness conditions [3]. With our result, one is lead to conjecture that the
trace class property should be also automatic.

The existence of an intermediate type I factor does not depend on the sector. Assume
A to be a Möbius covariant net satisfying split property (for instance A is a conformal
net) and I1 ⊂ I2 an inclusion of intervals with no common end points. Any representation
π of A is a family of local algebra faithful isomorphisms onto their image, as any local
algebra is a factor. Then an intermediate type I factor A(I1) ⊂ R ⊂ A(I2) is mapped
through ρ onto an intermediate type I factor ρI2(A(I1)) ⊂ ρI2(R) ⊂ ρI2(A(I2)) as ρI2
restricts to an isomorphism of R on ρI2(R). Furthermore, when ρ is localizable, then
ρI1(A(I1)) ⊂ ρI2(A(I2)) is a standard split inclusion acting on a separable Hilbert space
(we can unitarily identify the Hilbert spaces). At this point it is also natural to expect
that the trace class property of Lρ

0 in irreducible or factorial sectors should be automatic.
While the split property has important implications in algebraic QFT, it is almost never
seen in other approaches to CFT, such as vertex operator algebras (VOAs). On the other
hand, the trace class property, or even the finite-dimensionality of the eigenspaces of L0

would be useful for the study of VOAs.
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