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Abstract— Let D be a complexity class.
A countable first order structure is defined to
be D-presented iff all of its basic relations and
functions are in D. We show, that if T is a
first order theory with at least one uncountable
Stone space thenT has a countable model not
isomorphic to any D-presented one. We also show
that there is a countable Ny-categorical structure
in a finite language which is not isomorphic to any
D-presented structure; in addition, there exists a
consistent first order theory in a finite language
that does not haveD-presented models, at all.

Our proofs utilize model theoretic methods and
do not involve any nontrivial recursion theoretic
notion or construction.

AMS Subject Classification03C57, 03D45.
Keywords: Computable structures, complexity
classes, No-categorical structures, oligomorphic
permutation groups.

I. INTRODUCTION

paper we investigate such theoretical limitations,
the main results are Theorems 4.1 and 5.13; they
will be recalled below in the Intorduction after
some technical preparations.

A first order structurel is defined to becom-
putableiff its universe is the set of natural numbers
and all of its basic relations and functions are
recursive (in the computational theoretic sense).
More generally, ifD is a complexity class (like
the set of recursive, or the set of recursively
enumerable relations), then a countable structure
2 is defined to beD-presentedff all of its basic
relations and functions belong tB. For a more
precise definition we refer to Section Il below.

By some classical results of Ershov, Arslanov
and others, there are countable orderings, Boolean
algebras, etc. which are not isomorphic to any
computable structure.

One of the main aims of model theory is to
describe all structures in which a given theory
(i.e. set of first order formulas) is true. At that
level of generality this ambitious aim seems to be

Abstract data types (for example, in object untractable. Hence, instead of it, model theorists
oriented programming languages) may be regardedre trying to characterize those theories which have
as certain first order structures with countablea structure theorem, that is, whose models can
universe and a set of computable operations ande described in a comprehensive way. Recently,
relations in it. Further, very often it is important related investigations are very active. Along the
to implement algorithms capable to perform op- results of Morley, Shelah, Lascar, Hrushovski,
erations in certain countable first order structuresCherlin, Pillay and others, it turned out, that
(such as algebraic number fields, rings, countablytheories have a “structure theoretic” hierarchy of
infinite Boolean Algebras, or groups, etc.). Imple- complexity: in some cases the possible models are
menting such algorithms have theoretical limita- relatively easy to describe, in some other cases this
tions: all the operations and relations should beis much more difficult, while in some other cases
recursive in the algorithm theoretical sense. In thissuch a complete “comprehensive” description of
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all models is impossible for theoretical reasons. the model theoretic sense (namely,is

This hierarchy is not as exactly defined as the consistent antky-categorical, hence all of
computational theoretic one. In order to make its Stone-spaces are finite), but the unique
it more precise, one can “measure the structure countable model of" does not have ®-
theoretic complexity” of a first order theor¥ by presented isomorphic copy.

the number of pairwise non-isomorphic models of )
T of a given cardinality, or by different degrees of ~ To prove theorem 5.13, it would be enough for
stability, i.e. by the size of the Stone spaces of thells to construct uncountably many pairwise “essen-
theory (for the definition of Stone spaces we refertially different” oligomorphic permutation groups
to Section Il below). It turned out, that the ele- ONw. For completeness, we show in theorem 5.11
ments of the above list are closely related to eacthat there @f@ND many such groups. _
other. Somewhat roughly, but more concretely; There is another related interesting question
categorical theories (which are the simplest onegvhich we are able to answer. L& be a fixed
from structure theoretic point of view) have small complexity class. As we mentioned, a structure
(finite) Stone spaces, while the Stone spaces ofs used to be considered “complicated” from the
unstable theories are of large (uncountable) cardifecursion theoretic point of view, if it is not
nality; if a theory has an uncountable Stone spacdsomorphic to anyD-presented one. It seems to
over the empty set, then it has uncountably manyPe also natural to replace “isomorphic” with “ele-
pairwise non-isomorphic countable models. mentarily equivalent” in the above sentence and to

Some resluts relating model theoretic and re-ask whether a first order structure is elementarily
cursion theoretic complexity have already been€dquivalent with aD-presented one. For example, if
established. For example, the authors in [9] andD is the class of recursive relations and a structure
in [8] deal with countable, computable models % is elementarily equivalent with @®-presented
of uncountably categorical theories. For furtherone, then (some fragments of) the theory 2f
related results we refer the reader to [10] and tomay be algorithmically decided. According to our
[6]; they also contain a rather complete list of knowledge, there are no previous investigations for
references. For more recent related investigation§tructures elementarily equivalent fo-presented
we refer to [5] and [1]. ones. In Theorem 5.13 we also show that

Some of the known results are “positive”, that
is, they guarantee the existence of a computable
model. Negative results state, that certain mod-
els do not have recursively presented isomorphic
copies (but do not exclude the existence oba
presented isomorphic copy, whefe is a higher
complexity class — like the class of arithmetical

relations, for example). . do not involve any nontrivial recursion theoretic
In this paper we are also trying to compare notion or construction. Since we believe, that
structure theoretic and computational theoreticy,e nresented results may be interesting both for
complexities of first order theories, and we are g theorists and for recursion theorists, we will
interested in “strong negative results”, that is, our j.ecant more details than as usual. Particularly.
aim is to prove that certain theories have countablg, . ihe readers convenience. sometimes we wiII'
models having highly non-computable isomorphic,.jude known proofs in the p;resent paper.
copies, only. In more detail, the main resul'ts ofthe’  The structure of the paper is as follows. At
paper are Theorems 4.1 and 5.13; to claim theMy,e eng of the present section we are summing
let D be an arbitrary complexity class. up our system of notation. In Section Il we
recall the recursion theoretic and model theoretic
notions we will dealing with. In Section 1ll we
resent some observations which we will use in
ater sections. In Section IV we prove Theorem
4.1: if a theory has an uncountable Stone space,
then it has a countable model which does not
have aD-presented isomorphic copy. In Section
V we are dealing withRy-categorical structures.
In Theorem 5.13 we show, that there exist In Theorem 5.13 we show that there is a finite
a finite first order language and a thedfy language L and an Xy-categorical L-structure
in it, which is as simple as possible from which does not have &-presented isomorphic

there is a finite languagé. and an L-
structure?l which is not elementarily equi-
valent to anyD-presented structure (that
is, the first order theory dfl does not have
D-presented models, at all).

Our proofs utilize model theoretic methods and

In Theorem 4.1 we show that if a theory
T is complicated in the model theoretic
sense (i.e. at least one of it's Stone space
is uncountable) ther?” has a “compli-

cated” countable model. More precisely,
T has a countable model which is not
isomorphic to anyD-presented structure.



copy; in addition, there is a consistent first order  Definition 2.2: By acomplexity classve mean
theory in L which does not have @-presented an equivalence class ef containing relations of
model. In Theorem 5.11 we also show that therearbitrary arity onw.

are 2% many closed oligomorphic permutation
groups onw having pairwise different orbit
sequences. Finally, in Section VI we present a
guestion that remained open.

These kind of complexity classes are calleding
degreesor degrees of unsolvability (see [2]). We
denote them by calligraphic letters like. Typical
examples for complexity classes are

¢ the set of recursive relations;

e the set of recursively enumerable relations;

e the set of arithmetical relations.
(If we had used a reduction with more restrictions
we would have obtained a more detailed classifi-
cation such as Karp—classes, for example.)

Notation

Our notation is mostly standard, but the following
list may help.

We recall the following well known facts from [2].

Throughout w denotes the set of natural ] )

numbers and for everyn € w we have Lemma 2.3:(1) A complexity class is always
n = {0,1,..,n — 1}. Let A and B be sets. coun_tablle; (2) The set of a]l complexity classe_s has
Then AB denotes the set of functions from  cardinality2™e; (3) Comlexity classes are partially
to B, |A| denotes the cardinality ofd, [A]<¥ ordered by the induced ordering ef; (4) A set
denotes the set of finite subsets 4fand if x is ~ ©Of complexity classes has an upper bound (under
an ordinal then<* A denotes the set ofi-termed =) iff it is countable.

sequences of length smaller thanlf s andt are Now we recall some model theoretic notions.
sequences, thesit denotes their concatenation. Let x be a cardinal and” a set of first order

Throughout we use function composition in formylas. ThenT is defined to bes-categorical
such a way that the rightmost factor acts first. That;; up to isomorphism,7 has a uniques-sized

is, for functionsf, g we definefog(z) = f(9(z)).  model. A structure iss-categorical iff its theory
Structures are denoted by gothic letters, lie g k-categorical.

or B; the universe of a given structure will Let 2 be a structureX C A andn € w. Then
be denoted by the same latin letter or B, the nt" Stone spaceSQ‘(XTOf 2 over X is the
respectively. The automorphism group of the ygnojogical dual space of the Boolean algebra-of

structure2t will be denoted byAut(21). ary relations definable il with parameters from
X. Elements ofS>(X) are called types (more
Il. COMPLEXITY precisely, they are called-types of2l over X).

Similarly, if T is a theory (i.e.T is a set of first
_ _ ) order formulas) then the'* Stone spaces,,(T)
We start by recalling the notion ofomplexity of T is the topological dual space of the Boolean
classes algebra ofn-ary relations definable ifi"; elements

Definition 2.1: Consider two relations ow, of 5,(T) are also called types df. For further

say Ry C w", and Ry C w™. We say thatR; details we refer to [7].

has areductionto R,, in symbolsR; < R, iff

there exsists a recursive algorithm or map, 8ay [Il.  PRELIMINARY OBSERVATIONS
such thatw € R; & M(w) € Ry. We say that

Ry is recursive relativeto ;. Let L be a finite first order language afibe

This definition means thaR, is at least as a @ complexity class. We say, that dnstructure2(
hard problem asR;. If we have an algorithm has aD-presentation, iff there is a structut® =
solving the membership problem fdt, then, up  (w, R¥)icz, such thakl and® are isomorphic and
to recursivity, it may also be utilized to solve the for everyi € L, R? (as a subset of a direct power
membership problem foR; as well. It is easy to  Of w) is in D. In this case we also say, tha is
see that< is a reflexive and transitive relation. D-presented.

Consequently — as it is well known — the relation
< determines an equivalence relatien via the
stipulation:

Throughout this section. denotes a finite first
order language.

Lemma 3.1:Let D be a complexity class. Sup-
Ry ~ Ry iff Ry < Ry and Ry < R;. pose H is an uncountable family of pairwise



non-isomorphic countablg-structures. Then there
exists 2 € H such that?l does not have &-
presentation.

Proof: Let Hy = {2 € H : A has aD-
presentatior} and for every € H, let D() be
a D-presented structure such that: A — D(A)
is an isomorphism betweeth andD(2(). Observe,
that for every distinct2, 8 we haveD() #
D(B), otherwise(fx)~! o fo would be an iso-
morphism betweefll and®5. Hence, the function
a : 2A — D) is injective. In addition, there
are only countably manf-presented.-structures,
so the range ofx is countable. It follows, that
‘Ho (which is the domain ofy) is also countable.
Consequently, there exists € H\ Hy; this does
not have aD-presentation. ]

Corollary 3.2: (1) There is an ordering ow
which does not have a computable presentation.
(2) There is a well-ordering ow which does not
have an arithmetical presentation.

Proof: Since (2) implies (1), it is enough to
show (2). LetH be the set of (isomorphism types
of) countable well-orderings and 1€ be the set
of arithmetical relations ow. Since|H| = Xy, the
statement follows from Lemma 3.1. [ |

IV. THEORIES WITH MANY TYPES

not been realized yet. It follows, that there is a
structure®B which realizesp and is a model of
T. The downward Léwenheim—Skolem theorem
implies, that there exists a countable elementary
substructurel, of B such that, still realizesp.
Thus2(, has the property2l, E T, 2, # A, (a <

A). In this way we construck; many pairwise
nonisomorphic models df. Hence, the statement
follows from Lemma 3.1. [ |

Remark 4.2: It is well-known, thass,,(T)| >
N; implies|S,,(T)| = 2% (see e.g. theorem 6.3.4
of Hodges [7]).

V. Ng-CATEGORICAL THEORIES

As we already mentioned, from structure the-
oretic point of view, a theoryl’ is as simple as
possible, iff it isRy-categorical, that is iffi’ has a
unique countable model.

In this section we show, that there exists an
No-categorical theory in a finite language whose
unique countable model does not have a com-
putable isomorphic copy (that is, altough is
simple from structure theoretic point of view, its
unique countable model is still complicated from
computatinal theoretic point of view).

In addition, we also show that there is a count-
able structure which is not elementarily equivalent

As we mentioned in the Introduction, a theory to any computable (or arp-presented) structures,

is used to consider “complicated” from model
theoretic point of view iff at least one of its Stone

spaces is of uncountable cardinality. In the present

section we show that if a theof} has at least one
uncountable Stone space (that is, if there is w
with |S,,(T")| > ;) thenT has a countable model

which does not have a computable presentation

(even does not have ®-presented isomorphic
copy, whereD is an arbitrary fixed complexity
class).

Theorem 4.1:Let D be a complexity class and

whereD is a given complexity class.

We recall a well known result of Svenonius,
Ryll-Nardzewski and others which establishes a
connection betweem-categoricity and the size
of Stone spaces.

Theorem 5.1:For a theoryT the following
two conditions are equivalent:

(1) T is Ny-categorical;

(2) for all n € w we have|S,,(T)| < Ro.

The proof can be found in practically every

let T be a first order theory in a finite language monograph on model theory.

such that there is an € w with |S,,(T)| > N;.
Then T has a countable model which is not
isomorphic to anyD-presented structure.

To prove our results first we need to re-
call some further known connections between
No-categorical structures and certain permutation

Proof: We apply transfinite recursion. Sup- groups orw.
pose that we have a countable set of countable

structures{2l, : « < A} with A < ®; such that

Definition 5.2: A permutation group; acting

they are pairwise nonisomorphic and are models oPn the setX is %afined to beclosediff for every
T. Each structure can realize only countably manypermutationf € + X the following holds:

types fromsS,,(T), since a singlex-tuple realizes

a unigue n-type. Hence, these countably many

if for every finite s C X there isg, € G such

structres realize countably many types alltogether_thatf|s = gs|s, thenf € G.

Let us choose a type < S,(T) which has



Equip X with the discrete topology. Thes is Lemma 5.7:1f G is an oligomorphic permu-
a closed permutation group iff it is a closed subsettation group on an infinite set then there exists
of X X in the corresponding product topology. For an oligomorphic permutation group anwith the
more details we refer to [7]. same orbit sequence.

Clearly, the automorphism group of a first

order structure is closed. A proof can be found in subsection 2.2 of [3].

The idea is to build a first order structure from

Definition 5.3: A permutation groupi on X  which the group and its action is first order defin-

is said to beoligomorphiciff for every n € w able, and then apply the downward Lowenheim-
the group acts on the-tuples in a way that the Skolem theorem.

number of orbits is finite. . )
Lemma 5.8:Let G be an oligomorphic permu-

If G is an oligomorphic permutation group on tation group onw and letG be its closure (in the
X andn € w theno¢ denotes the number of orbits topological sense). Then
of G on the set ofn-tuples of X. (1) G is an oligomorphic permutation group;

2) The orbit sequences and G are the
Lemma 5.4:If G is a closed oligomorphic sarr(1e). q ¢ g

permutation group o then there exists al,-
categorical structur@ on w with Aut(2) = G. Proof: (1) is easy; (2) is straightforward.m

Proof: This theorem is well known, a proof Next, we present two lemmas we need to prove
can be reconstructed e.g. by combining Theoremshat there ar@® many closed, oligomorphic per-

4.1.4 (b) and 7.3.1 of [7]. B mutation groups oo with pairwise different orbit
serquences.
Lemma 5.5:For any sequencé:, € w: n €
w) there is an oligomorphic groug for which Lemma 5.9:SupposeF C “w with |F| = ¥y
og > a, forall n € w. and s € <“w such that for everyf € F we have

_ . s C f. Then there existsy, z; € <“w such that
Proof: The proof can be found e.g. in £21,5C 2Nz and

Cameron [3] (see Item 3.24 therein).

We say that two oligomorphic permutaton /€ F:20C fH=H{feF:z Cfif=%.
groups F,G have same orbit sequences iff for Proof: For each t c <w, et

F_ G .
everyn € w we haveo;, = oy. F, = {f € F :t C f}. First observe, that

Lemma 5.6:There exist®; many oligomor- £t = UnewFi~n, hence
phic permutation groups o with pairwise dif-

ferent orbit sequences. ()  [E[ =R implies (3n € w)([Fi-n| = R1).

Proof: We apply transfinite recursion. Sup- Next, assume, seeking a contradiction, that
pose we have{G, : o« < (3} where 8 is a the statement of the lemma is not true. kgt= s
countable ordinal, and thé,’s are oligomorphic and supposé € w ands; has already been defined
permutation groups with pairwise different orbit such thats C s; and |Fs,| = N;. Then by (%),
sequences. So, for every < (B we have a and by the indirect assumption, there is a unique
sequences, = (o> :n € w). Let:w — B be n € w such that|Fy~,| = Ny. Let s;11 = 57 n.

a surjection. Consider the sequende+ O%(n) . In this way we _defined an increasing sequence
n € w) as an input for Lemma 5.5. This lemma (s: : @ € w) of finite sequences. Lef = Uicusi.
produces a new oligomorphic grous; with at ~ Observe, that for any € “*w, if s7t Z f then

Gutn - ; |Fs~¢] < Wy (because otherwise, = st and
least1 + o, many orbits onn-tuples. Finall st . e
we obtain?ga o i ! containiﬁgNl man))// 21 = f|_|sﬁt| would contradict to our indirect
oligomorphic groups with pairwise different orbit assumption). Hence

seguences. ||
g | U Fo—¢] <N

To prove the main result of the section, Lemma te<ww, s~tZf
5.6 would be suitable. For completeness, we showt follows that there existsg # h €
that, in fact, there are™ many oligomorphic per-  f \ U, ;F,~,. But then, for eachn € w
mutation groups ow with pairwise different orbit e haveg|,,h|, C f which impliesg|, = h,

sequences. To do so we need further preparatiorfor eachn. This is impossible, sincg and . are
We start by recalling two well known lemmas. different functions. u



Lemma 5.10:Suppose(G,,,n € w) is a se- sequences, such that each of these orbit sequences
guence of oligomorphic permutation groups suchcontaint, as an initial segment.
that for everyn € w andk > n we haveo,gL" =

09%. Then there is an oligomorphic permutation Let ty = (). By Lemma 5.6 There exisk;
group G such that for everyn € w we have many oligomorphic permutation group with
09 = o9, pairwise different orbit sequences, $o) holds

] for t. Next, suppose, that € <2 and t,
Proof: Supposeg,, acts onX,, that is, the has already been defined such that (a)-(c) are
elements ofG,, are permutations of the sef,.  satisfied. Then, applying Lemma 5.9 we obtain
Let F be a nonprincipal ultrafilter o and let  wo different extensiong., andt,, of ¢, such

X be the ultraproduck’ = Il,,c, Xn/F. ThenG  that () remains true if we replace in it by .,
is defined to be the following permutation group or ¢_ . Let t,~ = t., and lett,~1 = t.,. In this

on X: way (a) and (b) remain true as well, afid can
be completely built up.
G = {{fnnew)/F: (Vnew)(fn€bn)t Now (c) implies, that for everys ¢ <«2

] there exists an oligomorphic permutation group
Then the elements off are permutations of G, whose orbit sequence contains as an
X, G is closed under composition and under jnitial segment. In addition, for every € “2
taking inverses, sa determines a permutation |et G; be the oligomorphic permutation group
group. We claim, thayy satis_fies the conclusion produced by Lemma 5.10 from the sequence
of the lemma. To see this, leb € w be (g, 'n c w). Then,t;, is an initial segment
arbitrary. Then, for every > n, one can fix  of the orbit sequence ofj, for eachn € w.
{s} :i <o} C "X, such that, for fixedk, the  Hence, iff, g € “2 are different, then there exists
s¥’s lying in pairwise different orbits ofj,. For  ,, ¢  with f(n) # g(n), so by (a) and (b)
eachi < of lets; = (sf 1k € w,k > n)/F. Itis tflials gl | = n+ 1 andty,  #tg, . In
easy to see, thatif € "X then there is an < o;  addition, ;. , andt, ., are initial segments of
such thats ands; are in the same orbit @. Hence  the orbit sequences df; and G,, respectively.
It follows, that G; and G, have different orbit
(1) of <oin. sequences. So the sét’ = {G;, f € “2}
) o consists of oligomorphic permutation groups with
Conversely, ifi # j thens; and s; lie in  pajrwise different orbit sequences, as desired.

different orbits ofg, which implies By Lemma 5.7, for every; € H’ there exists
an oligomorphic permutation groupy onw with
(2)  of >ogn. the same orbit sequence, by Lemma 5.8 we may
o assumeF; is closed as well. [ ]
Combining (1) and (2), the statement follows, as
desired. ] Theorem 5.12:There is a finite first order lan-

_ guage L in which there are2® many pairwise
Theorem 5.11:There are2®° many oligomor-  non-isomorphiaX-categorical structures an.
phic, closed permutation groups anhaving pair-

wise different orbit sequences. Proof: First we recall some facts from [7].
Supposéd. is a language containing a distinguished
Proof: First note, that/“w| = 2%, hence unary relation symbolP and let®B be an L-

there are at mos2® many permutation groups structure. We say, that a structuieis an induced
on w having pairwise different orbit sequences. substructure of8 by P iff the universe of2l is
To obtain lower estimation, we show that there P® and the definable relations 8f coincide with
is a setH’ consisting of2%° many oligomorphic, the definable relations dB restricted toP. This
closed permutation groups with pairwise different determinesA up to definitional equivalence, only.
orbit sequences. To do so, first we build a tree By theorem 7.4.8 of Hodges [7], there is a
T = (t;,s € <¥2) where for everys € <+2, finite languagel containing a distinguished unary
the elementst, € <“w satisfy the following relation symbolP such that every,-categorical

stipulations: structure2( (possibly having an infinite language)
is an induced substructure of aty-categorical
(@) [ts] >|s| and if s C s’ thent, C ty; structurell;, by P, where the language &1y, is
(b) s=# s impliesty # ty; L.
(c) there are (at least; many oligomorphic By Theorem 5.11 there exists a $¢t = {F :

permutation groups with pairwise different orbit f € “2} of cardinality 2% containing closed,



oligomorphic permutation groups an with pair-  Theorem 5.13, there exists a thedrysuch that all
wise different orbit sequences. Lemma 5.4 implies,Stone spaces df are finite, but still, 7" does not
that for each”; € H’, there is a countable struc- have aD-presented model.

ture 2 such thatAut(2;) = F;. ThenH” = We conclude this work by noting, that the case
{2, : f € ¥2} is a set of pairwise non-isomorphic, of theories with countably infinite Stone spaces
countable,Xy-categorical structures because theiris still open. From structure theoretic point of
automorphism groups are oligomorphic and haveview this case has “intermediate complexity”. In

pairwise different orbit sequences.
Let 2,8 € H"” be arbitrary, but different.

general, Lemma 3.1 seems unapplicable for them.
However, some striking related results can be

Then they have different orbit sequences, hencdound in [9].

27, cannot be isomorphic t& . In other words,
the function? — 2y is injective onH". Let
H = {A : A € H"}; clearly H contains2te

many pairwise non-isomorphig,-categoricalL-

structures, as desired.
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Theorem 5.13:Let D be a complexity class.

(1) There exists amy-categorical structure in
a finite language which is not isomorphic ta’a
presented structure. (1]

(2) There is a consistent first order theory in a
finitde Ilanguage which does not havé®apresented 2]
model.

Proof: By Theorem 5.12 there exist a finite
languageL and a setH of pairwise non isomor-
phic, countableX,-categorical L-structures such
that [H| = 2% > R;. Now (1) follows from 4
Lemma 3.1.

To show (2), let be a structure satisfying (1) [5]
and letT = Th(2). Since? is Xy-categorical,
every countable model df' is isomorphic to%,
hence such a model cannot Bepresented. ®

(3]

(6]
Remark 5.14: As we mentioned after Lemma
5.6, Theorem 5.13 may be proved more quickly:
by Lemma 5.6 there are (at least) many oligo-  ["]
morphic permutation groups an having pairwise
different orbit structures. By Lemma 5.8 there
are (at least)®; many closed such permutation
groups, combining this with Lemma 5.4 and with
the technique applied in the proof of Theorem |9
5.12, we obtain a finite first order languadeand
N; many pairwise non-isomorphic, countakig-
categorical L-structures; applying Lemma 3.1 to [10]
this family of structures, we also obtain a proof
for Theorem 5.13.

(8]

VI. CONCLUDING REMARKS [11]

The main results of the paper are Theorems
4.1 and 5.13; they can be summarized as follows.
Let T be a first order theory and leb be a
complexity class. According to Theorem 4.17if
has at least one uncountable Stone space Then
has a countable model which is not isomorphic to
any D-presented structure. Moreover, according to
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