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Abstract— Let D be a complexity class.
A countable first order structure is defined to
be D-presented iff all of its basic relations and
functions are in D. We show, that if T is a
first order theory with at least one uncountable
Stone space thenT has a countable model not
isomorphic to any D-presented one. We also show
that there is a countable ℵ0-categorical structure
in a finite language which is not isomorphic to any
D-presented structure; in addition, there exists a
consistent first order theory in a finite language
that does not haveD-presented models, at all.

Our proofs utilize model theoretic methods and
do not involve any nontrivial recursion theoretic
notion or construction.

AMS Subject Classification:03C57, 03D45.
Keywords: Computable structures, complexity
classes, ℵ0-categorical structures, oligomorphic
permutation groups.

I. I NTRODUCTION

Abstract data types (for example, in object
oriented programming languages) may be regarded
as certain first order structures with countable
universe and a set of computable operations and
relations in it. Further, very often it is important
to implement algorithms capable to perform op-
erations in certain countable first order structures
(such as algebraic number fields, rings, countably
infinite Boolean Algebras, or groups, etc.). Imple-
menting such algorithms have theoretical limita-
tions: all the operations and relations should be
recursive in the algorithm theoretical sense. In this

paper we investigate such theoretical limitations,
the main results are Theorems 4.1 and 5.13; they
will be recalled below in the Intorduction after
some technical preparations.

A first order structureA is defined to becom-
putableiff its universe is the set of natural numbers
and all of its basic relations and functions are
recursive (in the computational theoretic sense).
More generally, ifD is a complexity class (like
the set of recursive, or the set of recursively
enumerable relations), then a countable structure
A is defined to beD-presentediff all of its basic
relations and functions belong toD. For a more
precise definition we refer to Section II below.

By some classical results of Ershov, Arslanov
and others, there are countable orderings, Boolean
algebras, etc. which are not isomorphic to any
computable structure.

One of the main aims of model theory is to
describe all structures in which a given theory
(i.e. set of first order formulas) is true. At that
level of generality this ambitious aim seems to be
untractable. Hence, instead of it, model theorists
are trying to characterize those theories which have
a structure theorem, that is, whose models can
be described in a comprehensive way. Recently,
related investigations are very active. Along the
results of Morley, Shelah, Lascar, Hrushovski,
Cherlin, Pillay and others, it turned out, that
theories have a “structure theoretic” hierarchy of
complexity: in some cases the possible models are
relatively easy to describe, in some other cases this
is much more difficult, while in some other cases
such a complete “comprehensive” description of
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all models is impossible for theoretical reasons.
This hierarchy is not as exactly defined as the
computational theoretic one. In order to make
it more precise, one can “measure the structure
theoretic complexity” of a first order theoryT by
the number of pairwise non-isomorphic models of
T of a given cardinality, or by different degrees of
stability, i.e. by the size of the Stone spaces of the
theory (for the definition of Stone spaces we refer
to Section II below). It turned out, that the ele-
ments of the above list are closely related to each
other. Somewhat roughly, but more concretely,ℵ0-
categorical theories (which are the simplest ones
from structure theoretic point of view) have small
(finite) Stone spaces, while the Stone spaces of
unstable theories are of large (uncountable) cardi-
nality; if a theory has an uncountable Stone space
over the empty set, then it has uncountably many
pairwise non-isomorphic countable models.

Some resluts relating model theoretic and re-
cursion theoretic complexity have already been
established. For example, the authors in [9] and
in [8] deal with countable, computable models
of uncountably categorical theories. For further
related results we refer the reader to [10] and to
[6]; they also contain a rather complete list of
references. For more recent related investigations
we refer to [5] and [1].

Some of the known results are “positive”, that
is, they guarantee the existence of a computable
model. Negative results state, that certain mod-
els do not have recursively presented isomorphic
copies (but do not exclude the existence of aD-
presented isomorphic copy, whereD is a higher
complexity class – like the class of arithmetical
relations, for example).

In this paper we are also trying to compare
structure theoretic and computational theoretic
complexities of first order theories, and we are
interested in “strong negative results”, that is, our
aim is to prove that certain theories have countable
models having highly non-computable isomorphic
copies, only. In more detail, the main results of the
paper are Theorems 4.1 and 5.13; to claim them,
let D be an arbitrary complexity class.

In Theorem 4.1 we show that if a theory
T is complicated in the model theoretic
sense (i.e. at least one of it’s Stone spaces
is uncountable) thenT has a “compli-
cated” countable model. More precisely,
T has a countable model which is not
isomorphic to anyD-presented structure.

In Theorem 5.13 we show, that there exist
a finite first order language and a theoryT
in it, which is as simple as possible from

the model theoretic sense (namely,T is
consistent andℵ0-categorical, hence all of
its Stone-spaces are finite), but the unique
countable model ofT does not have aD-
presented isomorphic copy.

To prove theorem 5.13, it would be enough for
us to construct uncountably many pairwise “essen-
tially different” oligomorphic permutation groups
on ω. For completeness, we show in theorem 5.11
that there are2ℵ0 many such groups.

There is another related interesting question
which we are able to answer. LetD be a fixed
complexity class. As we mentioned, a structure
is used to be considered “complicated” from the
recursion theoretic point of view, if it is not
isomorphic to anyD-presented one. It seems to
be also natural to replace “isomorphic” with “ele-
mentarily equivalent” in the above sentence and to
ask whether a first order structure is elementarily
equivalent with aD-presented one. For example, if
D is the class of recursive relations and a structure
A is elementarily equivalent with aD-presented
one, then (some fragments of) the theory ofA
may be algorithmically decided. According to our
knowledge, there are no previous investigations for
structures elementarily equivalent toD-presented
ones. In Theorem 5.13 we also show that

there is a finite languageL and anL-
structureA which is not elementarily equi-
valent to anyD-presented structure (that
is, the first order theory ofA does not have
D-presented models, at all).

Our proofs utilize model theoretic methods and
do not involve any nontrivial recursion theoretic
notion or construction. Since we believe, that
the presented results may be interesting both for
model theorists and for recursion theorists, we will
present more details than as usual. Particularly,
for the readers convenience, sometimes we will
include known proofs in the present paper.

The structure of the paper is as follows. At
the end of the present section we are summing
up our system of notation. In Section II we
recall the recursion theoretic and model theoretic
notions we will dealing with. In Section III we
present some observations which we will use in
later sections. In Section IV we prove Theorem
4.1: if a theory has an uncountable Stone space,
then it has a countable model which does not
have aD-presented isomorphic copy. In Section
V we are dealing withℵ0-categorical structures.
In Theorem 5.13 we show that there is a finite
language L and an ℵ0-categorical L-structure
which does not have aD-presented isomorphic



copy; in addition, there is a consistent first order
theory in L which does not have aD-presented
model. In Theorem 5.11 we also show that there
are 2ℵ0 many closed oligomorphic permutation
groups on ω having pairwise different orbit
sequences. Finally, in Section VI we present a
question that remained open.

Notation

Our notation is mostly standard, but the following
list may help.

Throughout ω denotes the set of natural
numbers and for everyn ∈ ω we have
n = {0, 1, ..., n − 1}. Let A and B be sets.
Then AB denotes the set of functions fromA
to B, |A| denotes the cardinality ofA, [A]<ω

denotes the set of finite subsets ofA and if κ is
an ordinal then<κA denotes the set ofA-termed
sequences of length smaller thanκ. If s and t are
sequences, thens_t denotes their concatenation.

Throughout we use function composition in
such a way that the rightmost factor acts first. That
is, for functionsf, g we definef ◦g(x) = f(g(x)).
Structures are denoted by gothic letters, likeA
or B; the universe of a given structure will
be denoted by the same latin letterA or B,
respectively. The automorphism group of the
structureA will be denoted byAut(A).

II. COMPLEXITY

We start by recalling the notion ofcomplexity
classes.

Definition 2.1: Consider two relations onω,
say R1 ⊂ ωn, and R2 ⊂ ωm. We say thatR1

has areduction to R2, in symbolsR1 ≺ R2, iff
there exsists a recursive algorithm or map, sayM ,
such thatw ∈ R1 ⇔ M(w) ∈ R2. We say that
R1 is recursive relativeto R2.

This definition means thatR2 is at least as a
hard problem asR1. If we have an algorithm
solving the membership problem forR2 then, up
to recursivity, it may also be utilized to solve the
membership problem forR1 as well. It is easy to
see that≺ is a reflexive and transitive relation.
Consequently – as it is well known – the relation
≺ determines an equivalence relation∼ via the
stipulation:

R1 ∼ R2 iff R1 ≺ R2 andR2 ≺ R1.

Definition 2.2: By a complexity classwe mean
an equivalence class of∼ containing relations of
arbitrary arity onω.

These kind of complexity classes are calledTuring
degreesor degrees of unsolvability (see [2]). We
denote them by calligraphic letters likeD. Typical
examples for complexity classes are

• the set of recursive relations;
• the set of recursively enumerable relations;
• the set of arithmetical relations.

(If we had used a reduction with more restrictions
we would have obtained a more detailed classifi-
cation such as Karp–classes, for example.)

We recall the following well known facts from [2].

Lemma 2.3:(1) A complexity class is always
countable; (2) The set of all complexity classes has
cardinality2ℵ0 ; (3) Comlexity classes are partially
ordered by the induced ordering of≺; (4) A set
of complexity classes has an upper bound (under
≺) iff it is countable.

Now we recall some model theoretic notions.
Let κ be a cardinal andT a set of first order

formulas. ThenT is defined to beκ-categorical
iff up to isomorphism,T has a uniqueκ-sized
model. A structure isκ-categorical iff its theory
is κ-categorical.

Let A be a structure,X ⊆ A andn ∈ ω. Then
the nth Stone spaceSA

n (X) of A over X is the
topological dual space of the Boolean algebra ofn-
ary relations definable inA with parameters from
X. Elements ofSA

n (X) are called types (more
precisely, they are calledn-types of A over X).
Similarly, if T is a theory (i.e.,T is a set of first
order formulas) then thenth Stone spaceSn(T )
of T is the topological dual space of the Boolean
algebra ofn-ary relations definable inT ; elements
of Sn(T ) are also called types ofT . For further
details we refer to [7].

III. PRELIMINARY OBSERVATIONS

Let L be a finite first order language andD be
a complexity class. We say, that anL-structureA
has aD-presentation, iff there is a structureB =
〈ω, RB

i 〉i∈L such thatA andB are isomorphic and
for everyi ∈ L, RB

i (as a subset of a direct power
of ω) is in D. In this case we also say, thatB is
D-presented.

Throughout this sectionL denotes a finite first
order language.

Lemma 3.1:LetD be a complexity class. Sup-
pose H is an uncountable family of pairwise



non-isomorphic countableL-structures. Then there
exists A ∈ H such thatA does not have aD-
presentation.

Proof: Let H0 = {A ∈ H : A has aD-
presentation} and for everyA ∈ H0 let D(A) be
aD-presented structure such thatfA : A → D(A)
is an isomorphism betweenA andD(A). Observe,
that for every distinctA,B we haveD(A) 6=
D(B), otherwise(fB)−1 ◦ fA would be an iso-
morphism betweenA andB. Hence, the function
α : A 7→ D(A) is injective. In addition, there
are only countably manyD-presentedL-structures,
so the range ofα is countable. It follows, that
H0 (which is the domain ofα) is also countable.
Consequently, there existsA ∈ H\H0; thisA does
not have aD-presentation.

Corollary 3.2: (1) There is an ordering onω
which does not have a computable presentation.
(2) There is a well-ordering onω which does not
have an arithmetical presentation.

Proof: Since (2) implies (1), it is enough to
show (2). LetH be the set of (isomorphism types
of) countable well-orderings and letD be the set
of arithmetical relations onω. Since|H| = ℵ1, the
statement follows from Lemma 3.1.

IV. T HEORIES WITH MANY TYPES

As we mentioned in the Introduction, a theory
is used to consider “complicated” from model
theoretic point of view iff at least one of its Stone
spaces is of uncountable cardinality. In the present
section we show that if a theoryT has at least one
uncountable Stone space (that is, if there isn ∈ ω
with |Sn(T )| ≥ ℵ1) thenT has a countable model
which does not have a computable presentation
(even does not have aD-presented isomorphic
copy, whereD is an arbitrary fixed complexity
class).

Theorem 4.1:LetD be a complexity class and
let T be a first order theory in a finite language
such that there is ann ∈ ω with |Sn(T )| ≥ ℵ1.
Then T has a countable model which is not
isomorphic to anyD-presented structure.

Proof: We apply transfinite recursion. Sup-
pose that we have a countable set of countable
structures{Aα : α < λ} with λ < ℵ1 such that
they are pairwise nonisomorphic and are models of
T . Each structure can realize only countably many
types fromSn(T ), since a singlen-tuple realizes
a unique n-type. Hence, these countably many
structres realize countably many types alltogether.
Let us choose a typep ∈ Sn(T ) which has

not been realized yet. It follows, that there is a
structureB which realizesp and is a model of
T . The downward Löwenheim–Skolem theorem
implies, that there exists a countable elementary
substructureAλ of B such thatAλ still realizesp.
ThusAλ has the property:Aλ � T, Aλ 6∼= Aα (α <
λ). In this way we constructℵ1 many pairwise
nonisomorphic models ofT . Hence, the statement
follows from Lemma 3.1.

Remark 4.2: It is well-known, that|Sn(T )| ≥
ℵ1 implies |Sn(T )| = 2ℵ0 (see e.g. theorem 6.3.4
of Hodges [7]).

V. ℵ0-CATEGORICAL THEORIES

As we already mentioned, from structure the-
oretic point of view, a theoryT is as simple as
possible, iff it isℵ0-categorical, that is iffT has a
unique countable model.

In this section we show, that there exists an
ℵ0-categorical theory in a finite language whose
unique countable model does not have a com-
putable isomorphic copy (that is, altoughT is
simple from structure theoretic point of view, its
unique countable model is still complicated from
computatinal theoretic point of view).

In addition, we also show that there is a count-
able structure which is not elementarily equivalent
to any computable (or anyD-presented) structures,
whereD is a given complexity class.

We recall a well known result of Svenonius,
Ryll–Nardzewski and others which establishes a
connection betweenℵ0-categoricity and the size
of Stone spaces.

Theorem 5.1:For a theoryT the following
two conditions are equivalent:

(1) T is ℵ0-categorical;
(2) for all n ∈ ω we have|Sn(T )| < ℵ0.

The proof can be found in practically every
monograph on model theory.

To prove our results first we need to re-
call some further known connections between
ℵ0-categorical structures and certain permutation
groups onω.

Definition 5.2: A permutation groupG acting
on the setX is defined to beclosediff for every
permutationf ∈ XX the following holds:

if for every finite s ⊆ X there isgs ∈ G such
that f |s = gs|s, thenf ∈ G.



EquipX with the discrete topology. ThenG is
a closed permutation group iff it is a closed subset
of XX in the corresponding product topology. For
more details we refer to [7].

Clearly, the automorphism group of a first
order structure is closed.

Definition 5.3: A permutation groupG on X
is said to beoligomorphic iff for every n ∈ ω
the group acts on then-tuples in a way that the
number of orbits is finite.

If G is an oligomorphic permutation group on
X andn ∈ ω thenoGn denotes the number of orbits
of G on the set ofn-tuples ofX.

Lemma 5.4:If G is a closed oligomorphic
permutation group onω then there exists anℵ0-
categorical structureA on ω with Aut(A) = G.

Proof: This theorem is well known, a proof
can be reconstructed e.g. by combining Theorems
4.1.4 (b) and 7.3.1 of [7].

Lemma 5.5:For any sequence〈an ∈ ω : n ∈
ω〉 there is an oligomorphic groupG for which
oGn > an for all n ∈ ω.

Proof: The proof can be found e.g. in
Cameron [3] (see Item 3.24 therein).

We say that two oligomorphic permutation
groups F ,G have same orbit sequences iff for
everyn ∈ ω we haveoFn = oGn.

Lemma 5.6:There existℵ1 many oligomor-
phic permutation groups onω with pairwise dif-
ferent orbit sequences.

Proof: We apply transfinite recursion. Sup-
pose we have{Gα : α < β} where β is a
countable ordinal, and theGα’s are oligomorphic
permutation groups with pairwise different orbit
sequences. So, for everyα < β we have a
sequencesα = 〈oGα

n : n ∈ ω〉. Let ι : ω → β be
a surjection. Consider the sequence〈1 + o

Gι(n)
n :

n ∈ ω〉 as an input for Lemma 5.5. This lemma
produces a new oligomorphic groupGβ with at
least1 + o

Gι(n)
n many orbits onn-tuples. Finally

we obtain{Gα : α < ℵ1} containingℵ1 many
oligomorphic groups with pairwise different orbit
sequences.

To prove the main result of the section, Lemma
5.6 would be suitable. For completeness, we show
that, in fact, there are2ℵ0 many oligomorphic per-
mutation groups onω with pairwise different orbit
sequences. To do so we need further preparation.
We start by recalling two well known lemmas.

Lemma 5.7:If G is an oligomorphic permu-
tation group on an infinite set then there exists
an oligomorphic permutation group onω with the
same orbit sequence.

A proof can be found in subsection 2.2 of [3].
The idea is to build a first order structure from
which the group and its action is first order defin-
able, and then apply the downward Löwenheim-
Skolem theorem.

Lemma 5.8:Let G be an oligomorphic permu-
tation group onω and letḠ be its closure (in the
topological sense). Then

(1) Ḡ is an oligomorphic permutation group;
(2) The orbit sequences ofG and Ḡ are the

same.

Proof: (1) is easy; (2) is straightforward.

Next, we present two lemmas we need to prove
that there are2ℵ0 many closed, oligomorphic per-
mutation groups onω with pairwise different orbit
serquences.

Lemma 5.9:SupposeF ⊆ ωω with |F | = ℵ1

and s ∈ <ωω such that for everyf ∈ F we have
s ⊆ f . Then there existsz0, z1 ∈ <ωω such that
z0 6= z1, s ⊆ z0 ∩ z1 and

|{f ∈ F : z0 ⊆ f}| = |{f ∈ F : z1 ⊆ f}| = ℵ1.

Proof: For each t ∈ <ωω let
Ft = {f ∈ F : t ⊆ f}. First observe, that
Ft = ∪n∈ωFt_n, hence

(?) |Ft| = ℵ1 implies (∃n ∈ ω)(|Ft_n| = ℵ1).

Next, assume, seeking a contradiction, that
the statement of the lemma is not true. Lets0 = s
and supposei ∈ ω andsi has already been defined
such thats ⊆ si and |Fsi | = ℵ1. Then by (?),
and by the indirect assumption, there is a unique
n ∈ ω such that|Fs_

i n| = ℵ1. Let si+1 = s_
i n.

In this way we defined an increasing sequence
〈si : i ∈ ω〉 of finite sequences. Letf = ∪i∈ωsi.
Observe, that for anyt ∈ <ωω, if s_t 6⊆ f then
|Fs_t| < ℵ1 (because otherwisez0 = s_t and
z1 = f ||s_t| would contradict to our indirect
assumption). Hence

|
⋃

t∈<ωω, s_t6⊆f

Fs_t| ≤ ℵ0.

It follows that there exists g 6= h ∈
F \ ∪s_t6⊆fFs_t. But then, for eachn ∈ ω
we haveg|n, h|n ⊆ f which implies g|n = hn

for eachn. This is impossible, sinceg andh are
different functions.



Lemma 5.10:Suppose〈Gn, n ∈ ω〉 is a se-
quence of oligomorphic permutation groups such
that for everyn ∈ ω and k ≥ n we haveoGn

n =
oGk

n . Then there is an oligomorphic permutation
group G such that for everyn ∈ ω we have
oGn = oGn

n .

Proof: SupposeGn acts onXn, that is, the
elements ofGn are permutations of the setXn.
Let F be a nonprincipal ultrafilter onω and let
X be the ultraproductX = Πn∈ωXn/F . ThenG
is defined to be the following permutation group
on X:

G = {〈fn : n ∈ ω〉/F : (∀n ∈ ω)(fn ∈ Gn)}.

Then the elements ofG are permutations of
X, G is closed under composition and under
taking inverses, soG determines a permutation
group. We claim, thatG satisfies the conclusion
of the lemma. To see this, letn ∈ ω be
arbitrary. Then, for everyk ≥ n, one can fix
{sk

i : i < oGn
n } ⊆ nXk such that, for fixedk, the

sk
i ’s lying in pairwise different orbits ofGk. For

eachi < oGn
n let si = 〈sk

i : k ∈ ω, k ≥ n〉/F . It is
easy to see, that ifs ∈ nX then there is ani < oGn

n
such thats andsi are in the same orbit ofG. Hence

(1) oGn ≤ oGn
n .

Conversely, if i 6= j then si and sj lie in
different orbits ofG, which implies

(2) oGn ≥ oGn
n .

Combining (1) and (2), the statement follows, as
desired.

Theorem 5.11:There are2ℵ0 many oligomor-
phic, closed permutation groups onω having pair-
wise different orbit sequences.

Proof: First note, that|ωω| = 2ℵ0 , hence
there are at most2ℵ0 many permutation groups
on ω having pairwise different orbit sequences.

To obtain lower estimation, we show that there
is a setH′ consisting of2ℵ0 many oligomorphic,
closed permutation groups with pairwise different
orbit sequences. To do so, first we build a tree
T = 〈ts, s ∈ <ω2〉 where for everys ∈ <ω2,
the elementsts ∈ <ωω satisfy the following
stipulations:

(a) |ts| ≥ |s| and if s ⊆ s′ then ts ⊆ ts′ ;
(b) s 6= s′ implies ts 6= ts′ ;
(c) there are (at least)ℵ1 many oligomorphic

permutation groups with pairwise different orbit

sequences, such that each of these orbit sequences
containts as an initial segment.

Let t〈〉 = 〈〉. By Lemma 5.6 There existℵ1

many oligomorphic permutation group with
pairwise different orbit sequences, so(c) holds
for t〈〉. Next, suppose, thats ∈ <ω2 and ts
has already been defined such that (a)-(c) are
satisfied. Then, applying Lemma 5.9 we obtain
two different extensionstz0 and tz1 of ts such
that (c) remains true if we replacets in it by tz0

or tz1 . Let ts_0 = tz0 and letts_1 = tz1 . In this
way (a) and (b) remain true as well, andT can
be completely built up.

Now (c) implies, that for everys ∈ <ω2
there exists an oligomorphic permutation group
Gs whose orbit sequence containsts as an
initial segment. In addition, for everyf ∈ ω2
let Gf be the oligomorphic permutation group
produced by Lemma 5.10 from the sequence
〈Gf |n , n ∈ ω〉. Then, tf |n is an initial segment
of the orbit sequence ofGf , for each n ∈ ω.
Hence, iff, g ∈ ω2 are different, then there exists
n ∈ ω with f(n) 6= g(n), so by (a) and (b)
|tf |n+1 |, |tg|n+1 | ≥ n + 1 and tf |n+1 6= tg|n+1 . In
addition,tf |n+1 and tg|n+1 are initial segments of
the orbit sequences ofGf and Gg, respectively.
It follows, that Gf and Gg have different orbit
sequences. So the setH′ := {Gf , f ∈ ω2}
consists of oligomorphic permutation groups with
pairwise different orbit sequences, as desired.

By Lemma 5.7, for everyGf ∈ H′ there exists
an oligomorphic permutation groupFf on ω with
the same orbit sequence, by Lemma 5.8 we may
assumeFf is closed as well.

Theorem 5.12:There is a finite first order lan-
guageL in which there are2ℵ0 many pairwise
non-isomorphicℵ0-categorical structures onω.

Proof: First we recall some facts from [7].
SupposeL is a language containing a distinguished
unary relation symbolP and let B be an L-
structure. We say, that a structureA is an induced
substructure ofB by P iff the universe ofA is
PB and the definable relations ofA coincide with
the definable relations ofB restricted toP . This
determinesA up to definitional equivalence, only.

By theorem 7.4.8 of Hodges [7], there is a
finite languageL containing a distinguished unary
relation symbolP such that everyℵ0-categorical
structureA (possibly having an infinite language)
is an induced substructure of anℵ0-categorical
structureAL by P , where the language ofAL is
L.

By Theorem 5.11 there exists a setH′ = {Ff :
f ∈ ω2} of cardinality 2ℵ0 containing closed,



oligomorphic permutation groups onω with pair-
wise different orbit sequences. Lemma 5.4 implies,
that for eachFf ∈ H′, there is a countable struc-
ture Af such thatAut(Af ) = Ff . ThenH′′ =
{Af : f ∈ ω2} is a set of pairwise non-isomorphic,
countable,ℵ0-categorical structures because their
automorphism groups are oligomorphic and have
pairwise different orbit sequences.

Let A,B ∈ H′′ be arbitrary, but different.
Then they have different orbit sequences, hence
AL cannot be isomorphic toBL. In other words,
the function A 7→ AL is injective onH′′. Let
H = {AL : A ∈ H′′}; clearly H contains2ℵ0

many pairwise non-isomorphicℵ0-categoricalL-
structures, as desired.

Theorem 5.13:Let D be a complexity class.
(1) There exists anℵ0-categorical structure in

a finite language which is not isomorphic to aD-
presented structure.

(2) There is a consistent first order theory in a
finite language which does not have aD-presented
model.

Proof: By Theorem 5.12 there exist a finite
languageL and a setH of pairwise non isomor-
phic, countableℵ0-categoricalL-structures such
that |H| = 2ℵ0 ≥ ℵ1. Now (1) follows from
Lemma 3.1.

To show (2), letA be a structure satisfying (1)
and let T = Th(A). Since A is ℵ0-categorical,
every countable model ofT is isomorphic toA,
hence such a model cannot beD-presented.

Remark 5.14: As we mentioned after Lemma
5.6, Theorem 5.13 may be proved more quickly:
by Lemma 5.6 there are (at least)ℵ1 many oligo-
morphic permutation groups onω having pairwise
different orbit structures. By Lemma 5.8 there
are (at least)ℵ1 many closed such permutation
groups, combining this with Lemma 5.4 and with
the technique applied in the proof of Theorem
5.12, we obtain a finite first order languageL and
ℵ1 many pairwise non-isomorphic, countableℵ0-
categoricalL-structures; applying Lemma 3.1 to
this family of structures, we also obtain a proof
for Theorem 5.13.

VI. CONCLUDING REMARKS

The main results of the paper are Theorems
4.1 and 5.13; they can be summarized as follows.
Let T be a first order theory and letD be a
complexity class. According to Theorem 4.1 ifT
has at least one uncountable Stone space thenT
has a countable model which is not isomorphic to
anyD-presented structure. Moreover, according to

Theorem 5.13, there exists a theoryT such that all
Stone spaces ofT are finite, but still,T does not
have aD-presented model.

We conclude this work by noting, that the case
of theories with countably infinite Stone spaces
is still open. From structure theoretic point of
view this case has “intermediate complexity”. In
general, Lemma 3.1 seems unapplicable for them.
However, some striking related results can be
found in [9].
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