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Abstract 

The decline in the amount of water available to plants will lend growing importance 

to the dynamics of water uptake and to water use efficiency (WUE; g kg-1) in cereals. 

Water use properties were investigated in terms of the phenological and yield 

parameters of five winter wheat genotypes in a greenhouse experiment carried out in 

climate-controlled chambers. The plants were grown either with optimum water 

supplies or with simulated drought in two phenophases, combined with different CO2 

concentrations (ambient and enriched to 700 and 1000 ppm). Multivariate analysis 

showed that the CO2 concentration alone significantly influenced water use and 

water use efficiency but in combination with the cultivars, it also had a significant 

influence on the grain yield and in a combination with the water supply on the straw 

biomass, respectively. Higher CO2 concentration significantly reduced the water 

uptake and improved the WUE values in both the drought treatments. All three 

factors investigated were found to have a significant influence on the water 

consumption during the growing season, and the interaction between CO2 and the 

cultivar influenced WUE. The least change in WUE was detected for Bánkúti 1201 

(1.35–1.86 g kg–1), while Mv Mambó, Plainsman V and Mv Toborzó formed a group 

responding similarly to various environmental effects (1.85–2.55 g kg–1; 1.57–2.34 g 

kg–1 and 1.45–2.24 g kg–1, respectively). 

Key words: winter wheat, drought stress, elevated CO2, improve productivity, water 

use efficiency, sustainable agriculture 

Abbreviations 

B: Biomass; BKT: Bánkúti 1201 wheat variety; CAP: Cappelle Desprez wheat 

variety; CO2: Atmospheric carbon dioxide; FNA: First node appearance; GS: Growth 

stage; GY: Grain yield; H: Heading; HI: Harvest index; MAM: Mv Mambó wheat 
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variety; PLA: Plainsman V wheat variety; TGW: Thousand-grain weight; TOB: Mv 

Toborzó wheat variety; WU: Water use; WUE: Water use efficiency. 

1. Introduction 

One of the greatest challenges that will face mankind over the next few decades 

will be the need to satisfy the food requirements of a growing population while the 

available freshwater reserves are declining steadily (Pask and Reynolds 2013). 

Wheat production will play an important role in the food supply of the future, but it 

is highly sensitive to climatic and environmental variations (Parry et al. 1999, 

Semenov and Stratonovitch 2013). Water deficit is one of the main limiting factors 

for cereal production in many parts of the world, especially in arid and semi-arid 

regions (Shahbaz et al. 2009). When endeavouring optimum yields with limited 

water supplies, farmers have the choice of using new water-saving technologies or 

growing varieties that use water more efficiently (Jabran et al. 2015; Zhang et al. 

2008). The limitations in water supplies make it especially important to utilise the 

available soil water reserves as efficiently as possible, which will not always mean 

achieving the highest possible yields (Passioura 2002). Water use efficiency (WUE; 

g kg-1) is a key indicator of drought tolerance. Numerous authors in various parts of 

the world have demonstrated substantial differences between the WUE values of 

individual cereal species (Rizza et al. 2012, Zhang et al. 2013; Morell et al. 2011), 

but have also emphasised the fact that changes in WUE are especially important if 

the water supply to the plants is limited (Varga et al. 2013). Evans and Sadler (2008) 

reported that much additional information is required about actual crop 

evapotranspiration and water use levels when plants suffer different levels of stress 

during different growth stages. As the growth characteristics and tolerance of cereal 

plants are relatively location-specific, crop breeding will have the greatest impact on 
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increasing water use efficiency by selecting varieties with optimal growing season 

length and ripening dates for each region (Passioura 2012; Singh et al. 1991). Earlier 

studies demonstrated that the effect of water deficit on plant phenological 

parameters, water consumption and WUE depended on the development phase of the 

wheat exposed to the stress (Fang et al. 2015; Varga et al. 2013). Crop breeding has 

already contributed to an increase in WUE and is expected to play an important role 

in the future (Passioura 2012). A change in WUE may represent one of the most 

significant plant responses to elevated CO2 (Rogers et al. 1994). Plant growth 

depends on the water stored in the soil or that accumulated through rainfall and 

irrigation. To determine the abiotic plasticity of individual varieties, the phenotypic 

and physiological properties of the plants need to be tested under non-optimal 

climatic conditions (Dahal et al. 2014; Ehdaie et al. 2012; Francia et al. 2011; 

Hoffmann 2008). The rise in CO2 concentration has both direct and indirect effects 

on agricultural production. It has been predicted that the global atmospheric CO2 

concentration may be as high as 700 ppm by the end of the 21st century. For plants 

the CO2 present in the atmosphere is a nutrient, representing one of the raw materials 

required for photosynthesis. An increase in the atmospheric CO2 concentration has a 

direct effect in mitigating drought damage via an increase in the fertile tillers number 

and a reduction in stomatal resistance (Tausz-Posch et al. 2015; Tuberosa 2012; 

Wall, 2001). Many experiments have also been carried out to determine the 

morphological and physiological responses of various plant species to the interaction 

between elevated CO2 concentration and water stress, but it has become clear that the 

magnitude of the CO2 effect is very difficult to predict (Harnos 2002; Bencze et al. 

2000). Elevated CO2 concentrations can improve biomass and yield in C3 crops by 

increasing photosynthesis and decreasing photorespiration, but there are large 
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differences between species in the magnitude of the yield stimulation (Kimball et al., 

2002). No significant yield stimulation has been found so far in C4 crops, at least 

under well-watered conditions, because C4 photosynthesis is saturated at ambient 

CO2. However, in all crops (both C3 and C4), higher CO2 concentrations reduce 

stomatal conductance and transpiration and improve water-use efficiency, i.e. crops 

will have a reduced demand for water (Bender and Weigel 2011). Elevated WUE at 

higher CO2 was attributed by Tuba et al. (2007) not only to an increase in net 

photosynthesis even in the case of moderate water deficiency, but also to the 

permanently low values of evapotranspiration. In another study, the reduction in 

evapotranspiration and the enhancement of net photosynthesis due to elevated CO2 

increased both the instantaneous and whole-plant WUE under both irrigated and 

drought-stressed conditions (Robredo et al. 2007). Elevated CO2 concentration 

enhanced drought tolerance to a greater extent in a sensitive variety than in more 

tolerant genotypes; sensitive plants had a higher assimilation rate at elevated than at 

ambient CO2 under moderate drought stress, while more tolerant genotypes had 

similar values at both CO2 concentrations even under mild stress (Bencze et al. 

2000).  

The aim of the present experiment was to determine (i) how the atmospheric 

CO2 concentration influence the water use and water use efficiency of individual 

cultivars, and (ii) whether there was any difference in the CO2 responses of the 

cultivars in terms of WUE, (iii) whether raising the CO2 concentration to various 

levels modified the response of the cultivars in terms of phenological and yield 

parameters or water use properties, and (iv) which phenological and yield parameters 

influenced water consumption during the vegetation period and which affected WUE 

when drought was simulated by water withholding in various phenophases.  
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2. Materials and Methods 

2.1. Plant Materials and Experimental Layout 

Five winter wheat (Triticum aestivum L.) cultivars (Mv Toborzó /TOB/, Mv 

Mambó /MAM/, Bánkúti 1201 /BKT/, Plainsman V /PLA/ and Cappelle Desprez 

/CAP/) were examined in climate-controlled greenhouse chambers at the Centre for 

Agricultural Research, Hungarian Academy of Sciences. Plainsman V (drought-

tolerant) and Cappelle Desprez (drought-sensitive) were used as check cultivars. 

Bánkúti 1201 is an old Hungarian landrace, with tall plants and excellent baking 

quality due to its special storage protein composition. Mv Toborzó has moderate 

plant height and is the earliest cultivar in the Martonvásár collection. Mv Mambó is a 

hard-grained winter wheat with high yielding potential, which has proved to have 

excellent abiotic stress tolerance in numerous experiments (Varga et al. 2013, Varga 

et al. 2015). After 42 days of vernalisation at 4°C, eight seedlings were planted in 

each pot, containing 10,000 cm³ of a 3:1:1 (v/v) mixture of soil, sand and humus. 

The plants were watered three times a week and nutrient solution was added once a 

week until the start of the drought treatment. The nutrient supplies were the same in 

all the treatments, regardless of water consumption. Water deficit was simulated by 

complete water withholding in two phenophases, at first node appearance (Growth 

stage, GS 21, Zadoks et al. 1974) (FNA) or at heading (GS 60) (H). The treated 

plants were stressed on a single occasion, and the stress treatment was started when 

50% of the plants reached the required developmental stage. The experimental 

design involved 5 genotypes, 3 stress treatments (Control, FNA and H), three CO2 

levels (ambient ~400 ppm; ~700 ppm and ~1000 ppm) and 3 replicates. For plants 

given optimum water supplies the soil water content was maintained at 60% of the 

soil water-holding capacity, equivalent to a volumetric water content (v/v%) of 20–
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25%. The soil water content was measured using 5 TE soil water meters and the data 

were recorded with an EM50 data logger (Decagon Devices Ltd., USA). The soil 

water content dropped from the control level to 3–5 v/v% by the end of the stress 

treatment. After the stress had been simulated for 7 to 10 days, watering was 

recommenced and the plants were given optimum supplies until full maturity. The 

water consumption was determined by weighing the pots on a digital balance 

(Mettler-Toledo Ltd., USA). To minimize evaporation, the soil surface was covered 

with polythene. The air temperature and additional light intensity of the greenhouse 

chamber were regulated automatically. The climatic program was based on the 

analysis of a 50-year time series for Hungary, which is routinely used in phytotron 

studies (Tischner, 1997). The air temperature was increased from the initial 10–12°C 

to 24–26°C over a period of 16 weeks, while air humidity was kept between 60% and 

80% and was regulated by ventilating the greenhouse chambers. Whenever 

necessary, the natural light intensity was enhanced by artificial illumination to a 

value of 500 μmol m–2s–1 at the beginning of the vegetation period, which was 

gradually increased to 700 μmol m–2s–1. The plants were grown in three greenhouse 

chambers of similar type using the same climatic conditions, with the exception of 

the atmospheric CO2 concentration, which was set to the ambient gas concentration 

of ~400 ppm in the control chamber and to ~700 ppm and ~1000 ppm in the other 

two. The CO2 was introduced into the chambers through a network of perforated 

pipes placed at a height of 0.5 m above the plants, and uniform distribution was 

achieved by means of ventilation.  

2.2. Analysis 

The effect of water deficiency was studied by measuring changes in the grain yield 

(GY; g), thousand-grain weight (TGW; g) and aboveground biomass (B; g). The 
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harvest index (HI; %) was calculated by dividing the grain yield by the total 

aboveground biomass. The total quantity of water used was measured throughout the 

vegetation period. The water use efficiency (WUE; g kg-1) was calculated by 

dividing the grain yield (g) by the water used during the vegetation period (WU; 

kg/pot) (Doorenbos and Pruitt 1977). The dynamics of water uptake for the 

individual cultivars was determined by calculating the water quantity utilised during 

each developmental phase. Water consumption was measured by weighing the pots 

and replacing the water on a weight basis. 

2.3. Statistical analysis 

The experimental design involved five genotypes, three watering treatments in three 

replicates, and three CO2 treatments. Multivariate analysis was applied to determine 

the interactions between the factors using the MSTAT-C 1.42 program package 

(Michigan State University, USA), while the Pearson correlation analysis module of 

the SPSS 16.0 program package (IBM Inc, USA) was used to study correlations 

between WU, WUE and various phenological and yield parameters. 

3. Results 

3.1. Analysis of yield components 

When the separate effects of the individual factors were examined, both the 

cultivar and the water supply level were found to have a significant influence on the 

yields throughout the experiment, but the effect of the CO2 concentration was not 

significant in itself (Table 1). In combination with the cultivar and water supply 

effects, the CO2 treatment significantly modified the results, which could be 

attributed to the differing CO2 responses of the cultivars. When the grain yield was 

analysed, no CO2 response was detected for cultivars MAM and BKT, averaged over 
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the water supply levels, while for cultivars PLA and TOB there was only a 

substantial increase in grain yield at the 1000 ppm concentration.  

Table 1 Grain yield (g pot-1) of winter wheat cultivars in various treatments 

(MAM: Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: 

Mv Toborzó; FNA: first node appearance)(Bold indicates the means of one factor and italic 

the means of two or three factors) 

In the case of CAP, there was a rise in the yield at the 700 ppm CO2 level 

compared with 400 ppm, but a considerable decrease was recorded when the CO2 

concentration was enriched to 1000 ppm. Increasing the atmospheric CO2 

concentration to 1000 ppm had a positive effect on the yield of TOB in both the FNA 

and H treatments, compared to the 400 ppm control. The negative effect of water 

deficit on the yield of MAM when applied in the early phase of development was 

partially counterbalanced by a higher CO2 concentration, but when this cultivar was 

exposed to water deficit at heading, the unfavourable effect on the yield quantity 

increased as the CO2 concentration rose. When the yields achieved at various water 

supply levels were averaged over the cultivars, the FNA and H treatments had a 

similarly severe effect on the yield at the various carbon dioxide levels. When the 

cultivars were examined separately, however, considerable differences were 

observed between the two drought stress treatments in terms of the direction of the 

change generated in the grain yield by water deficit and enhanced atmospheric CO2 

concentration. In the case of Mv Mambó the highest grain yield was recorded in the 

FNA treatment at the 1000 ppm concentration, while this CO2 level resulted in 

considerably lower yields when applied at heading than in the C and FNA treatments 

(Table 1). 
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The statistical evaluation of the straw biomass data revealed that the individual 

effects of higher atmospheric CO2 concentration, cultivar and water supply level 

were all significant (Table 2).  

Table 2 Straw biomass (g pot-1) of winter wheat cultivars in various treatments 

(MAM: Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: 

Mv Toborzó; FNA: first node appearance)(Bold indicates the means of one factor and italic 

the means of two or three factors) 

 

Due to the different genetic backgrounds of the cultivars, substantial 

differences were detected between the genotypic responses to both water withholding 

and changes in CO2 concentration. Far higher straw biomass values were recorded at 

enhanced CO2 concentration, especially when drought stress was simulated at first 

node appearance. This was confirmed by the fact that the combined effect of CO2 

and water supplies was found to be significant too.  

Averaged over the water supply levels and CO2 concentrations, the lowest 

straw biomass was recorded for TOB, higher and similar values for PLA and MAM, 

and the highest values for BKT and CAP. Averaged over the water supply levels, 

there was no significant difference between the straw biomass values at the diverse 

CO2 concentrations for MAM and BKT, but the cultivars PLA and TOB responded 

to the 1000 ppm CO2 level with a substantially higher straw biomass compared with 

the 400 and 700 ppm levels. This difference was especially noteworthy in the control 

and for plants stressed at first node appearance (Table 2).  

Table 3 Thousand-grain weight (g) of winter wheat cultivars in various treatments 
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(MAM: Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: 

Mv Toborzó; FNA: first node appearance)(Bold indicates the means of one factor and italic 

the means of two or three factors) 

 

The thousand-grain weight is one of the most useful parameters for detecting 

environmental stress effects, as its value may be influenced not only by the seed-

setting problems caused by water deficit but also by grain-filling anomalies (Table 

3). In the present experiment all three factors had a significant influence on the 

TGW. In all the treatments, lower values of TGW were recorded for cultivars PLA 

and CAP than for MAM, TOB and BKT. In the case of optimum water supplies, the 

TGW generally declined at atmospheric CO2 concentrations of 700 and 1000 ppm, 

compared with that of plants grown at 400 ppm, but this was not true of plants 

exposed to drought stress. This could indicate that the higher gas concentration 

mitigated the unfavourable effects of water withholding. It was found that both water 

withholding (especially in the later stage of development) and elevated atmospheric 

CO2 concentration led to a reduction in TGW. The statistical analysis also revealed 

significant changes in TGW as a result of the interactions between CO2 concentration 

and cultivar, and between cultivar and water supplies (Table 3). 

Table 4 Harvest index (%) of winter wheat cultivars in various treatments 

(MAM: Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: 

Mv Toborzó; FNA: first node appearance)(Bold indicates the means of one factor and italic 

the means of two or three factors) 

In the case of HI, changes could be detected due to both cultivar and water 

supplies alone, while the CO2 concentration had no significant effect on HI in itself 

(Table 4). When drought was simulated at first node appearance, a substantial drop in 
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HI was observed in cultivars MAM and TOB, but this may have been due to the fact 

that these cultivars had significantly higher HI values than the other genotypes when 

given optimum water supplies. Averaged over the cultivars, there was a considerable 

decline in HI even in the FNA treatment, irrespective of the CO2 concentration, while 

this reduction increased substantially compared with the control in plants stressed at 

heading. In general, lower HI values were recorded at higher CO2 concentrations. 

The correlations detected for straw biomass showed that this parameter decreased to 

a smaller extent than the grain yield at higher CO2 level, and this was responsible for 

the changes observed in HI. Averaged over the water supply levels, it was found for 

all the cultivars that plants grown at the highest, 1000 ppm carbon dioxide 

concentration had lower HI values than those grown at 400 ppm. For plants grown at 

various CO2 concentrations it could be seen, averaged over the cultivars, that while 

the 700 ppm concentration caused no significant reduction in HI, and even led to a 

slight increase in the FNA treatment, the 1000 ppm CO2 concentration resulted in 

lower HI values than the 400 ppm concentration at all three water supply levels in the 

H treatment, compared with C and FNA (Table 4). 

3.2. Trends in water uptake and WUE 

When evaluating the water uptake of plants during the vegetation period it was 

found that all three factors alone had a significant influence on the water uptake, 

while the effect of CO2 also exhibited a significant interaction with cultivar and 

water supplies (Table 5). When grown with optimum water supplies, the lowest WU 

value was recorded for TOB, with higher values for PLA and MAM and the highest 

for BKT and CAP. The genotypes exhibited diverse responses to CO2. Cultivars 

MAM, BKT and TOB responded positively to CO2, but this was not true for CAP or 

PLA.  
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Table 5 Water consumption (kg pot-1) of winter wheat cultivars in various treatments (MAM: 

Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: Mv 

Toborzó; FNA: first node appearance)(Bold indicates the means of one factor and italic the 

means of two or three factors) 

When drought stress was simulated at first node appearance, there was 

generally a drop in the water uptake of the cultivars during the growing season, but 

this decline tended to be greatest at the 400 ppm CO2 level, with a less pronounced 

decrease at higher concentrations (Figure 1). The smallest changes in WU were 

observed at 1000 ppm. Averaged over the cultivars, the water uptake was found to 

decrease parallel with the rise in CO2 concentration in the case of optimum water 

supplies. The positive effect of CO2 could also be detected in the drought stress 

treatments, but in the H and FNA treatments the water uptake was not lower at 1000 

ppm than it was at 700 ppm. Averaged over the CO2 concentrations, the lowest water 

uptake was recorded for TOB when water was withheld at first node appearance, 

with higher values for PLA and MAM and the highest for CAP and BKT (Table 5). 

Figure 1 Combined effects of water shortage and elevated CO2 concentrations on the 

water use (kg pot-1) of winter wheat varieties (significant CO2 effect is indicated) (MAM: Mv 

Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: Mv 

Toborzó; FNA: first node appearance) 

Water deficit at heading resulted in a drop in the WU value as the CO2 level 

rose, with the exception of TOB. While WU values similar to those recorded in the 

FNA treatment were found for most of the cultivars at 400 ppm, the water uptake 

tended to decline at higher CO2 concentrations (Figure 1). An intensive drop in water 

uptake has an unfavourable effect on plants, as it may result not only in a reduction 

in the grain yield, but also in forced ripening, e.g. in the case of Mv Mambó. 



14 
 

An analysis of water use efficiency revealed that all three factors had 

significant effects when applied alone, but the interaction between CO2 concentration 

and water withholding was not significant (Table 6). The following WUE values 

were recorded in the treatments for each cultivar: MAM: 1.85–2.55 g kg–1; BKT: 

1.35–1.86 g kg–1; CAP: 0.8–1.84 g kg–1; PLA: 1.57–2.34 g kg–1; TOB: 1.45–2.24 g 

kg–1. The least change in WUE was detected for BKT, while MAM, PLA and TOB 

formed a group responding similarly to various environmental effects. The greatest 

variability was exhibited by CAP. When grown with optimum water supplies, 

differences were found in the CO2 responses of the cultivars. In the case of MAM 

and TOB, WUE rose parallel with the increase in atmospheric CO2 concentration, 

while PLA and BKT had significantly better values of WUE at 700 ppm compared 

with 400 ppm, but the water use efficiency did not improve further at a concentration 

of 1000 ppm (Figure 2). In the control and FNA treatments the WUE value of CAP 

was better at 700 ppm than at 400 ppm, but dropped to below the value recorded at 

400 ppm when the plants were grown at the 1000 ppm concentration. In response to 

water withholding at heading, the WUE values decreased compared to those 

recorded in the control water supply treatment, but averaged over the cultivars the 

1000 ppm concentration had a more favourable effect than in the FNA treatment.  

Table 6 Water use efficiency (g kg-1) of winter wheat cultivars in various treatments (MAM: 

Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: Mv 

Toborzó; FNA: first node appearance)(Bold indicates the means of one factor and italic the 

means of two or three factors) 

Among the cultivars tested, the CO2 response of TOB was the most intensive in 

the H treatment, as also observed in the control and FNA treatments (Figure 2). 

Averaged over the cultivars an increase in the CO2 concentration was associated with 
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a rise in the WUE values, especially in the control and in plants stressed at heading 

(Table 6). The highest WUE values were recorded for drought-stressed plants of 

cultivar MAM treated at first node appearance and grown at a CO2 concentration of 

700 ppm, while for PLA the WUE values were extremely high at all three CO2 

concentrations when the plants were exposed to stress at heading. The WUE value of 

the cultivar MAM did not drop below 2.0 g kg-1 at either of the enhanced CO2 

concentrations, regardless of the water supplies, and was only slightly below this 

value at the 400 ppm concentration (Table 6). 

Figure 2 Combined effects of water shortage and elevated CO2 concentrations on the 

water use efficiency (g kg-1) of winter wheat varieties (significant CO2 effect is indicated) 

(MAM: Mv Mambó; BKT: Bánkúti 1201; CAP: Cappelle Desprez; PLA; Plainsman V; TOB: 

Mv Toborzó; FNA: first node appearance) 

The short-season cultivars TOB and PLA exhibited the lowest WUE values in 

the FNA treatment, but the favourable effects of higher CO2 concentrations were 

most pronounced in this treatment. In the H treatment the highest, 1000 ppm CO2 

concentration fully compensated for the unfavourable effect of water withholding on 

WUE in these cultivars, indicating that the reduction in water use was paralleled by a 

decrease in the grain yield. Averaged over the water supply levels, elevated CO2 

concentration was found to improve the WUE values for all cultivars except CAP 

(Table 6). 

3.3. Correlation analysis 

When all the treatments were included in the analysis, the spike and tiller 

number, the plant height, the total and straw biomass and the harvested grain yield 

were found to have the greatest positive influence on water consumption, and higher 

tiller and spike numbers and greater plant height had a negative effect on WUE 
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(Table 7). The closest correlation was detected between the total biomass, the straw 

biomass and the water use parameters. The dry straw biomass was in positive 

correlation with the water consumption, while the correlation with WUE was less 

close. The atmospheric CO2 concentration did not influence either the WU or the 

WUE values in any of the treatments.  

Table 7 Correlation between water use parameters, environmental factors and plant 

phenological and yield properties 

(FNA: first node appearance; H: heading; WU: total water use; WUE: water use efficiency; 

TGW: thousand-grain weight; HI: harvest index)(Bold indicates significant correlation) 

At optimum water supplies, correlation analysis on phenological and yield 

traits and water consumption parameters revealed that the results obtained for the 

whole experiment were also valid in this case. The only difference was that the tiller 

numbers had no detectable effect on WU and no correlation was observed between 

the spike and tiller number and WUE. There was also no correlation between the 

thousand-grain weight and WU or WUE, and only a weak relationship was found 

between TGW and WUE when all the treatments were analysed together. 

When drought was simulated at first node appearance, no correlation was 

detected between the tiller and spike numbers and WUE, while the plant height and 

straw biomass were only correlated with WU. Higher grain yield had a significant 

positive effect on water consumption in this treatment. Although greater biomass 

increased water consumption in the case of water withholding in the early 

developmental phase, it had no effect on WUE. 

The spike and tiller numbers, which had no effect on WU or WUE in the FNA 

treatment, significantly influenced these parameters when drought was simulated at 

heading. Greater tiller and spike numbers resulted in higher water consumption and 
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less efficient water use. The plant height had no influence on the water use 

parameters in the H treatment.  

No close correlations between WU and either grain yield or thousand-grain 

weight were detected in plants treated at heading. While the biomass only had a 

positive influence on WU in the FNA treatment, in the H treatment a significant 

negative correlation was also found with WUE (Table 7). 

4. Discussion 

It can be seen from the results of simulation models based on the SRES 

(Special Report on Emissions Scenarios) climate scenarios that a slight decline can 

be expected in field crop production, though there may be considerable differences 

depending on the extent to which the positive effects of rising CO2 concentrations are 

exploited (Parry et al. 2004). The direction of climate change is also of outstanding 

importance, as some authors consider that positive changes in climatic conditions, 

combined with developments in cultivation technologies, may increase potential 

wheat yields by 37–101% by 2050 (Ewert et al. 2005). In the present study a rise in 

the CO2 concentration did not result in changes in the grain yield under optimum 

water supplies, averaged over the cultivars, but different CO2 reactions were detected 

for the varieties investigated. At a CO2 concentration of 400 ppm water deficit at first 

node appearance caused a 25.1% loss of yield, while at 700 ppm this figure was even 

higher (30.1%). To some extent, however, the highest, 1000 ppm CO2 level was able 

to counteract the unfavourable effects of water deficit in this early stage of 

development, as a yield reduction of only 20.6% was detected compared with plants 

grown at the same CO2 level with optimum water supplies. When drought stress was 

simulated at heading a similar tendency was observed. The models run by Ewert et 

al. (2002) showed that enhanced CO2 concentration had a greater effect on the yield 
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if the higher CO2 level was combined with drought stress, The present work, 

however, suggested that the interaction between yield and water deficit depended 

partly on the atmospheric CO2 concentration and partly on the phenophase in which 

drought stress was applied. Liu et al. (2013) demonstrated that reducing water use by 

16% compared with the normal water supply level, if divided evenly over the whole 

season, had no effect on the grain production of winter wheat. The results obtained in 

the present work, however, indicated that the simulation of intensive drought in any 

phenophase led to a substantial reduction in the yield, especially in less stress-

tolerant genotypes, even if the plants were given optimum water supplies after the 

stress period. 

It was shown that elevated CO2 concentration increased biomass and yield to 

some extent in C3 and C4 crops under drought conditions (Ottman et al. 2001), while 

Li et al. (2003) found that the dry biomass was significantly greater in well-watered 

plants than in the drought treatment at both CO2 concentrations tested. Opposite 

tendencies were detected at depleted CO2 concentration, which resulted in a 

reduction in photosynthetic acclimation, plant biomass and harvest index (Aljazairi 

and Nogues, 2015). The substantial increase in the CO2 concentration to 1000 ppm 

had no significant effect on the grain yield in the present experiments, but the straw 

biomass was found to decline slightly in response to enhanced CO2 at optimum water 

supplies, averaged over the cultivars. In the case of drought-stressed plants, although 

the straw biomass tended to decrease in both treatments, this reduction was less 

pronounced at 1000 ppm than at 400 ppm or 700 ppm CO2. 

Based on results achieved in climatic chambers, Kang et al. (2002) reported 

that doubling the CO2 concentration reduced evapotranspiration by 17.4% in well-

watered wheat plants, while the reduction was less pronounced in the drought 
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treatment (8.5%). It was stated by Hunsaker et al. (1996) that the water consumption 

of wheat plants grown at enhanced CO2 concentration declined by 5.8% over the 

growing season in the case of optimum water supplies, while this decrease was only 

0.9% when water supplies were limited. In studies on oat (Avena nuda) plants, Lin et 

al. (2012) found a 9.97–12.46% drop in water consumption in response to moderate 

drought stress, with an improvement of 0–9.1% in WUE, but this was associated 

with a grain yield reduction of 2.1–12.76%. The present experiments partly 

confirmed and partly contradicted these results. At optimum water supplies it was 

found that a rise in the atmospheric CO2 concentration reduced the water 

consumption of winter wheat by 14.3% and 16.6% at CO2 concentrations of 700 ppm 

and 1000 ppm, respectively, and similar results were obtained when drought was 

simulated in the heading stage. This suggested that if conditions were optimum prior 

to heading, the favourable effect of CO2 on the water consumption continued to be 

manifested. A similar correlation was detected for water withholding at first node 

appearance in plants grown at 700 ppm CO2 concentration. This can be attributed 

chiefly to the extremely high straw biomass obtained in this treatment, as the 

resumption of optimum water supplies after the drought stress, combined with the 

high atmospheric CO2 concentration, led to intensive tiller formation. 

Li et al. (2013) reported that elevated atmospheric CO2 concentration 

stimulated the growth of soybean plants and improved their WUE values, especially 

in the case of normal water supplies, but the high gas concentration was not found to 

improve the stress tolerance of the plants. The present work confirmed the results of 

Li et al. (2013), as enhanced atmospheric CO2 concentration was found to improve 

WUE to the greatest extent in the case of optimum water supplies. In field 

experiments Kang et al. (2002) recorded WUE values of 0.73–0.93 kg m–3 for winter 
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wheat under rainfed conditions, while these rose to 0.77–1.46 kg m–3 in the case of 

supplementary irrigation. Maintaining water supplies at the optimum level resulted in 

better WUE values. The experiments of Qiu et al. (2008) demonstrated that the WUE 

of winter wheat ranged from 1.13–2.13 kg m–3 depending on the intensity of 

irrigation. In the present work significant differences were found in the WUE values 

of winter wheat as a function of the cultivar and the water supply level. Averaged 

over the cultivars, WUE values of 1.73, 2.05 and 2.04 g kg–1 were recorded under 

optimum irrigation at atmospheric CO2 concentrations of 400, 700 and 1000 ppm, 

respectively. These results are similar to those published by Qiu et al. (2008). The 

simulation of drought at first node appearance led to WUE values of 1.62, 1.84 and 

1.68 g kg–1 at the 400, 700 and 1000 ppm levels, while for water deficit at heading 

these values were 1.64, 1.77 and 1.87 g kg–1, averaged over the cultivars. 

The models run by Guo et al. (2010) revealed that the evapotranspiration of 

winter wheat on the North China Plain could be expected to decrease by 2–14% by 

2030 as a consequence of increasing atmospheric CO2 concentration. The results 

showed that the WUE of winter wheat was likely to improve by 28.01% by 2030, by 

55.8% by 2060 and by as much as 78.1% by 2090. In most plant species elevated 

CO2 concentration was found to reduce the stomatal conductance by 33–50% and the 

leaf transpiration rate by 20–27%, while elevated CO2 increased the canopy WUE by 

15–50% compared with the ambient CO2 concentration (Zhang et al. 1999). The 

results of the present experiment demonstrated that changes on this scale were not 

likely if the joint effects of cultivar, water supplies and various levels of atmospheric 

CO2 concentration were considered. It was found that increasing the CO2 level to 700 

ppm would improve the WUE value by 9.93–19.65% at various water supply levels, 
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whereas the increase at the 1000 ppm concentration would only be 3.53–16.76% 

compared with the 400 ppm CO2 level measured today. 

It was reported by Zhang et al. (2008) that moderate water deficit in the grain-

filling period stimulated the mobilisation of assimilates from the vegetative organs to 

the grains, leading to higher yields and better WUE values. Mitchell et al. (1998) 

found that moderate plant size and straw biomass could be important parameters in 

determining the stress tolerance of plants in an unfavourable environment. The 

present study suggested that a difference could be detected in the parameters 

determining WU and WUE, depending on the phenophase in which water deficit 

occurred. The aboveground biomass, and particularly the straw biomass, was 

positively correlated with water use in all the treatments, but these traits were not 

decisive for WUE when water was withheld at first node appearance. Blum (2005) 

reached the conclusion that leaf size and the number of tillers and spikes could also 

have a substantial effect on the water consumption and WUE when plants were 

exposed to drought stress. This was partially confirmed by the present study, as a 

close correlation was detected between the tiller and spike number and the WU and 

WUE values. The former was negatively and the latter positively influenced by the 

tiller and spike number, but this correlation was only observed when all the treatment 

were analysed together or when drought was simulated at heading. 

The yield and water use properties of the wheat cultivars examined in the 

present work were investigated at various water supply levels at ambient carbon 

dioxide concentration by Varga et al. (2015). Both the present study and the earlier 

work showed that genotype and water withholding both had a substantial effect on 

the yield, and in some cultivars this was more pronounced in the case of elevated 

CO2 concentration, particularly when water supplies were limited. The direction in 
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which higher CO2 concentration influenced the yield compared to that of the control 

plants depended basically on the phenophases in which the plants were exposed to 

the stress, as also reported by Mitchell et al. (1993). In the present work the yields 

tended to be lower than those described for the same cultivars in previous papers 

(Varga et al. 2013, Varga et al. 2015), and the quantity of water consumed during the 

vegetation period was also lower. The values of WUE were higher than those found 

for these cultivars in the previous work, while water withholding resulted in a 

smaller reduction in WUE, especially for the cultivars BKT and CAP. Although the 

present study demonstrated that a rise in the CO2 concentration improved the WUE 

values, there were differences between the cultivars as to whether the best WUE 

values were obtained at 700 or 1000 ppm. However, despite these differences in the 

absolute values, the differences between the cultivars remained the same, and in 

response to water withdrawal the direction and magnitude of the changes also agreed 

with those previously published. 
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