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Highlights 

 SPARTAN binds ssDNA and fork-like DNA structures 

 The DNA binding motif of SPARTAN maps next to the SprT domain 

 The DNA binding by SPARTAN is important for Polη targeting to the stalled replication fork 

 

 

  



 

Abstract 

 

Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma 

pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP 

is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-

free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the 

regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced 

cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with 

Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. 

Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-

binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by 

SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function 

contributes highly to its DNA-damage tolerance function. 

 

  



 

1. Introduction 

 

UV-induced DNA damage is one of the most common lesions originating from exogenous 

sources. Bypass of these lesions during the replication process is essential because its failure may lead to 

either point mutations or replication fork stalling, resulting in genome rearrangements via homologous 

recombination or cell death [1-3].  

The DNA damage tolerance pathway (DDT) is an important pathway in the rescue of the 

replication fork that stalls when encountering damaged bases such as UV-induced thymine dimers or 6-4 

photoproducts [4]. The Rad6/Rad18 ubiquitin ligase complex, whose major function is the 

monoubiquitylation of PCNA, coordinates these DDT pathways [5-7]. It has been described that in yeast 

cells the monoubiquitylation of PCNA by RAD18 is essential for translesion synthesis (TLS) [8]. Further 

processing of Ub-PCNA by RAD5, which results in the K63-linked polyubiquitylation of PCNA, channels 

the rescue process to the template switching pathway, which can proceed by D-loop intermediate or fork 

regression [9-17]. Although PCNA ubiquitylation-dependent regulation is tight in yeasts, in human cells, 

several other components affect pathway selection in DDT besides these posttranslational modifications, 

resulting in a more flexible regulatory mechanism [18-23].  

Spartan is a recently identified member of the damage tolerance pathway whose function is not 

completely clear yet. The targeting of SPARTAN to the stalled replication fork depends mainly on its 

PCNA-interacting (PIP) and ubiquitin-binding zinc finger (UBZ) domains, which can mediate its 

interaction with Ub-PCNA. Additionally, SPARTAN plays an important role in the correct targeting of 

Polη to the stalled replication fork; in its absence, UV-induced Polη foci formation is highly defective [24-

28]. Other publications suggest that SPARTAN is responsible for the targeting of p97 (VCP, vasoline-

containing protein), which is an ATP-dependent segregase and facilitates the dissociation of Polη from the 

site of action [29, 30]. Although the importance of the UBZ and PIP domains in the targeting of Polη is 

clear, defects in these domains do not completely inactivate SPARTAN function. Additionally, 

SPARTAN has a putative protease domain (SprT), whose mutation results in serious deficiency in 

SPARTAN’s functions in vivo [31, 32]. Recently, the DNA binding and DNA dependent protease 

activities of WSS1 has been described, and it was suggested to be the yeast functional homologue of 

human Spartan, based on the domain organization they contain [33]. Given these data, we asked whether 

human SPARTAN can bind to DNA and whether this activity contributes to the targeting of Polη to the 

damaged sites after UV irradiation. We demonstrated that SPARTAN preferentially binds to single-

stranded DNA, and it is unable to bind to double-stranded DNA. Additionally, we showed that SPARTAN 

can also bind to replication fork-like structures exhibiting no ssDNA regions. We determined and mutated 

a DNA-binding box in SPARTAN, which lead to a drastic weakening of its DNA-binding ability. This 

mutant localized correctly after UV damage, but it showed deficiency in survival after UV exposure and in 

Polη foci formation. Based on these phenotypes, we conclude that DNA-binding by SPARTAN is an 

important function in the targeting of Polη to the stalled replication fork. 

 

 

2. Materials and Methods 

 

 

2.1 Plasmids, cloning, and protein purification 

 

Spartan cDNA was cloned into pENTR2B resulting in pIL 2325. Mutant clones were produced by 

mutagenic PCR resulting in a partial, N-terminal Spartan protein: Spartan1-310 (pIL 2680); a full-length, 

DNA-binding-site mutant (K220A K221A G222A K223A) named SpartanA (pIL 2768); and a partial, N-

terminal, DNA-binding-site mutant protein: Spartan1-310A (pIL 2704). 

For the production and purification of wild-type and mutant Spartan proteins, cDNAs were cloned 

in N-terminal fusion with glutathione S-transferase (GST) and Flag-tag under the control of a galactose-



inducible phosphoglycerate promoter. The cloning resulted in GST-Flag-Spartan (pIL 2766), GST-Flag-

Spartan1-310 (pIL2682), GST-Flag-SpartanA (pIL 2769), and GST-Flag-Spartan1-310A (pIL 2707).  

The GST-Flag-Spartan, GST-Flag-Spartan1-310, GST-Flag-SpartanA, and GST-Flag-Spartan1-310A 

proteins were expressed in a protease-deficient yeast strain. Proteins were produced as described 

previously [26]. Proteins were eluted from the beads with 20 mM reduced glutathione in NT buffer, 

resulting in GST-Flag-Spartan proteins. 

For localization studies, we cloned SPARTANA in fusion with an N-terminal Flag-tag in the 

human expression vector pRK2F, resulting in Flag-SPARTANA (pIL 2854). For UV sensitivity and Polη 

foci formation assays, we used GFP-Polη (pIL 1393) and the previously published mutants Flag-

SPARTANSprT (pIL 2337) and Flag-SPARTANPIP/UBZ (pIL 2339) and generated double and triple mutants 

of Flag-SPARTAN in the pRK2F vector by mutating the DNA-binding box in all cases, resulting in Flag-

SPARTANSprT/A (pIL 2825) and Flag-SPARTANPIP/UBZ/A (pIL 2828). All mutants were sequence verified. 

 

2.2 Gel shift assay 

 

Purified GST-Flag-Spartan, GST-Flag-Spartan1-310, GST-Flag-SpartanA, or GST-Flag-Spartan1-310A 

(50, 150 and 450 nM, respectively) was incubated with 0.7 pmol Fluorescein- or Cy3-labelled DNA 

substrates (Table 1 and Table 2) in buffer R (25 mM TRIS pH 7.5, 1 mM ATP, 5 mM MgCl2, 1 mM DTT, 

10% glycerol, 20 ng/µl BSA) for 60 minutes at 4ºC. Samples were run on a non-denaturing 

polyacrylamide gel in 0.5% TB buffer and imaged by Typhoon Trio Imager and its software. The binding 

efficiency was calculated using the ImageJ software. For the supershift assay, purified Spartan was 

preincubated in buffer R with anti-Flag antibody (Sigma, Cat. No. F7425) without DNA for 30 minutes at 

4ºC. After this incubation, DNA was added, and the incubation was continued for another 30 minutes at 

4ºC. Samples were run, and the gel was imaged as mentioned before. 

Preparation of non-single-stranded substrates was performed according to the following protocol: 

the selected oligonucleotides were combined in TE buffer and annealed. In order to get rid of the non-

annealed oligonucleotides, the samples were run on a non-denaturing polyacrylamide gel and imaged 

using the Typhoon Trio Imager. The desired substrates were isolated by cutting them out from the gel 

(Supplementary Figure 1). The isolated gel parts were soaked in water overnight at 4ºC. 

 

 

2.3 Cell cultures and cellular protein localization studies 

 

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (Sigma, Cat. No. D6429) 

supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, Cat. No. 10270) at 37°C. Transfections were 

carried out using Lipofectamine 2000 transfection reagent (Invitrogen, Cat. No. 11668) according to the 

instructions of the manufacturer. 

For cellular localization of Flag-SPARTAN and endogenous PCNA, HEK239 or Spartan shRNA-

expressing stable cell lines were plated on a glass cover slide, then transfected with Flag-SPARTAN-

expressing plasmids. After 48 hours, cells were treated for 8 minutes with a solution containing 10 mM 

TRIS–HCl pH 7.5, 2.5 mM MgCl2, 0.5% NP-40, 1 mM PMSF and fixed with 3% PFA for 10 minutes, 

then washed with 0.1% TritonX-100/1x PBS solution for 10 minutes and incubated for 10% FBS 

containing 0.1% TritonX/1xPBS solution. Immunostainings were carried out using anti-PCNA antibody 

(Santa Cruz, Cat. No. A1211) diluted 1:200, Cy3-conjugated anti-mouse antibody (Sigma, Cat. No. 

C2181) diluted 1:500, anti-Flag antibody (Sigma, Cat. No. F7425) diluted 1:200, and FITC-conjugated 

anti-rabbit antibody (Sigma, Cat. No. F0382) diluted 1:500. Samples were mounted in 25% glycerol in 

phosphate-buffered saline (PBS) containing 0.5 µg/ml DAPI followed by microscopy using an Olympus 

FV1000 confocal laser scanning microscope.  

For DNA polymerase η localization studies, HEK239 and Spartan shRNA-expressing stable cell 

line were plated on a glass cover slide, then transfected with GFP polymerase η and control/Flag-Spartan-

expressing plasmids. After 48 hours, cells were treated with 0.4% NP40 solution for 1 minute, fixed with 



3% PFA for 10 minutes, washed with 0.1% TritonX-100/1x PBS solution for 10 minutes, and mounted in 

25% glycerol in phosphate-buffered saline (PBS) containing 0.5 µg/ml DAPI followed by microscopy, 

using an Olympus FV1000 confocal laser scanning microscope. For quantification, more than 10 

polymerase η foci per cell were used as a criteria to classify a cell as positive. 

 

 

2.4 Cell survival assay 

 

Cell competition-based survival assay was performed as described earlier [26] using GFP-

expressing HEK293 cells as control. HEK293 and, in paralell, HEK293 Spartan shRNA-expressing cell 

lines were transfected with control or Flag-SPARTAN-expressing plasmids and mixed with GFP-

expressing HEK293 cells as published previously [34]. After 48 hours, cells were exposed to 20 J/m
2
 or 

30 J/m
2 

UV (as indicated) and cultured for 7 days. The ratio of co-cultivated GFP-positive and GFP-

negative cells was measured by Flow Cytometer using FACS Calibur. Quantification was carried out with 

the WinMDI software. Cell survival rate was calculated from the ratio of GFP-positive and -negative cells. 

 

2.5 Cell cycle analysis 

 

To examine the effect of Spartan expression on the cell cycle, HEK293 and HEK293 Spartan 

shRNA expressing cell lines were transfected with control or Flag-Spartan-expressing plasmids. After 48 

hours, cells were treated with 20 J/m
2
 UV as indicated. After 3 hours of incubation, cells were collected 

and washed with 1xPBS, then resuspended in 0.1% Sodium citrate, 0.1% TritonX-100, 10 µg/ml RNase, 

10 ng/ml propidium iodide in 1xPBS containing solution, then incubated for 15 minutes at room 

temperature. Flow cytometer analysis was carried out with FACS Calibur, followed by quantification 

measurements with the WinMDI software. 

 

2.6 Statistical analysis 

 

Statistical analysis was carried out using t-student test. Confidence value (p) <0.05 was labelled 

by a single asterisk. Non-significant differences were labelled by NS on all figures. 

 

 

2.6 SPARTAN in vivo chromatin-binding assay 

 

The SPARTAN in vivo chromatin-binding assay was carried out as described earlier [35] Spartan 

shRNA-expressing cells were transfected with Flag-Spartan-expressing plasmids. After 48 hours, cells 

were exposed to 20 J/m
2
 UV light and incubated for 3h, then collected and washed with 1xPBS. For the 

isolation of the non-chromatin-bound fraction, cells were resuspended in 100 mM NaCl, 300 mM sucrose, 

3 mM MgCl2, 10 mM PIPES (pH 6.8), 1 mM EGTA, 0.2% TritonX, and protease inhibitor (Sigma, Cat. 

No. S8820) containing solution followed by incubation on ice with gentle shaking for 5 minutes, then 

centrifuged at 14.000 rpm for 5 minutes at 4
o
C. The supernatant, which contains the free, non-chromatin-

bound fraction, was collected. For the isolation of the chromatin-bound fraction, the pellet was 

resuspended in 50 mM Tris-HCl (pH7.5), 150 mM NaCl, 5 mM EDTA, 1% TritonX-100, 0.1% SDS, and 

protease inhibitor (Sigma, Cat. No.: S8820) containing solution. The samples were incubated on ice for 10 

minutes, then sonicated, followed by a centrifugation at 14.000 rpm for 5 minutes at 4
o
C. The supernatant 

with the chromatin-bound fraction was collected. Both the free and the chromatin-bound fraction was 

boiled and analysed by Western blot. Quantification was carried out using the ImageJ software. 

 

 

 

2.7 Western blot 



 

 Flag-SPARTAN expression was verified with Western blot analysis. Cells were collected, lysed, 

and boiled in 2xSDS-containing buffer for 10 minutes. Electrophoresis was carried out using 10% 

denaturing polyacrilamide gel. After ON blotting, the expression level was detected using anti-Flag HRP-

conjugated antibody (Sigma, Cat. No. A8592) diluted 1:5000. As control, we used anti-PCNA HRP-

conjugated antibody (Santa Cruz, Cat. No. D1811) diluted 1:3000, anti-pol δ antibody (Santa Cruz, Cat. 

No. J2511) diluted 1:2000, and anti-mouse HRP conjugated antibody diluted 1:5000 (Bio Rad, Cat. No. 

170-6516). Detection was carried out using Kodak Imager. 

 

 

 

 

3. Results and Discussion 

 

 

3.1 SPARTAN binds single-stranded DNA and replication fork-like structures 

 

We and others have described previously that Spartan has an important function at the stalled 

replication fork in the targeting of Polη to the site of DNA damage induced by UV irradiation [24-28]. 

Since it has also been suggested that Spartan is the human homologue of yeast WSS1, which is a DNA-

dependent protease [33], we decided to test whether SPARTAN can bind DNA and whether this 

biochemical activity affects its function after UV damage. 

To test its DNA-binding activity, we assayed purified human SPARTAN (Figure 1A) on ssDNA 

substrates of different lengths (Figure 1B). The 24-nt- and the 31-nt-long ssDNA were not preferred 

binding substrates of SPARTAN, while the 42-nt- and the 75-nt-long ssDNA were appropriate for 

binding. To confirm the specificity of SPARTAN’s DNA binding and exclude the possibility of 

aggregation, we verified the specific binding by supershift assay (Figure 1C).  

Spartan was not able to bind the dsDNA form of the 75-nt-long oligonucleotide (Figure 1D, lanes 

5-8), indicating its specificity for ssDNA regions. To further test the DNA-binding property of 

SPARTAN, we used a Y-fork DNA substrate whose binding was as efficient as that of the 75-nt-long 

ssDNA (Figure 1D, lanes 9-12) even though the single-stranded arms were only 30-nt long. Additionally, 

we tested SPARTAN’s DNA binding on a replication fork-like structure, which had dsDNA arms only. To 

our surprise, SPARTAN was able to bind to this replication fork substrate as well (Figure 1D, lanes 13-

16), indicating that perhaps it can bind to the junction point of forks. In summary, we describe here that 

Spartan is a DNA-binding protein which has an affinity to bind to long single-stranded DNA regions and 

to the junction point of the replication fork. 

 

3.2 The N-terminal part of SPARTAN is responsible for the DNA-binding activity 

 

The domain structure of SPARTAN consists of an extremely conserved N-terminal SprT domain 

and a C-terminal part containing many unstructured regions and SHP, PIP, and UBZ domains. Since this 

conserved N-terminal sequence encompasses the SprT domain, which shows similarity to the catalytic 

domain of WSS1 [33, 36, 37], we hypothesized that this region might contain the DNA-binding site. To 

map the DNA-binding domain, we generated and analysed a C-terminally truncated form of SPARTAN 

named SPARTAN1-310 (Figure 2A). As we hypothesized, the DNA-binding activity of SPARTAN1-310 was 

similar to that of the full-length protein (Figure 2B). Interestingly, in all of the experiments where ssDNA 

was present, a double band of DNA binding appeared. According to our explanation, the higher mobility 

band is a single SPARTAN-bound DNA and the slower mobility band is caused by a second SPARTAN 

protein binding. Since binding of the first SPARTAN decreases the accessible surface of the ssDNA, and 

SPARTAN has a much lower affinity to bind short ssDNA, a smear also appears between the two bands. 

Searching for possible DNA-binding motifs in the sequence of SPARTAN1-310, we identified a putative 



DNA-binding box (KKGK) between amino acids 220 and 223 (Figure 2A).To test the contribution of 

these amino acids to the DNA-binding activity of SPARTAN, we mutated all of these four amino acids to 

alanine in SPARTAN1-310, generating the SPARTAN1-310A mutant. When comparing mutants SPARTAN1-

310 and SPARTAN1-310A, we detected a huge decrease in the affinity of binding all types of DNA substrates, 

that is, long single-stranded DNA, Y-fork, and double-stranded fork (Figure 2C). We have to note here 

that this mutation did not completely abolish the DNA binding of SPARTAN. The full-length protein 

containing the four-amino-acid mutation, SPARTANA, displayed a similar decrease in the DNA-binding 

affinity (Figure 2D). In summary, we can conclude that the KKGK box of SPARTAN is one of the main 

determinant motifs of its DNA-binding activity. 

 

3.3 DNA binding is essential for the DNA repair function of SPARTAN  

 

Since we were able to generate a highly defective DNA-binding mutant, SPARTANA, we 

examined how this mutation affects the function of SPARTAN in vivo. First, we tested the localization of 

the SPARTANA mutant protein and found that, similarly to wild-type SPARTAN, it was able to form foci 

that co-localized with PCNA (Figure 3A). Based on this observation, we concluded that the DNA-binding 

box is not essential for the targeting of SPARTAN. This also indicated that the folding of SPARTAN is 

not affected by this mutation since both the C-terminal UBZ and the PIP boxes are necessary for its 

correct targeting to PCNA foci [26]. Moreover, to exclude the possibility that the SPARTANA mutant 

hetero-oligomerizes in vivo with its endogenous wild-type form, we repeated the experiment on a 

SPARTAN-depleted cell line as well (Figure 3B). SPARTANA localization was the same as in the wild-

type cell line, therefore, we suggest that SPARTANA localizes correctly if its DNA binding activity is 

suppressed. It has been shown previously that the loss of SPARTAN results in a late S or G2/M arrest off 

the cells [32]. Therefore, we checked the cell cycle profile of the SPARTANA mutant to exclude the 

possibility that the similar localization pattern compared to the wild-type SPARTAN is due to a cell cycle 

abnormality. Both wild-type and SPARTANA-containing cells exhibited the same cell cycle progression 

(Supplementary Figure 2), proving the correct localization of the SPARTANA mutant. Additionally, since 

it has been described that [32] PIP and UBZ mutations do not affect cell cycle progression either, it is 

possible that SPARTAN’s in vivo DNA-binding function is cooperative with these domains or the 

phenotype is not affected because this DNA-binding-site mutation does not cause a complete loss of 

function. 

Since SPARTANA localizes normally, we were interested in how it can bind to the chromatin in 

vivo. Therefore, we determined the chromatin-bound fraction of wild-type SPARTAN and the 

SPARTANA mutant in SPARTAN-depleted HEK293 cells as described previously [35]. SPARTAN is 

partially in the chromatin-bound fraction, and mutation of its DNA-binding domain resulted in a decrease 

in the amount of SPARTAN in the chromatin-bound fraction (Figure 3C). This result indicates that 

SPARTAN’s DNA-binding site contributes to its anchoring to the DNA. Additionally, since the 

localization of SPARTANA is correct, but the mutation causes an increase in the amount of SPARTAN in 

the non-chromatin-bound fraction, we suggest that this mutation probably reduces the time SPARTAN 

can spend at the site of action, at the stalled replication fork. However, the connection between DNA 

binding and Ub-PCNA binding has to be further analysed. 

Having found that the targeting of SPARTAN is not affected by the DNA-binding-site mutation, 

we analysed how this mutation affects the function of SPARTAN. In our experiments, using a stable 

silenced SPARTAN cell line [26], the sensitivity of the DNA-binding-site mutant SPARTANA was 

comparable to that of the SPARTANPIP/UBZ double mutant and the SPARTANSprT single mutant (Figure 

4A), indicating that DNA binding has an important function in the repair of UV-induced lesions. To 

answer the question of how the DNA binding of SPARTAN contributes to its PIP/UBZ and SprT domain-

mediated function, we analysed the triple mutant SPARTANA/PIP/UBZ and the double mutant 

SPARTANSprT/A. Surprisingly, neither of them were more sensitive than SPARTANA, SPARTANPIP/UBZ, or 

SPARTANSprT alone (Figure 4A).These results strongly suggest that, most probably, all of these domains 



contribute importantly to the repair of UV-induced damage, and the DNA binding of SPARTAN may 

participate in both the PIP/UBZ and the SprT domain-mediated functions.  

UV-induced damage response often acts via TLS, in which Polη is one of the most important 

players. Its absence is responsible for Xerodema pigmentosum variant form (XPV) in humans, which 

results in an increased risk of skin cancer development [38, 39]. Previously, we and others have shown 

that SPARTAN plays a critical role in the regulation of targeting Polη, in which the binding of Ub-PCNA 

via its PIP and UBZ domains is very important [26-28]. In parallel, it has been proposed that - besides Ub-

PCNA binding - another targeting mechanism could be present by which SPARTAN regulates damage 

bypass [25, 26, 32]. Therefore, we tested how the DNA binding of SPARTAN affects Polη foci formation. 

As we described previously, the SPARTANPIP/UBZ double mutant was highly defective in Polη foci 

formation [26]. Although SPARTANA showed only a moderate defect in Polη foci formation, this 

indicates that the DNA-binding domain contributes to the targeting of Polη (Figure 5A and B). 

Additionally, the similarity of the effect of SPARTANA and SPARTANPIP/UBZ on UV sensitivity and the 

difference between their effects on Polη foci formation suggests that the function of SPARTAN’s DNA 

binding is multiform, and it is not limited to the targeting of Polη. The SPARTANSprT mutant was as 

defective in Polη foci formation as SPARTANPIP/UBZ, which indicates that this domain is important for the 

preparation of the stalled replication fork for translesion synthesis. Although at present the real 

biochemical function of the SprT domain is unknown, it represents the most important question in 

understanding how SPARTAN contributes to coping with replication stress. In summary, we can conclude 

that the DNA binding of SPARTAN contributes to the DNA repair function of the protein because its 

failure results in an increased UV sensitivity of the human cells. Furthermore, our results indicate that the 

DNA binding of SPARTAN contributes to the targeting of Polη to the damaged site; however, this may 

not be its only function. 

 

4. Conclusion 

 

Damage bypass during the replication process is one of the major challenges for cells; it is 

essential for the preservation of genome integrity. SPARTAN was described as an important contributor to 

damage bypass after replication stress [24-29, 31, 32]. Although its importance is clear, the mechanism by 

which SPARTAN contributes to the maintenance of genome integrity under strong replication stress has 

not been clarified yet. The identification of its putative yeast homologue, WSS1, - a DNA-dependent 

protease - raised the possibility that SPARTAN has a DNA-binding property [33]. In the current study, we 

characterized for the first time the DNA-binding ability of SPARTAN and its contribution to the bypass of 

UV-induced DNA lesions. We demonstrate that purified SPARTAN binds mainly single-stranded DNA, 

but it has binding affinity to replication fork-like structures having no ssDNA regions as well. We mapped 

the DNA-binding box in the SPARTAN sequence and generated a point mutant SPARTAN that was 

partially defective in DNA binding. Previously, we and others described that the ubiquitylation of PCNA 

regulates the subnuclear targeting of SPARTAN [24-26, 28]. We demonstrate that the DNA binding of 

SPARTAN is not essential for its intranuclear distribution. Although the localization of SPARTANA is 

correct, its function is defective because human cells containing only the DNA-binding-site mutant protein 

show similar UV sensitivity to those containing the PIP/UBZ or the SprT domain mutant protein. 

Moreover, the targeting of Polη is also defective in these cells indicating the contribution of SPARTAN’s 

DNA binding to this process. Our results also reveal that DNA binding must have other roles besides 

contributing to the targeting of Polη; these represent the most intriguing questions to be solved in the near 

future. 
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Figure legends 

 

Figure 1: SPARTAN binds longer ssDNA and fork-like DNA substrates. A) Representation of all 

purified SPARTAN proteins that we used in our biochemical experiments. B) SPARTAN binds longer 

ssDNAs. C) Supershift assay. The addition of anti-Flag antibody to the reaction shifted the mobility of the 

band corresponding to the Flag-SPARTAN DNA complex. D) SPARTAN does not bind to the 75-nt-long 

dsDNA substrate. It binds to Y-fork DNA with similar affinity as the 75-nt-long ssDNA and also has 

affinity to double-stranded fork. Increasing amounts of SPARTAN were incubated with different lengths 

of fluorescently labelled single-stranded oligonucleotides, dsDNA, Y fork, and double-stranded fork, as 

indicated. Reactions were resolved on native polyacrylamide gels and fluorescently labelled DNA was 

detected. 

 

Figure 2: The mapping and function of the DNA-binding box of SPARTAN. A) Schematic 

representation of the domain structure of human SPARTAN. The conserved DNA-binding box with the 

mutated amino acids is indicated. B) The N-terminal part of SPARTAN is responsible for DNA binding. 

Fluorescently labelled ssDNA, Y-fork, and double-stranded fork substrates were incubated with 

SPARTAN or SPARTAN1-310. C) The DNA-binding-box mutant SPARTAN1-310A is defective in DNA 

binding. Fluorescently labelled 75-nt-long ssDNA, Y-fork DNA, and double-stranded fork-DNA 

substrates were incubated with increasing amounts of SPARTAN1-310 or SPARTAN1-310A, as indicated. D) 

The full-length DNA-binding-site mutant SPARTANA is highly defective in DNA binding. Fluorescently 

labelled ssDNA, Y-fork, and double-stranded fork substrates were incubated with SPARTAN or 

SPARTANA, as indicated. Reactions were resolved on native polyacrylamide gels and fluorescently 

labelled DNA was detected. 

 

Figure 3: The DNA binding site of SPARTAN contributes to the targeting of SPARTAN into the 

chromatin fraction. A) Localization of the SPARTANA mutant protein in wild-type HEK293 cell line. B) 

Localization of the SPARTANA mutant protein in SPARTAN-depleted HEK293 cell line. C) Determining 

the amount of SPARTANA in the chromatin-associated fraction. 

 

Figure 4: SpartanA-containing cells are sensitive to UV irradiation. A) UV sensitivity of Spartan 

mutants. Different silencing-resistant Spartan mutants were expressed in Spartan-depleted HEK293 cell 

lines then treated with 20 and 30 J/m
2
 UV irradiation when indicated. The survival rate was analysed using 

a Flow Cytometer. Mean values of triplicates are shown with SD (error bars). Significant difference is 

indicated by asterisk. B) Western blot analysis of the expression level of the different SPARTAN mutants 

used in Figure 4A. 

 

Figure 5: DNA binding by SPARTAN is important for Polη foci formation. A) UV-induced Polη foci 

formation in different SPARTAN mutant-expressing HEK293 cell lines. GFP-Polη was expressed in 

Spartan-depleted stable cell lines that expressed different SPARTAN mutants, as indicated. Cells were 

treated with 20 J/m
2
 UV irradiation. In all cases more than 10 polymerase eta foci per cell were used as a 

criteria to classify a cell as positive. B) Quantitative analysis of the Polη foci-forming ability of different 

SPARTAN mutant-expressing cells. Mean values of triplicates are shown with SD (error bars). Significant 

difference is indicated by asterisk. C) Western blot analysis of the expression level of the different 

SPARTAN mutants used in Figure 5B.  
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Table 2. Sequence of the oligonucleotides used as DNA substrates  
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