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ABSTRACT 
 

The haptophyte Phaeocystis antarctica and the novel Ross Sea dinoflagellate that hosts 

kleptoplasts derived from P. antarctica (RSD; R.J. Gast et al., 2006, J. Phycol. 42 233–242) 

were compared for photosynthetic light harvesting and for oxygen evolution activity. Both 

chloroplasts and kleptoplasts emit chlorophyll a (Chl a) fluorescence peaking at 683 nm 

(F683) at 277 K and at 689 (F689) at 77 K. Second derivative analysis of the F689 band at 77 

K revealed two individual contributions centered at 683 nm (Fi-683) and at 689 (Fi-689). Using 

the p-nitrothiophenol (p-NTP) treatment of Kobayashi et al. (Biochim. Biophys. Acta 423 

(1976) 80-90) to differentiate between Photosystem (PS) II and I fluorescence emissions, we 

could identify PS II as the origin of Fi-683 and PS I as the origin of Fi-689. Both emissions could 

be excited not only by Chl a-selective light (436 nm) but also by mycosporine-like 

aminoacids (MAAs)-selective light (345 nm). This suggests that a fraction of MAAs must be 

proximal to Chls a and, therefore, located within the plastids. On the basis of second 

derivative fluorescence spectra at 77K, of p-NTP resolved fluorescence spectra, as well as of 

PSII-driven oxygen evolution activities, PS II appears substantially less active (~ 1/5) in 

dinoflagellate kleptoplasts than in P. antarctica chloroplasts. We suggest that a diminished 

role of PS II, a known source of reactive oxygen species, and a diminished dependence on 

nucleus-encoded light-harvesting proteins, due to supplementary light-harvesting by MAAs, 

may account for the extraordinary longevity of RSD kleptoplasts.  
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1. Introduction 

 

Chloroplasts are commonly known as the permanent, semi-autonomous, photosynthetic 

organelles of plants and algae. In addition, functional algal chloroplasts exist symbiotically in 

the cytoplasm of some protozoans (ciliates, foraminifera, dinoflagellates) and of a single 

taxon of metazoans (sacoglossan sea slugs) that feed on unicellular algae [1]. The process of 

engulfing algae and using their chloroplasts for photosynthesis by non-photosynthetic host 

cells has been termed kleptoplasty [2]. It is a remarkable type of symbiotic association, 

involving the maintenance of the chloroplasts—the ‘kleptoplasts’— in a functional state 

within a non-photosynthetic host cell.  This is noteworthy because in plant or algal cells the 

majority of genes involved in regulation of the chloroplast have been transferred to the 

nucleus over the long-term evolution of endosymbiosis, which is not likely to occur in short 

term kleptoplast associations. 

Dinoflagellates are a group of unicellular eukaryotes (protists) that includes autotrophic, 

heterotrophic, and mixotrophic species. Kleptoplasty, the temporary retention of functional 

chloroplasts derived from algal prey, has been described for several heterotrophic 

dinoflagellates [3-7]. A novel and abundant dinoflagellate group, related to the icthyotoxic 

genera Karenia and Karlodinium, but without sharing evolutionary history with its plastids, 

was discovered by Gast et al. [8] in the Ross Sea, Antarctica. The kleptoplasts of the novel 

Ross Sea dinoflagellates (RSD) are closely related to the free-living unicellular 

photosynthetic haptophyte Phaeocystis antarctica, a species that often dominates 

phytoplankton blooms in the Ross Sea. The RSD do not grow indefinitely in clonal 

(uniprotistan) culture, and can be maintained for a long-term only in mixed cultures with P. 

antarctica. When deprived of P. antarctica cells, RSD gradually lose their kleptoplasts over a 

period of 5–8 months, or longer [9, 10]. Other kleptoplastidic dinoflagellates generally need 

to acquire new plastids within 1 month, presumably because the acquired kleptoplasts do not 

maintain photosynthetic functionality over longer time periods [3, 6, 11]. On the other hand, 

chloroplasts sequestered within the sacoglossan sea slugs, are capable of photosynthesis for 

approximately 10-months in the absence of algal nuclei [12, 13].  

 Chloroplast functionality depends on a continual signal crosstalk between the chloroplast 

and the cell nucleus and on the importation by the chloroplast of nucleus-encoded and 

cytosol-synthesized proteins [14]. Particularly important among the latter are the Chl-

carotenoid-binding proteins of the light harvesting complexes (LHC) of photosystem II (PS 

II) and photosystem I (PS I). The finding that the RSD-hosted kleptoplasts are active for ex-
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traordinarily long times stimulated our interest in exploring the causes behind it. Toward that 

end, we used fluorometry to compare light harvesting characteristics and PS II-driven O2 

evolution to compare photosynthetic activities of RSD and P. antarctica cells.   

 Chl a fluorescence in vivo has been designated as “the signature of photosynthesis” [15] 

since it carries information not only on the pigment compositions of PS II and PS I but also on 

the dynamic interactions and regulations of complex photosynthetic sub-processes. For 

fluorometry we used suspensions of living cells (at 277 K) as well as frozen cell suspensions 

(at 77 K). Chl a fluorescence emission spectra and their inverted 2nd derivatives were used in 

order to identify the pigment compositions of PS II and PS I and, correspondingly, Chl a 

fluorescence excitation spectra in order to identify the light harvesting pigments that supply 

electronic excitation to reaction center complexes of PS II and PS I [16]. 

  In this report, we present evidence in support for two distinct subpopulations of MAAs in 

P. antarctica and in RSD cells, one cytosolic and the other plastidic and, further, for a 

photosynthetic light harvesting role for the plastidic MAAs. We also show, in terms of 2nd 

derivative analysis of fluorescence spectra, a diminished presence of PS II in the RSD 

kleptoplasts, compared to the P. antarctica chloroplasts. And lastly, on comparing PS II-

driven O2 evolution (a known generator of reactive oxygen species, ROS; see chapters in 

Demmig-Adams et al., ref. 17) we find the PSII of kleptoplasts substantially less active than 

the PS II of chloroplasts. On the basis of these findings, we propose that the reported 

functional longevity of RSD kleptoplasts [10] can be rationalized in terms (a) to a lower 

exposure to ROS and (b) to a lower dependence on nucleus-encoded light harvesting Chl a 

proteins (LHC) because of the supplementary light harvesting by plastidic MAAs.  

 

2. Materials and Methods  

 

2.1. Cell cultures and preparations 

A unialgal culture of P. antarctica was created by picking alga colonies and transferring 

them, through two washes in sterile medium, to fresh filter sterile f/2 + silica medium (culture 

medium) [18]. A culture enriched for RSD was created by collecting the cells from near the 

surface of a mixed RSD and P. antarctica culture. The resulting culture was more than 95% 

enriched in RSD dinoflagellate cells. P. antarctica and RSD cells were re-cultivated from the 

enriched cultures by inoculating cells into culture medium at 0–4 
0
C in an illuminated 

incubator with a photoperiod of 12 h light, 12 h dark.  
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To extract cell suspensions with the water and organic solvent miscible aprotic solvent 

dimethylformamide (DMF; 19, 20), the suspensions were centrifuged, DMF was added to the 

residue, and the resulting DMF extract was obtained after a second centrifugation.  

Total Chl (Chl a+Chl C2) concentration was determined according to Ritchie [21]. 

 

2.2. Absorbance Measurements  

Absorption spectra of cell suspensions were measured with a Hitachi U-3010 UV-visible 

scanning spectrophotometer (Hitachi High Technologies Corporation, Japan) that was 

equipped with a 60 mm integrating sphere, layered on the inside with BaSO4. The spectra 

were scanned from 300 nm to 700 nm, at a speed of 200 nm min
-1

. DMF extracts were 

measured with a Perkin Elmer 557 (PerkinElmer, Inc., Waltham, MA, USA), UV-visible 

scanning spectrophotometer. Displayed spectra are normalized to equal peak heights (= 1) at 

680 nm, in the case of cell suspensions, and at 664 nm in the case of the DMF extracts. 

Normalized spectra of DMF extract were used to derive the respective 2nd derivative inverted 

absorption spectra.   

 

2.3. Measurements of Chl a fluorescence 

Assay samples for fluorometry were prepared by injecting 200 µl cell suspension into 

quartz capillary tubes (2.5 mm internal diameter). Prior to freezing to 77 K with liquid 

nitrogen, the cells were dark adapted for 30 min, at 2-4 
0
C. Fluorescence was excited either at 

436 nm (Δλ = 10 nm; Chl a-selective excitation) or at 345 nm (Δλ = 10 nm; MAAs-selective 

excitation). Chl a fluorescence emission and excitation spectra were measured with a Hitachi 

F-2500 spectrofluorometer (Hitachi High Technologies Corporation, Japan), which was 

equipped with liquid-nitrogen sample housing and a red-sensitive photomultiplier. 

Fluorescence emission spectra were scanned with a detection bandwidth of Δλ= 2.5 nm, and 

with a Corning CS 2-60 cut-off filter to prevent stray exciting light from entering the 

measuring monochromator. Excitation spectra were scanned with a Δλ = 5 nm bandwidth by 

Chl a fluorescence detection either at 683nm for spectra recorded at 277 K, or at 689 nm for 

spectra recorded at 77, with Δλ = 5 nm.  

To quench selectively the Chl a fluorescence that originates PS II, the cells were treated 

with p-nitrothiophenol under illumination with red light (680 nm, Δλ = 5 nm), prior to 

freezing to 77 K and to recording the fluorescence spectrum, as described by Kobayashi [22, 

23]. The red light was obtained from the exciting monochromator of the Hitachi F-2500 

spectrofluorometer.     
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2.4. Photosystem II activity 

PS II activity was determined in terms of photosynthetic O2 evolution, by measuring the 

rate photosynthetic electron transport across PS II, from water, as electron donor, to phenyl-p-

benzoquinone (PBQ) as post-PSII electron acceptor at 2°C [24]. Assays were performed at 4 

0
C (277 K) with a Clark-type oxygen electrode (DW1; Oxygraph, Hansatech, King’s Lynn, 

U.K.) fitted with a slide projector to provide saturating actinic illumination to samples. The 

reaction mixture (1 ml) contained cells (RSD or P. antarctica) and 1 mM PBQ. Oxygen 

evolution rates are expressed in µmolO2 mg (total Chl)
-1

h
-1

. 

 

 

3. Results 

 

The absorption and pigmentation characteristics of P. antarctica and RSD cells are compared 

in Figs. 1(A-C). The two absorption spectra in Fig. 1A appear generally similar, except for the 

lower abundance of MAAs in the RSD cells compared to Phaeocystis. To obtain more 

quantitative values for the abundances of MAAs relative to Chl a in the two cell types, we 

calculated absorbance ratios of MAAs vs Chl a (AMAAs / AChl a) from the spectra in Fig. 1A, in 

the case of the alga and the dinoflagellate cell, and from those in Fig. 1B, in the case of their 

DMF extracts. The relative abundance of MAAs in P. antarctica cells, calculated from the 

absorbance ratio AMAAs/AChla = A325/A440, is ca. 2.11. In the RSD cells, the ratio AMAAs/AChla = 

A340/A440, drops to ca. 0.84, namely to about 40 % of the relative abundance ratio in P. 

antarctica cells. This dramatic drop in the relative abundance of MAAs upon the 

internalization of the alga cell by the dinoflagellate may suggest the co-existence of two 

subpopulations of MAAs in the alga, one cytosolic and more prone to digestion or loss in the 

dinoflagellate and the other plastidic (chloroplasts and kleptoplasts) and less prone to 

digestion. 

 Further corroborating evidence, for the existence of two distinct subpopulations of MAAs 

in P. antarctica and in RSD cells, is provided by comparing the relative MAAs abundances in 

the DMF extracts (Fig. 2B).  In the DMF extract of P. antarctica, the relative abundance ratio 

(calculated from AMAAs/AChla = A325/A436) is ca. 0.24, while in the DMF extract of RSD cells 

(calculated from AMAAs/AChla = A337/A436) it is ca. 0.59. It is important to mention here, that 

DMF extracts chlorophylls quantitatively [19, 20], so the calculated relative MAAs 

abundance ratios of cell suspensions and of DMF extracts are comparable. These results 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

7 
 

show, therefore, that DMF extracts only a small fraction (about 11%) of the MMAs of the P. 

antarctica cells (which are mostly cytosolic) while, in contrast, it extracts about 70 % of the 

MAAs present in the RSD cells (which are mostly plastidic). 

 Detailed information about overlapping bands in an optical spectrum can be obtained 

from an inverted plot of its second derivative [25, 26]. In such plots, individual absorption or 

fluorescence bands are narrower, while the band maxima locations are unchanged. This 

information, together with reasonable estimates of spectral half-band widths, allows the 

deconvolution of a composite spectrum into individual overlapping contributions. Fig. 1C 

displays such inverted second derivative plots of the spectra the DMF extracted pigments in 

Fig. 1B. The broad bands of the latter spectra are resolved in Fig. 1C to individual absorption 

contributions which are assigned (after Zapata et al., ref. 27) as follows: Chl a (431 nm, 664 

nm); Chl c2 (452 nm, 580 nm, 625 nm); fucoxanthin (452 nm); β-carotene and xanthophylls 

(484 nm).  

 Figure 2 displays fluorescence emission spectra of RSD and P. antarctica cells, excited 

either at 345 nm (absorbed mostly by MAAs-specific absorption [28-30] but also by short-

wavelength tails of Chls a+c2; black lines) or at 436 nm (Chl a-specific absorption; grey 

lines), and recorded either at 277 K (A and C, cells active) or at 77 K (B and D, cells frozen). 

With either excitation, Chl a fluorescence peaks at the same wavelength, namely at 683 nm in 

the case of active cells (A and C) and at 689 in the case of the frozen cells (B and D).   

 In interpreting the fluorescence spectra on Fig. 2, it is important to notice that a solution 

of pure Chl a in diethyl ether absorbs at 350 nm  ~24% of the light it absorbs at 428 nm (at 

the Soret peak; see e.g., ref [31]). In view of that, it is quite interesting to notice that by 

exciting RSD cells at 345 nm the generated Chl a fluorescence is ~70% of that generated by 

excitation at 436 nm at 277 K (Fig. 2A) and ~82% of the same at 77 K (Fig. 2B). In either 

case, the expectation would be expected ~ 24%. A likely explanation for the unexpectedly 

stronger fluorescence at the 345 nm excitation is the presence a non-chlorophyll sensitizer 

that contributes to the detected Chl a fluorescence signal. A most reasonable candidate for 

this sensitizer are the MAAs. 

 In contrast, in the case of P. antarctica cells, excitation at 345 nm generates ~26% of the 

Chl a fluorescence generated at 436 nm at 277 K (Fig. 2C) and ~60% of that at 77 K (Fig. 

2D). These results may be explained by the fact that, in P. antarctica cells, MAAs are present 

in the cytoplasm (mostly) as well as in the chloroplasts. Not only the cytoplasmic MAAs 

cannot transfer excitation to Chl a, but they also block a fraction of the 345 nm excitation 
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from reaching the chloroplastidic MAAs. Altogether, these results suggest that the UV-

absorbing MAAs in the chloroplasts transfer electronic excitation to the Chls a in vivo. 

Figure 3 displays inverted second derivative plots of the 77 K fluorescence spectra of P. 

antarctica (black line) and of RSD cells (grey line), excited at 436 nm (Chl a absorption, A) 

and at 345 nm (MAAs absorption, B). These plots show clearly that the fluorescence bands of 

the algal cells and of the RSD cells are composites, each comprising two individual emission 

sub-bands which are centered at 682-683 nm (Fi-683) and at 689 nm (Fi-689). The salient 

observation of this experiment (see Fig. 3B) is that the MAAs of RSD cells are competent in 

exciting both the Fi-683 and Fi-689 sub-bands, although quite remarkably, to different extents: 

MAAs in RSD kleptoplast are less competent in exciting Fi-683 than the MAAs in algal cells, 

whereas with respect to Fi-689, both the alga chloroplast MAAs and the RSD kleptoplast 

MAAs are equally competent.  

 Figure 4 displays excitation spectra of the F683 and the F689 Chl a fluorescence bands 

emitted by P. antarctica cells at 277 K (A) and at 77 K (B) and by RSD cells emitted at 277 K 

(C) and at 77 K (D) respectively. The displayed spectra appear, more or less, similar, except 

that an excitation band at 520 nm is clearly resolved in the 77 K spectra of P. antarctica. (B 

and D). The excitation bands are tentatively assigned as follows [32, 33]: A340 (MAAs); A375 

(MAAs); A440 (Chl a); A465-520 (fucoxanthins, β-carotene, and Chls c2 and c3). Of particular 

interest is the ability of MAAs to sensitize Chl a fluorescence via electronic excitation 

transfer, possibly by other pigments, as suggested by Sivalingam [34].  

 According to Kobayashi et al. [22], p-nitrothiophenol (p-NTP) inhibits electron donation 

to PSII when added to chloroplasts in light, and at the same time it increases the Chl a 

fluorescence that PS II emits (as detected in the 77 K emission spectra). On the other hand, 

when added to chloroplasts in the dark, p-NTP had no effect on the PSII activity and its 

fluorescence. p-NTP has no effect on PS I when added to chloroplasts either in light, or in the 

dark [22].  In the experiment of Fig. 5, we used the p-NTP addition phenomenology, in order 

to assign the Fi-683 and Fi-689 sub-bands (resolved in the 77 K fluorescence spectra of P. 

antarctica and of kleptoplast-hosting RSD cells, see Fig. 3) to PS I and PS II. Emission 

spectra of untreated (black line) and of p-NTP-treated P. antarctica cells (grey line) are 

shown in Fig. 5A and corresponding spectra of RSD cells in Fig. 5B. All spectra are 

normalized to 1 at 689 nm.  

 According to Fig. 5A, and to the inset in it, the treatment of P. antarctica cells with p-

NTP led to an increase of Fi-683 and had no effect on Fi-689 compared to Fi-689. On this basis, 

we assign Fi-683 to PS II and Fi-689 to PS I. In the RSD cells (Fig. 5B), whose Chl a 
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fluorescence is centered at 689 nm, a treatment with p-NTP caused no stimulation of 

fluorescence. We do, therefore, assign, the F689 band of the kleptoplast RSD cells to PS I. 

Apparently, in the latter cells, PS II is much diminished, although not altogether missing, as 

indicated by the presence of a F683 emission in the inverted 2nd derivative kleptoplast 

fluorescence spectra shown in Fig. 3, A and B.  

 If the PSII activity is indeed diminished in the RSD cells, as the fluorimetric data indicate, 

then this should be reflected in their photosynthetic oxygen evolution activity. To confirm this 

expectation, we compared the oxygen evolution activities of P. antarctica and of RSD cells. 

In our experiment, we assayed photosynthetic electron transport from water (as electron 

donor) to phenyl-p-benzoquinone (as post-PS II) electron acceptor. The results are presented 

in Table 1, which shows the measured PS II activity RSD cells to be about 17% of that of P. 

antarctica cells. We conclude, from these results, the role of oxygenic PS II is severely 

diminished in the dinoflagellate-hosted kleptoplasts, compared to that of the alga prey 

chloroplasts.  

 

  

4. Discussion 

In this research we studied and compared the oxygenic photosynthesis of P. antarctica 

and of RSD cells which host kleptoplasts derived from P. antarctica chloroplasts. 

Specifically, we investigated changes in light harvesting photosynthetic pigments and the 

photosynthetic oxygen evolution activities (PS II activities) that accompany the conversion of 

active algal chloroplast to active dinoflagellate kleptoplast.  

 As the emission spectra (Figs. 2 and 3) and the excitation spectra (Fig. 4) of Chl a 

fluorescence show, the UV absorbing MAAs are capable of exciting Chls a of PS II and PS I, 

both in the alga chloroplast and in the dinoflagellate kleptoplast and, therefore, they must be 

included among the photosynthesis light harvesting pigments of these organisms, This result 

stands in conflict with the report of Moisan & Mitchell [23] who detected no Chl a 

fluorescence on exciting P. antarctica with UV light and concluded that MAAs-absorbed 

light is photosynthetically inactive. The discrepancy can be rationalized from the fact that 

Moisan and Mitchell [23] measured Chl a fluorescence at 730 nm (in the far red tail of the 

emission band, cf. Fig. 2) while we measured it at its peak emission (689 nm).  

 According to the classical theory of Th. Förster [35], the efficiency of intermolecular 

resonance electronic excitation transfer depends on two conditions: (a) the overlap between 

the donor emission spectrum and the acceptor absorption spectrum (both expressed in the 
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frecuency domain and normalized); and (b) the close proximity (the so-called R
-6

 law) 

between the interacting molecules.  Of the MAAs that have been identified in P. antarctica 

(mycosporine-glycine, mycosporine-glycine-valine and shinorine; ref. [36]) only shinorine 

has been reported to fluoresce; ref. [37, 38]). This, perhaps, relates to shinorine being a 

cyclohexenimine derivative, while the other two MAAs are cyclohexenone derivatives. When 

excited at 350 nm, shinorine emits weak fluorescence centered around 400 nm and extending 

to beyond 500 nm [39], therefore, its fluorescence overlaps completely with the Soret 

absorption band of Chl a (at 436 nm). The fact that we do see Chl a fluorescence by exciting 

MAAs indicates a close proximity of the MAAs to Chl a hinting to the presence of the MAAs 

within the plastids. 

 In their review, Shick and Dunlap [39] consider the localization of MAAs in chloroplasts 

a possibility that had to be proven. Our results indicate the presence of two distinct 

subfractions of MAAs, one in the cytosol and another in the plastids, that is further supported 

by the absorption spectra of whole cells and of their DMF extracts (Figs. 1, A & B). In P. 

antarctica, the major MAAs fraction is cytosolic. This fraction is expected to screen out UV 

light, but not to sensitize Chls a in the plastids. The plastidic MAAs fraction, on the other 

hand, is expected to sensitize Chl a fluorescence both in alga chloroplasts and in RSD 

kleptoplasts, although more in the latter case since there are no cytosolic MAAs to screen off 

MAAs-selective excitation.   

 The water-splitting and oxygen-generating function of PS II is known to be associated 

with the generation of ROS, such as singlet oxygen (
1
O2) and superoxide radical (O2

-
) which 

cause various kinds of damage to photosynthetic complexes and membranes (see chapters in 

Demmig-Adams et al., ref. 17). To a lesser extent, ROS are also formed in PS I. According to 

Shick and Dunlap (39), in addition to screening off UV light, the MAAs function as 

antioxidants, by scavenging for ROS formed during photosynthesis. In this task, the plastidic 

MAAs may be particularly important by being close to the PS II complexes.    

The possibility to distinguish between the 77 K Chl a fluorescence emissions of PS II and 

PS I enabled us to explore the changes in the light-harvesting pigment complements of the 

two photosystems that take place upon conversion of an active algal chloroplast to an active 

dinoflagellate kleptoplast. As evident from the inverted second derivatives plots on Figs. 3A 

and 3B, in kleptoplasts the excitation share of the PS II is substantially lower than in 

chloroplasts. This may imply a subdued role for PS II and, correspondingly, an enhanced role 

for PS I in the kleptoplast. Indeed, as the experiment on Table 1 confirms, the photochemical 

activity of PS II (assessed in terms of photosynthetic O2 evolution activity) is severely 
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diminished (< 20%) in the kleptoplast-hosting RSD cells compared to the chloroplast hosting 

P. antarctica cells. Thus, the kleptoplast seems to primarily operate its PS I in order to meet 

its requirements in low potential reducing compounds and high energy triphosphates. RSD 

may be viewed, therefore, as efficient photo-heterotrophs, whereas the Phaeocystis prey are 

efficient photo-autotrophs. 

  In conclusion, we suggest that the relative longevity of the RSD kleptoplast can be 

rationalized (a) in terms of a reduced role of PS II and (b) in terms of a lower dependence on 

nucleus-encoded and cytosol-synthesized light harvesting Chl a, c protein complexes, due to 

supplementary light harvesting for photosynthesis by MAAs.  
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Figure Legends 

 

 

Fig. 1. (A) Absorption spectra of P. antarctica (black line) and of kleptoplast-hosting RSD 

cells (grey line). (B) Absorption spectra of DMF extracts of P. antarctica cells (black line) 

and of kleptoplast-hosting RSD cells (grey line). (C) Inverted 2nd derivatives of the spectra in 

Fig. 1(B). Spectra in A are normalized to equal peak heights (= 1) at 680 nm and in B are 

normalized to equal peak heights (= 1) at 664 nm; the normalized spectra in B were used to 

derive the spectra in C. Arrows indicate absorption peaks.   

 

Fig. 2. Chl a fluorescence spectra of kleptoplast-hosting RSD cells (A and B) and of P. ant-

arctica cells (C and D). The spectra were excited using either Chl a-selective excitation (436 

nm, grey lines), or MAAs-selective excitation (345 nm, black lines) and were recorded either 

at 277 K (A and C, cells active), or at 77 K (B and D, cells frozen). 

 

Fig. 3. Inverted 2nd derivative plots of the 77 K fluorescence emission spectra of P. antarc-

tica (black line) and of kleptoplast-hosting RSD cells (grey line), excited either at 436 nm 

(Chl a absorption, A); or at 345 nm (MAAs absorption, B). Fluorescence emission spectra, 

normalized to equal peak heights at 689 nm, were used to obtain the derivative spectra.    

 

Fig. 4. Chl a fluorescence excitation spectra of kleptoplast-hosting RSD cells (A & B) and of 

P. antarctica cells (C & D). The spectra in A & C were recorded at 277 K (Chl a fluorescence 

detected at 683 nm, with Δλ = 5 nm) and those in B & D at 77 K (Chl a fluorescence detected 

at 689 nm, with Δλ = 5 nm). Excitation was scanned from 300 nm to 640 nm, with Δλ = 5 

nm). Arrows indicate the peaks in the spectra. 

 

Fig. 5. Effects of treating P. antartica cells (A), and of kleptoplast-hosting RSD cells (B) at 

277 K, with p-nitrothiophenol under red light (680 nm, Δλ = 5 nm) on their Chl a fluores-

cence spectra at 77 K. Black lines, untreated cells (control); grey lines, treated cells. Inset to 

Fig. 5A: Difference fluorescence spectrum of P. antartica cells (ΔF = F(+p-NTP) ‒ F(p-NTP)). 

Fluorescence was excited at 436 nm (Δλ = 10 nm). 

 

  

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

16 
 

 

 

Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5  
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Table 1 

Photosynthetic oxygen evolution activity by Photosystem II of P. antarctica and of 

kleptoplast-hosting RSD cells. 

----------------------------------------------------------------------------------------------------------------- 

                                                                                 Oxygen Evolution Activity
1
 

  Cells                                                                        (μmol O2 mg (total Chl)
-1

h
-1

) 

---------------------------------------------------------------------------------------------------------------- 

P. antarctica                                                                   114.33 ± 4.02 

RSD-kleptoplasts                                 20.02 ± 6.08 

-----------------------------------------------------------------------------------------------------------------

- 

1
Activity values are means ± s.e (n = 3) 
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Bullets 

 

 

 Ross Sea dinoflagellate kleptoplasts derived from P. antarctica photoevolve O2.           

 

 UV-absorbing mycosporine-like aminoacids (MAAs) sensitize Chl a fluorescence.  

 

 Kleptoplast Photosystem II (PS II) activity is suppressed compared to chloroplasts.   

 

 Less active PS II plus light harvesting by MAAs prolong kleptoplast functionality.   

 

●    RSD is efficient photo-heterotroph, whereas the algal prey is efficient photo-autotroph. 


