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Gábor, Kékesi Katalin Adrienna, Dobolyi Árpád, Maternal alterations in the pro-
teome of the medial prefrontal cortex in rat, Journal of Proteomics (2016), doi:
10.1016/j.jprot.2016.05.013

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/148786829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jprot.2016.05.013
http://dx.doi.org/10.1016/j.jprot.2016.05.013


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

1 

 

MATERNAL ALTERATIONS IN THE PROTEOME OF THE MEDIAL 

PREFRONTAL CORTEX IN RAT  

Katalin Völgyi
1
, Edina Brigitta Udvari

1,2
, Éva Rebeka Szabó

1,3
, Balázs András Györffy

2,4
, Éva 

Hunyadi-Gulyás
5
, Katalin Medzihradszky

5
, Gábor Juhász

2,6
, Katalin Adrienna Kékesi

2,7
, 

Árpád Dobolyi
1*

 

 

1
 MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of 

Physiology and Neurobiology, Institute of Biology, Hungarian Academy of Sciences and 

Eötvös Loránd University, Budapest, Hungary 

2
 Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, 

Hungary 

3 
Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, 

Semmelweis University, Budapest, Hungary 

4 
MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, 

Institute of Biology, Eötvös Loránd University, Budapest, Hungary
  

5 
Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of 

Sciences, Szeged, Hungary 

6 
MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, 

Budapest, Hungary 

7
 Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd 

University, Budapest, Hungary 

 

*
Correspondence: 

Dr. Arpád Dobolyi 

MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of 

Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary 

Pázmány Péter sétány 1C, Budapest, H-1117, Hungary 

Email: dobolyia@caesar.elte.hu 

Tel.: +36-1-372-2500 /8775 

Fax.: +36-1-218-1612 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

2 

 

Abstract 

Proteomic differences between rat dams and control mothers deprived of their pups 

immediately after delivery were investigated in the medial prefrontal cortex (mPFC). 

A 2-D DIGE minimal dye technique combined with LC-MS/MS identified 32 

different proteins that showed significant changes in expression in the mPFC, of which, 25 

were upregulated and 7 were downregulated in dams. The identity of one significantly 

increased protein, the small heat-shock protein alpha-crystallin B chain (Cryab), was 

confirmed via Western blot analysis. Alpha-crystallin B chain was distributed in scattered 

cells in the mPFC, as demonstrated by immunohistochemistry. Furthermore, it was found to 

be localized in parvalbumin-containing neurons using double labeling. The elevation of its 

mRNA level in rat dams was also demonstrated via RT-PCR. 

The functional classification of the altered proteins was conducted using the UniProt 

and Gene Ontology protein databases. The identified proteins predominantly participate in 

synaptic transport and plasticity, neuron development, oxidative stress and apoptosis, and 

cytoskeleton organization. A common regulator and target analysis of these proteins 

determined using the Elsevier Pathway Studio Platform suggests that protein level changes 

associated with pup nursing are driven by growth factors and cytokines, while the MAP 

kinase pathway was identified as a common target. A high proportion of the proteins that 

were found to be altered in the mPFC are associated with depression. 

 

Biological significance 

The behavior and emotional state of females change robustly when they become 

mothers. The brain, which governs these changes, may also undergo molecular alterations in 

mothers. As no proteomics approaches have been applied regarding maternal changes in the 

brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center 
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of maternal control and the associated mood changes. The high number of protein-level 

alterations found between mothers taking care of their litter and those without pups indicates 

that pup nursing is associated with cortical protein-level changes. Alterations in proteins 

participating in synaptic transport, plasticity and neuron development suggest neuroplastic 

changes in the maternal brain. In turn, the relatively high number of altered proteins in the 

mPFC associated with depression suggests that the physiological effects of the protein-level 

alterations in the maternal mPFC could promote the incidence of postpartum depression. 

Alpha-crystallin B chain, a protein confirmed to be increased during maternal behaviors, was 

selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated 

with depression. The function of alpha-crystallin B chain should be further investigated to 

establish whether it can be used to identify drug targets for future drug development.  

 

Keywords: maternal behavior, depression, 2-D DIGE, alpha-crystallin B chain - Cryab, 

synaptic transport and plasticity, common regulator and target analysis, parvalbumin positive 

GABAergic interneurons 
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Introduction 

The behavior and the emotional state of females changes immensely as they become 

mothers. Female rats avoid or even hurt pups, while mothers take care of their pups and 

defend them against intruders [1]. Maternal behaviors in postpartum rats include nest building, 

the retrieval of pups to the nest, the licking of pups, and the adoption of appropriate postures 

for suckling [2]. These behavioral alterations are accompanied with reduced anxiety- and 

depression-like behaviors, and increased aggressiveness towards intruders [3-5]. The highest, 

cortical control influencing maternal responses implies the involvement of the medial 

prefrontal cortex (mPFC) in maternal adaptations [6-8]. In addition, the mPFC is part of the 

limbic system and is associated with emotional changes, including anxiety, stress responses, 

and depression, as well as aggression [9-15]. Impaired maternal responsiveness in human 

mothers suffering from postpartum depression (PPD) has been shown to be associated with 

reduced activity in brain areas corresponding to the mPFC [16-18]. Approximately 13% of 

women experience PPD within 14 weeks after giving birth [19], and 19% of women 

experience a depressive episode during pregnancy or during the first 3 months postpartum 

[20]. PPD has both immediate and long-term effects on a mother’s mental health, as well as 

negative effects on the development of their children [21-23]. Women suffering from PPD 

display a disturbed mother-infant relationship, decreased responsiveness to the demands of 

parenting, mood disorders, symptoms of anxiety and confusion [24,25]. During the pregnancy 

and postpartum, mothers have to face new problems. An elevated anxiety and stress level at 

the time of pregnancy are one of the major risk factors for PPD [26,27]. These stressful factors 

can increase a mother’s vulnerability and the onset of mental illness [28,29]. 

While the involvement of the mPFC in orchestrating maternal behavior and related 

emotional changes is well-established, little is known about the underlying molecular 

mechanisms except that the maternal alterations are not simply due to changes in hormone 
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levels [2,30,31]. Estrogen and progesterone contribute to maternal adaptations during 

pregnancy, but they are not required for the maintenance of maternal responsiveness, and 

even ovariectomized female rats can be induced into a fully maternal state by prolonged pup 

exposure [1]. Furthermore, motivational and emotional states also change in rats in the 

postpartum period [32,33]. Therefore, we hypothesized that the behavioral and emotional 

changes in rat mothers are accompanied by alterations in the brain at the protein level. 

Because proteomics has not been applied to reveal protein-level alterations in the maternal 

brain, we compared protein levels in brain tissue homogenates from maternal and non-

maternal rats. One group of animals consisted of mother rats 11-12 days after parturition. To 

focus on protein-level changes associated with maternal care and eliminate pregnancy-

induced alterations, the control group consisted of mother rats whose litter was removed 

immediately after delivery. These rats no longer show maternal behaviors by the time the 

brain tissue samples were collected [34], but they went through pregnancy, parturition and all 

of the associated hormonal changes prior to litter removal. 

 

Methods 

Animals 

Animals were kept under standard laboratory conditions with 12-hour light and dark 

periods (lights were on from 08.00 am to 08.00 pm). Food and water were supplied ad 

libitum. The care and experimentation of all animals conformed to the Hungarian Act of 

Animal Care and Experimentation (1998, XXVIII) and to the guidelines of the European 

Communities Council Directive, 86/609/EEC as well as with local regulations for the care and 

use of animals for research. 

A total of 46 adult Wistar rats were used in the study. The number of pups of rat dams 

was adjusted immediately after parturition. In the maternal groups, the litters were adjusted to 
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8 pups, and pups were removed from the control groups (pup-deprived mothers). For 

perfusions and dissections, rats were anesthetized with an intramuscular injection of 

anesthetic mix containing 0.2 ml/300 g body weight ketamine (100 mg/ml) and 0.2 ml/300 g 

body weight xylazine (20 mg/ml) and sacrificed at 11-12 days postpartum. For proteomics, 

Western blot and RT-PCR analyses, the mPFCs were dissected from the freshly removed 

brains. For immunohistochemistry, the rats were transcardially perfused with saline followed 

by 4% paraformaldehyde. 

 

Microdissection of brain tissue samples 

 The brains of 20 mothers with litters and 20 pup-deprived control rats (mothers whose 

pups were removed immediately after parturition) were dissected. Coronal brain sections (2-

mm thick) were prepared with a razor blade. The anterior level of the optic chiasm (bregma 

level: +0.3 mm) was used to determine the antero-posterior levels. For the dissection of the 

mPFC sample, first a coronal section was cut between bregma levels 4.3 and 2.3. 

Subsequently, the ventral 1.5 mm of this section containing the anterior olfactory nucleus was 

removed, and then, vertical cuts were made 1 mm lateral to the midline to include the mPFC 

from both sides of the brain (Figure 1). The dissected tissue samples were quickly frozen on 

dry ice, and stored at -80 
o
C. 

 

Proteomic analysis via two-dimensional differential gel electrophoresis (2-D DIGE) 

For the proteomic analysis, mPFC dissected from 6 mothers with litters and 6 pup-

deprived control rats were used. The details of the 2-D DIGE protocol has been described in 

our previous study [35]. The 2-D DIGE minimal dye labeling method was used. Equipment 

and software were supplied by GE Healthcare, Little Chalfont, UK. Briefly, proteins from the 

homogenized brain tissues were acetone-precipitated and then re-suspended in a lysis buffer 
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containing 7 M urea, 2 M thiourea, 4% CHAPS, 20 mM Tris and 5 mM magnesium-acetate. 

The pH of the samples was adjusted to 8.5, and the protein concentrations were determined 

with a 2-D Quant Kit. Samples (50 µg) were labeled using a CyDye DIGE Fluor Minimal 

Labeling Kit according to the manufacturer’s instructions. The maternal and pup-deprived 

tissue samples were randomly labeled with Cy3 and Cy5, and the internal standard (a pool of 

equal amounts of all samples from the experiment) was labeled with Cy2 fluorescent dye. The 

three differently labeled protein samples were merged, and six mixtures (six simultaneous 

gels) were run. Isoelectric focusing was performed on 24 cm IPG strips (pH 3–10 NL) for 24 

h in an Ettan IPGphor instrument to attain a total of 80 kVh. The voltages applied in each 

mode were as follows: 30 V for a 3 h step, 500 V for a 5 h gradient, 1,000 V for a 6 h 

gradient, 8,000 V for a 3 h gradient, and 8,000 V for a 6 h step. Focused proteins were 

reduced and then alkylated in equilibrating buffers containing mercaptoethanol and 

iodoacetamide, respectively, for 20–20 min. Subsequently, the IPG strips were loaded onto 

10% polyacrylamide gels (24×20 cm), and SDS-PAGE was performed using an Ettan DALT 

Six System. Gels were scanned with a Typhoon TRIO+ scanner, selecting appropriate lasers 

and filters. Gel images were visualized using ImageQuant TL software. A differential protein 

analysis was performed using DeCyder 2D 7.0 software with the Differential In-gel Analysis 

(DIA) and Biological Variance Analysis (BVA) modules. The internal standard contained 

equal amounts from the same sample in all gels, and the changes in fluorescence intensity of 

the protein spots were normalized to the values of the corresponding internal standard. 

Independent Student’s t-tests were performed to determine the statistical significance of 

changes in protein abundance, with a cut-off of p < 0.05 for each protein spot. 

 

Preparative two-dimensional gel electrophoresis for protein identification 
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For the identification of proteins in the spots of interest, a separate preparative two-

dimensional gel electrophoresis was performed using a total of 800 µg of protein per gel. 

Resolved protein spots were visualized using Colloidal Coomassie Blue G-250 (Merck, 

Darmstadt, Germany). 

 

Protein identification by mass spectrometry 

2-D DIGE gel-separated protein spots were cut from the gel and in-gel digested for 

mass spectrometry-based protein identification using the protocol available on-line 

(http://msf.ucsf.edu/protocols.html). After reduction with dithiothreitol (DTT) and alkylation 

with iodoacetamide (IAM) the proteins were digested with trypsin (sequencing rate modified 

trypsin from pig pancreas, Promega). Tryptic peptides were subjected to LC-MS/MS analysis 

on an LCQ-Fleet ion trap mass spectrometer (Thermo) coupled in-line with a nanoAcquity 

HPLC system (Waters). Peptide extracts (5 µl of the 10 µl sample) were injected into the 

nano-HPLC system using a trap column (Symmetry C18, 0.18×20 mm, 5 µm, Waters) and 

were analyzed in a BEH300C18 1.7 um (0.1 × 100 mm) nanoAcquity UPLC column (Waters) 

using a gradient elution (10-40% B solution over 30 minutes, B solution: 0.1 % formic acid in 

acetonitrile, A solution: 0.1% formic acid in water). MS data were acquired in a data-

dependent fashion using a triple play method, with each survey scan followed by zoom scans 

and CID scans (normalized collision energy: 35) of the 3 most abundant, multiply charged 

precursor ions. Dynamic exclusion was set to 30 sec. Mascot Distiller (ver: 2.2.1.0) was used 

to generate the MS/MS peak list files (mgf) from the raw data and the ProteinProspector (v. 

5.3.0.) search engine was used for the database search. We used the following parameters for 

the search: database: UniProtKB.2011.03.30 HUMAN RODENT (218476/14423061 entries 

searched); enzyme: trypsin with maximum 2 missed cleavage sites; fixed modifications: 

carbamidomethyl (C); variable modifications: acetyl (protein N-term), Gln->pyro-Glu (N-
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term Q), oxidation (M); peptide mass tolerance: ± 0.6 Da; fragment mass tolerance: ± 1 Da. 

Proteins identified with at least with 2 unique peptides (minimum peptide score: 15) were 

considered as a valid hit. 

 

Functional clustering 

Significantly altered proteins were clustered on the basis of the protein annotations in 

the UniProt (http://www.uniprot.org/) and Gene Ontology (http://geneontology.org/) 

databases. The proteins were clustered into groups according to their most relevant cellular 

functions. 

 

Bioinformatic analysis of significant protein changes  

The interactions between significantly altered cortical proteins were analyzed using 

the Elsevier Pathway Studio Platform. We selected common regulator and target proteins 

having a minimum of 4 relationships with the significantly altered maternal proteins from the 

experimental results. For further analysis, common regulators and targets connected with 

Cryab were selected.  

 

Validation of the significantly altered proteins via Western blot (WB) analysis 

For Western blotting, mPFC dissected from 6 mothers with litters and 6 pup-deprived 

control rats were used. The protein with highest fold change in expression level in the mPFC 

was shown to be alpha-crystallin B chain (Cryab), thus, we selected it for validation via WB 

analysis. We used the same samples that were utilized in the 2-D DIGE method. Both 

maternal and pup-deprived samples (n=6-6) weighed 100 µg. Proteins were separated with 

Tricine-SDS-polyacrylamide gel electrophoresis on 15% polyacrylamide gels and then 

transferred to Hybond-LFP PVDF transfer membranes (GE Healthcare). The membranes were 
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blocked with 5% BSA in Tris-buffered saline with 0.1 % Tween 20 (TBS-T). The blots were 

incubated with the 1:1 mixture of goat anti-Cryab primary antibody (sc-22391, Santa Cruz 

Biotechnology) at a 1:500 dilution and mouse anti-CoxIV primary antibody at a 1:1,000 

dilution (sc-58348, Santa Cruz Biotechnology). Subsequently, the membranes were washed 

for 4 x 5 min in TBS-T followed by an incubation with a 1:1 mixture of CruzFluor 488 

conjugated anti-goat (1:1,500 dilution, Santa Cruz Biotechnology) and Cy3 conjugated anti-

mouse IgG secondary antibodies (1:2,500 dilution, GE Healthcare). After washing the 

membranes in TBS-T and then in TBS, the bands were visualized using a Typhoon TRIO+ 

scanner. Fluorescence intensities were quantified using ImageQuant TL software. The 

densitometry data for the intensity of each protein band were analyzed with ImageJ software 

(NIH, Bethesda). Densitometric values of the Cryab protein bands were normalized to the 

densities of the CoxIV loading control protein bands of the same sample. Differences between 

maternal and pup-deprived samples were statistically analyzed using independent two-tailed 

Student’s t-test (Prism 5 for Windows, GraphPad Software, Inc., La Jolla, CA). 

 

Quantitative RT-PCR (qRT-PCR) 

For qRT-PCR analysis, mPFC dissected from 8 mothers with litters and 8 pup-

deprived control rats were used. A quantitative real-time RT-PCR analysis was performed for 

Cryab in the maternal and pup-deprived mPFC samples as described previously [36]. The 

total RNA was isolated from the microdissected mPFC using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instructions. After diluting RNA to 2 g/l, it 

was treated with Amplification Grade DNase I (Invitrogen) and cDNA was synthesized with a 

Superscript II reverse transcriptase kit (Invitrogen), according to the manufacturer’s 

instructions. After a 10-fold dilution, 2.5 µl of the resulting cDNA was used as a template in 

PCR reactions using SYBR Green dye (Sigma, St. Louis, MO). The PCR reactions were 
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performed with a CFX96 Real-time System (Bio-Rad Laboratories, Hercules, CA) using iTaq 

DNA polymerase (Bio-Rad Laboratories) in total volumes of 12.5 µl under the following 

conditions: 95 
o
C for 3 min, followed by 40 cycles of 95

 o
C for 0.5 min, 60 

o
C for 0.5 min and 

72 
o
C for 1 min. There were 4 genes, which did not change between the mother and control 

groups, used as references: Beta actin (Actb), Cytochrome c oxidase subunit IV isoform 1 

(Cox4i1), Glyceraldehyde-3-phosphate-dehydrogenase (Gapdh), and Lactate dehydrogenase 

A (Ldha). The GenBank accession numbers and the primers used in the study are listed in 

Table 1. Primers were used at a final concentration of 200 nM. Cycle threshold values (CT 

values) were obtained from the linear region of the baseline-adjusted amplification curves 

using Bio-Rad CFX Manager software (Bio-Rad Laboratories). The dCT method was used to 

calculate the changes in the expression of Cryab in relation to the average of the 4 reference 

genes. Statistical comparisons (Prism 5 for Windows, GraphPad Software, Inc) were made 

using Student´s t-test. 

 

Immunohistochemistry (IHC) 

For the immunohistochemistry, mother and pup-deprived rats (3-3) were deeply 

anesthetized and fixed with 4% paraformaldehyde via transcardially perfusion. Brains were 

removed and postfixed in 4% paraformaldehyde for 24 h then transferred to 20% sucrose in 

phosphate buffer (PB, pH=7.4) for 48 h. Serial coronal brain sections were cut at 40 µm on a 

sliding microtome. Sections were collected in PB containing 0.05% sodium-azide and stored 

at 4 
o
C. The mPFC sections were incubated in anti-Cryab primary antibody (1:20 dilution) 

followed by a biotinylated anti-goat secondary antibody (1:1,000 dilution, Jackson 

Immunoresearch, West Grove, PA). Visualization was performed using an ABC kit (1:500 

dilution, Vector Laboratories, Burlingame, CA, USA) and a Ni-DAB reaction. For double 

labeling, the visualization of Cryab was performed using FITC-tyramide (1:8,000) 
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amplification followed by incubation with mouse anti-calbindin (1:900 dilution, catalogue 

number: C9848, Sigma) or anti-parvalbumin (1:800 dilution, catalogue number: P3088, 

Sigma) antibodies, which were visualized with Alexa 594-conjugated anti-mouse IgG (1:400 

dilution, Thermo Fisher Scientific, Waltham, MA). Subsequently, the sections were mounted, 

dried, and coverslipped in antifade medium (Prolong Antifade Kit; Molecular Probes).  

 

Histological analysis 

Sections were examined using an Olympus BX60 light microscope equipped with 

fluorescent epi-illumination. Images were captured at a resolution of 2048 by 2048 pixels 

with a SPOT Xplorer digital CCD camera (Diagnostic Instruments, Sterling Heights, MI). 

Confocal images were acquired with a Nikon Eclipse E800 confocal microscope equipped 

with a BioRad Radiance 2100 Laser Scanning System using 20-60 X objectives at an optical 

thickness of 1-3 µm. 

The contrast and sharpness of the images were adjusted using the “levels” and 

“sharpness” commands in Adobe Photoshop CS 8.0. The full resolution of the images was 

maintained until the final versions were adjusted to a resolution of 300 dpi. 

 

 

Results 

 

Proteomic identification of maternally altered proteins 

We detected approximately 1,200 quantitatively measurable spots per gel with 2-D 

DIGE (Minimal Dye labeling) in the mPFC samples from mother and pup-deprived rats. 

There were 45 different protein spots that showed a significant change, among which, 37 

showed higher and 8 showed lower fluorescence intensities in dams than they did in the 
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control animals. Representative 2-D DIGE gel images with differentially expressed protein 

spots from the mPFC samples are shown in Figure 2. Fold changes in the fluorescence 

intensities between the spots of samples collected from mother and pup-deprived rats were in 

the range of -1.60 to 1.86 (Figure 3A). Proteins in the significantly changed spots were 

identified via HPLC-MS/MS. We were able to describe a total of 32 differentially expressed 

proteins in the mPFC (Table 2). Several proteins were present in more than one spot, 

suggesting post-translational modifications or the presence of protein isoforms. Cryab showed 

the greatest increase in protein level in the mPFC (+1.86) samples from dams. The greatest 

decrease in protein level was shown by tubulin-specific chaperone A (Tbca, -1.60). 

 

Functional clusters of maternally altered proteins 

The identified, altered mPFC proteins participate in a variety of cell processes, 

including synaptic transport and plasticity (n=6), neuron development (n=5), protein synthesis 

and folding (n=3), cytoskeleton organization (n=3), response to oxidative stress and apoptosis 

(n=3), cell differentiation (n=2), amino acid metabolism (n=2), cell cycle (n=2), glucose 

metabolism (n=2), protein transport (n=1), transcription (n=1), protein degradation (n=1) and 

ion transport (n=1), according to the Gene Ontology and UniProt classification (Figure 3B).  

 

Common regulators and targets of maternally altered proteins 

In the region of the mPFC, the major Cryab-related common regulators were β-nerve 

growth factor (NGF), insulin-like growth factor I (IGF1), interleukin-1 β (IL-1B), tumor 

necrosis factor (TNF), transcription factor Sp1 (SP1) and cellular tumor antigen p53 (TP53), 

while the major common targets were RAC-alpha serine/threonine-protein kinase (AKT1), 

insulin (INS), mitogen-activated protein kinase 3 (MAPK3) and mitogen-activated protein 

kinase 1 (MAPK1) (Figure 4). 
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Validation of increased level of Cryab 

A WB analysis was performed for Cryab in the mPFC (Figure 5). The protein levels of 

Cryab were significantly increased in dams when compared with levels in control females 

(1.43 ± 0.14, p < 0.01). The normalized Cryab values (Cryab / CoxIV ratio) were also 

significantly increased in dams, showing a smaller extent of increase but at a higher 

significance level (1.25 ± 0.03, p < 0.001). Thus, the results of the WB analysis of the Cryab 

protein confirmed the 2-D DIGE data. 

 

Gene expression level of Cryab 

Mother rats had a 1.63-times higher level of Cryab mRNA than age-matched pup-

deprived female rats in their mPFC samples (Figure 6). The mRNA level of Cryab (expressed 

as the Cryab/average reference gene mRNA ratio) was 0.72 ± 0.10 and 0.44 ± 0.07 in dams 

and pup-deprived females, respectively. These results represent a significant increase in the 

Cryab mRNA level in dams (t-test, p < 0.05). 

 

Localization of Cryab 

We also analyzed the distribution of the Cryab protein in the region of the mPFC of 

maternal and control brains. The density of Cryab-positive cells was higher in the maternal 

mPFC. These cells were most abundant in layer IV of the prelimbic (PrL) and infralimbic (IL) 

cortices. Cryab immunoreactivity was present in parvalbumin-positive GABAergic 

interneurons but not in calbindin-positive cells (Figure 7). The labeling was most intense in 

the perisomatic region of the cells. 
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Discussion 

We present here the first proteomic study of maternal changes in the region of the 

mPFC. First, we discuss the altered proteins based on their functional classifications, 

including the relation of the altered medial prefrontal proteins to depression. Subsequently, 

we focus on a particular protein, Cryab, and the consequences of its localization in the mPFC. 

Finally, the common regulators and targets of the altered proteins are analyzed. 

 

Potential functions of the altered proteins 

Most of the altered proteins identified in rat dams are involved in synaptic transport 

and plasticity (19%), neuron development (16%), the oxidative stress response and apoptosis 

(10%) and cytoskeleton organization (10%) (Figure 3B). These data suggest remarkable 

synaptic alterations, which could be related to the flexibly plasticity of the cerebral cortex or 

the high number of synapses present. Furthermore, the neuronal processes similar to those 

active during development showed an elevated activity level in rat dams.  

The physiological changes that occur in the brain during motherhood require elevated 

protection against stress factors, explaining the oxidative stress- and cytoskeleton 

organization-related protein changes. Many of the significantly altered proteins in the mPFC 

have been suggested to be involved in depression as their level or other properties (e.g. state 

of phosphorylation) have been reported to change in conjunction with human depression or 

rodent depression-like behavior (Table 3). Of the 11 proteins associated with depression that 

we identified as altered in the maternal mPFC, 9 show decreased levels in depressed humans 

or other animals (Table 3). Interestingly, 8 (Cplx1, Cplx2, Nrgn, Ina, Cryab, Ddah1, Glul, 

Stam) of these 9 proteins were present at increased levels in the mPFC of rat dams. The Cryab 

chaperone protein has been shown to have changes in its phosphorylation status in 

dorsolateral prefrontal cortex tissues from patients with major depressive disorder [37]. The 
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expression of complexin-2 (Cplx2), a synaptic vesicle clustering regulator, is decreased in the 

anterior cingulate cortex [38], and the enzyme glutamine synthase (Glul) shows decreased 

expression levels in the cerebral cortex of patients with major depressive disorder [39]. 

Neurogranin (Nrgn), a synaptic plasticity regulator, shows a decreased protein level in the 

hippocampus and prefrontal cortex in association with [40], and decreased protein levels of 

N(G),N(G)-dimethylarginine dimethylaminohydrolase 1 (Ddah1), a nitric oxide regulator, are 

also associated with depression-like behavior [41]. RCG55706 (Stam), a protein transport 

regulator, shows decreased protein levels in mice hippocampi after exposure to prenatal stress 

[42], while alpha-internexin (Ina), a neuronal morphogenesis-regulating intermediate filament, 

shows decreased protein levels in rat hippocampi following exposure to stress induced by 

terrifying sounds, and both of these responses are risk factors for depression [43]. 

Thus, maternally increased proteins typically show reduced levels in depression. 

These proteins could contribute to the anti-depression-like traits observed in rat dams [32,44]. 

Furthermore, the potential maladaptation of some of these proteins during the maternal 

process could promote the development of depression in human mothers, who have a much 

higher incidence of depression in the postpartum period (~13%) than does the general 

population [19,20]. The value of the correlations demonstrated in this study is increased by 

the lack of previously available specific molecular markers of postpartum depression [45-47]. 

 

Alpha-crystallin B chain (Cryab) and its potential involvement in maternal adaptations 

Cryab showed the highest increase in protein level in the mPFC of rat dams. 

Therefore, we further analyzed its expression level using independent methods, and not only 

validated the initial demonstration of its change at the protein level but also showed that it is 

elevated at the mRNA level. Thus, Cryab could become a specific molecular marker of 

postpartum depression, which is missing at present [45-47]. Cryab is a member of the small 
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heat shock protein (HSP20) family, whose members form large heterooligomeric complexes. 

Cryab also acts as a molecular chaperone. It does not renature and release proteins, but rather 

holds them in large soluble aggregates [48]. The distribution of Cryab shows a high degree of 

heterogeneity: it is most abundant in the lens, and smaller amounts have also been described 

in other tissues, such as those of the heart, skeletal muscle and the brain [49]. The elevated 

expression of Cryab has been found in some neurological diseases where it has been 

suggested to have a neuroprotective function [50,51], although little is known about its 

protective mechanisms [52]. One suggestion relates to the phosphorylation of Cryab, which 

occurs when the cells are exposed to various types of stresses [53]. The phosphorylated forms 

play neuroprotective, anti-apoptotic roles and increase neuronal survival after injury [54]. The 

cytoprotective effects of Cryab are reflected by its capacity to suppress the aggregation of 

denatured proteins, which in turn provides anti-apoptotic protection [48,52]. An alternative 

explanation for the neuroprotective function of Cryab is its modulatory action on lipid 

membrane polymorphism and fluidity [55]. Our current findings provide the first evidence 

that Cryab is elevated in the brains of rat dams. In fact, we identified Cryab from two different 

protein spots in the mPFC, which may be a result of different phosphorylation states of the 

protein (Figure 2). The increased expression of Cryab in the mPFC of rat dams suggests a 

higher level of protection against stress factors in this brain region. Immunohistochemical 

results showed that the density of Cryab-positive cells was the highest in layer IV of the 

prelimbic and infralimbic cortices and that Cryab immunoreactivity showed membrane-

associated localization. We also demonstrated that Cryab is present in parvalbumin-positive 

(PV), and likely GABAergic, fast-spiking interneurons in the mPFC [56]. These cells are 

essential for normal brain function as they can regulate the activity of principal neurons. PV 

interneurons synapse on the cell bodies and axon initial segments of several pyramidal cells to 

regulate their output. Thereby, they can coordinate the activity of large networks in the brain 
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[57-61]. The increased neuroprotection of PV GABAergic interneurons might contribute to 

preserving the function of the medial prefrontal network under stressful conditions in mother 

rats. Fast-spiking PV interneurons are downregulated in a genetic mouse model of depression, 

causing low-gamma oscillation disturbances and depression-like behavior [62]. The increased 

Cryab protein level in PV interneurons and the huge number of proteins that show increased 

levels in dams suggest an elevation in chaperone activity in PV cells. The insufficient activity 

of Cryab in cells involved in depression can thus become a cause of depressive behavior 

during the postpartum period. Examining the putative involvement of Cryab in the 

development of postpartum depression is an intriguing future research goal as Cryab. 

 

Common regulators and targets of the maternally altered proteins 

The common regulator and common target analyses were carried out for all altered 

proteins, albeit with a focus on connections to Cryab. The major common regulators were 

NGF and IGF1 (growth factors), IL-1B and TNF (cytokines), SP1 (a transcription factor) and 

TP53 (a tumor suppressor), suggesting that these regulators play significant roles in the 

adaptation of the maternal mPFC at the protein level (Figure 4A). Specifically, growth factors 

and cytokines influence maternal protein changes, which has not been reported before. 

However, it is becoming increasingly accepted that depression is correlated with the 

dysregulation of immune processes [63]. IL-1B and TNF, both proinflammatory cytokines, 

are known to show elevated levels in association with depression [64]. In addition, IL-1B may 

have an indirect link with postpartum depression through its association with fatigue [65]. 

Thus, IL-1B could take part in the pathophysiology of postpartum depression. Growth factors 

have also been implicated in depression [66], as depression-like behavior has been associated 

with reduced NGF and IGF1 levels in the rat brain [67,68]. Altered NGF levels have been 

shown to increase the risk of developing depression after chronic stress [69], while 
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antidepressant drugs have been shown to have a beneficial impact of on the malfunction of 

IGF1 in adult rats [70]. NGF levels of mothers with postpartum affective disorders are also 

correlated with infant development [71]. The potential effects of NGF and IGF-1 in the brain 

of mothers could be mediated by the altered levels of the proteins we identified in the present 

study. 

The major common targets identified in the mPFC were AKT1, MAPK1, MAPK3 

(protein kinases) and INS (a hormone) (Figure 4B), suggesting the involvement of these 

proteins, and particularly the mitogen activated protein kinase (MAPK) pathway, which is a 

major signaling pathway involved in neuronal plasticity, function and survival in maternal 

adaptations. While the involvement of this pathway in maternal processes has not been 

demonstrated, it has been reported to be associated with depression [72,73]. The inhibition of 

ERK signaling, which initiates the MAPK pathway, can lead to anxiety and depressive 

behaviors [74]. The mRNA level of MAPK1 has been shown to be altered by both 

nortriptyline and escitalopram, which are both used as antidepressants [75]. MAPK 

phosphatase-1 (MKP-1), the key negative regulator of the MAPK cascade, shows a 

significantly increased expression in postmortem hippocampal tissues of patients with major 

depressive disorder [76]. In addition, MKP-1 mRNA levels have been shown to be increased 

in rat and mouse depression models, while antidepressant treatment normalizes its expression 

[76]. Thus, the MAPK pathway could also play a role in postpartum depression.  

 

Conclusion 

Pup nursing is associated with altered levels of a number of proteins in the mPFC. 

Neuronal development and plasticity are the major functional classes to which the altered 

proteins belong. Several maternally altered proteins have been shown to be regulated by 

growth factors, cytokines and signal transduction pathways, while their common targets are 
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some members of the MAP kinase pathway, suggesting their role in the regulation of maternal 

responsiveness. The greatest change in protein level was observed for alpha-crystallin B chain 

(Cryab), which was found to be expressed in parvalbumin-positive neurons, suggesting its 

role in the maternal adaptation of parvalbumin-positive fast-spiking GABAergic interneurons. 

Several proteins that showed increased levels in rat dams in the region of the mPFC are 

known to be downregulated in association with depression, suggesting an anti-depression-like 

effect in the dams. In particular, Cryab is a potential candidate for involvement in mood 

changes in mothers. 
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Figure legends 

 

Fig. 1. Dissection of the medial prefrontal cortex (mPFC) samples. A: The position of the 

coronal section cut as a first step of the mPFC dissection is shown by the 2 vertical lines on 

the schematic side view of the brain. B: The mPFC tissue sample was obtained from the 

coronal section by cuts at the solid lines. Further abbreviations: ac – anterior commissure, 

AON – anterior olfactory nucleus, cc – corpus callosum, Ins – insular cortex, M – motor 

cortex, Pir – piriform cortex. 

 

Fig. 2. Representative 2-D DIGE gel image with labeled locations of significantly altered 

medial prefrontal cortical protein spots. The spot number and the most prevalent identified 

gene in a particular spot are shown. Red and blue circles indicate significantly increased and 

decreased changes in protein spots of dams relative to those of the control animals, 

respectively. 

 

Fig. 3. Fold changes (A) and functional clustering (B) of maternally altered proteins in the 

medial prefrontal cortex. Proteins with fold changes greater than 1.5 are labeled with yellow. 

 

Fig. 4. Common regulator (A) and target (B) analysis of medial prefrontal cortical proteins, 

with a focus on those connected to Cryab. Common regulators: NGF: beta-nerve growth 

factor, IGF1: insulin-like growth factor I, IL-1B: interleukin-1 beta, TNF: tumor necrosis 

factor, SP1: transcription factor Sp1, TP53: cellular tumor antigen p53. Common targets: 

AKT1: RAC-alpha serine/threonine-protein kinase, INS: insulin, MAPK3: mitogen-activated 

protein kinase 3, MAPK1: mitogen-activated protein kinase 1. Edges indicate the 

relationships between common regulators/targets and altered maternal proteins. Red and blue 
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indicate maternal proteins that were significantly increased and decreased, respectively, that 

have common targets or regulators. Full protein names are presented in Table 2. Green 

indicates common regulator (A) or target (B) proteins. 

 

Fig. 5. Alteration in the Cryab protein and Cryab/CoxIV ratio in the medial prefrontal cortex 

of mother and pup-deprived control rats. The level of Cryab protein is significantly higher in 

mothers than in pup-deprived controls. Left: Densitometric values for Cryab and the 

Cryab/CoxIV ratio (n=6-6, Student’s t-test, **: p < 0.01; ***: p < 0.001, means ± s.e.m. are 

shown). Right: representative immunopositive bands of Cryab and CoxIV.  

 

Fig. 6. Alteration in Cryab mRNA expression in the medial prefrontal cortex of mother and 

pup-deprived control rats. The level of Cryab mRNA is significantly higher in mothers than in 

pup-deprived controls. mRNA expression data are expressed as the ratio of Cryab mRNA to 

the average of Actb, Cox4i1, Gapd and Ldha mRNA levels (n=8-8, Student’s t-test, *: p < 

0.05; means ± s.e.m. are shown). 

 

Fig. 7. Distribution of Cryab immunoreactivity in the medial prefrontal cortex (mPFC). 

Cryab-labeled cells are shown in the maternal (A) and pup-deprived (control) female rats (B). 

The cells are abundant in layer IV of the prelimbic (PrL) and infralimbic (IL) cortices. Cryab 

colocalizes with parvalbumin (C) but not with calbindin (D). White arrows point to double-

labeled cells, white arrowheads point to single-labeled Cryab-positive cells, and black 

arrowheads point to single-labeled calbindin-positive calbindin-positive cells. Scale bars: 500 

µm (A, B), 100 µm (C, D). 
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Table 1. The primers used for amplifying genes in the qRT-PCR study. The GenBank 

accession numbers and the position of the primers in the sequences are also indicated. 

 

Table 2. The functional clusters of significantly altered proteins in the medial prefrontal 

cortex of mother rats. The color gradient from red (elevated protein level) to blue (reduced 

protein level) is used to show the differential abundances of the maternally altered proteins 

(the numbers represent the average ratios). Abbreviations: Acc: accession number, AR: 

average ratio, UP: unique peptides number, SC%: sequence coverage percentage, MW: 

molecular weight, pI: isoelectric point. 

 

Table 3. Significant changes in the levels of proteins in the medial prefrontal cortex that are 

involved in depression-like behavior. The color gradient from red (elevated protein level) to 

blue (reduced protein level) is used to show the differential abundances of maternally altered 

proteins (the numbers represent the average ratios). Abbreviations: Acc: accession number, 

AR: average ratio. (References: 1-[77], 2-[37], 3-[78], 4-[79], 5-[38], 6-[80], 7-[40], 8-[81], 9-

[82], 10-[83], 11-[43], 12-[42], 13-[84], 14-[41], 15-[39], 16-[85]). 
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Table 1.  

Gene Forward and reverse primers Genbank accession 

number 

Position of the 

PCR product 

Alpha-crystallin B chain (Cryab) ctacagccacttccctgagc 

acaaacacagcaagcacagg 

NM_012935 136-365 

Beta actin (Actb) agggtgtgatggtgggtatg 

ccagaggcatacagggacaa 

NM_031144 200-515 

Cytochrome c oxidase subunit IV 

isoform 1 (Cox4i1) 

tctacttcggtgtgccttcg 

gtgcccttgttcatctcagc 

NM_017202 135-379 

Glyceraldehyde-3-phosphate-

dehydrogenase (Gapdh) 

tgccactcagaagactgtgg 

gtcctcagtgtagcccagga 

M17701 540-831 

Lactate dehydrogenase A (Ldha) tgcagcagggtttctatgga 

ggacttacacactggagcca 

NM_017025 1139-1443 
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Table 2.  

MEDIAL PREFRONTAL CORTEX 

ID Acc  Gene  Protein name AR t-test UP SC% MW(Da) pI Localisation (GO) 

synaptic transport and plasticity 

194 
P09951 Syn1 Synapsin-1 

1,21 0,0417 15 34,4 73989 9,8 
synapse, Golgi 

219 1,10 0,0023 17 45,0 73989 9,8 

242 

Q63537 Syn2 Synapsin-2 

-1,23 0,0075 16 41,1 63457 8,7 

synapse 246 -1,16 0,0053 14 41,0 63457 8,7 

439 -1,22 0,0147 13 34,6 63457 8,7 

776 
P70566 Tmod2 Tropomodulin-2 

1,09 0,0004 19 45,6 39492 5,3 
cytoplasm 

782 1,12 0,0266 14 41,6 39492 5,3 

1553 P63041 Cplx1 Complexin-1 1,09 0,0298 5 52,2 15122 4,9 
cytoplasm, 

synapse 

1578 Q04940 Nrgn Neurogranin 1,20 0,0499 2 41,0 7496 6,5 
cytoplasm, 

synapse 

1692 P84087 Cplx2 Complexin-2 1,15 0,0354 3 38,1 15395 5,1 
cytoplasm, 

synapse 

neuron development 

232 

P47942 Dpysl2 
Dihydropyrimidinase-related 

protein 2 

1,13 0,0143 12 31,5 62278 6,0 

cytoplasm, 
membrane 

311 1,10 0,0004 24 62,9 62278 6,0 

319 1,08 0,0192 3 6,5 62278 6,0 

322 1,15 0,0055 38 77,8 62278 6,0 

327 1,10 0,0100 36 68,2 62278 6,0 

301 1,10 0,0017 25 66,3 62278 6,0 

341 
Q9JHU0 Dpysl5 

Dihydropyrimidinase-related 
protein 5 

1,12 0,0066 19 44,0 61541 6,6 
cytoplasm 

348 1,09 0,0091 20 54,4 61541 6,6 

894 Q62952 Dpysl3 
Dihydropyrimidinase-related 

protein 3 
1,14 0,0016 18 49,1 61968 6,0 cytoplasm 

344 

P23565 Ina Alpha-internexin 

1,35 0,0198 20 51,1 56116 5,2 
  

neurofilament 
  

346 1,23 0,0441 27 64,0 56116 5,2 

368 1,22 0,0403 31 70,7 56116 5,2 

1394 
P37805 Tagln3 Transgelin-3 

1,12 0,0159 14 70,9 22501 6,8 
nucleus 

1415 -1,14 0,0334 7 41,7 22501 6,8 

response to oxidative stress, apoptosis 

1286 O35244 Prdx6 Peroxiredoxin-6 1,22 0,0065 18 78,6 24819 5,6 cytoplasm 

1420 
P23928 Cryab Alpha-crystallin B chain 

1,80 0,0002 7 34,3 20089 6,8 cytoplasm, 
nucleus 1430 1,86 0,0059 2 21,7 20089 6,8 

1596 Q5U318 Pea15 
Astrocytic phosphoprotein 

PEA-15 
1,47 0,0016 3 30,0 15040 4,9 cytoplasm 

cytoskeleton organisation 

1565 Q6PEC1 Tbca Tubulin-specific chaperone A -1,60 0,0047 8 43,5 12744 5,4 cytoplasm 

544 P85108 Tubb2a Tubulin beta-2A chain 1,13 0,0281 32 67,0 49907 4,8 
cytoplasm, 

nucleus 
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545 P69897 Tubb5 Tubulin beta-5 chain 1,15 0,0224 31 66,2 49671 4,8 
cytoplasm, 

nucleus 

protein synthesis and folding 

307 
O35814 Stip1 

Stress-induced-
phosphoprotein 1 

1,10 0,0020 15 36,6 62571 6,4 cytoplasm, 
nucleus 317 1,13 0,0095 28 48,3 62571 6,4 

354 P28480 Tcp1 
T-complex protein 1 subunit 

alpha 
1,20 0,0030 12 34,0 60360 5,9 cytoplasm 

640 P85834 Tufm 
Elongation factor Tu, 

mitochondrial 
1,15 0,0066 8 23,9 49523 7,2 mitochondrion 

glucose metabolism 

658 P14408 Fh 
Fumarate hydratase, 

mitochondrial 
1,09 0,0032 9 24,9 54464 9,1 mitochondrion 

808 P09117 Aldoc 
Fructose-bisphosphate 

aldolase C 
1,12 0,0002 14 51,0 39284 6,7 

cytoplasm, 
mitochondrion 

amino acid metabolism 

366 O08557 Ddah1 
N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 1 

1,12 0,0041 5 21,4 31426 5,8 
cytoplasm, 

mitochondrion 

719 P09606 Glul Glutamine synthetase 1,12 0,0366 14 41,8 42268 6,6 
cytoplasm, 

mitochondrion 

cell differentiation 

1670 P62775 Mtpn Myotrophin -1,10 0,0253 7 60,2 12861 5,3 
cytoplasm, 

nucleus 

248 Q5RKI0 Wdr1 
WD repeat-containing               

protein 1 
-1,23 0,0255 4 16,7 66182 6,1 

cytoplasm, cell 
projection 

cell cycle 

757 D3ZDH8 Gp1bb Septin 5, isoform CRA_d 1,15 0,0354 17 47,4 43893 6,2 
synapse, plasma 

membrane 

1483 P60841 Ensa Alpha-endosulfine -1,26 0,0476 5 41,3 13335 6,6 cytoplasm 

ion transport 

932 Q99MZ8 Lasp1 
LIM and SH3 domain               

protein 1 
-1,06 0,0146 3 14,1 29971 6,6 cytoplasm 

protein transport 

325 B5DF55 Stam RCG55706 1,16 0,0065 14 30,3 59593 4,7 cytoplasm 

transcription 

883 Q68A21 Purb 
Transcriptional activator 

protein Pur-beta 
-1,13 0,0240 6 45,7 33418 5,3 nucleus 

protein degradation 

1224 Q6AYK6 Cacybp Calcyclin-binding protein 1,12 0,0001 8 48,5 26541 7,6 
cytoplasm, 

nucleus 
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Table 3.  

MEDIAL PREFRONTAL CORTEX 

ID Acc  Gene  Protein name AR Protein - depression connection 

synaptic transport and plasticity 

194 

P09951 Syn1 Synapsin-1 

1,21 Increased Syn1 protein level correlated with depression-like behavior (1)  

219 1,10 
Syn1 showed differential level of phosphorylation in postmortem 

dorsolateral prefrontal cortex tissues from major depressive disorder 
patients (2) 

1553 P63041 Cplx1 Complexin-1 1,09 

Cplx1 showed decreased mRNA level in the hippocampus from 
postmortem bipolar disorder brain (3) 

Cplx1 showed decreased expression after antidepressant paroxetine 
exposure in rat hippocampus (4) 

1692 P84087 Cplx2 Complexin-2 1,15 

Cplx2 showed decreased protein level in the anterior cingulate cortex 
from postmortem major depression brain (5) 

Downregulation of Cplx2 correlated with depression-like behaviour (6) 

1578 Q04940 Nrgn Neurogranin 1,20 
Altered Nrgn phosphorylation and decreased protein level in hippocampus 
and prefrontal cortex are associated with depression-like behaviors in rats 

following forced swim stress (7) 

neuron development 

232 

P47942 Dpysl2 
Dihydropyrimidinase-

related protein 2 

1,13 Dpysl2 showed decreased protein level in the prefrontal cortex of a rat 
model of depression (8) 311 1,10 

319 1,08 
Dpysl2 showed increased protein level in learned helpless rat depression 

model (9) 

322 1,15 
After antidepressant drugs Dpysl2 showed increased level in rat 

hippocampus (10) 

327 1,10 
Dpysl2 showed differential level of phosphorylation and decreased level of 

expression in postmortem dorsolateral prefrontal cortex tissues from 
major depressive disorder patients (2) 

301 1,10 
Dpysl2 protein level decreased in female rat hippocampus following 

exposure to a terrified sound stress that is a risk factor of depression (11) 

344 

P23565 Ina Alpha-internexin 

1,35 

Ina protein level decreased in female rat hippocampus following exposure 
to a terrified sound stress that is a risk factor of depression (11) 

346 1,23 

368 1,22 

response to oxidative stress, apoptosis 

1286 O35244 Prdx6 Peroxiredoxin-6 1,22 
After antidepressant paroxetine exposure Prdx6 showed decreased 

protein level in rat hippocampus (12) 

1420 

P23928 Cryab Alpha-crystallin B chain 

1,80 Cryab showed differential level of phosphorylation in postmortem 
dorsolateral prefrontal cortex tissues from major depressive disorder 

patients (2) 1430 1,86 

1596 Q5U318 Pea15 
Astrocytic phosphoprotein 

PEA-15 
1,47 

Pea-15 protein level increased in antidepressant-treated prefrontal cortex 
of major depression postmortem brains (13) 

amino acid metabolism 
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366 O08557 Ddah1 
N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 1 

1,12 
Decreased Ddah1 protein level correlated with magnesium restriction-

induced depression like behavior (14) 

719 P09606 Glul Glutamine synthetase 1,12 
Glul showed decreased expression level in cerebral cortex from major 

depressive disorder patients (15) 

protein transport 

325 B5DF55 Stam RCG55706 1,16 
Stam showed decreased protein level in mice hippocampus after 
exposure to prenatal stress that is a risk factor of depression (17) 

ion transport 

932 Q99MZ8 Lasp1 
LIM and SH3 domain 

protein 1 
-1,06 

Decreased hippocampal Lasp1 protein level correlated with depression-
like behavior (16) 
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Biological significance 

The behavior and emotional state of females change robustly when they become 

mothers. The brain, which governs these changes, may also undergo molecular alterations in 

mothers. As no proteomics approaches have been applied regarding maternal changes in the 

brain, we addressed this issue in the mPFC as this brain area is the uppermost cortical center 

of maternal control and the associated mood changes. The high number of protein-level 

alterations found between mothers taking care of their litter and those without pups indicates 

that pup nursing is associated with cortical protein-level changes. Alterations in proteins 

participating in synaptic transport, plasticity and neuron development suggest neuroplastic 

changes in the maternal brain. In turn, the relatively high number of altered proteins in the 

mPFC associated with depression suggests that the physiological effects of the protein-level 

alterations in the maternal mPFC could promote the incidence of postpartum depression. 

Alpha-crystallin B chain, a protein confirmed to be increased during maternal behaviors, was 

selectively found in parvalbumin cells, which, as fast-spiking interneurons, are associated 

with depression. The function of alpha-crystallin B chain should be further investigated to 

establish whether it can be used to identify drug targets for future drug development.  
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Highlights 

We identified 32 protein changes in the medial prefrontal cortex (mPFC) of rat dams. 

The most abundant clusters are: synaptic transport and plasticity, neuron development. 

Common regulators are growth factors and cytokines, common target the MAP kinases. 

A number of proteins altered in the mPFC are associated with depression. 

Increase of alpha-crystallin B chain was confirmed, and shown in parvalbumin cells. 


