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Abstract 20 

Aging is associated with chronic inflammation (inflamm-aging) partly mediated by increased 21 

levels of damage-associated molecular patterns (DAMPs) which activate pattern recognition 22 

receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are 23 

associated with inflammation. PRRs, like Toll-like receptors (TLRs) and NOD-like receptors 24 

(NLRs) are not only expressed in cells of the innate immune system, but other cells as well, 25 

including cells of the neurovascular unit (NVU) and cerebral vasculature forming the blood-26 

brain barrier (BBB). In this review we summarize our current knowledge about the 27 

relationship among activation of PRRs expressed by cells of the NVU/BBB, chronic 28 

inflammation and aging-related pathologies of the brain. The most important DAMP-sensing 29 

PRRs in the brain are TLR2, TLR4, NLRP1 and NLRP3, which are activated during 30 

physiological and pathological aging in microglia, neurons, astrocytes and possibly 31 

endothelial cells and pericytes. 32 
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Introduction 39 

Due to the continuously growing life expectancy, aging and related morbidities are rapidly 40 

increasing unresolved health and socio-economic problems. Cerebrovascular dysfunctions are 41 

common among elderly persons and their incidence increases exponentially with age. The 42 

human brain has a very intense metabolism compared to other organs, by using about 20% of 43 

the body’s resting oxygen consumption and accounting for only 2% of the body weight. 44 

Energy supply of the central nervous system (CNS) is provided by a very dense capillary 45 

system with an average distance of 40-50 µm between neighboring capillaries in the human 46 

brain. This implies that almost all neurons are in the close vicinity of a capillary, so that the 47 

concept of neurovascular unit (NVU) was coined, emphasizing the inseparable character of 48 

neural and vascular functions. Thus, the functional state of the CNS is greatly dependent on 49 

the quality of the microvasculature and the term “you are as old as your arteries” can be 50 

redefined in the brain to “you are as old as your microvessels”. 51 

The neurovascular unit (NVU) in aging 52 

The NVU represents a close structural and functional relationship (i.e. coordinated action) of 53 

microvascular endothelial cells, pericytes, glial cells and neurons (Figure 1). Main functions 54 

of the NVU are formation of the blood-brain barrier (BBB) and neurovascular coupling (i.e. 55 

changes in cerebral blood flow in response to local neural activity). The BBB is a highly 56 

selective permeability barrier that separates the circulating blood from the extracellular fluid 57 

in the CNS. By strictly regulating the molecular and cellular traffic between the blood and the 58 

brain, it substantially contributes to the homeostasis of the CNS (1). The barrier itself is 59 

formed by endothelial cells of the cerebral microvasculature, which acquire special barrier 60 

characteristics in the brain microenvironment. Continuous tight junctions (TJs) 61 

interconnecting cerebral microvascular endothelial cells seal the paracellular cleft, forcing 62 

most molecular and even cellular traffic to use the highly regulated transcellular way of 63 



transport or transmigration. Low level of endocytosis, intracellular enzymes and efflux 64 

transporters of the ATP-binding cassette family also contribute to the barrier (149). By 65 

sharing important regulatory functions, pericytes and astrocytes are also integral parts of the 66 

BBB (3, 137). In the present review we will particularly focus on these three cell types. 67 

There is increasing evidence that dysfunction and senescence of the cerebral microvasculature 68 

play critical roles in age-related brain pathologies. The brain capillary endothelium suffers 69 

region- and species-specific morphological and functional changes during aging, including 70 

elongation, decrease in the number of mitochondria and decrease in choline and glucose 71 

transport (98). In addition, age-related morphological and functional microvascular changes 72 

include fibrosis and degeneration, basement membrane thickening, microhemorrhages, vessel 73 

rarefaction, impaired angiogenesis, dysregulation of cerebral blood flow, lower metabolic 74 

rates of glucose and oxygen and neurovascular uncoupling (17, 27, 45, 143, 144). Reduced 75 

blood flow in aging reflects an impaired vasodilatation and enhanced vasoconstriction (46), 76 

most probably mediated by imbalance in the production of and response to vasoconstrictor 77 

and vasodilator signals (129). After ischemia, inverse neurovascular coupling (i.e. 78 

vasoconstriction instead of vasodilatation) with spreading depolarizations may occur in the 79 

old brain (92). Diminished cerebral blood flow and reduction in functional hyperemia are 80 

largely dependent on loss of pericytes (9). Cerebral endothelial barrier functions can also be 81 

impaired in aging through changes in TJ structure (153). Loss of pericytes (133) might also 82 

contribute to this process. Aging-related BBB breakdown is most evident in the hippocampus, 83 

and is worsening with the appearance of cognitive impairment, that correlates with pericyte 84 

injury and increased levels of soluble PDGFRβ in the cerebrospinal fluid (97). (9). In the 85 

cortex and hippocampus of Alzheimer’s disease (AD) subjects, pericyte number and coverage 86 

are reduced, correlating with BBB breakdown (127). Chronic BBB breakdown leads to 87 



accumulation of neurotoxic serum proteins in the brain tissue contributing to 88 

neurodegeneration. 89 

Altogether, changes in functions of the microvasculature during aging (i.e. neurovascular 90 

uncoupling and alterations in BBB integrity) lead to irreversible neuronal injury. Reductions 91 

in brain microcirculation and BBB breakdown may occur prior to neurodegeneration and 92 

neuroinflammation, as shown in pericyte-deficient mice However, the exact contribution of 93 

microvascular changes to neurodegeneration in aging is not well understood. Nevertheless, 94 

endothelial and glial, but not neuronal-specific genes are the best predictors of biological age 95 

(132). Therefore, the “you are as old as your microvessels” statement refers to the direct link 96 

between vascular and neuronal injury in aging. 97 

Besides endothelial cells and pericytes, astrocytes are also changing during physiological and 98 

pathological aging. The total number of astrocytes in the human brain does not change with 99 

age (121); however, morphological and metabolic remodeling occurs. These changes might be 100 

region specific and might reflect astroglial adaptive plasticity (121). In astrocytes of aged 101 

animals, reduction of gap junction plaques (23), decrease in morphological complexity (32) 102 

and reduction in the ability to support survival of motor neurons (28) were described. 103 

Moreover, astrocytes having a senescence-associated secretory phenotype (SASP) accumulate 104 

with age, showing increased expression of glial fibrillary acidic protein (GFAP) and other 105 

intermediate filaments, secretion of inflammatory cytokines, chemokines and proteinases 106 

(124). 107 

Other cell types of the NVU (neurons and microglia) also present morphological and 108 

functional changes in the elderly (reviewed in: (39)). Moreover, alteration of the structure and 109 

function of the NVU is even more accentuated in pathological aging (39). Unfortunately, 110 

hallmarks of aging are only referring to changes in the phenotypes of cells (86, 99), the 111 

relevance of these changes (i.e. causative or reactive role to aging) is largely uncharacterized. 112 



Inflammation and aging-related functional changes of the NVU 113 

In parallel with these mechanisms, inflammation is a central element affecting cells of the 114 

NVU during aging. Inflammation in the brain has mainly been linked to microglia and to a 115 

lower extent to astrocytes. However, other cells of the NVU are also participating in 116 

inflammatory responses; therefore, might also be key players in aging processes of the CNS. 117 

Vascular inflammation is associated with BBB opening and neurovascular uncoupling, the 118 

main aging-related neurovascular dysfunctions. Inflammation is a well-characterized cause of 119 

BBB disruption (2, 145). Mechanisms of BBB opening may include cytokine-induced actin 120 

remodeling and modulation of TJ protein levels or subcellular relocalization (19). In mice, 121 

during normal aging, reduced amount of TJ proteins and elevated expression of TNF-α has 122 

been observed in CECs, without changes in adhesion molecules and with no leukocyte 123 

recruitment (37), suggesting a direct effect of the cytokine on the amount of TJ proteins. In 124 

aging-related brain pathologies, like AD or ischemia, increased secretion of inflammatory 125 

cytokines in the cerebral endothelium may enhance expression of adhesion molecules as well 126 

(57, 123). Consequent migration of circulating leukocytes through the activated brain 127 

endothelium may also contribute to deterioration in barrier properties of the BBB, which is 128 

also part of the pathogenesis of these diseases (114, 154). Besides increased BBB 129 

permeability, changes in cerebral blood flow and impaired hemodynamic coupling also occur 130 

in response to inflammatory cytokines, like IL-1β (10, 13). Moreover, reactive oxygen species 131 

(ROS) – which are key mediators of both neurovascular uncoupling (141) and of alteration of 132 

the brain endothelial junctional complex in aging (38) – can also trigger secretion of 133 

inflammatory cytokines (102). CECs are rich in mitochondria; therefore, may be important 134 

sources of ROS. Inflammatory cytokines can upregulate ROS generation in CECs leading to 135 

decreased expression of junctional proteins and consequent BBB disruption (120). 136 



Inflammatory vascular dysfunctions not only depend on endothelial but on pericyte- and 137 

astrocyte-linked mechanisms as well. Pericytes respond to inflammatory cytokines through 138 

enhanced expression of adhesion molecules and secretion of inflammatory mediators (106, 139 

111). In addition, astrocytes are a common source of inflammatory mediators in brain 140 

pathologies (43). 141 

Therefore, cells of the NVU can both respond to and release inflammatory mediators, and 142 

vascular inflammation seems to be an important step in aging-related functional changes of 143 

the NVU. In the next chapters, we describe inflammatory aspects of the aging NVU. 144 

Inflammation, damage-associated molecular patterns (DAMPs) and pattern recognition 145 

receptors (PRRs) in aging 146 

Aging is the greatest risk factor for developing chronic diseases, many of which are directly 147 

linked to a persistent low grade inflammation, called inflamm-aging (49). Inflamm-aging is 148 

characterized by a pro-inflammatory environment in several tissues, consisting of activation 149 

of resident macrophages, leukocyte infiltration and increased production of inflammatory 150 

cytokines and ROS. Aging is also associated with the senescence of the immune system, 151 

characterized by loss of naïve T cells, accumulation of memory T cells, thymic involution, 152 

decline in the total number of phagocytes, impairment of dendritic cells and natural killers, 153 

delayed cytokine release, etc. (93, 130), leading to increased frequency of infections and 154 

chronic diseases. 155 

Inflammation is highly regulated by the immune system, which has two main branches, the 156 

innate and the adaptive (acquired) immune system. Initialization of inflammatory processes is 157 

largely dependent on the innate immune system. Sensing of potentially dangerous molecules – 158 

like pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 159 

patterns (DAMPs) – by the innate immune system depends on pattern recognition receptors 160 



(PRRs) consisting of at least four major families (Table 1). Members of the Toll-like receptor 161 

(TLR) and the C-type lectin receptor (CLR) families are membrane-bound PRRs, while 162 

retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and the nucleotide-binding 163 

oligomerization domain (NOD)-like receptors (NLRs) detect intracellular patterns (91, 138). 164 

Indeed, PAMPs are the most potent activators of these receptors. However, endogenous 165 

molecules released upon tissue damage (DAMPs) can activate the same receptors and 166 

signaling pathways driving a sterile inflammatory reaction. The most widely studied DAMPs 167 

are heat shock proteins, the chromatin protein high mobility group box-1 (HMGB1), 168 

extracellular matrix fragments and purine metabolites, such as ATP and uric acid. DAMP-169 

dependent sterile inflammation is key player in aging-related pathologies (47). Moreover, 170 

DAMPs were proposed to be biomarkers and interventional targets in aging-associated 171 

diseases (70). In elderly, DAMP-induced chronic inflammation is more prevalent than in 172 

young individuals. Chronic oxidative stress is a hallmark of aging and reactive oxygen species 173 

induce oxidative damage leading to formation of DAMPs (38, 125). Accumulation of 174 

crystalline DAMPs, like urate crystals, cholesterol or amyloid deposits may also increase with 175 

age. The most important DAMP-identifying PRRs are TLRs and NLRP3 (47). 176 

Inflammasome activation in aging 177 

Activation of some NLRs leads to the assembly of inflammasomes, which are large 178 

multiprotein complexes mediating activation of inflammatory caspases. The best known 179 

inflammasome-forming NLRs are NLRP1, NLRP3 and NLRC4. Besides, other NLRs might 180 

also form inflammasomes (e.g. NLRP2, NLRP6, NLRP7 or NLRP12). In addition, non-NLR 181 

family members (e.g. AIM2 – absent in melanoma 2, IFI16 – γ-interferon-inducible protein 182 

16 or pyrin) are also inflammasome-forming receptors (15). 183 



Upon recognition of inflammatory signals, inflammasome initiators oligomerize, recruit the 184 

adaptor protein ASC (apoptosis-associated speck-like protein containing CARD) which 185 

interacts with and initiates autoactivation of an inflammatory caspase (caspase-1 or caspase-186 

11/4/5). The active caspase processes precursors of inflammatory cytokines, mainly IL-1β or 187 

IL-18 (7) and can also initiate pyroptosis (15). 188 

Inflammasomes can be activated in response to different PAMPs and DAMPs, the classical 189 

activators being diverse microbial components. NLRP1 inflammasomes assemble upon 190 

stimulation with anthrax lethal toxin or muramyl dipeptide (MDP; a constituent of both Gram-191 

positive and Gram-negative bacteria, sensed by NOD2); the NLRC4 inflammasome is 192 

activated in response to bacterial flagellin sensed by NAIP (NLR family apoptosis inhibitory 193 

protein); pyrin detects RhoA protein inactivated by bacterial toxins, while AIM2 detects 194 

cytosolic microbial or host DNA. Activation of the NLRP3 inflammasome is dependent on 195 

potassium efflux associated with various stimuli including diverse pathogens and several 196 

DAMPs (extracellular ATP, crystalline material, amyloid-β, etc.). Therefore, the NLRP3 197 

inflammasome pathway is one of the most important drivers of sterile inflammatory 198 

processes. 199 

Inflammasomes can play a pivotal role in low-grade chronic inflammation associated with 200 

metabolic abnormalities and aging (i.e. inflamm-aging) as well. Moreover, inflammasome 201 

activation has been linked to diverse brain diseases (including ischemic and traumatic brain 202 

injury and neurodegenerative diseases) and to comorbidities and risk factors of CNS 203 

pathologies (e.g. diabetes, atherosclerosis, obesity, hypertension, etc.) (reviewed in: (74)). 204 

It is well accepted that NLRP3 inflammasome assembly requires two signals: a priming signal 205 

inducing upregulation of the expression of inflammasome components and an activation 206 

signal required for the assembly of the inflammasome (58). It has been suggested that, 207 

although NLRP3 can be activated by a wide variety of pathogens, its primary role is sensing 208 



metabolic disturbance and restoring homeostasis. However, chronic metabolic dysfunction in 209 

aging might result in aberrant NLRP3 response, leading to aging-associated inflammatory 210 

disorders (21). In the absence of PAMPs, elevated levels of TNF-α (110) seem to be one of 211 

the major inducers of NLRP3 expression in macrophages of the liver and in adipose tissue in 212 

aged mice (8). Nevertheless, NLRP3 inflammasome is involved in the induction of obesity 213 

and insulin resistance (135), conditions linked to aging and risk factors for brain disease. 214 

PRRs and inflammasome activation in the aging brain 215 

Inflamm-aging and immune senescence substantially affect the CNS (31). The low-grade 216 

inflammatory status of the aged CNS is associated with recruitment of leukocytes, i.e. 217 

dendritic cells and T cells, including memory CD8 T cells (119, 134). The majority of CNS 218 

diseases, including age-related pathological conditions, are characterized by 219 

neuroinflammatory processes (117). These pathological conditions include neurodegenerative 220 

disorders (50), like AD (113), Huntington’s disease (96), Parkinson’s disease (PD) (68), 221 

amyotrophic lateral sclerosis (ALS) (151) or multiple sclerosis (MS) (52). In addition, 222 

inflammation has been identified as an important player in cognitive dysfunctions (109), 223 

memory loss (64) and cerebral ischemia as well (147). A significant part of these disorders is 224 

age-related. 225 

Activation of PRRs and of inflammasomes is an important event in these pathologies (Table 226 

2) as a non-specific neuroinflammatory event (82). Aging was shown to induce upregulation 227 

of TLR1, TLR2, TLR4, TLR5 and TLR7 and downregulation of TLR9 expression in the 228 

mouse brain, while TLR3, TLR6 and TLR8 remain unchanged (81). Interestingly, 229 

upregulation of innate immune system-specific genes (complement genes; TLRs: TLR2, 230 

TLR4, TLR5; inflammasome-associated genes: caspase-1, IL-18 and IL-1β) in the human 231 

brain is more robust during normal aging than in AD (25). 232 



Among cells of the CNS, microglia, the resident innate immune cells of the CNS, express the 233 

most PRRs, including a complex set of TLRs (TLR1-9) (75). Activation of TLR2, TLR4 and 234 

TLR9 in microglia can lead to an inflammatory response resulting in neuronal damage (122). 235 

Activation of microglial TLR2 and TLR4 receptors enhances microglial phagocytosis of 236 

neurons contributing substantially to neuronal loss during brain inflammation (105). TLR2 is 237 

involved in microglial activation in chronic neurodegenerative diseases such as AD and PD 238 

(63). In AD, TLR2, TLR4 and other TLRs expressed in microglial cells are involved in 239 

phagocytosis of amyloid-β in the early stages and contribute to neuroinflammatory responses 240 

in the late stages (54). Physiological aging is associated with an increased microglial response 241 

to LPS. However, in AD, TLR4 signaling is diminished contributing to the accumulation of 242 

amyloid-β in the brain (55). Similarly, cultured senescent microglial cells show decreased 243 

expression of TLR2 and TLR4 and reduced capacity to migrate and phagocytize (18). In 244 

contrast, upregulation of TLR4 was observed in microglial cells in the forebrain of 245 

postmenopausal women (126). In addition, TLR4 localized to microglia plays a role in 246 

ischemic brain injury (71). 247 

Microglia express several inflammasome components as well, including inflammasome-248 

forming NLRs, AIM2, the adaptor protein ASC and inflammatory caspases and can secrete 249 

active IL-1β through inflammasome-dependent and -independent mechanisms (16). 250 

Activation of NLRP3 inflammasome in microglial cells has been shown to be involved in the 251 

pathogenesis of AD (65). A proposed mechanism is that microglia phagocytize fibrillar 252 

amyloid-β, leading to lysosomal damage and release of cathepsin B from damaged lysosomes 253 

into the cytoplasm. Cathepsin B activates the NLRP3 inflammasome resulting in IL-1β 254 

release (62). Interestingly, only microglia isolated from aged mouse brains secrete IL-1β in 255 

response to fibrillar amyloid-β, while microglia isolated from young adult mouse brains do 256 

not, indicating the primed state of microglial inflammasomes in aged animals (152). Age-257 



associated priming of microglia can be induced by activation of the peripheral innate immune 258 

system (e.g. as a result of systemic infections) and plays a central role in exaggerated 259 

neuroinflammation (67). 260 

In contrast to the well-accepted role of microglia in inflammatory processes of the aging 261 

brain, a recent study suggests that aging-induced upregulation of PRRs in cerebellar and 262 

hypothalamic brain regions does not primarily localize to microglia (11). 263 

Neurons also express TLRs which may be involved in age-related pathologies (77, 108). 264 

TLR2 expression is significantly increased in PD brain neurons and is localized to α-265 

synuclein positive Lewy bodies (36). Moreover, TLR signaling in sensory neurons contributes 266 

to persistent pain and neuroinflammation (85). TLR2 and TLR4 expression increases in 267 

cerebral cortical neurons in response to ischemia/reperfusion contributing to neurological 268 

deficits (140). TLR3, on the other hand, impairs working memory and inhibits hippocampal 269 

neurogenesis (107). 270 

Neurons express diverse NLRs as well and are able to form functional NLRP1, NLRP3, 271 

NLRC4 and AIM2 inflammasomes (4, 74, 148). Aging-induced NLRP1 inflammasome 272 

activation in hippocampal neurons was shown to be involved in cognitive impairment (90). In 273 

AD, NLRP1 is upregulated in neurons (74) resulting in activation of the pyroptotic pathway, 274 

contributing to cognitive decline (139). In addition, NLRP1 and NLRP3 inflammasomes play 275 

a major role in neuronal cell death in stroke (42). 276 

Besides microglia and neurons, other cell types of the NVU can also take part in aging-related 277 

neuroinflammation. Cells of the BBB (endothelial cells, pericytes and astrocytes) express 278 

different PRRs and inflammasome components (Figure 1) which may have an important role 279 

in inflammatory processes. Inflammation and related oxidative stress, developing naturally in 280 

aging, are important mechanisms of cerebrovascular malfunction. Moreover, inflammatory 281 



mechanisms of the vasculature seem to be common and increasingly important in 282 

neurological disorders (80). 283 

Role of PRR and inflammasome activation in cells of the BBB 284 

Brain endothelial cells are critical in regulating the communication between the immune and 285 

central nervous systems (6), equipped with a whole set of signaling molecules (40, 44, 150). 286 

They are the first cells of the NVU coming in contact with circulating pathogens, activated 287 

immune cells and cytokines. Moreover, brain endothelial cells are essential in activating the 288 

hypothalamic-pituitary-adrenal inhibitory feedback in systemic inflammation (56). The key 289 

role of the BBB as a link between neuroinflammation and neurodegeneration has been 290 

increasingly recognized (59, 80). 291 

Cerebral endothelial cells have been shown to express a whole set of TLRs including TLR2, 292 

TLR3, TLR4, TLR6 and TLR9 (22, 101), and these receptors have been shown to participate 293 

in important signaling processes. Besides TLR4, TLR2 is the main sensor of bacterial 294 

infections in brain endothelial cells (22, 76), while TLR3 responds to double stranded RNA 295 

with cytokine release (48, 83). Activation of TLR4 or TLR2/6 leads to an increased BBB 296 

permeability (101, 146). 297 

Although brain endothelial TLRs have not been directly linked to physiological or 298 

pathological aging so far, TLR4/MyD88/NF-κB signaling in endothelial cells of the BBB is 299 

central in the regulation of both pro- and anti-inflammatory mechanisms, which have a key 300 

role in aging. Moreover, oxidative stress upregulates expression of TLR2, TLR3, TLR4 and 301 

TLR6 in vitro (101). In addition, ischemic stroke-induced fibrin deposition triggers TLR2 and 302 

TLR4 expression and activation in the cerebral vasculature of aged rats (155). In this process, 303 

both endothelial cells and pericytes are probably involved. Besides fibrin and fibrinogen, 304 

Hsp60 is another potential endogenous ligand for TLR2 and TLR4 in ischemia (14). 305 



Nevertheless, using preconditioning with TLR2 or TLR4 ligands, tolerance to cerebral 306 

ischemia, maintenance of microvascular patency and attenuation of BBB disruption can be 307 

achieved (29, 69). In addition, increased TLR4 expression in brain endothelial cells can 308 

contribute to astrocyte swelling and brain edema formation (73). 309 

TLR4 can be primarily activated by PAMPs, e.g. LPS and other pathogenic components. The 310 

envelope protein of MSRV (multiple sclerosis-associated retrovirus), a virus found in most 311 

patients with MS, is recognized by cerebral endothelial TLR4 and induces ICAM-1 312 

overexpression, production of IL-6 and IL-8 and immune cell transmigration (35). Therefore, 313 

MSRV can maintain chronic inflammation through TLR4 activation. TLR4-dependent 314 

activation of ICAM-1 and of the inflammatory phenotype of brain endothelial cells has been 315 

proved in other studies as well (20, 78, 128). As a consequence, endothelial TLR4 has a 316 

decisive role in neuroinflammation through leukocyte recruitment into CNS (156). On the 317 

other hand, cerebral endothelial cells, and not perivascular microglia, are the main targets of 318 

circulating inflammatory mediators to activate brain circuits regulating release of anti-319 

inflammatory glucocorticoids (56). 320 

Regarding NLR expression and activation, experimental studies were mainly performed in 321 

non-cerebral endothelial cells. In a recent study (100), we detected expression of several 322 

NLRs – including NOD1, NOD2, NLRC4, NLRC5, NLRP1, NLRP3, NLRP5, NLRP9, 323 

NLRP10, NLRP12, NLRA and NLRX – in human brain endothelial cells. We have also 324 

shown that NLRP3 expression can be significantly induced by inflammatory stimuli. 325 

Expression of key inflammasome components (NOD2, NLRP3 and caspase-1) along with 326 

caspase-cleaved interleukins IL-1β and IL-33 can be induced by priming with LPS and 327 

activation with MDP. In addition, combining priming and activation of brain endothelial 328 

inflammasomes results in active IL-1β secretion. Since this is a recently described 329 

mechanism, further studies are needed to understand the role of brain endothelial 330 



inflammasome activation in pathological processes of the CNS, including aging-related 331 

diseases. Nevertheless, NLRP3 activation has been shown to mediate endothelial senescence 332 

in non-cerebral endothelial cells (136), indicating that inflammasome activation might have 333 

an important role in aging and aging-related disorders, possibly both inside and outside the 334 

CNS. 335 

Even much less is known about the expression and role of PRRs in cerebral pericytes. 336 

Besides TLR4, NOD1 and NOD2 (60, 104), we have recently shown the expression of TLR2, 337 

TLR5, TLR6, TLR10, NLRC5, NLRP1-3, NLRP5, NLRP9, NLRP10 and NLRX mRNA in 338 

cultured brain pericytes (106). TLR4 expressed in brain pericytes can not only respond to 339 

LPS, but to HMGB1 as well (60), suggesting the role of this receptor in sterile inflammation. 340 

In addition, TLR2 expression in the post-ischemic vasculature of aged rats was shown to 341 

partly co-localize with the pericyte marker PDGFRβ (155). Further investigations are needed 342 

to understand the role of PRRs expressed in pericytes in aging-related pathologies of the 343 

brain. Nevertheless, pericytes have a complex immunological role by secreting diverse 344 

chemokines and cytokines, expression of adhesion molecules and controlling immune cell 345 

trafficking (103). Moreover, inflammatory stimuli and oxidative stress – which can be aging-346 

associated alterations – upregulate several PRRs in pericytes, although cannot activate 347 

inflammasomes (106). 348 

Among cells of the BBB, astrocytes may have the most important role in sterile inflammatory 349 

reactions of the brain. Besides microgliosis, chronic neurodegeneration is characterized by 350 

astrogliosis as well, and both microglia and astrocytes can extensively respond to and release 351 

cytokines on this background (66). Moreover, these two cell types extensively cross-talk with 352 

cells of the adaptive and innate immune system infiltrating the CNS (116). 353 

Astrocytes express several TLRs on the mRNA and protein level; however, their TLR 354 

expression profile is more limited in vivo than in vitro (77). Expression level of TLRs (TLR2, 355 



TLR3 and TLR4) is lower in astrocytes than in microglia, and astrocytes may respond more 356 

robustly to TLR2/3/4 agonists in the presence of microglia (89). Moreover, TLR2/3/4 agonists 357 

are able to prime microglia but not astrocytes for ATP-dependent IL-1β release (41). In line 358 

with this observation, in animals with chronic neurodegenerative prion disease, IL-1β 359 

synthesis in response to IL-1β or TNF-α occurs exclusively in microglia and not in astrocytes 360 

(66). On the other hand, α-synuclein can activate proinflammatory TLR4 pathways in primary 361 

astrocytes (115). 362 

Astrocyte-expressed TLRs, together with RLRs, can be involved in the antiviral response and 363 

type I IFN secretion. Viruses infecting and replicating in neurons (e.g. rabies virus or 364 

vesicular stomatitis virus) can abortively infect astrocytes, which have a decisive role in 365 

antiviral protection of the CNS (53, 112). Not only RNA viruses, but DNA viruses (e.g. 366 

herpes simplex virus-1) are also sensed in a RIG-I-dependent manner by astrocytes (26). 367 

Astrocytic RLRs (RIG-I, MDA5) are not only involved in anti-viral immune responses, but in 368 

type I IFN release after spinal cord injury and cerebral ischemia (12, 30), supporting the idea 369 

that astrocytes and RLRs contribute to several inflammatory processes in different CNS 370 

diseases. 371 

In addition, astrocytes express several NLRs and are able to activate inflammasomes. 372 

Cultured cortical astrocytes express NLRP1, NLRP3, NLRC4 and AIM2, among which 373 

NLRP3 mRNA is the most abundant (5). Induction of NLRP1, NLRP3 and IL-1β in both 374 

neurons and astrocytes was shown to contribute to ethanol-dependent impairment in 375 

neurogenesis (157). In addition, NLRP3 inflammasome activation in astrocytes might be 376 

involved in the pathogenesis of PD (87). Aberrant NLRP3 activation was described in 377 

glioblastoma cells (142). However, no IL-1β or IL-18 secretion could be detected in 378 

microglia-free astrocyte cultures in response to cytokine priming and the NLRP3 activators 379 

ATP, nigericin, amyloid-β or α-synuclein (61). Others observed inflammasome-dependent 380 



production of IL-1β in response to LPS/amyloid-β; however, in this case microglial 381 

contamination was not unambiguously excluded (24). On the other hand, inflammatory 382 

activation of brain endothelial cells in neurobrucellosis was shown to partly depend on IL-1β 383 

secreted by both microglia and astrocytes in a TLR2-, NLRP3- and AIM2-dependent manner 384 

(95). 385 

Astrocytes can activate NLRC4 inflammasomes as well, and resulting IL-1β is involved in 386 

enhancing amyloid-β levels in neurons. This suggests an involvement of NLRC4 387 

inflammasome in astrocytes in inflammatory responses associated with AD (84). Moreover, 388 

the functional NLRP2 inflammasome – consisting of NLRP2, ASC and caspase-1 – was first 389 

described in astrocytes. NLRP2 inflammasome in astrocytes is preassembled into a 390 

multiprotein complex with the pannexin 1 channel and the P2X7 receptor, does not require 391 

priming, is activated by extracellular ATP and contributes to the maturation of IL-1β and IL-392 

18 (94). This suggests that NLRP2 – similarly to NLRP3 – can detect DAMPs released during 393 

injury. However, the role of NLRP2 inflammasome in pathological processes has not been 394 

evaluated so far. 395 

Conclusions and possible future directions 396 

Aging and aging-related CNS pathologies are accompanied by chronic sterile inflammation 397 

(inflamm-aging) which is largely determined by activation of pattern recognition receptors 398 

(PRRs), like TLR2, TLR4 or NLRP3 (Figure 2). These react to DAMPs (damage-associated 399 

molecular patterns) – i.e. self-molecules released upon cellular stress, tissue injury and 400 

necrosis – which accumulate during life. Due to age-dependent increase in cytokine 401 

production of senescent cells, PRRs and inflammasome components can be in a primed state 402 

in elderly. Therefore, inflammasome-activating signals (e.g. amyloid-β fibrils in AD or ROS 403 

released upon ischemia-reoxygenation) can directly lead to cytokine (IL-1β or IL-18) release 404 

and pyroptotic cell death. 405 



Inflammatory reactions in the aging brain have mainly been linked to microglia and to a lower 406 

extent to astrocytes and neurons. Recently, CECs and pericytes have also been shown to 407 

express PRRs and to release inflammatory cytokines. Since the vasculature is largely involved 408 

in aging-related disorders, inflammatory reactions of the BBB might be involved in the 409 

pathomechanism of these conditions. It is our hope that further studies will elucidate the exact 410 

role of cells of the cerebral vasculature in inflammatory reactions of the aging brain. In 411 

addition, possible existence of any links between activation of PRRs and age-related BBB 412 

disruption or uncoupling of functional hyperemia also need to be clarified. Moreover, it would 413 

be important to understand whether changes in the functions of cells of the NVU are causes or 414 

compensatory consequences of aging. 415 
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Legend to figures and tables 425 

Figure 1. Expression of TLRs and inflammasome-forming NLRs in cells of the neurovascular 426 

unit (NVU). 427 

Figure 2. Central role of sterile chronic inflammation and PRRs in aging and aging-related 428 

CNS disorders. 429 



Table 1. Classification of pattern recognition receptors (PRRs) and their most important 430 

microbial and endogenous activators. 431 

Table 2. Regulation and function of PRRs and inflammasomes in the aging brain and aging-432 

related CNS disorders. ↑=upregulation/increase, ↓=downregulation/decrease.  433 
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Tables 913 

Table 1. 914 

Pattern recognition receptors (PRRs) 
Best 

characterized 
members 

Best known activators 

References 
PAMPs DAMPs 

Membrane-
bound PRRs 

Toll-like 
recepors 
(TLRs) 

TLR1-10 
(human)    

 

  
TLR2 

bacterial 
lipoproteins 

Hsp60, 
Hsp70, 

HMGB1, fibrin 

(47, 79, 
138) 

  
TLR3 

double-
stranded RNA 

endogenous 
nucleic acids 

  
TLR4 LPS 

Hsp60, 
Hsp70, 

HMGB1, fibrin 

  
TLR5 flagellin 

 

  
TLR9 

unmethylated 
CpG 

endogenous 
nucleic acids 

C-type 
lectin 

receptors 
(CLRs) 

    

 

  

mannose 
receptor 1 

repeated 
mannose 

units 

endogenous 
glycoproteins 

(138) 
  

mincle 
bacterial 

glycolipids 

spliceosome-
associated 
protein 130 

  
dectin-1 

glucans from 
fungi 

endogenous 
glycoproteins 

Cytoplasmic 
PRRs 

NOD-like 
receptors 

(NLRs) 

NLRA 
(CIITA), 
NLRB 

(NAIP), 
NOD1, 
NOD2, 

NLRC3-5, 
NLRP1-

14, NLRX 

   

 
  

NOD2 MDP 
 

(100, 138) 

  
NLRC4 flagellin 

 
(15) 

  
NLRP1 

MDP, anthrax 
lethal toxin  

(15) 

  
NLRP3 

MDP, 
nigericin 

ROS, 
amyloid-β 

fibrils, ATP, 
uric acid 

(15, 47, 61, 
100) 



RIG-I-like 
receptors 

(RLRs) 
    

 

  
RIG-I 

viral double 
stranded RNA  

(138) 

  
MDA-5 

viral double 
stranded RNA  
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Table 2. 916 

Pattern 
recognition 

receptor 
Cell or tissue 

Regulation or 
function 

Remarks Reference 

TLR2 

mouse brain 
(mononuclear 
phagocytes) 

mRNA ↑ in aging 
 

(82) 

mouse brain  
mRNA ↑ in plaque-

associated brain tissue 
of AD model mice 

 
(51) 

human brain 
(hippocampus, 

entorhinal cortex, 
superior frontal gyrus, 

post-central gyrus) 

mRNA ↑ in aging and 
AD 

modest ↑ in AD 
relative to the aged 
brain which shows 

robust ↑ compared to 
young 

(25) 

rat hippocampus 
(microglia) 

mRNA ↑ in 
postoperative 

cognitive dysfunction 
in senile animals 

 
(88) 

mouse microglia 

involved in both 

amyloid-β uptake and 

inflammatory cytokine 
production 

 
(72) 

human brain 
(neurons) 

protein ↑ in PD 
 

(36) 

neurons (mouse 
cortex) 

protein ↑, proapoptotic 
in ischemia  

(140) 

rat brain (vasculature) 
protein ↑, activation in 

ischemic stroke  
(155) 

TLR4 

mouse brain mRNA ↑ in aging 
 

(82) 

mouse brain  
mRNA ↑ in plaque-

associated brain tissue 
of AD model mice 

 
(51) 

human brain 
(hippocampus, 

superior frontal gyrus, 
post-central gyrus) 

mRNA ↑ in aging and 
AD 

modest ↑ in AD 
relative to the aged 
brain which shows 

robust ↑ compared to 
young 

(25) 

mouse microglia 

involved in both 

amyloid-β uptake and 

inflammatory cytokine 
production 

 
(118, 131) 



microglia (mouse 
striatum) 

TLR4 knockout: 
neuroprotective in 

ischemia 
 

(71) 

neurons (mouse 
cortex) 

protein ↑, proapoptotic 
in ischemia  

(140) 

rat brain (vasculature) 
protein ↑, activation in 

ischemic stroke  
(155) 

primary mouse 
astrocytes 

activation in response 
to α-synuclein  

(115) 

other TLRs 

mouse brain 
TLR1,TLR5, TLR7 
mRNA ↑ in aging  

(82) 

mouse brain 
TLR9 mRNA ↓ in 

aging  
(82) 

mouse brain 

TLR5, TLR7, TLR9 
mRNA ↑ in plaque-

associated brain tissue 
of AD model mice 

 
(51) 

mouse hippocampus 

TLR3: suppression of 
neural plasticity and 
inhibition of memory 

retention 
 

(107) 

mouse microglia 
TLR9: involved in 

amyloid-β uptake  
(33, 34) 

NLRP1 

rat hippocampus 
NLRP1 inflammasome 

activation in aging  
(90) 

human hippocampus 
(neurons); mouse 

models of AD 

protein ↑ in AD, role in 
neuronal pyroptosis 

and cognitive 
impairment 

 
(74, 139) 

mouse cortical 
neurons (cell culture, 

stroke model), human 
brain 

protein ↑ in 
ischemia/reperfusion, 
role in neuronal cell 

death and behavioral 
deficits 

 
(42) 

NLRP3 

mouse microglia 
NLRP3 inflammasome 

activation in AD 
models 

only microglia isolated 
from aged mouse 

brains secrete IL-1β 
in response to fibrillar 

amyloid-β 

(62, 65, 
152) 

mouse cortical 
neurons (cell culture, 

stroke model), human 
brain 

protein ↑ in 
ischemia/reperfusion, 
role in neuronal cell 

death and behavioral 
deficits 

 
(42) 

rat primary astrocytes, 
mouse substantia 

nigra 

protein ↑, activation of 
NLRP3 inflammasome 

in PD models 
 

(87) 

other 
inflammasome 
components 

human brain 
(hippocampus) 

caspase-1, IL-1β, IL-
18 mRNA ↑ in aging 

and AD 

modest ↑ in AD 
relative to the aged 
brain which shows 

robust ↑ compared to 
young 

(25) 



rat hippocampus 
(neurons) 

caspase-1, P2X7 
receptor, pannexin-1 
protein (involved in 
NLRP1 and NLRP3 

inflammasome 
activation) ↑ in aging 

 
(90) 

mouse cortical 
neurons (cell culture, 

stroke model), human 
brain 

 ASC, caspase-1 (pro- 
and active form), IL-1β  
(pro- and active form), 
IL-18  (pro- and active 

form) protein ↑ in 
ischemia/reperfusion 

 
(42) 

rat primary astrocytes, 
mouse substantia 

nigra 

caspase-1, IL-1β (pro- 
and active form) 

protein ↑ in PD models 
 

(87) 

primary rat astrocytes, 
human neocortex 

NLRC4 inflammasome 
activation in 

astrocytes: ↑ amyloid-
β levels in neurons; 

NLRC4, ASC protein ↑ 
in sporadic AD 

 
(84) 
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