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Abstract. In this paper, we study the multiplicity of solutions for the following
Schrödinger–Kirchhoff-type equation{

−
(
a + b

∫
RN |∇u|2dx

)
4u + V(x)u = f (x, u) + g(x, u), x ∈ RN ,

u ∈ H1(RN),

where N ≥ 3, a, b > 0 are constants and the potential V may be unbounded from below.
Under some mild conditions on the nonlinearities f and g, we obtain the existence
of infinitely many solutions for this problem. Recent results from the literature are
generalized and significantly improved.
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1 Introduction and main results

In this paper, we consider the following Schrödinger–Kirchhoff-type equation{
−
(
a + b

∫
RN |∇u|2dx

)
4u + V(x)u = f (x, u) + g(x, u), x ∈ RN ,

u ∈ H1(RN),
(1.1)

where N ≥ 3 and a, b > 0 are constants. If in (1.1), we set V(x) ≡ 0 and replace RN by a
smooth bounded domain Ω, then (1.1) reduces to the following Dirichlet problem{

−
(
a + b

∫
Ω |∇u|2dx

)
4u = f (x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1.2)
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Problem (1.2) is related to the stationary analogue of the Kirchhoff equation

utt −
(

a + b
∫

Ω
|∇u|2dx

)
4u = f (x, u),

which was presented by Kirchhoff in 1883 [8] as a generalization of the classical D’Alembert’s
wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into account
the changes in length of the string produced by transverse vibrations. In [11], Lions first
introduced an abstract functional analysis framework to this model. After that, problems like
type (1.2) have been studied by many authors, see [3, 4, 15, 16, 20, 25, 27] and the references
therein.

More recently, with the aid of variational methods, the existence and multiplicity of various
solutions for equations of type (1.1) have also been extensively investigated in the literature,
see, for instance, [1,2,5,6,9,10,12,21–24,26,29] and the references therein. Here we emphasize
that almost in all these mentioned papers the conditions imposed on the potential V always
imply that V is bounded from below, which is crucial for the corresponding results.

In the present paper, different from the references mentioned above, we are going to study
the existence of infinitely many solutions for (1.1) in the case where the potential V may be
unbounded from below. Specifically, we first assume that V satisfies

(S1) V ∈ Lq
loc(R

N) and V− := min{V, 0} ∈ L∞(RN) + Lq(RN) for some q ∈ [2, ∞) ∩ (N
2 , ∞).

This type of assumptions on the potential V has already been introduced in [13] to study
Schrödinger equations (see also [28]), which ensures that the Schrödinger operator S :=
−a∆ + V, defined as a form sum, is self-adjoint and semibounded on L2(RN) (see Theo-
rem A.2.7 in [19]). We denote by σ(S) ⊂ R the spectrum, σess(S) the essential spectrum and
σpp(S) the pure point spectrum of S respectively.

Consider the nondecreasing sequence of min-max values defined by

λk = inf
U∈Uk

sup
u∈U\{0}

∫
RN

(
a|∇u|2 + V(x)u2) dx∫

RN u2dx
, ∀ k ∈N,

where Uk is the family of all k-dimensional subspaces of C∞
0 (RN). It is known that λ∞ :=

limk→∞ λk = inf σess(S). Moreover, λk ∈ σpp(S) whenever λk < λ∞ (cf. [17, 18] for details).
Then we make the further assumption on V.

(S2) λ∞ > 0.

For the nonlinearities, we present the following assumptions.

(S3) The function f ∈ C(RN ×R, R) is odd in u, and there exist constants ν ∈ (1, 2) and
µ ∈ (2∗/(2∗ − ν), 2/(2− ν)] and a nonnegative function ξ ∈ Lµ(RN) such that

| f (x, u)| ≤ ξ(x)|u|ν−1, ∀ (x, u) ∈ RN ×R,

where 2∗ := 2N/(N − 2) is the critical exponent.

(S4) There exist an x0 ∈ RN and a constant r0 > 0 such that

lim inf
u→0

(
inf

x∈Br0 (x0)
u−2F(x, u)

)
> −∞,
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and

lim sup
u→0

(
inf

x∈Br0 (x0)
u−2F(x, u)

)
= +∞

where Br0(x0) is the ball in RN centered at x0 with radius r0 and

F(x, u) :=
∫ u

0
f (x, t)dt.

(S5) g ∈ C(RN ×R, R) is odd in u, and there exists d ∈ (0, λ∞) such that

|g(x, u)| ≤ d|u|, ∀ (x, u) ∈ RN ×R.

Our main result reads as follows.

Theorem 1.1. Suppose that (S1)–(S5) are satisfied. Then (1.1) possesses a sequence of nontrivial
solutions {uk}k∈N ⊂ H1(RN) with uk → 0 in H1(RN) as k→ ∞.

Remark 1.2. In Theorem 1.1, the potential V satisfying (S1) and (S2) may not be coercive or
bounded from below. Moreover, the nonlinear term f satisfying (S3) and (S4) may be partially
oscillatory near the origin. This is in sharp contrast with the aforementioned references. To the
best of our knowledge, there is little literature concerning infinitely many solutions for (1.1) in
this situation. In fact, it is easy to see that conditions (S1) and (S2) are rather weaker than the
usual one in the existing literature that the potential V ∈ C(RN) with lim|x|→∞ V(x) = +∞ or
infx∈RN V(x) > 0.

Remark 1.3. Theorem 1.1 also essentially improves some related results in the existing liter-
ature. Compared to Theorem 6 in [26], our conditions (S1) and (S2) on the potential V are
weaker than (V1) there, and our conditions (S3) and (S4) on the nonlinear term f are much
weaker than (f5) there if we just take g = 0 in (1.1). In fact, there are many functions V and
f which satisfy our conditions (S1)–(S4) but do not satisfy the condition (V1) and (f5) in [26].
For instance, let

V(x) = V0(x) + V,

where V0 ∈ Lq(RN) for some q ≥ 2 is a given non-positive function and unbounded from
below. Then it is evident that V satisfies (S1) and (S2) if the positive constant V is chosen to be
large enough. Moreover, V is also unbounded from below. In addition, let

F(x, u) =

{
e−|x|

2 |u|α sin2(|u|−ε), ∀ x ∈ RN , 0 < |u| < π−1/ε,

0, ∀ x ∈ RN , u = 0 or |u| ≥ π−1/ε

be the primitive function of f with respect to u, where ε > 0 is small enough and α ∈ (1+ ε, 2).
Then it is easy to check that f satisfies conditions (S3) and (S4) with ν = α − ε and ξ(x) =

(α + ε)e−|x|
2
.

2 Notations and preliminaries

Throughout this paper, we always use the following notations:
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• H1(RN) is the usual Sobolev space equipped with the standard norm

‖u‖2
H1 =

∫
RN

(
|∇u|2 + u2) dx,

and H−1(RN) is the dual space of H1(RN).

• D1,2(RN) is the completion of C∞
0 (RN) with respect to the norm

‖u‖2
D1,2 =

∫
RN
|∇u|2dx.

• Lp(Ω), 1 ≤ p ≤ ∞, Ω ⊆ RN , denotes a Lebesgue space, and the norm in Lp(Ω) is
denoted by ‖u‖p, Ω when Ω is a proper subset of RN , by ‖u‖p when Ω = RN .

• For any R > 0, BR denotes the ball in RN centered at 0 with radius R.

• → (resp. ⇀) denotes the strong (resp. weak) convergence.

In what follows it will always be assumed that (S1) and (S2) are satisfied. As pointed out
in [13], the form domain of the Schrödinger operator S is

E :=
{

u ∈ H1(RN) |
∫

RN

(
a|∇u|2 + V(x)u2) dx < ∞

}
,

which becomes a Hilbert space if it is equipped with the inner product

(u, v)0 :=
∫

RN
(a∇u · ∇v + V(x)uv + l0uv) dx, ∀ u, v ∈ E,

where l0 > − inf σ(S) = −λ1 is a fixed positive constant. We denote by ‖ · ‖0 the associated
norm.

Lemma 2.1. E is continuously embedded into H1(RN), that is,

‖u‖H1 ≤ c0‖u‖0, ∀ u ∈ E

for some c0 > 0.

Proof. Arguing indirectly, we assume that there exists a sequence {un}n∈N ⊂ E such that

‖un‖2
H1 =

∫
RN

(
|∇un|2 + u2

n
)

dx ≡ 1, ∀ n ∈N (2.1)

and
‖un‖2

0 =
∫

RN

(
a|∇un|2 + V(x)u2

n + l0u2
n
)

dx → 0 as n→ ∞. (2.2)

Since l0 > − inf σ(S), then it holds that∫
RN

(
a|∇un|2 + V(x)u2

n + l0u2
n
)

dx ≥ c1

∫
RN

u2
ndx (2.3)

for some c1 > 0. By (2.2) and (2.3), we get

‖un‖2 =

(∫
RN

u2
ndx
)1/2

→ 0 as n→ ∞. (2.4)
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Let
V− = V−1 + V−2

with V−1 ∈ L∞(RN) and V−2 ∈ Lq(RN), where V− and q are given in (S1). Combining (2.1),
(2.4), Hölder’s inequality and the Gagliardo–Nirenberg inequality, we have∣∣∣∣∫

RN
V−u2

ndx
∣∣∣∣ = ∣∣∣∣∫

RN
V−1 u2

ndx +
∫

RN
V−2 u2

ndx
∣∣∣∣

≤
∫

RN
|V−1 u2

n|dx +
∫

RN
|V−2 u2

n|dx

≤ ‖V−1 ‖∞‖un‖2
2 + ‖V−2 ‖q‖un‖2

2q/(q−1)

≤ ‖V−1 ‖∞‖un‖2
2 + c2‖V−2 ‖q‖∇un‖N/q

2 ‖un‖(2q−N)/q
2 → 0 as n→ ∞,

where c2 > 0 is a constant depending on q. This together with (2.2) and (2.4) yields∫
RN

(
|∇un|2 + u2

n
)

dx → 0 as n→ ∞,

which contradicts (2.1). The proof is completed.

For later use, we introduce the new inner product in E as follows. Choose d̄ ∈ (d, λ∞)

such that d̄ 6= λk for all k ∈ N, where d is the constant given in (S5). Denote by λk0 the
first eigenvalue of the Schrödinger operator S greater than d̄. Let E− be the subspace of E
spanned by the eigenfunctions with corresponding eigenvalues less than d̄. Note the fact that
λ∞ = limk→∞ λk and λk ∈ σpp(S) whenever λk < λ∞. Then it is evident that E− is a finite
dimensional subspace of E. If there is no eigenvalue of the Schrödinger operator S greater
than d̄, then we set λk0 = λ∞ and E− is empty in this case. Let E+ be the orthogonal com-
plement of E− in E with respect to the inner product (·, ·)0. Then E possesses the orthogonal
decomposition E = E− ⊕ E+. By definition, it holds that∫

RN

(
a|∇u|2 + V(x)u2) dx ≥ λk0

∫
RN

u2dx, ∀ u ∈ E+. (2.5)

Now we can define the new inner product (·, ·) and the induced norm ‖ · ‖ in E by

(u, v) =
∫

RN

(
a∇u+ · ∇v+ + V(x)u+v+ − d̄u+v+

)
dx

−
∫

RN

(
a∇u− · ∇v− + V(x)u−v− − d̄u−v−

)
dx,

(2.6)

‖u‖ =
√
(u, u) (2.7)

for all u = u− + u+, v = v− + v+ ∈ E with u±, v± ∈ E±. Note the fact that E− and E+ are
also orthogonal with respect to the usual inner product in L2(RN). Then it is evident that
E possesses the same orthogonal decomposition E = E− ⊕ E+ with respect to the new inner
product (·, ·). Moreover, we have∫

RN

(
a|∇u|2 + V(x)u2 − d̄u2) dx = ‖u+‖2 − ‖u−‖2 (2.8)

for all u = u− + u+ ∈ E with u± ∈ E±.

Lemma 2.2. The norms ‖ · ‖ and ‖ · ‖0 are equivalent in E.
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Proof. It suffices to show that ‖ · ‖ and ‖ · ‖0 are equivalent in E+ since E− is finite dimensional.
On the one hand, by (2.8), there holds

‖u‖2 =
∫

RN

(
a|∇u|2 + V(x)u2 − d̄u2) dx

≤
∫

RN

(
a|∇u|2 + V(x)u2 + l0u2) dx = ‖u‖2

0, ∀ u ∈ E+.
(2.9)

On the other hand, invoking (2.5) and (2.8), we get

‖u‖2 =
∫

RN

(
a|∇u|2 + V(x)u2 − d̄u2) dx

≥ λk0 − d̄
λk0

∫
RN

(
a|∇u|2 + V(x)u2) dx

≥ λk0 − d̄
2λk0

∫
RN

(
a|∇u|2 + V(x)u2) dx +

λk0 − d̄
2l0

∫
RN

l0u2dx

≥ c3

∫
RN

(
a|∇u|2 + V(x)u2 + l0u2) dx

= c3‖u‖2
0, ∀ u ∈ E+,

(2.10)

where c3 = min{(λk0 − d̄)/2λk0 , (λk0 − d̄)/2l0} > 0 by the choice of d̄ and λk0 . Combining
(2.9) and (2.10), we know that ‖ · ‖ and ‖ · ‖0 are equivalent in E+. The proof is completed.

Hereafter, we always use the inner product (·, ·) and the induced norm ‖ · ‖ in E. Moreover,
we write E∗ for the dual space of E, and 〈·, ·〉 : E∗ × E → R for the dual pairing. From
Lemma 2.1 and Lemma 2.2, we immediately know that E is continuously embedded into
H1(RN). Furthermore, using the Sobolev embedding theorem, we also get the following
lemma.

Lemma 2.3. E is continuously embedded into D1,2(RN) and Lp(RN) for all p ∈ [2, 2∗], and hence
there exist constants c4, τp > 0 such that

‖u‖D1,2 ≤ c4‖u‖, ∀ u ∈ E (2.11)

and
‖u‖p ≤ τp‖u‖, ∀ u ∈ E and p ∈ [2, 2∗]. (2.12)

Moreover, for any bounded domain Ω ⊂ RN , E is compactly embedded into Lp(Ω) for all p ∈ [1, 2∗).

3 Variational setting and proof of the main result

In this section, we will first introduce the variational setting for (1.1). To this end, we define
functionals Ψi(i = 1, 2, 3) and Φ on E by

Ψ1(u) =
b
4

(∫
RN
|∇u|2dx

)2

,

Ψ2(u) =
∫

RN
F(x, u)dx,

Ψ3(u) =
∫

RN

(
d̄
2

u2 − G(x, u)
)

dx
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and

Φ(u) =
1
2

∫
RN

(
a|∇u|2 + V(x)u2) dx +

b
4

(∫
RN
|∇u|2dx

)2

−
∫

RN
(F(x, u) + G(x, u)) dx

=
1
2

∫
RN

(
a|∇u|2 + V(x)u2 − d̄u2) dx +

b
4

(∫
RN
|∇u|2dx

)2

−
∫

RN
F(x, u)dx

+
∫

RN

(
d̄
2

u2 − G(x, u)
)

dx

=
1
2
‖u+‖2 − 1

2
‖u−‖2 + Ψ1(u)−Ψ2(u) + Ψ3(u)

(3.1)

for all u = u− + u+ ∈ E with u± ∈ E±. Here d̄ is the constant in (2.8) and G(x, u) :=∫ u
0 g(x, t)dt is the primitive function of g(x, u) with respect to u.

Proposition 3.1. Assume that (S1)–(S3) and (S5) are satisfied. Then Ψi ∈ C1(E, R) for i = 1, 2, 3
with Ψ′i : E→ E∗ being completely continuous for i = 2, 3, and hence Φ ∈ C1(E, R). Moreover,

〈Ψ′1(u), v〉 = b
(∫

RN
|∇u|2dx

) ∫
RN
∇u · ∇vdx, (3.2)

〈Ψ′2(u), v〉 =
∫

RN
f (x, u)vdx, (3.3)

〈Ψ′3(u), v〉 =
∫

RN
(d̄u− g(x, u))vdx, (3.4)

〈Φ′(u), v〉 = (u+, v+)− (u−, v−) + 〈Ψ′1(u), v〉 − 〈Ψ′2(u), v〉+ 〈Ψ′3(u), v〉

=

(
a + b

∫
RN
|∇u|2dx

) ∫
RN
∇u · ∇vdx +

∫
RN

V(x)uvdx

−
∫

RN
( f (x, u) + g(x, u))vdx

(3.5)

for all u = u− + u+, v = v− + v+ ∈ E with u±, v± ∈ E±. In addition, if u ∈ E ⊆ H1(RN) is a
critical point of Φ on E, then it is a solution of (1.1).

Proof. First, we show that Ψ1 ∈ C1(E, R) and (3.2) holds. Define a functional Ψ0 on D1,2(RN)

by

Ψ0(u) =
b
4

(∫
RN
|∇u|2dx

)2

.

Evidently, Ψ0 ∈ C1(D1,2(RN), R) and

〈Ψ′0(u), v〉 = b
(∫

RN
|∇u|2dx

) ∫
RN
∇u · ∇vdx, ∀ u, v ∈ D1,2(RN). (3.6)

Let ι : E → D1,2(RN) be the continuous embedding in Lemma 2.3. Since Ψ1 = Ψ0 ◦ ι, we
immediately know by (3.6) that Ψ1 ∈ C1(E, R) and (3.2) holds.

Next, we verify (3.3) by definition and prove that Ψ2 ∈ C1(E, R) with Ψ′2 : E → E∗ being
completely continuous. By (S3), there holds

|F(x, u)| ≤ ν−1ξ(x)|u|ν, ∀ (x, u) ∈ RN ×R. (3.7)

For notational simplicity, we set

µ∗ :=
µν

µ− 1
. (3.8)
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Since ν ∈ (1, 2) and µ ∈ (2∗/(2∗ − ν), 2/(2− ν)] in (S3), we get µ∗ ∈ [2, 2∗). Then for any
u ∈ E, by (2.12), (3.7) and Hölder’s inequality, we have∫

RN
|F(x, u)|dx ≤

∫
RN

ν−1ξ(x)|u|νdx

≤ ν−1‖ξ‖µ‖u‖ν
µ∗

≤ ν−1τν
µ∗‖ξ‖µ‖u‖ν < ∞,

(3.9)

where τµ∗ is the constant given in (2.12). Thus Ψ2 is well defined. For any given u ∈ E, define
an associated linear operator J (u) : E→ R as follows:

〈J (u), v〉 =
∫

RN
f (x, u)vdx, ∀ v ∈ E. (3.10)

By (S3), (2.12) and Hölder’s inequality, there holds

|〈J (u), v〉| ≤
∫

RN
ξ(x)|u|ν−1|v|dx

≤ ‖ξ‖µ‖u‖ν−1
µ∗ ‖v‖µ∗

≤ τν
µ∗‖ξ‖µ‖u‖ν−1‖v‖, ∀ v ∈ E,

(3.11)

which shows that J (u) is well defined and bounded. On the other hand, it follows from (S3)
that

| f (x, u + ηv)v| ≤ 2ν−1ξ(x)(|u|ν−1|v|+ |v|ν), ∀ x ∈ RN , η ∈ [0, 1] and u, v ∈ R. (3.12)

Then for any u, v ∈ E, combining (3.9)-(3.12), the mean value theorem and Lebesgue’s domi-
nated convergence theorem, we have

lim
t→0

Ψ2(u + tv)−Ψ2(u)
t

= lim
t→0

∫
RN

f (x, u + θ(x)tv)vdx

=
∫

RN
f (x, u)vdx

= 〈J (u), v〉,

(3.13)

where θ(x) ∈ [0, 1] depends on u, v, t. This shows that Ψ2 is Gâteaux differentiable on E and
the Gâteaux derivative of Ψ2 at u is J (u).

In order to prove that Ψ2 ∈ C1(E, R) and Ψ′2 : E→ E∗ is completely continuous, it suffices
to prove that J : E→ E∗ is completely continuous. To this end, we claim that if un ⇀ u in E,
then for any R > 0, ∫

BR

| f (x, un)− f (x, u)|p0 dx → 0 as n→ ∞, (3.14)

where p0 := max{2∗/(2∗ − 1), µ/(µ(ν − 1) + 1)} with µ and ν given in (S3). Arguing in-
directly, by Lemma 2.3, we assume that there exist constants R0, ε0 > 0 and a subsequence
{unk}k∈N such that

unk → u in Lp∗0 (BR0) and unk → u a.e. in BR0 as k→ ∞ (3.15)

but ∫
BR0

| f (x, unk)− f (x, u)|p0 dx ≥ ε0, ∀ k ∈N, (3.16)
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where p∗0 := p0µ(ν− 1)/(µ− p0) ∈ [1, 2∗) by (S3) and the choice of p0 above. Due to (3.15),
passing to a subsequence if necessary, we can further assume that

∞

∑
k=1
‖unk − u‖p∗0 , BR0

< +∞.

Let w(x) = ∑∞
k=1 |unk(x) − u(x)| for all x ∈ BR0 , then w ∈ Lp∗0 (BR0). By virtue of (S3) and

Hölder’s inequality, we get

| f (x, unk)− f (x, u)|p0

≤ (| f (x, unk)|+ | f (x, u)|)p0

≤ ξ(x)p0
(
|unk |ν−1 + |u|ν−1

)p0

≤ 2p0 ξ(x)p0
(
|unk |p0(ν−1) + |u|p0(ν−1)

)
≤ 2p0ν+1ξ(x)p0

(
|unk − u|p0(ν−1) + |u|p0(ν−1)

)
≤ 2p0ν+1ξ(x)p0

(
|w|p0(ν−1) + |u|p0(ν−1)

)
, ∀ k ∈N and x ∈ BR0

(3.17)

and ∫
BR0

ξ(x)p0
(
|w|p0(ν−1) + |u|p0(ν−1)

)
dx ≤ ‖ξ‖p0

µ

(
‖w‖p0(ν−1)

p∗0 , BR0
+ ‖u‖p0(ν−1)

p∗0 , BR0

)
< +∞. (3.18)

Combining (3.15), (3.17), (3.18) and Lebesgue’s dominated convergence theorem, we have

lim
k→∞

∫
BR0

| f (x, unk)− f (x, u)|p0 dx = 0,

which contradicts (3.16). Thus the claim is true.
Now let un ⇀ u in E as n → ∞, then {un} is bounded in E and hence there exists a

constant D0 > 0 such that

‖un‖ν + ‖un‖‖u‖ν−1 ≤ D0, ∀ n ∈N. (3.19)

For any ε > 0, by (S3), there exists Rε > 0 such that(∫
RN\BRε

ξ(x)µdx
)1/µ

<
ε

2D0τν
µ∗

. (3.20)

Combining (S3), (3.19), (3.20) and Hölder’s inequality, we have∫
RN\BRε

| f (x, un)− f (x, u)||v|dx ≤
∫

RN\BRε

(| f (x, un)|+ | f (x, u)|) |v|dx

≤
∫

RN\BRε

ξ(x)
(
|un|ν−1 + |u|ν−1

)
|v|dx

≤
(∫

RN\BRε

ξ(x)µdx
)1/µ (

‖un‖ν−1
µ∗ + ‖u‖ν−1

µ∗

)
‖v‖µ∗

≤ τν
µ∗

(∫
RN\BRε

ξ(x)µdx
)1/µ (

‖un‖ν−1 + ‖u‖ν−1
)

<
ε

2
, ∀ n ∈N and ‖v‖ = 1.

(3.21)
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For the Rε given in (3.20), by Hölder’s inequality and (3.14), there exists Nε ∈N such that

∫
BRε

∣∣ f (x, un)− f (x, u)
∣∣|v|dx ≤

(∫
BRε

∣∣ f (x, un)− f (x, u)
∣∣p0 dx

)1/p0

‖v‖ p̄0, BRε

≤
(∫

BRε

∣∣ f (x, un)− f (x, u)
∣∣p0 dx

)1/p0

‖v‖ p̄0

≤ τp̄0

(∫
BRε

∣∣ f (x, un)− f (x, u)
∣∣p0 dx

)1/p0

<
ε

2
, ∀ n ≥ Nε and ‖v‖ = 1,

(3.22)

where p̄0 := p0/(p0− 1) ∈ (1, 2∗] and p0 is the constant given in (3.14), and τp̄0 is the constant
given in (2.12). Combining (3.21) and (3.22), we have

‖J (un)−J (u)‖E∗ = sup
‖v‖=1

|〈J (un)−J (u), v〉|

= sup
‖v‖=1

∣∣∣∣∫
RN

( f (x, un)− f (x, u)) vdx
∣∣∣∣

≤ sup
‖v‖=1

∫
BRε

∣∣ f (x, un)− f (x, u)
∣∣|v|dx

+ sup
‖v‖=1

∫
RN\BRε

∣∣ f (x, un)− f (x, u)
∣∣|v|dx

≤ ε

2
+

ε

2
= ε, ∀ n ≥ Nε.

This shows that J : E→ E∗ is completely continuous.
Then, taking (S5) into account and using similar arguments to those above, one can also

prove that Ψ3 ∈ C1(E, R) with Ψ′3 : E → E∗ being completely continuous and (3.4) holds. For
simplicity, we omit the proof here.

Finally, combining (2.6) and (3.1)–(3.4), we immediately know that Φ ∈ C1(E, R) and (3.5)
holds. In addition, it is known that any critical point u ∈ E ⊆ H1(RN) of the functional Φ is a
solution of (1.1). The proof is completed.

We will use the following variant symmetric mountain pass lemma due to [7] (see also
[14]) to prove that (1.1) possesses a sequence of weak solutions. Before stating this theorem,
we first recall the notion of genus.

Let E be a Banach space and A a subset of E. A is said to be symmetric if u ∈ A implies
−u ∈ A. Denote by Γ the family of all closed symmetric subset of E which does not contain 0.
For any A ∈ Γ, define the genus γ(A) of A by the smallest integer k such that there exists
an odd continuous mapping from A to Rk \ {0}. If there does not exist such a k, define
γ(A) = ∞. Moreover, set γ(∅) = 0. For each k ∈N, let Γk = {A ∈ Γ | γ(A) ≥ k}.

Theorem 3.2 ([7, Theorem 1]). Let E be an infinite dimensional Banach space and Φ ∈ C1(E, R) an
even functional with Φ(0) = 0. Suppose that Φ satisfies

(Φ1) Φ is bounded from below and satisfies (PS) condition.

(Φ2) For each k ∈N, there exists an Ak ∈ Γk such that supu∈Ak
Φ(u) < 0.

Then either (i) or (ii) below holds.
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(i) There exists a critical point sequence {uk} such that Φ(uk) < 0 and limk→∞ uk = 0.

(ii) There exist two critical point sequences {uk} and {vk} such that Φ(uk) = 0, uk 6= 0,
limk→∞ uk = 0, Φ(vk) < 0, limk→∞ Φ(vk) = 0, and {vk} converges to a non-zero limit.

In order to apply Theorem 3.2, we will show in the following lemmas that the functional Φ

defined in (3.1) satisfies conditions (Φ1) and (Φ2) in Theorem 3.2. The proof of these lemmas
is partially motivated by [21] and [7].

Lemma 3.3. Let (S1)–(S3) and (S5) be satisfied. Then Φ is coercive and bounded from below.

Proof. We first prove that Φ is coercive. Arguing indirectly, we assume that for some sequence
{un}n∈N ⊂ E with ‖un‖ → ∞, there is a constant M > 0 such that Φ(un) ≤ M for all n ∈ N.
Let un = u−n + u+

n with u±n ∈ E±. If we set vn = un/‖un‖ for all n ∈ N, then ‖vn‖ ≡ 1, and
vn = v−n + v+n with v±n = u±n /‖un‖ ∈ E±. Note that E− is finite dimensional. Thus, passing to
a subsequence if necessary, we can assume by Lemma 2.3 that

vn ⇀ v, v−n → v−, v+n ⇀ v+ and vn → v a.e. in RN as n→ ∞ (3.23)

for some v = v− + v+ ∈ E with v± ∈ E±. By (S5), there hold

0 ≤ d̄− d
2

u2 ≤ d̄
2

u2 − G(x, u) ≤ d̄ + d
2

u2, ∀ (x, u) ∈ RN ×R (3.24)

and
d̄u2 − g(x, u)u ≥ (d̄− d)u2 ≥ 0, ∀ (x, u) ∈ RN ×R (3.25)

since d̄ is chosen to be greater than d in Section 2. Combining (3.1), (3.9) and (3.24), we have

M ≥ Φ(un) ≥
1
2
‖u+

n ‖2 − 1
2
‖u−n ‖2 −

∫
RN
|F(x, un)|dx

≥ 1
2
‖u+

n ‖2 − 1
2
‖u−n ‖2 − ν−1τν

µ∗‖ξ‖µ‖un‖ν, ∀ n ∈N.
(3.26)

Multiplying both sides of (3.26) by ‖un‖−2, we get

‖v+n ‖2 ≤ ‖v−n ‖2 + o(1) as n→ ∞ (3.27)

since ν < 2 in (S3) and ‖un‖ → ∞.
If v = 0, then v−n → 0 and hence v+n → 0 by (3.27). This implies vn → 0, which leads to

a contradiction since ‖vn‖ ≡ 1. Therefore, v 6= 0. Note that vn ⇀ v in D1,2(RN) since E is
continuously embedded into D1,2(RN). Then it follows from the weak lower semi-continuity
of the norm ‖ · ‖D1,2 in D1,2(RN) that

lim inf
n→∞

[
b

4‖un‖4

(∫
RN
|∇un|2dx

)2
]
= lim inf

n→∞

[
b
4

(∫
RN
|∇vn|2dx

)2
]

= lim inf
n→∞

b
4
‖vn‖4

D1,2

=
b
4

(
lim inf

n→∞
‖vn‖D1,2

)4

≥ b
4
‖v‖4

D1,2 > 0.

(3.28)
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Combining (3.1), (3.9) and (3.24), we have

M ≥ Φ(un) ≥
1
2
‖u+

n ‖2 − 1
2
‖u−n ‖2 +

b
4

(∫
RN
|∇un|2dx

)2

−
∫

RN
|F(x, un)|dx

≥ 1
2
‖u+

n ‖2 − 1
2
‖u−n ‖2 +

b
4

(∫
RN
|∇un|2dx

)2

− ν−1τν
µ∗‖ξ‖µ‖un‖ν,

or equivalently,

b
4

(∫
RN
|∇un|2dx

)2

≤ 1
2
‖u−n ‖2 − 1

2
‖u+

n ‖2 + ν−1τν
µ∗‖ξ‖µ‖un‖ν + M, (3.29)

where µ∗ and τµ∗ are the constants given in (3.8) and (2.12) respectively. Multiplying both
sides of (3.29) by ‖un‖−4 and letting n→ ∞, we get

lim inf
n→∞

[
b

4‖un‖4

(∫
RN
|∇un|2dx

)2
]
≤ 0,

which contradicts (3.28). Therefore, Φ is coercive.
Next, we show that Φ is bounded from below. Combining (2.11), (2.12), (3.1), (3.9) and

(3.24), we have

|Φ(u)| ≤ 1
2
‖u‖2 +

b
4

(∫
RN
|∇u|2dx

)2

+
∫

RN
|F(x, u)|dx +

∫
RN

(
d̄
2

u2 − G(x, u)
)

dx

≤ 1
2
‖u‖2 +

bc4
4

4
‖u‖4 + ν−1τν

µ∗‖ξ‖µ‖u‖ν +
d̄ + d

2
τ2

2 ‖u‖2,

(3.30)

where c4 and τ2 are the constants given in (2.11) and (2.12) respectively. This implies that Φ

maps bounded sets in E into bounded sets in R. Then it follows from the coercivity that Φ is
bounded from below. The proof is completed.

Lemma 3.4. Assume that (S1)–(S3) and (S5) are satisfied. Then Φ satisfies (PS) condition.

Proof. Let {un}n∈N ⊂ E be a (PS)-sequence, i.e.,

|Φ(un)| ≤ D1 and Φ′(un)→ 0 as n→ ∞ (3.31)

for some D1 > 0. Note first that Φ is coercive by Lemma 3.3. This together with (3.31) implies
that {un}n∈N is bounded in E. Thus there exists a subsequence {unk}k∈N such that

unk ⇀ u0 as k→ ∞ (3.32)

for some u0 ∈ E. Let

unk = u−nk
+ u+

nk
and u0 = u−0 + u+

0

with u±nk
, u±0 ∈ E±. Since E− is finite dimensional, we get

u−nk
→ u−0 and u+

nk
⇀ u+

0 as k→ ∞. (3.33)
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By (3.5), it holds

〈Φ′(unk)−Φ′(u0), unk − u0〉
= ‖u+

nk
− u+

0 ‖
2 − ‖u−nk

− u−0 ‖
2 − 〈Ψ′2(unk)−Ψ′2(u0), unk − u0〉

+ 〈Ψ′3(unk)−Ψ′3(u0), unk − u0〉+ b
∫

RN
|∇unk |2dx

∫
RN
∇unk · ∇(unk − u0)dx

− b
∫

RN
|∇u0|2dx

∫
RN
∇u0 · ∇(unk − u0)dx

= ‖u+
nk
− u+

0 ‖
2 − ‖u−nk

− u−0 ‖
2 − 〈Ψ′2(unk)−Ψ′2(u0), unk − u0〉

+ 〈Ψ′3(unk)−Ψ′3(u0), unk − u0〉+ b
∫

RN
|∇unk |2dx

∫
RN
|∇(unk − u0)|2dx

+ b
(∫

RN
|∇unk |2dx−

∫
RN
|∇u0|2dx

) ∫
RN
∇u0 · ∇(unk − u0)dx, ∀ k ∈N.

(3.34)

By virtue of (3.32) and Lemma 2.3, we have unk ⇀ u0 in D1,2(RN). Then it follows that(∫
RN
|∇unk |2dx−

∫
RN
|∇u0|2dx

) ∫
RN
∇u0 · ∇(unk − u0)dx → 0 as k→ ∞. (3.35)

Due to (3.31) and (3.32), there holds

〈Φ′(unk)−Φ′(u0), unk − u0〉 → 0 as k→ ∞. (3.36)

Moreover, from (3.32) and Proposition 3.1, we know that

〈Ψ′i(unk)−Ψ′i(u0), unk − u0〉 → 0 as k→ ∞ (3.37)

for i = 2, 3. Combining (3.33)-(3.37), we obtain

‖u+
nk
− u+

0 ‖
2 ≤ ‖u−nk

− u−0 ‖
2 + 〈Φ′(unk)−Φ′(u0), unk − u0〉

+ 〈Ψ′2(unk)−Ψ′2(u0), unk − u0〉 − 〈Ψ′3(unk)−Ψ′3(u0), unk − u0〉

− b
(∫

RN
|∇unk |2dx−

∫
RN
|∇u0|2dx

) ∫
RN
∇u0 · ∇(unk − u0)dx

= o(1) as k→ ∞,

which implies that u+
nk
→ u+

0 in E. This together with (3.33) shows that unk → u0 in E.
Therefore, Φ satisfies (PS) condition. The proof is completed.

Lemma 3.5. Let (S1)–(S5) be satisfied. Then for each k ∈ N, there exists an Ak ⊆ E with genus
γ(Ak) = k such that supu∈Ak

Φ(u) < 0.

Proof. We follow the idea of the geometric construction introduced in [7]. By coordinate
translation, we can assume x0 = 0 in (S4). Let C denote the cube

C := {x = (x1, x2, . . . , xN) | −r0/2 ≤ xi ≤ r0/2, i = 1, 2, . . . , N},

where r0 is the positive constant given in (S4). Evidently, C ⊆ Br0 . By (S4), there exist constants
δ, $ > 0 and two sequences of positive numbers δn → 0, Mn → ∞ as n→ ∞ such that

F(x, u) ≥ −$u2, ∀ x ∈ C and |u| ≤ δ (3.38)
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and
F(x,±δn)/δ2

n ≥ Mn, ∀ x ∈ C and n ∈N. (3.39)

For any fixed k ∈ N, let m ∈ N be the smallest positive integer satisfying mN ≥ k. We divide
the cube C equally into mN small cubes by planes parallel to each face of C and denote them
by Ci with 1 ≤ i ≤ mN . Then the edge of each Ci has the length of l := r0/m. For each
1 ≤ i ≤ k, we make a cube Di in Ci such that Di has the same center as that of Ci, the faces of
Di and Ci are parallel and the edge of Di has the length of l/2.

Choose a function ψ ∈ C∞
0 (R, R) such that ψ(t) ≡ 1 for t ∈ [−l/4, l/4], ψ(t) ≡ 0 for

t ∈ R \ [−l/2, l/2], and 0 ≤ ψ(t) ≤ 1 for all t ∈ R. Define

ϕ(x) := ψ(x1)ψ(x2) · · ·ψ(xN), ∀x = (x1, x2, . . . , xN) ∈ RN .

For each 1 ≤ i ≤ k, let yi ∈ RN be the center of both Ci and Di, and define

ϕi(x) = ϕ(x− yi), ∀ x ∈ RN .

Then it is easy to see that
suppϕi ⊆ Ci, (3.40)

and
ϕi(x) = 1, ∀ x ∈ Di, 0 ≤ ϕi(x) ≤ 1, ∀ x ∈ RN (3.41)

for all 1 ≤ i ≤ k. Set

Vk :=
{
(s1, s2, . . . , sk) ∈ Rk | max

1≤i≤k
|si| = 1

}
and

Wk :=

{
k

∑
i=1

si ϕi | (s1, s2, . . . , sk) ∈ Vk

}
.

Evidently, Vk is homeomorphic to the unit sphere in Rk by an odd mapping. Thus γ(Vk) = k.
If we define the mapping H : Vk →Wk by

H(s1, s2, . . . , sk) =
k

∑
i=1

si ϕi, ∀ (s1, s2, . . . , sk) ∈ Vk,

then H is odd and homeomorphic. Therefore γ(Wk) = γ(Vk) = k. Moreover, it is evident that
Wk is compact and hence there is a constant Ck > 0 such that

‖u‖ ≤ Ck, ∀ u ∈ Wk. (3.42)

For each δn ∈ (0, δ) given in (3.39) and any u = ∑k
i=1 si ϕi ∈ Wk, combining (2.11), (2.12), (3.1),

(3.24), (3.40) and (3.41) , we have

Φ(δnu) =
1
2
‖δnu+‖2 − 1

2
‖δnu−‖2 +

b
4

(∫
RN
|∇(δnu)|2dx

)2

−
∫

RN
F(x, δn

k

∑
i=1

si ϕi)dx +
∫

RN

(
d̄
2
(δnu)2 − G(x, δnu)

)
dx

≤ δ2
n
2
(‖u+‖2 − ‖u−‖2) +

bδ4
n

4

(∫
RN
|∇u|2dx

)2

−
k

∑
i=1

∫
Ci

F(x, δnsi ϕi)dx +
d̄ + d

2
δ2

n

∫
RN

u2dx

≤ δ2
n
2
‖u‖2 +

bc4
4δ4

n

4
‖u‖4 +

d̄ + d
2

τ2
2 δ2

n‖u‖2 −
k

∑
i=1

∫
Ci

F(x, δnsi ϕi)dx,

(3.43)
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where c4 and τ2 are the constants given in (2.11) and (2.12) respectively. By the definition of
Vk, there exists some integer 1 ≤ iu ≤ k such that |siu | = 1. Then it follows that

k

∑
i=1

∫
Ci

F(x, δnsi ϕi)dx =
∫
Diu

F(x, δnsiu ϕiu)dx +
∫
Ciu\Diu

F(x, δnsiu ϕiu)dx

+ ∑
i 6=iu

∫
Ci

F(x, δnsi ϕi)dx.
(3.44)

By (3.38) and (3.41), there holds∫
Ciu\Diu

F(x, δnsiu ϕiu)dx + ∑
i 6=iu

∫
Ci

F(x, δnsi ϕi)dx ≥ −$rN
0 δ2

n, (3.45)

Here we use the fact that the volume of cube C in RN is rN
0 . Combining (3.39) and (3.42)–(3.45),

we have

Φ(δnu) ≤
C2

k δ2
n

2
+

bc4
4C4

k δ4
n

4
+

(d̄ + d)τ2
2 C2

k δ2
n

2
+ $rN

0 δ2
n −

∫
Diu

F(x, δnsiu ϕiu)dx

≤ δ2
n

(
C2

k
2

+
bδ2

nc4
4C4

k
4

+
(d̄ + d)τ2

2 C2
k

2
+ $rN

0 −
lN Mn

2N

)
.

(3.46)

where Mn is the constant given in (3.39). Here we use the fact that |δnsiu ϕiu(x)| ≡ δn for all
x ∈ Diu and the volume of cube Diu in RN is (l/2)N . Since Mn → ∞ as n→ ∞, we can choose
n0 ∈N large enough such that the right-hand side of (3.46) is negative. Define

Ak := {δn0 u | u ∈ Wk}. (3.47)

Then we have
γ(Ak) = γ(Wk) = k and sup

u∈Ak

Φ(u) < 0.

The proof is completed.

Now we are in a position to give the proof of our main result.

Proof of Theorem 1.1. Evidently, the functional Φ defined in (3.1) is an even functional with
Φ(0) = 0. Besides, Proposition 3.1 and Lemmas 3.3–3.5 show that Φ ∈ C1(E, R) and satisfies
conditions (Φ1) and (Φ2) in Theorem 3.2. Thus, by Theorem 3.2, we get a sequence of nontriv-
ial critical points {uk}k∈N of Φ satisfying Φ(uk) ≤ 0 for all k ∈ N and uk → 0 in E as k → ∞.
Taking into account Proposition 3.1 again and the fact that E is continuously embedding into
H1(RN), we know that {uk}k∈N is a sequence of nontrivial solutions of (1.1) with uk → 0 in
H1(RN) as k→ ∞. This ends the proof.
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