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Abstract. Dependence on a parameter λ are established for existence, nonexistence and
multiplicity results for nontrivial solutions to a nonlinear Atıcı–Eloe fractional differ-
ence equation

∆νy(t− 2)− β∆ν−2y(t− 1) = λ f (t + ν− 1, y(t + ν− 1)),

with 3 < ν ≤ 4 a real number, under Lidstone boundary conditions. In particular, the
uniqueness of solutions and the continuous dependence of the unique solution on the
parameter λ are also studied.
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1 Introduction

Currently, there is increasing interest in Atıcı–Eloe fractional difference equations, with pio-
neering papers by Atıcı and Eloe [2–4] and Goodrich [6, 7] driving much of this interest. It is
natural to investigate questions for Atıcı–Eloe fractional difference equations devoted to the
important results, such as those obtained in [1, 5, 9, 10, 12]. That is the goal of this paper for
fractional difference equations involving Lidstone boundary conditions.

In 2008, Graef, Kong and Wang in [9] obtained periodic solutions for a boundary value
problem for a second order nonlinear ordinary differential equation depending on a positive
parameter λ. Under different combinations of superlinearity and sublinearity of the nonlinear-
ity, the authors obtained various existence, multiplicity, and nonexistence results for positive
solutions in terms of different values of λ. Following that paper, Anderson and Minhós [1] ap-
plied a symmetric Green’s function approach to investigate the fourth-order discrete Lidstone

BCorresponding author. Email: yangaij2004@163.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/148786434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.math.u-szeged.hu/ejqtde/


2 A. Yang, J. Henderson and H. Wang

problem with parameters:{
∆4y(t− 2)− β∆2y(t− 1) = λ f (t, y(t)), t ∈ {a + 1, a + 2, . . . , b− 1},
y(a) = 0 = ∆2y(a− 1) = 0, y(b) = 0 = ∆2y(b− 1) = 0.

In a recent paper [10], under the same boundary conditions, Graef et al. studied a nonlinear
discrete fourth-order equation with dependence on two parameters:

∆4u(t− 2)− β∆2u(t− 1) = λ[ f (t, u(t), u(t)) + r(t, u(t))]

for t ∈ {a + 1, a + 2, . . . , b − 1}. Two sequences were constructed so that they converged
uniformly to its unique solution.

Motivated by the above works, in this paper, for b ∈ N and b ≥ 3, we are concerned with
the parameter dependence for existence, nonexistence and multiplicity of nontrivial solutions,
as well as the uniqueness of solutions, for the νth order Atıcı–Eloe fractional difference equa-
tion,

∆νy(t− 2)− β∆ν−2y(t− 1) = λ f (t + ν− 1, y(t + ν− 1)) (1.1)

for t ∈ {1, 2, . . . , b}, satisfying the discrete Lidstone boundary conditions{
y(ν− 4) = 0, y(ν + b− 2) = 0,

∆ν−2y(−1) = 0, ∆ν−2y(b) = 0,
(1.2)

where ∆ν is the νth Atıcı–Eloe fractional difference with 3 < ν ≤ 4 a real number, β > 0
and λ > 0 are parameters, and f : {ν, ν + 1, . . . , ν + b− 1} × [0, ∞) → [0, ∞) is a continuous
function with f (·, y) > 0 for y > 0. By a positive solution of the BVP (1.1)–(1.2), we mean
a function y : {ν− 4, ν− 3, . . . , ν + b− 2} → R that satisfies both the equation (1.1) and the
boundary conditions (1.2), and is positive on {ν− 3, ν− 2, . . . , ν + b− 3}.

The rest of this paper is organized as follows. In Section 2, we give some preliminary
definitions and theorems from the theory of cones in Banach spaces that are employed to
establish the main results. In Section 3, we give main results. We first construct some Green’s
functions, evaluate bounds for the Green’s functions and define a suitable cone in a Banach
space. Then, we derive existence, nonexistence and multiplicity results for nontrivial solutions
to the BVP (1.1)–(1.2) in terms of different values of λ, as well as the unique solution for the
BVP, which depends continuously on the parameter λ.

2 Preliminaries

We shall state some definitions from fractional difference equations along with some defini-
tions and theorems from cone theory on which the paper’s main results depend.

Definition 2.1 ([2, 8]). Let n− 1 < ν ≤ n be a real number and t ∈ {a + ν, a + ν + 1, . . .}. The
νth Atıcı–Eloe fractional sum of the function u is defined by

∆−ν
a u(t) =

1
Γ(ν)

t−ν

∑
s=a

(t− s− 1)(ν−1)u(s),

where t(ν) = Γ(t + 1)/Γ(t + 1− ν) is the falling function. If t + 1− ν is a pole of the Gamma
function and t + 1 is not a pole, then t(ν) = 0. Also, the νth Atıcı–Eloe fractional difference of
the function u is defined by

∆νu(t) = ∆n−(n−ν)u(t) = ∆n(∆−(n−ν)
a u(t)),
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where ∆ is the forward difference defined as ∆u(t)=u(t+ 1)− u(t), and ∆iu(t)=∆(∆i−1u(t)),
i = 2, 3, . . .

Remark 2.2. We note that for u defined on {a, a + 1, . . .}, then ∆−ν
a u is defined on {a + ν,

a + ν + 1, . . .}. We shall suppress the dependence on a in ∆−ν
a u(t) since domains will be clear

by context.

Remark 2.3. From the definition of νth Atıcı–Eloe fractional difference, we have ∆m∆νu(t) =
∆m+νu(t) for n− 1 < ν ≤ n, m, n ∈ N, m, n ≥ 1. However, in general, ∆µ∆νu(t) 6= ∆µ+νu(t)
for m− 1 < ν ≤ m, n− 1 < ν ≤ n.

Remark 2.4. It is easy to check that x(ν) is an increasing function for x ∈ {ν, ν + 1, . . .}.

We also require the following operational properties of fractional sum operator.

Lemma 2.5 ([2]). Let 0 ≤ n− 1 < ν ≤ n. Then

∆−ν∆νu(t) = u(t) + c1t(ν−1) + c2t(ν−2) + · · ·+ cnt(ν−n),

for some ci ∈ R, with i = 1, 2, . . . , n.

Let (B, ‖ · ‖) be a real Banach space. P ⊂ B is a cone provided (i) αu + βv ∈ P , for all
α, β ≥ 0 and for all u, v ∈ P , and (ii) P ∩ (−P) = {0}. A cone P in a real Banach space B
induces a partial order on B; namely, for u, v ∈ B, u � v with respect to P , if v− u ∈ P .

For our existence results, we will employ the theorem below which is due to Krasnosel’skiı̆
[11].

Theorem 2.6. Let B be a Banach space, P ⊂ B be a cone, and suppose that Ω1, Ω2 are bounded open
balls of B centered at the origin, with Ω1 ⊂ Ω2. Suppose further that A : P ∩ (Ω2 \Ω1) → P is a
completely continuous operator such that either

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2,

or
‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2

holds. Then A has a fixed point in P ∩ (Ω2 \Ω1).

3 Main results

First, let us consider the following boundary value problems{
−(∆2u(t− 1)− βu(t)) = h(t + ν− 1), t ∈ {0, 1, . . . , b + 1},
u(0) = 0, u(b + 1) = 0

(3.1)

and {
−∆ν−2y(t− 1) = u(t), t ∈ {1, 2, . . . , b},
y(ν− 4) = 0, y(ν + b− 2) = 0,

(3.2)

respectively. Anderson and Minhós [1] derived the expression for the Green’s function G1(t, s)
for the BVP (3.1),

G1(t, s) =
1

l(1, 0)l(b + 1, 0)

{
l(t, 0)l(b + 1, s), t ≤ s,

l(s, 0)l(b + 1, t), s ≤ t,
(3.3)
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where (t, s) ∈ {0, 1, . . . , b + 1} × {0, 1, . . . , b + 1}, with

l(t, s) = χt−s − χs−t for χ =
1
2
(β + 2 +

√
β(β + 4)) > 1.

Also, by direct computation, we can get the Green’s function G2(t, s) for the BVP (3.2),

G2(t, s) =
1

Γ(ν− 2)


t(ν−3)(ν + b− s− 2)(ν−3)

(ν + b− 2)(ν−3)
, (t, s) ∈ T1,

t(ν−3)(ν + b− s− 2)(ν−3)

(ν + b− 2)(ν−3)
− (t− s)(ν−3), (t, s) ∈ T2,

(3.4)

where

T1 :=
{
(t, s) ∈ {ν− 4, ν− 3, . . . , ν + b− 2} × {0, 1, . . . , b + 1} : 0 ≤ t− ν + 4 ≤ s ≤ b + 1

}
,

T2 :=
{
(t, s) ∈ {ν− 4, ν− 3, . . . , ν + b− 2} × {0, 1, . . . , b + 1} : 0 ≤ s ≤ t− ν + 3 ≤ b + 1

}
.

Next, we consider the Banach space (B, ‖ · ‖) of real-valued functions on {ν − 4,
ν− 3, . . . , ν + b− 2} with the norm

‖y‖ := max{|y(t)| : t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}}.

From the following result we can see that the Green’s function of the νth order boundary
value problem is a convolution of (3.3) and (3.4).

Lemma 3.1. Let h : {ν, ν + 1, . . . , ν + b − 1} → [0,+∞) be a function. Then the linear discrete
Lidstone BVP {

∆νy(t− 2)− β∆ν−2y(t− 1) = h(t + ν− 1), t ∈ {1, 2, . . . , b},
y(ν− 4) = 0 = y(ν + b− 2), ∆ν−2y(−1) = 0 = ∆ν−2y(b)

(3.5)

has the solution

y(t) =
b+1

∑
s=0

b+1

∑
z=0

G2(t, s)G1(s, z)h(z + ν− 1) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}.

Moreover, y(t) ≥ σ‖y‖ for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}, where

σ =
l2(1, 0)l(b, 0)

l2((b + 1)/2, 0)l(b + 1, 0)
· M1

M2
, (3.6)

M1 = min{G2(v− 3, b), G2(ν + b− 3, 1)},
M2 = max

{
G2([[(b + 1)/2]] + ν− 4, [[(b + 1)/2]]), G2([[b/2]] + ν− 3, [[b/2]]),

G2([[(b + 1)/2]] + ν− 5, [[(b + 1)/2]]− 1), G2([[b/2]] + ν− 4, [[b/2]]− 1)
}

with [[r]] denoting the smallest integer larger than or equal to r.

Proof. Since G2(t, 0)G1(0, z) = 0 = G2(t, b + 1)G1(b + 1, z) and G1(s, 0) = 0 = G1(s, b + 1), the
solution of BVP (3.5) can be written as

y(t) =
b

∑
s=1

b

∑
z=1

G2(t, s)G1(s, z)h(z + ν− 1) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}.
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Since y(ν− 4) = y(ν + b− 2) = 0, the maximum of y occurs on {ν− 3, ν− 2, . . . , ν + b− 3}.
Applying the methods used in [4, Theorem 3.2], we can show that G2(t + 1, s) > G2(t, s) for
(t, s) ∈ T1 and G2(t + 1, s) < G2(t, s) for (t, s) ∈ T2. So, for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, we
have

G2(t, s) ≥ min{G2(v− 3, s), G2(ν + b− 3, s)}
and

G2(t, s) ≤ max{G2(s + ν− 4, s), G2(s + ν− 3, s)}.

Well,

G2(v− 3, s) =
1

Γ(ν− 2)
(ν− 3)(ν−3)(ν + b− s− 2)(ν−3)

(ν + b− 2)(ν−3)
=

(ν + b− s− 2)(ν−3)

(ν + b− 2)(ν−3)
,

which is decreasing with respect to s according to Remark 2.3. So, for s ∈ {1, 2, . . . , b}, we
have G2(ν− 3, s) ≥ G2(ν− 3, b). Also,

G2(ν + b− 3, s)

=
1

Γ(ν− 2)

[
(ν + b− 3)(ν−3)(ν + b− s− 2)(ν−3)

(ν + b− 2)(ν−3)
− (ν + b− s− 3)(ν−3)

]

=
(ν + b− 3)(ν−3)(ν + b− s− 2)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)
− (ν + b− 2)(ν−3)(ν + b− s− 3)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)

=
(ν + b− 3)(ν−4)(ν + b− s− 3)(ν−4)

Γ(ν− 2)(ν + b− 2)(ν−3)
· [(b + 1)(ν + b− s− 2)− (ν + b− 2)(b− s + 1)]

=
(ν + b− s− 3)(ν−4)

(ν + b− 2)Γ(ν− 2)
· (ν− 3)s

=
(ν + b− s− 3)(ν−4)s
(ν + b− 2)Γ(ν− 3)

.

Let g(s) := (ν + b− s− 3)(ν−4)s. Then

∆g(s) = (ν + b− s− 4)(ν−4)(s + 1)− (ν + b− s− 3)(ν−4)s

= (ν + b− s− 4)(ν−5)[(b− s + 1)(s + 1)− (ν + b− s− 3)s]

= (ν + b− s− 4)(ν−5)[(b + 1− s) + (4− ν)s]

> 0,

for s ∈ {1, 2, . . . , b}, that is, G2(ν + b − 3, s) is increasing with respect to the variable s. So,
G2(ν+ b− 3, s) ≥ G2(ν+ b− 3, 1). Hence, G2(t, s) ≥ min{G2(v− 3, b), G2(ν+ b− 3, 1)} := M1

on {ν− 3, ν− 2, . . . , ν + b− 3} × {1, 2, . . . , b}.
Let

p(s) = G2(s + ν− 4, s) =
(s + ν− 4)(ν−3)(ν + b− s− 2)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)
,

q(s) = G2(s + ν− 3, s) =
(s + ν− 3)(ν−3)(ν + b− s− 2)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)
− 1.
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Then,

∆p(s) = p(s + 1)− p(s)

=
(s + ν− 3)(ν−3)(ν + b− s− 3)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)
− (s + ν− 4)(ν−3)(ν + b− s− 2)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)

=
(s + ν− 4)(ν−4)(ν + b− s− 3)(ν−4)

Γ(ν− 2)(ν + b− 2)(ν−3)
· [(ν + s− 3)(b− s + 1)− (ν + b− s− 2)s]

=
(s + ν− 4)(ν−4)(ν + b− s− 3)(ν−4)

Γ(ν− 3)(ν + b− 2)(ν−3)
· (b + 1− 2s).

So, ∆p(s) ≥ 0 for s ≤ (b + 1)/2 and ∆p(s) ≤ 0 for s ≥ (b + 1)/2. Then,

p(s) ≤ max{p([[(b + 1)/2]]), p([[(b + 1)/2]]− 1)}.

Similarly,

∆q(s) = q(s + 1)− q(s)

=
(s + ν− 2)(ν−3)(ν + b− s− 3)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)
− (s + ν− 3)(ν−3)(ν + b− s− 2)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)

=
(s + ν− 3)(ν−3)(ν + b− s− 3)(ν−3)

Γ(ν− 2)(ν + b− 2)(ν−3)
· [(ν + s− 2)(b− s + 1)− (ν + b− s− 2)(s + 1)]

=
(s + ν− 3)(ν−4)(ν + b− s− 3)(ν−4)

Γ(ν− 3)(ν + b− 2)(ν−3)
· (b− 2s).

So, we obtain q(s) ≤ max{q([[b/2]]), q([[b/2]]− 1)}. Hence, we have

G2(t, s) ≤ max{p([[(b + 1)/2]]), p([[(b + 1)/2]]− 1), q([[b/2]]), q([[b/2]]− 1)} =: M2.

At the same time, for (s, z) ∈ {1, 2, . . . , b} × {1, 2, . . . , b}, it is straightforward that

G1(s, z) ≥ min{l(s, 0), l(b + 1, s)}
l(b + 1, 0)

G1(z, z) ≥ l(1, 0)
l(b + 1, 0)

G1(z, z) ≥ l(1, 0)l(b, 0)
l2(b + 1, 0)

=: m1.

Likewise,

G1(s, z) ≤ G1(z, z) ≤
l( b+1

2 , 0)l(b + 1, b+1
2 )

l(1, 0)l(b + 1, 0)
=

l2( b+1
2 , 0)

l(1, 0)l(b + 1, 0)
=: m2,

where we are allowing l to be evaluated as a function over the real numbers, not just over the
integers.

Then,

y(t) ≥ M1m1

M2m2
‖y‖ = σ‖y‖, t ∈ {1, 2, . . . , b}.

For σ > 0 as in (3.6), define the cone P ⊂ B by

P :=
{

y ∈ B : y(ν− 4) = y(ν + b− 2) = 0, y(t) ≥ σ‖y‖, t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}
}

.

Define for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2} the functional operator A : B → B as

Ay(t) :=
b

∑
s=1

b

∑
z=1

G2(t, s)G1(s, z) f (z + ν− 1, y(z + ν− 1)).

By Lemma 3.1, the fixed points of λA are solutions of the BVP (1.1)–(1.2).
Now, we deduce the following four existence results by employing Theorem 2.6 due to

Krasnosel’skiı̆.
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Theorem 3.2. Suppose that there exist positive numbers 0 < r < R < ∞ such that for all t ∈
{ν− 3, ν− 2, . . . , ν + b− 3}, the nonlinearity f satisfies

(H1) f (t, y) ≤ y
λM2m2b2 for y ∈ [0, r] and f (t, y) ≥ y

λM1m1σb2 for y ∈ [R,+∞).

Then the BVP (1.1)–(1.2) has a nontrivial solution y such that

σr ≤ y(t) ≤ R
σ

for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}.

Proof. If y ∈ P , then Ay(ν − 4) = 0 = Ay(ν + b − 2) and Ay(t) ≥ σ‖Ay‖ for t ∈ {ν − 3,
ν − 2, . . . , ν + b − 3} by Lemma 3.1. So A(P) ⊂ P . Moreover, A is completely continuous
using standard arguments. Define bounded open balls centered at the origin by

Ω1 := {y ∈ P : ‖y‖ < r} and Ω2 :=
{

y ∈ P : ‖y‖ < R
σ

}
.

Then 0 ∈ Ω1 ⊂ Ω2. For y ∈ P ∩ ∂Ω1, ‖y‖ = r, we have

λAy(t) = λ
b

∑
s=1

b

∑
z=1

G2(t, s)G1(s, z) f (z + ν− 1, y(z + ν− 1))

≤ λM2m2

b

∑
s=1

b

∑
z=1

f (z + ν− 1, y(z + ν− 1))

≤ 1
b2

b

∑
s=1

b

∑
z=1

y(z + ν− 1)

≤ ‖y‖, t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}.

Thus, ‖λAy‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω1. Similarly, let y ∈ P ∩ ∂Ω2, so that ‖y‖ = R/σ. Then,
y(t) ≥ σ‖y‖ = R, t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, and

λAy(t) ≥ λM1m1

b

∑
s=1

b

∑
z=1

f (z + ν− 1, y(z + ν− 1)) ≥ ‖y‖.

So, ‖λAy‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω2. By Krasnosel’skiı̆’s theorem, λA has a fixed point y ∈
P ∩ (Ω2 \Ω1), which is a nontrivial solution of the BVP (1.1)–(1.2), such that r ≤ ‖y‖ ≤ R/σ.
From the fact that y ∈ P and the definition of σ in Lemma 3.1, we have

σr ≤ y(t) ≤ ‖y‖ ≤ R
σ

.

The proof of next theorem is similar to that just completed.

Theorem 3.3. Suppose that there exist positive numbers 0 < r < R < ∞ such that for all t ∈
{ν− 3, ν− 2, . . . , ν + b− 3}, the nonlinearity f satisfies

(H2) f (t, y) ≤ y
λM2m2b2 for y ∈ [R,+∞) and f (t, y) ≥ y

λM1m1σb2 for y ∈ [0, r].

Then the BVP (1.1)–(1.2) has a nontrivial solution y such that

σr ≤ y(t) ≤ R
σ

for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}.
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With an additional assumption one can show the existence of at least two nontrivial so-
lutions to the BVP (1.1)–(1.2). The proofs of next two theorems are modifications of that in
Theorem 3.2, so we omit them here.

Theorem 3.4. Suppose that there exist positive numbers 0 < r < N < R < ∞ such that for all
t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, the nonlinearity f satisfies

f (t, y) <
y

λM2m2b2 for y ∈ [σN, N] and(H3)

f (t, y) ≥ y
λM1m1σb2 for y ∈ [0, r] ∪ [R,+∞).

Then the BVP (1.1)–(1.2) has at least two nontrivial solutions y1 and y2 such that ‖y1‖ < N < ‖y2‖
and

σr ≤ y1(t) < N, σN < y2(t) ≤
R
σ

for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}.

Theorem 3.5. Suppose that there exist positive numbers 0 < r < N < R < ∞ such that for all
t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, the nonlinearity f satisfies

f (t, y) >
y

λσM1m1b2 for y ∈ [σN, N] and(H4)

f (t, y) ≤ y
λM2m2b2 for y ∈ [0, r] ∪ [R,+∞).

Then the BVP (1.1)–(1.2) has at least two nontrivial solutions y1 and y2 such that ‖y1‖ < N < ‖y2‖
and

σr ≤ y1(t) < N, σN < y2(t) ≤
R
σ

for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}.

We summarize the above results in the following theorem in terms of the parameter λ.

Theorem 3.6. For t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, define

f0(t) := lim
y→0+

f (t, y)
y

and f∞(t) := lim
y→∞

f (t, y)
y

. (3.7)

Then, for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, we have the following statements.

(i) If f0(t) = 0 and f∞(t) = ∞, then the BVP (1.1)–(1.2) has a nontrivial solution for all λ ∈
(0, ∞).

(ii) If f0(t) = ∞ and f∞(t) = 0, then the BVP (1.1)–(1.2) has a nontrivial solution for all λ ∈
(0, ∞).

(iii) If f0(t) = f∞(t) = ∞, then there exists λ0 > 0 such that the BVP (1.1)–(1.2) has at least two
nontrivial solutions for 0 < λ < λ0.

(iv) If f0(t) = f∞(t) = 0, then there exists λ0 > 0 such that the BVP (1.1)–(1.2) has at least two
nontrivial solutions for λ > λ0.

(v) If f0(t), f∞(t) < ∞, then there exists λ0 > 0 such that the BVP (1.1)–(1.2) has no nontrivial
solution for 0 < λ < λ0.

(vi) If f0(t), f∞(t) > 0, then there exists λ0 > 0 such that the BVP (1.1)–(1.2) has no nontrivial
solution for λ > λ0.
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Proof. If f0(t) = 0 and f∞(t) = ∞ for all t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, then (H1) is satisfied
for sufficiently small r > 0 and sufficiently large R > 0.

If f0(t) = ∞ and f∞(t) = 0 for all t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, then (H2) holds.
Likewise, if f0(t) = f∞(t) = ∞ for all t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, then (H3) is satisfied

for λ > 0 sufficiently small, and if f0(t) = f∞(t) = 0 for all t ∈ {ν− 3, ν− 2, . . . , ν + b− 3},
then (H4) holds if λ is sufficiently large.

To see (v), since f0(t), f∞(t) < ∞ for all t ∈ {ν− 3, ν− 2, . . . , ν+ b− 3}, there exist positive
constants η1, η2, r and R such that r < R and

f (t, y) ≤ η1y for y ∈ [0, r] and f (t, y) ≤ η2y for y ∈ [R, ∞).

Let η > 0 be given by

η = max
{

η1, η2, max
{

f (t, y)
y

: t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}, y ∈ [r, R]
}}

.

Then f (t, y) ≤ ηy for all y ∈ (0, ∞) and t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}. If x is a nontrivial
solution of the BVP (1.1)–(1.2), then λAx = x. We have

‖x‖ = ‖λAx‖ ≤ ληm2M2

b

∑
s=1

b

∑
z=1

x(z) ≤ ληm2M2b2‖x‖ < ‖x‖

for 0 < λ < 1/(ηm2M2b2), which is a contradiction.
The proof of part (vi) is similar to (v) and thus omitted.

The final theorem in this section is obtained for the uniqueness of the solutions for the BVP
(1.1)–(1.2) and the continuous dependence on the parameter λ under specialized conditions
when the nonlinear term f is a separable form.

Theorem 3.7. Assume f (t, y) = g(t)w(y), where g : {ν, ν + 1, . . . , ν + b − 1} → [0, ∞) with
∑b

t=1 g(t + ν− 1) > 0, and w : [0, ∞) → [0, ∞) is continuous and nondecreasing, and there exists
θ ∈ (0, 1) such that w(ky) ≥ kθw(y) for k ∈ (0, 1) and y ∈ [0, ∞).

Then, for any λ ∈ (0, ∞), the BVP (1.1)–(1.2) has a unique solution yλ. Furthermore, such a
solution yλ satisfies the following properties:

(i) yλ is nondecreasing in λ;

(ii) limλ→0+ ‖yλ‖ = 0 and limλ→∞ ‖yλ‖ = ∞;

(iii) yλ is continuous in λ, i.e., if λ→ λ0, then ‖yλ − yλ0‖ → 0.

Proof. We first show that for any λ ∈ (0, ∞), the BVP (1.1)–(1.2) has a solution. It is easy to see
that A is nondecreasing. For k ∈ (0, 1), there exists θ ∈ (0, 1) such that

λA(ky(t)) = λ
b

∑
s=1

b

∑
z=1

G2(t, s)G1(s, z)g(z + ν− 1)w(ky(z + ν− 1))

≥ λkθ
b

∑
s=1

b

∑
z=1

G2(t, s)G1(s, z)g(z + ν− 1)w(y(z + ν− 1))

for y ∈ P with y(t) ≥ 0 for t ∈ {ν− 3, ν− 2, . . . , ν + b− 3}. Let L = b ∑b
z=1 g(z + ν− 1), and

y(t) =

{
0, t = ν− 4, ν + b− 2,

λL, t ∈ {ν− 3, ν− 4, . . . , ν + b− 3}.
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Then y ∈ P and y(t) > 0 for t ∈ {ν− 3, ν− 4, . . . , ν + b− 3}, and

Ay(t) ≥ m1M1w(0)
b

∑
s=1

b

∑
z=1

g(z + ν− 1) = m1M1w(0)L,

Ay(t) ≤ m2M2w(λL)
b

∑
s=1

b

∑
z=1

g(z + ν− 1) = m2M2w(λL)L.

Thus,
m1M1w(0)L ≤ Ay ≤ m2M2w(λL)L.

Define c and d by

c := sup{x : Lx ≤ Ay(t)} and d := inf{x : Ay(t) ≤ Lx}.

Clearly, c ≥ m1M1w(0) and d ≤ m2M2w(λL). Choose c and d such that

0 < c < min{1, c
1

1−θ } and max{1, d
1

1−θ } < d < ∞.

Define two sequences {uk(t)}∞
k=1 and {vk(t)}∞

k=1 by

u1(t) =

{
0, t = ν− 4, ν + b− 2,

cλL, t ∈ {ν− 3, ν− 4, . . . , ν + b− 3},

uk+1(t) = λAuk(t), t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}, k = 1, 2, . . . ,

and

v1(t) =

{
0, t = ν− 4, ν + b− 2,

dλL, t ∈ {ν− 3, ν− 4, . . . , ν + b− 3},

vk+1(t) = λAvk(t), t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}, k = 1, 2, . . .

From the monotonicity of A, we have

cλL = u1 ≤ u2 ≤ · · · ≤ uk ≤ · · · ≤ vk ≤ · · · ≤ v2 ≤ v1 = dλL.

Let δ = c/d ∈ (0, 1). We claim that

uk(t) ≥ δθk−1
vk(t) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. (3.8)

In fact, it is clear that u1 = δv1 on {ν− 4, ν− 3, . . . , ν + b− 2}. Assume (3.8) holds for k = n,
i.e., un(t) ≥ δθn−1

vn(t) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. Then, from the monotonicity of A,
we can obtain

un+1(t) = λAun(t) ≥ λA(δθn−1
vn(t)) ≥ λ(δθn−1

)θ Avn(t) = λδθn
Avn(t) = δθn

vn+1(t),

for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. It follows from mathematical induction that (3.8) holds.
Then, for a nonnegative integer l, we have

0 ≤ uk+l(t)− uk(t) ≤ vk(t)− uk(t) ≤ (1− δθk−1
)vk(t) ≤ λ(1− δθk−1

)dL

for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. Hence,

‖uk+l − uk‖ ≤ ‖vk − uk‖ ≤ λ(1− δθk−1
)dL.
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Then, there exists a function y ∈ P such that

lim
k→∞

uk(t) = lim
k→∞

vk(t) = y(t) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}.

Clearly, y(t) is a positive solution of the BVP (1.1)–(1.2).
Next, we show the uniqueness of solutions for BVP (1.1)–(1.2). Assume, to the contrary,

that there exist two positive solutions y1(t) and y2(t) of BVP (1.1)–(1.2). Then λAy1(t) = y1(t)
and λAy2(t) = y2(t) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. We note that there exists α > 0 such
that y1(t) ≥ αy2(t) on {ν− 4, ν− 3, . . . , ν + b− 2}. Let α0 = sup{α : y1(t) ≥ αy2(t)}. Then
α0 ∈ (0, ∞) and y1(t) ≥ α0y2(t) for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. If α0 < 1, then there exists
θ ∈ (0, 1) such that w(α0y2(t)) ≥ αθ

0w(y2(t)) > α0w(y2(t)) on {ν − 4, ν − 3, . . . , ν + b − 2}.
This, together with the monotonicity of f , implies that

y1(t) = λAy1(t) ≥ λA(α0y2(t)) ≥ αθ
0λA(y2(t)) > α0y2(t)

for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. Thus, we can find τ > 0 such that y1(t) ≥ (α0 + τ)y2(t)
on {ν− 4, ν− 3, . . . , ν + b− 2}, which contradicts the definition of α0. Hence, y1(t) ≥ y2(t)
for t ∈ {ν− 4, ν− 3, . . . , ν + b− 2}. Similarly, we can show that y2(t) ≥ y1(t) for t ∈ {ν− 4,
ν− 3, . . . , ν + b− 2}. Therefore, the BVP (1.1)–(1.2) has a unique solution.

In the following, we give the proof for (i)–(iii). Assume that λ1 > λ2 > 0 . Let yλ1 and
yλ2 be the unique solutions of the BVP (1.1)–(1.2) in P corresponding to λ = λ1 and λ = λ2,
respectively. Let

γ := sup{γ : yλ1 ≥ γyλ2}.

We assert that γ ≥ 1. In fact, if γ ∈ (0, 1), we have

yλ1 = λ1Ayλ1 ≥ λ1A(γyλ2) ≥ λ1γθ Ayλ2 =
λ1

λ2
γθyλ2 .

From the definition of γ, we have γ ≥ λ1
λ2

γθ , i.e., γ ≥ (λ1
λ2
)

1
1−θ > 1, that is a contradiction. So,

yλ1 ≥ γyλ2 ≥ yλ2 . This proves (i).

Now, we show (ii). Set λ1 = λ and fix λ2 in (i), we have yλ ≥ ( λ
λ2
)

1
1−θ yλ2 for λ > λ2.

Further, ‖yλ‖ ≥ ( λ
λ2
)

1
1−θ ‖yλ2‖ for λ > λ2. Recalling that θ ∈ (0, 1), we have limλ→∞ ‖yλ‖ = ∞.

Let λ2 = λ and fix λ1, again we obtain yλ ≤ ( λ
λ1
)

1
1−θ yλ1 . Then, limλ→0+ ‖yλ‖ = 0.

Finally, we prove the continuity of yλ(t) corresponding to λ. For given λ0 > 0, by (i),
yλ0 ≥ yλ for any λ0 > λ. Let λ0 = λ1 and λ = λ2 as in the proof of (i). Then,

yλ0 ≥
λ0

λ
γθyλ, i.e., yλ ≤

λ

λ0
γ−θyλ0 ≤

(
λ

λ0

) 1
1−θ

yλ0 .

So,

‖yλ − yλ0‖ ≤
[(

λ

λ0

) 1
1−θ

− 1

]
‖yλ0‖ → 0 as λ→ λ0 − 0.

Similarly, we can obtain
‖yλ − yλ0‖ → 0 as λ→ λ0 + 0.

Consequently, (iii) holds. �
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