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Abstract. Our aim in this paper is to study higher-order (in space) anisotropic gener-
alized Cahn–Hilliard models. In particular, we obtain well-posedness results, as well
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image processing, etc. We also give numerical simulations which illustrate the effects
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Keywords: generalized Cahn–Hilliard equation, higher-order models, anisotropy, well-
posedness, global attractor, numerical simulations.

2010 Mathematics Subject Classification: 35K55, 35J60.

1 Introduction

The Cahn–Hilliard equation,

∂u
∂t

+ ∆2u− ∆ f (u) = 0, (1.1)

plays an essential role in materials science and describes important qualitative features of
two-phase systems related with phase separation processes, assuming isotropy and a constant
temperature. This can be observed, e.g., when a binary alloy is cooled down sufficiently. One
then observes a partial nucleation (i.e., the apparition of nuclides in the material) or a total
nucleation, the so-called spinodal decomposition: the material quickly becomes inhomoge-
neous, forming a fine-grained structure in which each of the two components appears more
or less alternatively. In a second stage, which is called coarsening, occurs at a slower time
scale and is less understood, these microstructures coarsen. Such phenomena play an essen-
tial role in the mechanical properties of the material, e.g., strength. We refer the reader to,
e.g., [8, 9, 16, 20, 29, 30, 32, 33, 38, 39] for more details.
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Here, u is the order parameter (e.g., a density of atoms) and f is the derivative of a
double-well potential F. A thermodynamically relevant potential F is the following logarith-
mic function which follows from a mean-field model:

F(s) =
θc

2
(1− s2) +

θ

2

[
(1− s) ln

(
1− s

2

)
+ (1 + s) ln

(
1 + s

2

)]
, s ∈ (−1, 1), 0 < θ < θc,

(1.2)
i.e.,

f (s) = −θcs +
θ

2
ln

1 + s
1− s

, (1.3)

although such a function is very often approximated by regular ones, typically,

F(s) =
1
4
(s2 − 1)2, (1.4)

i.e.,
f (s) = s3 − s. (1.5)

Now, it is interesting to note that the Cahn–Hilliard equation and some of its variants
are also relevant in other phenomena than phase separation. We can mention, for instance,
population dynamics (see [18]), tumor growth (see [4] and [26]), bacterial films (see [27]), thin
films (see [41] and [44]), image processing (see [5, 6, 10, 12, 19]) and even the rings of Saturn
(see [45]) and the clustering of mussels (see [31]).

In particular, several such phenomena can be modeled by the following generalized Cahn–
Hilliard equation:

∂u
∂t

+ ∆2u− ∆ f (u) + g(x, u) = 0. (1.6)

We studied in [35] and [36] (see also [4, 12, 17, 21]) this equation.
The Cahn–Hilliard equation is based on the so-called Ginzburg–Landau free energy,

ΨGL =
∫

Ω

(
1
2
|∇u|2 + F(u)

)
dx, (1.7)

where Ω is the domain occupied by the system (we assume here that it is a bounded and
regular domain of Rn, n = 1, 2 or 3, with boundary Γ). In particular, in (1.7), the term |∇u|2
models short-ranged interactions. It is however interesting to note that such a term is obtained
by truncation of higher-order ones (see [9]); it can also be seen as a first-order approximation
of a nonlocal term accounting for long-ranged interactions (see [22] and [23]).

G. Caginalp and E. Esenturk recently proposed in [7] (see also [11]) higher-order phase-
field models in order to account for anisotropic interfaces (see also [28, 42, 47] for other ap-
proaches which, however, do not provide an explicit way to compute the anisotropy). More
precisely, these authors proposed the following modified free energy, in which we omit the
temperature:

ΨHOGL =
∫

Ω

(
1
2

k

∑
i=1

∑
|α|=i

aα|Dαu|2 + F(u)

)
dx, k ∈N, (1.8)

where, for α = (k1, . . . , kn) ∈ (N∪ {0})n,

|α| = k1 + · · ·+ kn

and, for α 6= (0, . . . , 0),

Dα =
∂|α|

∂xk1
1 . . . ∂xkn

n
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(we agree that D(0,...,0)v = v). The corresponding higher-order Cahn–Hilliard equation then
reads

∂u
∂t
− ∆

k

∑
i=1

(−1)i ∑
|α|=i

aαD2αu− ∆ f (u) = 0. (1.9)

We studied in [13] and [14] the corresponding isotropic model which reads

∂u
∂t
− ∆P(−∆)u− ∆ f (u) = 0, (1.10)

where

P(s) =
k

∑
i=1

aisi, ak > 0, k ∈N, s ∈ R.

The anisotropic model (1.9) is treated in [15].
Our aim in this paper is to study the higher-order generalized Cahn–Hilliard model

∂u
∂t
− ∆

k

∑
i=1

(−1)i ∑
|α|=i

aαD2αu− ∆ f (u) + g(x, u) = 0. (1.11)

In particular, we study the well-posedness and the regularity of solutions. We also prove the
dissipativity of the corresponding solution operators, as well as the existence of the global
attractor. We finally give numerical simulations which show the effects of the higher-order
terms on the anisotropy.

2 Setting of the problem

We consider the following initial and boundary value problem, for k ∈ N, k ≥ 2 (the case
k = 1 can be treated as in [35]):

∂u
∂t
− ∆

k

∑
i=1

(−1)i ∑
|α|=i

aαD2αu− ∆ f (u) + g(x, u) = 0, (2.1)

Dαu = 0 on Γ, |α| ≤ k, (2.2)

u|t=0 = u0. (2.3)

We assume that
aα > 0, |α| = k, (2.4)

and we introduce the elliptic operator Ak defined by

〈Akv, w〉H−k(Ω),Hk
0(Ω) = ∑

|α|=k
aα((Dαv,Dαw)), (2.5)

where H−k(Ω) is the topological dual of Hk
0(Ω). Furthermore, ((·, ·)) denotes the usual L2-

scalar product, with associated norm ‖ · ‖. More generally, we denote by ‖ · ‖X the norm on
the Banach space X; we also set ‖ · ‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse

minus Laplace operator associated with Dirichlet boundary conditions. We can note that

(v, w) ∈ Hk
0(Ω)2 7→ ∑

|α|=k
aα((Dαv,Dαw))
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is bilinear, symmetric, continuous and coercive, so that

Ak : Hk
0(Ω)→ H−k(Ω)

is indeed well defined. It then follows from elliptic regularity results for linear elliptic op-
erators of order 2k (see [1–3]) that Ak is a strictly positive, selfadjoint and unbounded linear
operator with compact inverse, with domain

D(Ak) = H2k(Ω) ∩ Hk
0(Ω),

where, for v ∈ D(Ak),
Akv = (−1)k ∑

|α|=k
aαD2αv.

We further note that D
(

A
1
2
k

)
= Hk

0(Ω) and, for (v, w) ∈ D
(

A
1
2
k

)2,((
A

1
2
k v, A

1
2
k w
))

= ∑
|α|=k

aα((Dαv,Dαw)).

We finally note that (see, e.g., [43]) ‖Ak · ‖ (resp.,
∥∥A

1
2
k ·
∥∥) is equivalent to the usual H2k-norm

(resp., Hk-norm) on D(Ak) (resp., D
(

A
1
2
k

)
).

Similarly, we can define the linear operator Ak = −∆Ak,

Ak : Hk+1
0 (Ω)→ H−k−1(Ω)

which is a strictly positive, selfadjoint and unbounded linear operator with compact inverse,
with domain

D(Ak) = H2k+2(Ω) ∩ Hk+1
0 (Ω),

where, for v ∈ D(Ak),
Akv = (−1)k+1∆ ∑

|α|=k
aαD2αv.

Furthermore, D
(

A
1
2
k
)
= Hk+1

0 (Ω) and, for (v, w) ∈ D
(

A
1
2
k
)2,((

A
1
2
k v, A

1
2
k w
))

= ∑
|α|=k

aα((∇Dαv,∇Dαw)).

Besides, ‖Ak · ‖ (resp.,
∥∥A

1
2
k ·
∥∥) is equivalent to the usual H2k+2-norm (resp., Hk+1-norm) on

D(Ak) (resp., D
(

A
1
2
k
)
).

We finally consider the operator Ãk = (−∆)−1Ak, where

Ãk : Hk−1
0 (Ω)→ H−k+1(Ω);

note that, as −∆ and Ak commute, then the same holds for (−∆)−1 and Ak, so that Ãk =

Ak(−∆)−1.
We have the following lemma.
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Lemma 2.1. The operator Ãk is a strictly positive, selfadjoint and unbounded linear operator with
compact inverse, with domain

D(Ãk) = H2k−2(Ω) ∩ Hk−1
0 (Ω),

where, for v ∈ D(Ãk),
Ãkv = (−1)k ∑

|α|=k
aαD2α(−∆)−1v.

Furthermore, D
(

Ã
1
2
k

)
= Hk−1

0 (Ω) and, for (v, w) ∈ D
(

Ã
1
2
k

)2,((
Ã

1
2
k v, Ã

1
2
k w
))

= ∑
|α|=k

aα

((
Dα(−∆)−

1
2 v,Dα(−∆)−

1
2 w
))

.

Besides, ‖Ãk · ‖ (resp.,
∥∥Ã

1
2
k ·
∥∥) is equivalent to the usual H2k−2-norm (resp., Hk−1-norm) on D(Ãk)

(resp., D
(

Ã
1
2
k

)
).

Proof. We first note that Ãk clearly is linear and unbounded. Then, since (−∆)−1 and Ak
commute, it easily follows that Ãk is selfadjoint.

Next, the domain of Ãk is defined by

D(Ãk) =
{

v ∈ Hk−1
0 (Ω), Ãkv ∈ L2(Ω)

}
.

Noting that Ãkv = f , f ∈ L2(Ω), v ∈ D(Ãk), is equivalent to Akv = −∆ f , where −∆ f ∈
H2(Ω)′, it follows from the elliptic regularity results of [1], [2] and [3] that v ∈ H2k−2(Ω), so
that D(Ãk) = H2k−2(Ω) ∩ Hk−1

0 (Ω).
Noting then that Ã−1

k maps L2(Ω) onto H2k−2(Ω) and recalling that k ≥ 2, we deduce that
Ãk has compact inverse.

We now note that, considering the spectral properties of −∆ and Ak (see, e.g., [43]) and re-
calling that these two operators commute, −∆ and Ak have a spectral basis formed of common
eigenvectors. This yields that, ∀s1, s2 ∈ R, (−∆)s1 and As2

k commute.

Having this, we see that Ã
1
2
k = (−∆)−

1
2 A

1
2
k , so that D

(
Ã

1
2
k

)
= Hk−1

0 (Ω), and, for (v, w) ∈
D
(

Ã
1
2
k

)2, ((
Ã

1
2
k v, Ã

1
2
k w
))

= ∑
|α|=k

aα

((
Dα(−∆)−

1
2 v,Dα(−∆)−

1
2 w
))

.

Finally, as far as the equivalences of norms are concerned, we can note that, for in-
stance, the norm

∥∥Ã
1
2
k ·
∥∥ is equivalent to the norm

∥∥(−∆)−
1
2 ·
∥∥

Hk(Ω)
and, thus, to the norm∥∥(−∆)

k−1
2 ·
∥∥.

Having this, we rewrite (2.1) as

∂u
∂t
− ∆Aku− ∆Bku− ∆ f (u) + g(x, u) = 0, (2.6)

where

Bkv =
k−1

∑
i=1

(−1)i ∑
|α|=i

aαD2αv.
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As far as the nonlinear term f is concerned, we assume that

f ∈ C2(R), f (0) = 0, (2.7)

f ′ ≥ −c0, c0 ≥ 0, (2.8)

f (s)s ≥ c1F(s)− c2 ≥ −c3, c1 > 0, c2, c3 ≥ 0, s ∈ R, (2.9)

F(s) ≥ c4s4 − c5, c4 > 0, c5 ≥ 0, s ∈ R, (2.10)

where F(s) =
∫ s

0 f (ξ) dξ. In particular, the usual cubic nonlinear term f (s) = s3 − s satisfies
these assumptions.

Furthermore, as far as the function g is concerned, we assume that

g(·, s) is measurable, ∀s ∈ R, g(x, ·) is of class C1, a.e. x ∈ Ω, (2.11)

∂g
∂s

(·, s) is measurable, ∀s ∈ R;

|g(x, s)| ≤ h(s), a.e. x ∈ Ω, s ∈ R, (2.12)

where h ≥ 0 is continuous and satisfies

‖h(v)‖‖v‖ ≤ ε
∫

Ω
F(v) dx + cε, ∀ε > 0, (2.13)

∀v ∈ L2(Ω) such that
∫

Ω F(v) dx < +∞, and

|h(s)|2 ≤ c6F(s) + c7, c6, c7 ≥ 0, s ∈ R; (2.14)∣∣∣∣∂g
∂s

(x, s)
∣∣∣∣ ≤ l(s), a.e. x ∈ Ω, s ∈ R, (2.15)

where l ≥ 0 is continuous.

Example 2.2. We assume that f (s) = s3 − s. Assumptions (2.11)–(2.15) are satisfied in the
following cases.

(i) Cahn–Hilliard–Oono equation (see [34], [40] and [46]). In that case,

g(x, s) = g(s) = βs, β > 0.

This function was proposed in [40] in order to account for long-ranged (i.e., nonlocal)
interactions, but also to simplify numerical simulations.

(ii) Proliferation term. In that case,

g(x, s) = g(s) = βs(s− 1), β > 0.

This function was proposed in [26] in view of biological applications and, more precisely,
to model wound healing and tumor growth (in one space dimension) and the clustering
of brain tumor cells (in two space dimensions); see also [4] for other quadratic functions.
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(iii) Fidelity term. In that case,

g(x, s) = λ0χΩ\D(x)(s− ϕ(x)), λ0 > 0, D ⊂ Ω, ϕ ∈ L2(Ω),

where χ denotes the indicator function. This function was proposed in [5] and [6] in
view of applications to image inpainting. Here, ϕ is a given (damaged) image and D is
the inpainting (i.e., damaged) region. Furthermore, the fidelity term g(x, u) is added in
order to keep the solution close to the image outside the inpainting region. The idea in
this model is to solve the equation up to steady state to obtain an inpainted (i.e., restored)
version u(x) of ϕ(x).

Throughout the paper, the same letters c, c′ and c′′ denote (generally positive) constants
which may vary from line to line. Similarly, the same letters Q and Q′ denote (positive)
monotone increasing and continuous (with respect to each argument) functions which may
vary from line to line.

3 A priori estimates

Proposition 3.1. Any sufficiently regular solution to (2.1)–(2.3) satisfies the following estimates:

‖u(t)‖2
Hk(Ω) ≤ ce−c′t

(
‖u0‖2

Hk(Ω) +
∫

Ω
F(u0) dx

)
+ c′′, c′ > 0, t ≥ 0, (3.1)

∫ t+r

t

∥∥∥∥∂u
∂t

∥∥∥∥2

−1
ds ≤ ce−c′t

(
‖u0‖2

Hk(Ω) +
∫

Ω
F(u0) dx

)
+ c′′, (3.2)

c′ > 0, t ≥ 0, r > 0 given,

and
‖u(t)‖H2k(Ω) ≤ Q(e−ctQ′(‖u0‖Hk(Ω)) + c′), c > 0, t ≥ 1, (3.3)

where the continuous and monotone increasing function Q is of the form Q(s) = csec′s.

Proof. The estimates below will be formal, but they can easily be justified within, e.g., a stan-
dard Galerkin scheme.

We multiply (2.6) by (−∆)−1 ∂u
∂t and integrate over Ω and by parts. This gives

d
dt

(∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u] + 2

∫
Ω

F(u) dx
)
+ 2
∥∥∥∥∂u

∂t

∥∥∥∥2

−1
= −

((
g(·, u), (−∆)−1 ∂u

∂t

))
,

where

B
1
2
k [u] =

k−1

∑
i=1

∑
|α|=i

aα‖Dαu‖2

(note that B
1
2
k [u] is not necessarily nonnegative). This yields, owing to (2.12) and (2.14),

d
dt

(∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u] + 2

∫
Ω

F(u) dx
)
+

∥∥∥∥∂u
∂t

∥∥∥∥2

−1
≤ c

∫
Ω

F(u) dx + c′. (3.4)

We can note that, owing to the interpolation inequality

‖v‖Hi(Ω) ≤ c(i)‖v‖
i
m
Hm(Ω)

‖v‖1− i
m , (3.5)
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v ∈ Hm(Ω), i ∈ {1, . . . , m− 1}, m ∈N, m ≥ 2,

there holds ∣∣∣B 1
2
k [u]

∣∣∣ ≤ 1
2

∥∥∥A
1
2
k u
∥∥∥2

+ c‖u‖2.

This yields, employing (2.10),∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u] + 2

∫
Ω

F(u) dx ≥ 1
2

∥∥∥A
1
2
k u
∥∥∥2

+
∫

Ω
F(u) dx + c‖u‖4

L4(Ω) − c′‖u‖2 − c′′,

whence ∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u] + 2

∫
Ω

F(u) dx ≥ c
(
‖u‖2

Hk(Ω) +
∫

Ω
F(u) dx

)
− c′, c > 0, (3.6)

noting that, owing to Young’s inequality,

‖u‖2 ≤ ε‖u‖4
L4(Ω) + cε, ∀ε > 0. (3.7)

We then multiply (2.6) by (−∆)−1u and have, owing to (2.9), (2.12), (2.13) and the interpo-
lation inequality (3.5),

d
dt
‖u‖2

−1 + c
(
‖u‖2

Hk(Ω) +
∫

Ω
F(u) dx

)
≤ c′‖u‖2 + ε

∫
Ω

F(u) dx + c′′ε , ∀ε > 0,

hence, proceeding as above and employing, in particular, (2.10),

d
dt
‖u‖2

−1 + c
(
‖u‖2

Hk(Ω) +
∫

Ω
F(u) dx

)
≤ c′, c > 0. (3.8)

Summing δ1 times (3.4) and (3.8), where δ1 > 0 is small enough, we obtain a differential
inequality of the form

dE1

dt
+ c

(
E1 +

∥∥∥∥∂u
∂t

∥∥∥∥2

−1

)
≤ c′, c > 0, (3.9)

where

E1 = δ1

(∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u] + 2

∫
Ω

F(u) dx
)
+ ‖u‖2

−1

satisfies, owing to (3.6),

E1 ≥ c
(
‖u‖2

Hk(Ω) +
∫

Ω
F(u) dx

)
− c′, c > 0. (3.10)

Note indeed that

E1 ≤ c‖u‖2
Hk(Ω) + 2

∫
Ω

F(u) dx

≤ c
(
‖u‖2

Hk(Ω) +
∫

Ω
F(u) dx

)
− c′, c > 0, c′ ≥ 0.

Estimates (3.1)–(3.2) then follow from (3.9)–(3.10) and Gronwall’s lemma.
Multiplying next (2.6) by Ãku, we find, owing to (2.12) and the interpolation inequality

(3.5),
d
dt

∥∥∥Ã
1
2
k u
∥∥∥2

+ c‖u‖2
H2k(Ω) ≤ c

(
‖u‖2 + ‖ f (u)‖2 + ‖h(u)‖2). (3.11)
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It follows from the continuity of f , F and h, the continuous embedding Hk(Ω) ⊂ C(Ω) (recall
that k ≥ 2) and (3.1) that

‖u‖2 + ‖ f (u)‖2 + ‖h(u)‖2 ≤ Q(‖u‖Hk(Ω)) ≤ e−ctQ′(‖u0‖Hk(Ω)) + c′, c > 0, t ≥ 0, (3.12)

so that
d
dt

∥∥∥Ã
1
2
k u
∥∥∥2

+ c‖u‖2
H2k(Ω) ≤ e−c′tQ(‖u0‖Hk(Ω)) + c′′, c, c′ > 0, t ≥ 0. (3.13)

Summing (3.9) and (3.13), we have a differential inequality of the form

dE2

dt
+ c

(
E2 + ‖u‖2

H2k(Ω) +

∥∥∥∥∂u
∂t

∥∥∥∥2

−1

)
≤ e−c′tQ(‖u0‖Hk(Ω)) + c′′, c, c′ > 0, t ≥ 0, (3.14)

where
E2 = E1 + ‖Ã

1
2
k u‖2

satisfies

E2 ≥ c
(
‖u‖2

Hk(Ω) +
∫

Ω
F(u) dx

)
− c′, c > 0. (3.15)

We now multiply (2.6) by ∂u
∂t and obtain, noting that f is of class C2, so that

‖∆ f (u)‖ ≤ Q(‖u‖Hk(Ω)),

and proceeding as above,

d
dt

(∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u]

)
+

∥∥∥∥∂u
∂t

∥∥∥∥2

≤ e−c′tQ(‖u0‖Hk(Ω)) + c′′, c, c′ > 0, (3.16)

where

B
1
2
k [u] =

k−1

∑
i=1

∑
|α|=i

aα‖∇Dαu‖2.

Summing finally (3.14) and (3.16), we find a differential inequality of the form

dE3

dt
+ c

(
E3 + ‖u‖2

H2k(Ω) +

∥∥∥∥∂u
∂t

∥∥∥∥2
)
≤ e−c′tQ(‖u0‖Hk(Ω)) + c′′, c, c′ > 0, t ≥ 0, (3.17)

where
E3 = E2 +

∥∥∥A
1
2
k u
∥∥∥2

+ B
1
2
k [u]

satisfies, proceeding as above,

E3 ≥ c
(
‖u‖2

Hk+1(Ω) +
∫

Ω
F(u) dx

)
− c′, c > 0. (3.18)

In particular, it follows from (3.17)–(3.18) that

‖u(t)‖Hk+1(Ω) ≤ e−ctQ(‖u0‖Hk+1(Ω)) + c′, c > 0, t ≥ 0. (3.19)

We then rewrite (2.6) as an elliptic equation, for t > 0 fixed,

Aku = −(−∆)−1 ∂u
∂t
− Bku− f (u)− (−∆)−1g(x, u), Dαu = 0 on Γ, |α| ≤ k− 1. (3.20)
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Multiplying (3.20) by Aku, we have, owing to (2.12) and the interpolation inequality (3.5),

‖Aku‖2 ≤ c

(
‖u‖2 + ‖ f (u)‖2 + ‖h(u)‖2 +

∥∥∥∥∂u
∂t

∥∥∥∥2

−1

)
, (3.21)

hence, proceeding as above (employing, in particular, (3.12)),

‖u‖2
H2k(Ω) ≤ c

(
e−c′tQ(‖u0‖Hk(Ω)) +

∥∥∥∥∂u
∂t

∥∥∥∥2

−1

)
+ c′′, c′ > 0. (3.22)

In a next step, we differentiate (2.6) with respect to time and obtain

∂

∂t
∂u
∂t
− ∆Ak

∂u
∂t
− ∆Bk

∂u
∂t
− ∆

(
f ′(u)

∂u
∂t

)
+

∂g
∂s

(x, u)
∂u
∂t

= 0, (3.23)

Dα ∂u
∂t

= 0 on Γ, |α| ≤ k. (3.24)

We multiply (3.23) by (−∆)−1 ∂u
∂t and find, owing to (2.8), (2.15), the interpolation inequality

(3.5) and the continuous embedding H2(Ω) ⊂ L∞(Ω),

d
dt

∥∥∥∥∂u
∂t

∥∥∥∥2

−1
+ c
∥∥∥∥∂u

∂t

∥∥∥∥2

Hk(Ω)

≤ c′
(∥∥∥∥∂u

∂t

∥∥∥∥2

+ ‖l(u)‖
∥∥∥∥∂u

∂t

∥∥∥∥∥∥∥∥(−∆)−1 ∂u
∂t

∥∥∥∥
L∞(Ω)

)

≤ c′
(∥∥∥∥∂u

∂t

∥∥∥∥2

+ ‖l(u)‖
∥∥∥∥∂u

∂t

∥∥∥∥2
)

, c > 0,

which yields, employing the interpolation inequality

‖v‖2 ≤ c‖v‖−1‖v‖H1(Ω), v ∈ H1
0(Ω), (3.25)

and proceeding as above (note that l is continuous), the differential inequality

d
dt

∥∥∥∥∂u
∂t

∥∥∥∥2

−1
+ c
∥∥∥∥∂u

∂t

∥∥∥∥2

Hk(Ω)

≤ c′(e−c′′tQ(‖u0‖Hk(Ω)) + 1)
∥∥∥∥∂u

∂t

∥∥∥∥2

−1
, c, c′′ > 0. (3.26)

In particular, this yields, owing to (3.2) and employing the uniform Gronwall’s lemma (see,
e.g., [43]),∥∥∥∥∂u

∂t
(t)
∥∥∥∥
−1
≤ 1

r
1
2

Q(e−ctQ′(‖u0‖Hk(Ω)) + c′), c > 0, t ≥ r, r > 0 given. (3.27)

Finally, (3.3) follows from (3.22) and (3.27) (for r = 1).

Remark 3.2. If we assume that u0 ∈ H2k+1(Ω) ∩ Hk
0(Ω), we deduce from (3.22), (3.26) and

Gronwall’s lemma an H2k-estimate on u on [0, 1] which, combined with (3.3), gives an H2k-
estimate on u, for all times. This is however not satisfactory, in particular, in view of the study
of attractors.

Remark 3.3. We assume that, for simplicity, g(x, s) = g(s) and we further assume that f is of
class Ck+1 and g is of class Ck−1. Multiplying (2.6) by Ãk

∂u
∂t , we have

1
2

d
dt
(‖Aku‖2 + ((Aku, Bku))) +

∥∥∥∥Ã
1
2
k

∂u
∂t

∥∥∥∥2

= −
((

A
1
2
k f (u), Ã

1
2
k

∂u
∂t

))
−
((

Ã
1
2
k g(u), Ã

1
2
k

∂u
∂t

))
,
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which yields, noting that
∥∥A

1
2
k f (u)

∥∥2
+
∥∥Ã

1
2
k g(u)

∥∥2 ≤ Q(‖u‖Hk+1(Ω)) and owing to (3.19),

d
dt
(‖Aku‖2 + ((Aku, Bku))) ≤ e−ctQ(‖u0‖Hk+1(Ω)) + c′, c > 0, t ≥ 0. (3.28)

Combining (3.28) with (3.17), it follows from (3.18) and the interpolation inequality (3.5) that

‖u(t)‖H2k(Ω) ≤ Q(‖u0‖H2k(Ω)), t ∈ [0, 1],

so that, owing to (3.3),

‖u(t)‖H2k(Ω) ≤ Q(e−ctQ′(‖u0‖H2k(Ω)) + c′), c > 0, t ≥ 0. (3.29)

4 The dissipative semigroup

We first give the definition of a weak solution to (2.1)–(2.3).

Definition 4.1. We assume that u0 ∈ L2(Ω). A weak solution to (2.1)–(2.3) is a function u such
that, for any given T > 0,

u ∈ C([0, T]; L2(Ω)) ∩ L2(0, T; Hk
0(Ω)),

u(0) = u0 in L2(Ω)

and

d
dt
(((−∆)−1u, v)) +

k

∑
i=1

∑
|α|=i

ai((Dαu,Dαv)) + (( f (u), v))

+ (((−∆)−1g(x, u), v)) = 0, ∀v ∈ Hk
0(Ω),

in the sense of distributions.

We have the following theorem.

Theorem 4.2.

(i) We assume that u0 ∈ Hk
0(Ω). Then, (2.1)–(2.3) possesses a unique weak solution u such that,

∀T > 0,
u ∈ L∞(R+; Hk

0(Ω)) ∩ L2(0, T; H2k(Ω) ∩ Hk
0(Ω))

and
∂u
∂t
∈ L2(0, T; H−1(Ω)).

(ii) If we further assume that u0 ∈ Hk+1(Ω) ∩ Hk
0(Ω), then, ∀T > 0,

u ∈ L∞(R+; Hk+1(Ω) ∩ Hk
0(Ω))

and
∂u
∂t
∈ L2(0, T; L2(Ω)).

(iii) If we further assume that f is of class Ck+1, g(x, s) = g(s), g is of class Ck−1 and u0 ∈ H2k(Ω)∩
Hk

0(Ω), then
u ∈ L∞(R+; H2k(Ω) ∩ Hk

0(Ω)).
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Proof. The proofs of existence and regularity in (i), (ii) and (iii) follow from the a priori esti-
mates derived in the previous section and, e.g., a standard Galerkin scheme. Indeed, we can
note that, since the operators −∆, Ak, Ak and Ãk are linear, selfadjoint and strictly positive
operators with compact inverse which commute, they have a spectral basis formed of com-
mon eigenvectors. We then take this spectral basis as Galerkin basis, so that all the a priori
estimates derived in the previous section are justified within the Galerkin scheme.

Let now u1 and u2 be two solutions to (2.1)–(2.2) with initial data u0,1 and u0,2, respectively.
We set u = u1 − u2 and u0 = u0,1 − u0,2 and have

∂u
∂t
− ∆Aku− ∆Bku− ∆( f (u1)− f (u2)) + g(x, u1)− g(x, u2) = 0, (4.1)

Dαu = 0 on Γ, |α| ≤ k, (4.2)

u|t=0 = u0. (4.3)

Multiplying (4.1) by (−∆)−1u, we obtain, owing to (2.8), (2.15), (3.1) and the interpolation
inequalities (3.5) and (3.25),

d
dt
‖u‖2

−1 + c‖u‖2
Hk(Ω) ≤ Q‖u‖2

−1, c > 0, (4.4)

where
Q = Q(‖u0,1‖Hk(Ω), ‖u0,2‖Hk(Ω)).

Here, we have used the fact that, owing to (2.15) and (3.1),

‖g(x, u1)− g(x, u2)‖ ≤ Q(‖u1‖Hk(Ω), ‖u2‖Hk(Ω))‖u‖
≤ Q(‖u0,1‖Hk(Ω), ‖u0,2‖Hk(Ω))‖u‖.

It follows from (4.4) and Gronwall’s lemma that

‖u(t)‖2
−1 ≤ eQt‖u0‖2

−1, t ≥ 0, (4.5)

hence the uniqueness, as well as the continuous dependence with respect to the initial data in
the H−1-norm.

It follows from Theorem 4.2 that we can define the family of solving operators

S(t) : Φ→ Φ, u0 7→ u(t), t ≥ 0,

where Φ = Hk
0(Ω). This family of solving operators forms a semigroup which is continuous

with respect to the H−1-topology. Finally, it follows from (3.1) that we have the following
theorem.

Theorem 4.3. The semigroup S(t) is dissipative in Φ, in the sense that it possesses a bounded absorbing
set B0 ⊂ Φ (i.e., ∀B ⊂ Φ bounded, ∃t0 = t0(B) ≥ 0 such that t ≥ t0 =⇒ S(t)B ⊂ B0).

Remark 4.4.

(i) Actually, it follows from (3.3) that we have a bounded absorbing set B1 which is compact
in Φ and bounded in H2k(Ω). This yields the existence of the global attractor A which
is compact in Φ and bounded in H2k(Ω).

(ii) We recall that the global attractor A is the smallest (for the inclusion) compact set of the
phase space which is invariant by the flow (i.e., S(t)A = A, ∀t ≥ 0) and attracts all
bounded sets of initial data as time goes to infinity; it thus appears as a suitable object in
view of the study of the asymptotic behavior of the system. We refer the reader to, e.g.,
[37] and [43] for more details and discussions on this.
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(iii) We can also prove, based on standard arguments (see, e.g., [37] and [43]) that A has finite
dimension, in the sense of covering dimensions such as the Hausdorff and the fractal
dimensions. The finite-dimensionality means, very roughly speaking, that, even though
the initial phase space has infinite dimension, the reduced dynamics can be described
by a finite number of parameters (we refer the interested reader to, e.g., [37] and [43] for
discussions on this subject).

Remark 4.5. In the numerical simulations given in the next section below, the equations will
be endowed with periodic boundary conditions. From a mathematical point of view, these
boundary conditions are much more delicate to handle, since we have to estimate the spatial
average of the order parameter 〈u〉 = 1

Vol(Ω)

∫
Ω u dx (see [12], [16] and [21]). When g ≡ 0, this

is straightforward, since we have the conservation of mass, namely,

〈u(t)〉 = 〈u0〉, ∀t ≥ 0.

However, when g does not vanish, we are not able to estimate this quantity in general.

5 Numerical simulations

We give in this section several numerical simulations in order to illustrate the effects of the
higher-order terms on the anisotropy. The computations presented below are performed with
the software FreeFem++ (see [24]), for k = 2. We also take Ω bi-dimensional and rectangular.
Finally, the system is associated with periodic boundary conditions.

The problem can be written as, for k = 2,
∂u
∂t + ∆w + 1

ε g(x, u) = 0,

w + a20ε ∂4u
∂x4 + a02ε ∂4u

∂y4 + a11ε ∂4u
∂x2∂y2 − a10ε ∂2u

∂x2 − a01ε ∂2u
∂y2 +

1
ε f (u) = 0,

u, w are Ω-periodic,

u(0, x, y) = u0(x, y),

where ε > 0 is introduced to take into account the diffuse interface thickness. Setting

∂2u
∂x2 = p,

∂2u
∂y2 = q,

∂4u
∂x2∂y2 =

1
2

∂2 p
∂y2 +

1
2

∂2q
∂x2 ,

we have the variational formulation: find (u, w, p, q) ∈ H1
per(Ω)4 such that

((
∂u
∂t , v1

))
− ((∇w,∇v1)) +

1
ε ((g(x, u), v1)) = 0,

((w, v2))− a20ε
(( ∂p

∂x , ∂v2
∂x

))
− a02ε

(( ∂q
∂y , ∂v2

∂y

))
− a11ε

2

(( ∂p
∂y , ∂v2

∂y

))
− a11ε

2

(( ∂q
∂x , ∂v2

∂x

))
− a10ε((p, v2))− a01ε((q, v2)) +

1
ε (( f (u), v2)) = 0,

((p, v3)) +
((

∂u
∂x , ∂v3

∂x

))
= 0,

((q, v4)) +
((

∂u
∂y , ∂v4

∂y

))
= 0,

where the test functions v1, v2, v3, v4 all belong to H1
per(Ω).

The mesh is obtained by dividing Ω into 1492 rectangles, each rectangle being divided
along the same diagonal into two triangles. The computations in Fig. 5.2, 5.3, 5.4 are based
on a P1 finite element method for the space discretization, while we used a P2 finite element
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method for Fig. 5.5, 5.6, 5.7. The time discretization uses a semi-implicit Euler scheme (implicit
for the linear terms and explicit for the nonlinear ones).

We give numerical results concerning a higher-order Cahn–Hilliard–Oono equation
(Fig. 5.2), a higher order phase-field crystal equation (Fig. 5.3, 5.4; see also [25])) and a higher-
order Cahn–Hilliard equation with a mass source for tumor growth (Fig. 5.5, 5.6, 5.7; see
also [4]). These results show that the anisotropy is strongly influenced by the choice of the
coefficients in the higher-order terms. In particular, we can clearly see the anisotropy in the x,
y and cross-directions. For instance, Fig. 5.5, Column 1, corresponds to a tumor growth sim-
ulated with the classical Cahn–Hilliard model (analogous simulations were performed in [4]).
With very small coefficients for the sixth-order terms, the tumor evolves similarly, although
the x, y and cross-directions are clearly noticeable (see Fig. 5.6). With larger coefficients, the
tumor spreads and evolves faster; the anisotropy directions also become obvious (see Fig. 5.5,
Column 2, for an isotropic situation and Fig. 5.7 for anisotropic ones).

(i) Cahn–Hilliard-Oono equation. (See Fig. 5.2.)
f (u) = u3 − u, g(x, u) = 0.5u, ε = 0.05,

u(1)
0 randomly distributed between −1 and 1,

Ω = [0, 1]× [0, 1], step size ∆t = 5× 10−8,

coefficients aij in Table 5.1.

(ii) Phase-field crystal equation. (See Fig. 5.3.)
f (u) = u3 + (1− 0.025)u, g(x, u) = 2u, ε = 1,

u(2)
0 randomly distributed between −0.2 and 0.3,

Ω = [−10, 10]× [−10, 10], ∆t = 10−4,

coefficients aij in Table 5.2.

(iii) Phase-field crystal equation. (See Fig. 5.4.)

f (u) = u3 + (1− 0.025)u, g(x, u) = 2u, ε = 1,

u(3)
0 = 0.07− 0.02 cos 2π(x−12)

32 sin 2π(y−1)
32

+ 0.02 cos2 π(x+10)
32 cos2 π(y+3)

32

− 0.01 sin2 4πx
32 sin2 4π(y−6)

32 ,

Ω = [0, 32]× [0, 32], ∆t = 10−3,

coefficients aij in Table 5.3.

(iv) Tumor proliferation term. (See Fig. 5.5, 5.6, 5.7.)

f (u) = u3 − u, Ω = [−0.7, 1.7]× [−1.7, 0.7], ∆t = 10−6

g(x, u) = 46(u + 1)− 280(u− 1)2(u + 1)2, ε = 0.0125,

u(4)
0 = − tanh

(
1√
2ε

(√
2(x− 0.5)2 + 0.25(y + 0.5)2 − 0.1

))
∈ [−1, 1],

coefficients aij in Tables 5.4, 5.5, 5.6.
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The initial conditions u(3)
0 and u(4)

0 are shown in Fig. 5.1.

(a) Phase-field crystal: u(3)
0 (b) Tumor growth: u(4)

0

Figure 5.1: Initial conditions u(3)
0 and u(4)

0 .

(a) t = 10−6 (b) t = 10−6 (c) t = 10−6 (d) t = 10−6

(e) t = 5× 10−6 (f) t = 5× 10−6 (g) t = 5× 10−6 (h) t = 5× 10−6

Figure 5.2: Cahn–Hilliard–Oono. Initial condition u(1)
0 , f = u3 − u, g =

0.5u, ε = 0.05, ∆t = 5× 10−8.

Table 5.1: Coefficients aij for Fig. 5.2.

column a20 a11 a02 a10 a01 Remark
1 0 0 0 1 1 Cahn–Hilliard–Oono
2 1e-2 1e-4 1e-4 1e-4 1e-4 x-direction
3 1e-4 1e-2 1e-4 1e-4 1e-4 cross-direction
4 1e-4 1e-4 1e-2 1e-4 1e-4 y-direction
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(a) t = 2.5× 10−2 (b) t = 2.5× 10−2 (c) t = 2.5× 10−2 (d) t = 2.5× 10−2

(e) t = 5× 10−2 (f) t = 5× 10−2 (g) t = 5× 10−2 (h) t = 5× 10−2

(i) t = 7.5× 10−2 (j) t = 7.5× 10−2 (k) t = 7.5× 10−2 (l) t = 7.5× 10−2

(m) t = 10−1 (n) t = 10−1 (o) t = 10−1 (p) t = 10−1

Figure 5.3: Phase-field crystal. Initial condition u(2)
0 , f = u3 + (1− 0.025)u, g =

2u, ε = 1, ∆t = 10−4.

Table 5.2: Coefficients aij for Fig. 5.3.

Column a20 a11 a02 a10 a01 Remark
1 1 1 1 −2 −2 Phase-field crystal
2 1 0.1 0.1 −2 −2 x-direction
3 0.1 1 0.1 −2 −2 cross-direction
4 0.1 0.1 1 −2 −2 y-direction
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(a) t = 1.5 (b) t = 1.5 (c) t = 1.5

(d) t = 3 (e) t = 3 (f) t = 3

(g) t = 4.5 (h) t = 4.5 (i) t = 4.5

(j) t = 6 (k) t = 6 (l) t = 6

Figure 5.4: Phase-field crystal. Initial condition u(3)
0 , f = u3 + (1− 0.025)u, g =

2u, ε = 1, ∆t = 10−3.

Table 5.3: Coefficients aij for Fig. 5.4.

Column a20 a11 a02 a10 a01 Remark
1 1 0.5 0.5 −2 −2 x-direction
2 0.5 1 0.5 −2 −2 cross-direction
3 0.5 0.5 1 −2 −2 y-direction
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(a) t = 1.5× 10−2 (b) t = 1.5× 10−2

(c) t = 2.5× 10−2 (d) t = 2.5× 10−2

Figure 5.5: Tumor growth. Initial condition u(4)
0 , f = u3 − u, g = 46(u + 1)−

280(u− 1)2(u + 1)2, ε = 0.0125, ∆t = 10−6.

Table 5.4: Coefficients aij for Fig. 5.5.

Column a20 a11 a02 a10 a01 Remark
1 0 0 0 1 1 Cahn–Hilliard
2 5e-5 5e-5 5e-5 1 1 isotropy

(a) t = 1.5× 10−2 (b) t = 1.5× 10−2 (c) t = 1.5× 10−2

(d) t = 2.5× 10−2 (e) t = 2.5× 10−2 (f) t = 2.5× 10−2

Figure 5.6: Tumor growth. Initial condition u(4)
0 , f = u3 − u, g = 46(u + 1)−

280(u− 1)2(u + 1)2 , ε = 0.0125, ∆t = 10−6

.

Table 5.5: Coefficients aij for Fig. 5.6.
Column a20 a11 a02 a10 a01 Remark

1 1.8e-5 5e-6 5e-6 1 1 x-direction
2 5e-6 1.8e-5 5e-6 1 1 cross-direction
3 5e-6 5e-6 1.8e-5 1 1 y-direction
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(a) t = 4× 10−3 (b) t = 4× 10−3 (c) t = 4× 10−3

(d) t = 2× 10−2 (e) t = 2× 10−2 (f) t = 2× 10−2

Figure 5.7: Tumor growth. Initial condition u(4)
0 , f = u3 − u, g = 46(u + 1)−

280(u− 1)2(u + 1)2, ε = 0.0125, ∆t = 10−6.

Table 5.6: Coefficients aij for Fig. 5.7.

Column a20 a11 a02 a10 a01 Remark
1 5e-4 5e-6 5e-6 1 1 x-direction
2 5e-6 5e-4 5e-6 1 1 cross-direction
3 5e-6 5e-6 5e-4 1 1 y-direction
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