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Dissipation of the herbicide active ingredient glyphosate by microbial communities and by 13 
physical sorption on the surface of biofilms and solid particles in water was investigated in 14 
natural waters in Hungary. To assess combined effects, glyphosate was applied in its pure form 15 
(glyphosate isopropylammonium salt) and in preparation Roundup Classic® formulated with 16 
polyethoxylated tallowamines (POEA). Standing and running surface water samples were 17 
originated from Lake Balaton and River Danube between early May and mid-June of 2015. 18 
Natural biofilms, grown on glass substrates fixed to AKK-1 type carrier buoy, were obtained 19 
from the same locations. The kinetics of dissipation of glyphosate was investigated for 5 weeks, 20 
under controlled laboratory conditions in aquaria containing natural water (15 L), with or 21 
without the presence of mostly algal biofilms, with water exchange from the original locations 22 
every week. The concentration of glyphosate was measured, upon chemical derivatisation with 23 
9-fluorenylmethyloxycarbonyl chloride and solid phase extraction, by high-performance liquid 24 
chromatography combined with UV-VIS absorbance detection or tandem mass spectrometry. 25 
The quantity and the biofilm structure of algal biomass upon exposure to pure or formulated 26 
glyphosate was determined by in vivo fluorimetry and by scanning electron microscopy. The 27 
presence of POEA affected the dissipation of glyphosate, and dissipation profiles also differed 28 
in the investigated natural water samples with or without the presence of biofilms. The results 29 
indicate that glyphosate is capable to modify the structure of the algal community and to induce 30 
increased secretion of extracellular polymeric substances matrix in the biofilms assessed. 31 
 32 
Keywords: glyphosate; dissipation; biofilm; Roundup Classic; POEA 33 

Correspondence author: Szandra Klátyik, tel.: +36 70 9311456, e-mail address: 34 
sz.klatyik@cfri.hu 35 

 36 
E-mail addresses of all Authors: 37 

Szandra Klátyik sz.klatyik@cfri.hu 38 
Eszter Takács  e.takacs@cfri.hu 39 
Mária Mörtl  m.mortl@cfri.hu 40 

Angéla Földi  foldi.angela@okologia.mta.hu 41 
Zsuzsa Trábert trabert.zsuzsa@okologia.mta.hu 42 
Éva Ács  acs.eva@okologia.mta.hu 43 
Béla Darvas  b.darvas@cfri.hu 44 
András Székács a.szekacs@cfri.hu 45 

 46 
 47 

1. Introduction 48 
Various pesticide active ingredients and formulations used in intensive agriculture exert 49 

high direct or mediated impact on the environment, especially in surface waters via their 50 
leaching, drifting, surface run-off from treated sites, foliar spray and unintended 51 
overspray and may pose hazards to the drinking water bases as well [1,2]. The appearance 52 
of the worldwide used active ingredient glyphosate in surface water is a globally observed 53 
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phenomenon because of its good solubility in water and widespread use. The water 54 

solubility of glyphosate is 11.6 g L-1 (25°C), while degradation half-life (DT50) in water 55 
is between 28 and 91 days (photodegradation excluded) [3]. Significant differences were 56 
detected in glyphosate contamination all over the world. Although several studies report 57 

levels of contamination at about 0.01 µg L-1, i.e. near to the limit of detection (LOD) 58 
[4,5], the average contamination level in surface water has been found between 100-200 59 
µg L-1 [6,7], and actual levels can reach up to 5200 µg L-1 [8] in regions, where the use of 60 
glyphosate-based pesticide formulations is substantial due to the cultivation of genetically 61 
modified glyphosate-resistant crops. The concentrations of glyphosate in surface waters 62 

in the European Union (EU) is between 0.05 and 4.7 µg L-1  as reported in several studies 63 
[4,9,10]. In the United States of America (USA), the accepted maximum level of for 64 
glyphosate residues in drinking water is 700 µg L-1 [11], while 0.1 µg L-1 in the EU [12]. 65 
The acceptable maximum level of glyphosate (among all pesticide residues) is 1.0 µg L-66 
1 in the EU [13]. 67 

The half-life of glyphosate in environmental matrices is strongly influenced by 68 

factors such as microbial activity. Glyphosate is rapidly adsorbed onto sediment particles 69 

depending on the metal content of the sediment phase, and is gradually degraded into its 70 
main metabolite, aminomethylphosphonic acid (AMPA). After 28 day post treatment 71 
glyphosate and AMPA were detectable in surface water samples derived from an 72 
estuarine pond, in contrast to the sediment samples, which did not contain the investigated 73 

compounds [14]. 74 
Various co-formulants and additives used in pesticide formulations have traditionally 75 

been considered as inactive/inert ingredients in pesticide formulations. However, these 76 
substances are deliberately applied to modify the physical/chemical characteristics of the 77 
active ingredient(s) in formulations, and several studies confirmed, that the formulating 78 

agents, particularly polyethoxylated tallowamines (POEA), a complex combination of 79 
homologs of different aliphatic moieties and ranges of ethoxylate units [15], exert their 80 

own toxicity or affect the toxicity of the active ingredients [16,17]. Therefore, 81 

comparative studies among pure active ingredients and their formulated products are of 82 

increasing importance. 83 
Biofilm development on natural or artificial solid surfaces in water media play a 84 

particularly important role in the biogeochemical cycles, dynamics of the aquatic 85 

ecosystems and biodegradation of pollutants in natural waters [18,19]. Biofilms are 86 
compact communities of photoautotrophic (algae) and heterotrophic microorganisms 87 

(bacteria, fungi, protozoa) embedded in their extracellular polymeric substance (EPS) 88 
secretions [20]. EPS consists of proteins, polysaccharides, lipids, lectins, nucleic acids, 89 
etc., and can serves as sorption sites [21]. The EPS matrix is a dynamic system, 90 

responsible for the structure and morphology of the biofilms by filling and forming the 91 
space between the algal cells [22]. The structure of the EPS matrix is significantly 92 

stronger in the presence of various cations resulting in interactions with exposed carboxyl 93 
groups on the EPS, formation of macromolecule networks, and increased viscosity or 94 
gelation. The EPS matrix plays an important role in the protection of microbes against 95 

physical-chemical stresses [23] and the sorption of toxic organic contaminants (e.g. 96 
chlorophenols and polyaromatic hydrocarbons [24], atrazine, diclofop-methyl [25] or 97 
organic pollutants BTX [26]), and additionally it concentrates nutrients [27]. Increased 98 
production and secretion of the EPS matrix can be interpreted as stress responses of the 99 

biofilms to different adverse effects [28,29]. Accumulation of various metal ions (e.g. 100 
Cd2+, Cr3+, Cu2+) by biofilms has been confirmed [30]: the sorption capacity of the 101 
biofilms can be attributed to chelate or complex formation of the EPS matrix with various 102 
cations, and the uptake of cations by bacteria and alga species in biofilms. Furthermore, 103 
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the binding capacity of the EPS matrix is significantly influenced by the pH of the water 104 

and its physical stage (dissolved, slime or gel state) [31]. Biofilms are widely used for 105 
monitoring studies, due to their sessile way of life; their rapid response to environmental 106 
changes (because of their short life cycle); their microbial community consist of high 107 

number of species with different sensitivity for various environmental effects; and the 108 
easy way of sampling it [32,33]. The EPS matrix can trap nutrients from water for the 109 
microorganisms in biofilms [34], and present a highly reactive surface area for sorption 110 
and metabolism of chemical compounds [25]. In turn, biofilms can take part in the 111 
adsorption, biodegradation and decomposition of the contaminants [35]. 112 

The aim of this study was to investigate and compare the dissipation of glyphosate 113 
in pure and formulated forms in freshwater samples originated from Lake Balaton and 114 
River Danube, with and without the presence of natural freshwater biofilms. Dissipation 115 
was investigated as the biodegradation of glyphosate by microbial activities and physical 116 
sorption on the surface of biofilms and solid particles of water samples. 117 

 118 

2. Experimental 119 
 120 
2.1. Standards and reagents 121 
Glyphosate isopropylammonium (IPA) salt was received from Lamberti SpA (Albizzate, 122 
Italy). Herbicide formulation Roundup Classic® (Monsanto Europe S.A./N.V.) [36] was 123 

purchased from public commercial source. The main chemical characteristics of the 124 
selected active ingredient, glyphosate-based herbicide and the surfactant POEA used in 125 

Roundup Classic® can be found in Table 1. According to its Material Safety Data Sheet 126 
(MSDS), Roundup Classic® contains 41.5% glyphosate IPA salt and 15.5% POEA, both 127 
ingredients unequivocally identified by their Chemical Abstracts Service (CAS) Registry 128 

Numbers (see Table 1). The authorization of Roundup Classic®, formulated by Monsanto 129 
Europe S.A. was cancelled its POEA content (see its MSDS) in Hungary at December 130 

2016 [36,37]. All other chemicals, including analytical standards of glyphosate, 131 

derivatising agent 9-fluorenylmethyl chloroformate (FMOC-Cl), organic solvents 132 

acetonitrile (ACN), methanol (MeOH), dichloromethane, as well as phosphate and borate 133 
buffers, aqueous formic acid and ammonium acetate for HPLC analyses and 134 

glutaraldehyde for fixation for scanning electron microscopy were obtained from Sigma-135 

Aldrich Co. LLC (St. Louis, MO, USA). Analytical standards were ≥97.5 % purity. Solid 136 
phase extraction was carried out using Strata-X Polymeric SPE cartridge (Phenomenex, 137 

Torrance, USA) (volume of 3 mL, 200 mg sorbent). 138 
 139 

2.2. Experimental setup 140 
 141 
2.2.1. Determination of dissipation in natural water samples 142 

Dissipation of glyphosate active ingredient was investigated in its pure (glyphosate IPA 143 
salt) and formulated form (Roundup Classic® herbicide formulation) in surface waters of 144 
two origins. Freshwater samples were originated from Lake Balaton (Tihany Bay – 145 

46.914190, 17.892916, Tihany, Hungary), the largest standing water body in Europe and 146 
River Danube (Green Island – 47.481641, 19.057645, Budapest, Hungary) the second 147 
longest, navigable river of Europe. Water quality of the collected samples was 148 
characterised by pH of 8.4-5.54 and 8.1-8.2, and conductivity of 650-700 and 715-755 149 

µS cm-1 for Lake Balaton and River Danube, respectively. The kinetics of dissipation 150 
investigated under laboratory conditions in aquaria containing natural water (15 L) with 151 
water exchange every week. During the experiments, the water in the aquaria was slowly 152 
stirred (to assure oxygen dissolution), temperature-controlled (22±2°C) and illuminated 153 



Sz. Klátyik et al. 
 

(L:D = 15:9, daily light program 6-9 hrs 5.4 µmol m-2 s-1 (photosynthetically active 154 

radiation, PAR) (400 lux), 9-18 hrs 13.5 µmol m-2 s-1 (PAR) (2000 lux), 18-21 hrs 5.4 155 
µmol m-2 s-1 (PAR) (400 lux); XiLong White T8®). Illuminance (lux) was determined by 156 
Light Meter MS-86 (Dostmann, Wertheim-Reicholzheim, Germany), PAR was 157 

determined by Coherent® Field Max (Edmund Optics, Barrington, NJ, USA). For spiking, 158 
pure glyphosate IPA salt and POEA-formulated glyphosate (Roundup Classic®) were 159 
added to the aquaria containing original natural water samples, resulting in an initial 160 
glyphosate concentration of 100 µg L-1 of the glyphosate IPA salt (equivalent to 74.1 µg 161 
L-1 glyphosate acid), corresponding to the lower range of average contamination levels 162 

reported in surface waters [6,7]. 163 
 164 
2.2.2. Determination of dissipation in presence of biofilms 165 
To determinate the dissipation in the presence of biofilms, natural biofilms were grown 166 
on glass substrates (plates of dimensions: 23 cm x 9 cm, thickness: 3 mm, one side smooth 167 

(untreated) and one side sand blasted) fixed on AKK-1 (originated from Cséffán, Darvas 168 

& Pasaréti) type carrier buoys immersed for 6 weeks in Lake Balaton and River Danube 169 

placed at the same location, where water sampling was regularly performed later 170 
(described above) between early May and mid-June of 2015. Prior to the outplacement of 171 
the carrier buoys, the orientation and intensity of waves, and the possibilities for 172 
protection and the reach of the location were assessed. The AKK-1 buoy includes four 173 

algal deposition rack units (containing no any metal or plastic elements) with 5 glass 174 
plates in each unit, vertically submerged into the water (at a depth of 20-30 cm). After a 175 

6-week colonization period, the glass substrates were placed into glass aquaria (without 176 
any plastic elements) under laboratory conditions. Each aquarium contained 15 L water 177 
from the original location of the buoy, and water parameters (22±2 °C, L:D = 15:9, 178 

stirring) were controlled. Five biofilm substrates with sand blasted and smooth surface 179 
sides were placed into each aquarium (the sixth substrate was used for further analytical 180 

and microscopic evaluations). Control units in aquaria without glyphosate (pure or 181 

formulated) treatment were applied during the experiments. The algal deposition units 182 

were placed in the same position, and the order of the substrates was not modified in the 183 
aquaria. The water in the aquaria was changed weekly, with water of original locations, 184 

where the biofilm had been developed. The dissipation was investigated in case of both 185 

glyphosate forms (formulated and pure active ingredient), and identical initial glyphosate 186 
concentrations (100 µg L-1 of glyphosate IPA salt, equivalent to 74.1 µg L-1 glyphosate 187 

acid) were applied at the beginning of the experiments and upon each weekly water 188 
exchange. 189 
 190 

2.3. Analytical methods 191 
 192 

2.3.1. Sampling 193 
Dissipation of glyphosate was determined daily in freshwater samples originated from 194 
Lake Balaton and River Danube, therefore 15 mL water sample was collected every day 195 

from each aquarium during the experiment. In the presence of biofilms, dissipation was 196 
investigated on the basis of sample collection performed daily during the first week (the 197 
first sample taken in 30 minutes after glyphosate application), and weekly during each 198 
further water exchange. The samples were frozen at -24°C until sample preparation and 199 

measurement [38,39]. 200 
 201 
2.3.2. Sample preparation 202 
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Water samples (5 mL) were derivatised with 250 µL of FMOC-Cl (0.5 mM) and 0.3 ml 203 

of borate buffer (pH 9) [40]. Upon 1 min of vigorous shaking, the solution was incubated 204 
at room temperature for 1 hour. The excess amount of FMOC-Cl was removed by 205 
extracting the reaction mixture three times, each with 1 ml of dichloromethane. The 206 

aqueous phase separated was subjected to solid phase extraction (SPE) to concentrate the 207 
samples for HPLC-UV analysis [41]. Cartridges (Strata-X sorbent, 33 µm, 200 mg; 208 
Phenomenex, Torrance, USA) were conditioned by the addition of 5 mL of MeOH, then 209 
5 mL of distilled water, and finally 5 mL of phosphate buffer (pH=3). Subsequently, the 210 
derivatised water samples (5 mL) were added, the cartridges were washed with 3 mL of 211 

distilled water, and were air-dried. The analytes were eluted with 3.5 mL of methanol, the 212 
eluate was evaporated and redissolved in 0.5 mL of the initial eluent of the HPLC 213 
analysis, and was filtered through a 0.45 µm hydrophilic polytetrafluoroethylene syringe 214 
filter (FilterBio PFTE-L) purchased from Labex Ltd. (Budapest, Hungary). Derivatised 215 
samples were not subjected to SPE prior to LC-MS/MS measurements. 216 

 217 

2.3.3. Analytical determination 218 

Glyphosate concentration of water samples was analysed by HPLC-UV using an 219 
optimised analytical method reported elsewhere with fluorescent detection [40,42]. 220 
Negative samples in HPLC-UV (under LOD: 5 µg L-1) were further analysed by LC-221 
MS/MS. HPLC-UV analyses of the investigated compounds were performed on a 222 

Younglin YL9100® HPLC system equipped with an YL9150 autosampler. Glyphosate 223 
were separated on a Chromegabond WR C18 column (150 mm × 4.6 mm, i.d. 3 µm) (ES 224 

Industries, Berlin, Germany) at 40 °C. UV detector signals were recorded at λ = 260 nm. 225 
External calibration was based on the results obtained for 7 standard solutions in the range 226 
of concentrations between 5 and 150 µg L-1. Calibration solutions were prepared from a 227 

stock solution by dilution with acetonitrile:buffer (10 mM ammonium acetate in water, 228 
pH=6.0). The eluent flow rate was 0.7 mL min-1 with gradient elution. Initial eluent (1:9 229 

= A:B eluents, A = 100% acetonitrile, B =10 mM sodium acetate buffer water) was 230 

increased to 90% A at 6 min, maintained for 3 min, and then returned to initial 231 

composition in a min and equilibrated for 3 min. The injection volume was 30 μL. 232 
Water samples with glyphosate content below the LOD (5 µg L-1) were subjected to 233 

liquid chromatography–tandem mass spectrometry (LC-MS/MS) [39,41] on a Thermo-234 

Finnigan TSQ-20003 Quantum Discovery MAX (Thermo Electron Corp., San Jose, 235 
USA) liquid chromatograph (LC) equipped with a triple quadrupole mass spectrometer 236 

with electrospray ionization (ESI). Compounds were separated on a Kinetex XB-C18 237 
column (2.1 mm × 100 mm, i.d. 5 µm) (Phenomenex, Torrance, CA, USA, purchased 238 
from Gen-Lab Ltd, Budapest, Hungary) at 25°C. Gradient elution was conducted with at 239 

flow rate of 0.2 mL min-1. Aqueous formic acid (0.1%, eluent A) and acetonitrile (eluent 240 
B) were used as eluents. Prior to the measurements, both eluents were filtered through 241 
regenerated cellulose filters (0.2 μm). The composition of the eluents was changed in time 242 
as follows: 0 min 3% B, 2 min 3% B, 10 min 50% B, 15 min 3% B, 25 min 3% B. 243 
Experiments were conducted in positive and negative ionization modes. The LOD of the 244 

method was 1 ng L-1. 245 
 246 

2.4. Biological experiments 247 
 248 

2.4.1. Sampling procedure 249 
Prior to the location of the AKK-1 carrier buoy and 6-week biofilm colonization period 250 
1 cm x 1 cm sand blasted glass plates were fixed on the biofilm glass substrates, and the 251 
developed biofilms were used for the electron microscopic examination of the biofilms. 252 
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The collection of the biofilm samples were performed after completion of the biofilm 253 

development period and at the end of the experiment. 254 
 255 
2.4.2. Sample preparation 256 

Biofilm samples were fixed prior to the scanning electron microscopy (SEM). During the 257 
fixation of the biofilm samples using 10 mL of 5 % glutaraldehyde solution for 3 hours 258 
at room temperature (20 °C), followed by two washing steps using 10 mL of 0.2 M 259 
phosphate buffer for 10 min. The fixed biofilm samples were stored at -80 °C until 260 
lyophilisation performed by Christ Alpha 1-4 LSC® (Osterode, Germany). During 261 

lyophilisation, the duration of the main freeze-drying was 20 hours (1.025 mbar, -56 °C) 262 
followed by 4-hour final drying (0.825 mbar, -56°C) [43]. The lyophilised samples were 263 
fixed onto a stub using double-sided carbon tape followed by coating with gold by a 264 
rotary-pumped spatter coater (Quorum Q150 R S®, London, England). 265 
 266 

2.4.3. Biological determination 267 

The effects of active ingredient glyphosate and formulation Roundup Classic® on algal 268 

biomass of biofilms were determined with bbe Moldaenke BenthoTorch® 269 
(Schwentinental, Germany) algae torch instrument based on real-time measurement of 270 
benthic algal concentrations by in situ quantification of chlorophyll-a fluorescence and in 271 
vivo fluorescence of algal cells. During the measurement, algal cells are excited by LEDs 272 

at different wavelengths and emit red fluorescence light. The algal biomass is calculated, 273 
on the basis of the quantity of chlorophyll-a content of different algae, using the intensity 274 

of chlorophyll fluorescence. The concentration of different algae was expressed in the 275 
unit of µg chlorophyll-a cm-2. The measuring range of the instrument is 0-15 µg 276 
chlorophyll-a cm-2 [44]. However according to Kahlert and McKie, the use of 277 

BentoTorch® for determination of the relative contribution of different algal group to 278 
benthic algal biomass is recommended only with cautious evaluation [45]. To assess the 279 

accuracy of the algal biomass determination, chlorophyll-a content was determined from 280 

the biofilm using the corresponding standardised protocol [46], and the two methods 281 

(spectrophotometric and in situ fluorometric determination of chlorophyll-a) were 282 
compared to each other in the 1-50 µg mL-1 concentration range. Moreover, in our 283 

experiments, the results were used for comparative purposes, therefore, the rates of the 284 

three algae taxa (green algae, cyanobacteria and diatom) studied were evaluated with 285 
results from SEM considered. The composition of the algae community of biofilms and 286 

their structural transformations, as well as the intensity of EPS formation were visualised 287 
from 15 randomly selected fields of each samples by SEM performed by Zeiss EVO MA 288 
10® scanning electron microscope operated at 10 kV and 8.5 mm distance using SE 289 

detector. Changes in algal biomass in response to exposure to the chemicals studied were 290 
determined, but biomasses of untreated biofilms were also measured as negative controls 291 

in each sampling interval. Control units were incubated in aquaria under the same 292 
conditions as the treatment groups, but without glyphosate (pure or formulated) treatment. 293 
Determinations were conducted on the sand blasted and smooth surface of glass substrates 294 

as well in triplicates. On both sides of the substrate the identical sampling sites of 9.62 295 
cm-2 were measured in every two weeks, and total and relative biomass values were 296 
calculated. Standard deviations (SD) of biomass values between the sampling sites on the 297 
individual sides, glass substrates and rack units were determined. 298 

 299 

2.5. Statistical analysis 300 
Decomposition of glyphosate in pure and formulated forms in natural waters was assessed 301 
by sampling in triplicates, and each sample subjected to chemical analysis in triplicates. 302 
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Standard calibration for quantitative determination of glyphosate has also been carried 303 

out in triplicates at each concentration level. Experiments of exposure of biofilms to pure 304 
and formulated glyphosate were performed in quadruplicates by separately immersing 305 
five glass plates with biofilms into natural waters spiked with glyphosate or Roundup 306 

Classic®. Corresponding control experiments without treatment with glyphosate have 307 
also been carried out in quadruplicates. Algal biomass was determined on each glass plate 308 
in two spots (9.62 cm2 each) on each side of the plate, with even geometrical distribution 309 
along the plate and identical setup throughout the experiment in each treatment group. 310 
Thus, overall 20 parallel fluorometric determinations were carried out for each time points 311 

of each treatment. Extraction for spectrophotometric measurement of chlorophyll content 312 
was carried out in triplicates at each concentration level. Effects of various treatments 313 
were statistically evaluated by one-way ANOVA (Statistica® software, StatSoft, Tulsa, 314 
USA) followed by Tukey post hoc test for comparisons between groups (p ≤ 0.05). 315 
 316 

3. Results and discussion 317 

 318 
3.1. Pesticide residue analysis in surface water 319 
The retention time in the HPLC separation was 6.71 min for glyphosate. An LOD, defined 320 
as analyte concentrations corresponding to a signal level of signal/noise ratio of 3, of the 321 
developed HPLC-UV analytical method was 5 µg L-1. The percentage recovery at a 322 

spiking level 100 µg L-1 of the glyphosate IPA salt (equivalent to 74.1 µg L-1 glyphosate 323 
acid) was found to be 83.5±6.0% for glyphosate. Glyphosate concentrations above 5 µg 324 

L-1 reported in this manuscript correspond to analyses by HPLC-UV. In the rare cases, 325 
when glyphosate concentrations fell below 5 µg L-1, water samples were analysed by LC-326 
MS/MS. 327 

The pesticide contamination status of the natural water bodies at both sampling 328 
locations was investigated weekly during the biofilm formation and sampling periods, 329 

and no detectable amounts of glyphosate residues were found. During the colonisation 330 

period of biofilms in river Danube, metolachlor (up to 1 µg L-1) was detected for a longer 331 

period, and occasionally terbutylazine and dimethenamid also occurred (up to 1 µg L-1). 332 
In mid-July, chlorpyrifos appeared (2-4 µg L-1) in the water samples until the end of the 333 

sampling period. In contrast, no pesticide residues in the water samples from Lake 334 

Balaton were detected during the colonisation period, but later the presence of 335 
chlorpyrifos (2-4 µg L-1) was detected at the same concentration range as seen in river 336 

Danube. 337 

 338 
3.2. Effects of pure and formulated glyphosate on algal biomass and composition 339 

of biofilms 340 
The in situ fluorometric algae torch was found a reproducible method for the 341 

determination of chlorophyll-a content in biofilms, as the surface density of chlorophyll-342 
a detected highly correlated with corresponding chlorophyll-a concentrations measured 343 
by the ISO standard method of spectrometric determination of the chlorophyll-a 344 

concentration in water quality assessment [46]. Chlorophyll-a surface densities and 345 
concentrations highly correlated (R2 = 0.9996) with each other in the concentration range 346 
of 1-50 µg mL-1 of chlorophyll-a. 347 

Due to identical geometric arrangement of the algae rack units containing 6 racks 348 

each, total production rate of biomass grown on the AKK-1 type buoy was not statistically 349 
different among rack units for Lake Balaton and River Danube, respectively. Thus, 350 
differences in glyphosate concentration among treatment groups were not due to the 351 
initial biomass, but to the condition, whether glyphosate was applied in its pure or 352 
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formulated form. Effects in biomass production were determined on identical surface 353 

dimensions among the 6 glass substrates. Higher biomass values were measured on the 354 
edge of glass plates and on the terminal plates. Maximum relative SD (SD%) of the 355 
average biomass content among sampling sites were 35% and 40%, for Lake Balaton and 356 

River Danube, respectively. However, commeasurable biomass results, significantly not 357 
different from each other, were determined among rack units in the case of both surface 358 
water sources. Average biomass production on the 2-2 rack units (used in this dissipation 359 
experiment) after the colonization period (before treatments with two form of glyphosate) 360 
were 2.26 and 2.13 µg chlorophyll-a cm-2 for River Danube and 3.21 and 3.32 µg 361 

chlorophyll-a cm-2 for Lake Balaton. 362 
On-going spontaneous changes in the algal community and the structure of the 363 

biofilms from River Danube in response to the various treatments were observed by algal 364 
biomass measurement and microscopic analysis, while such alterations were not observed 365 
in the corresponding control units. Biofilms originated from River Danube continued to 366 

grow under laboratory conditions, unlike those from Lake Balaton (see below). Exposure 367 

to glyphosate alone occurred to slightly promote biomass production. This is not 368 

unreasonable, as it has been reported that glyphosate at low concentrations (0.01 to 5 mg 369 
P L−1) may serve as a source of phosphate and nutrients for certain biofilm community 370 
components [47], and/or may trigger pathways for the synthesis of metabolites and 371 
proteins [48,49], which can result in increased biomass growth. At higher concentrations 372 

(8 mg L-1), however, it inhibits the colonization of algae [50]. Upon treatments with 373 
POEA-formulated glyphosate (Roundup Classic®), the initial biomass decreased in the 374 

first 2 weeks in both surface waters. Average relative biomass values were 2.04, 2.14 and 375 
1.50 µg chlorophyll-a cm-2 for algae grown on glass substrates in River Danube for the 376 
control and the glyphosate and POEA-formulated glyphosate treatments, respectively. 377 

After 2 weeks, biomass in River Danube started to increase. 378 
In contrast, initial biomass from Lake Balaton decreased continuously during the 379 

five-week experimental period not only under treatments with pure and POEA-380 

formulated glyphosate, but in the control experiment as well from the second week on, as 381 

indicated by in situ fluorimetry and SEM images. These biofilms were rich in small, tube-382 
building, algivorous chironomid larvae; Procladius choreus, Tanypus punctipennis and 383 

Chironomus balatonicus being the most abundant at the Tihany Peninsula [51,52]. The 384 

emergence of these larvae, especially Procladius species occurred to be essential for the 385 
subsistence of the biofilms, and in cases of lacking emergence, the biofilms collapsed in 386 

the aquaria in two weeks. After the two-week incubation period, 2.65, 2.82 and 2.30 µg 387 
chlorophyll-a cm-2 were determined for the control and the treatment groups with pure 388 
and formulated glyphosate, respectively. 389 

SEM analysis indicated considerable changes in biofilm structure. Realignment 390 
of the biofilms was typical, and glyphosate-sensitive species were replaced by tolerant 391 

ones like filamentous green algal species (Figure 1). The realignment of biofilms and the 392 
effects of glyphosate on the microbial community structure in freshwater were observed 393 
in other studies as well [50,53]. The electron microscopic analysis also indicated 394 

increased production of the EPS matrix, relative to the corresponding negative controls, 395 
in each treatment group. Visual analysis of the ESM images suggested an intensive EPS 396 
production for exposure to POEA-formulated glyphosate. This phenomenon can be 397 
attributed to the protective mechanism of bacteria and algae to eliminate and reduce the 398 

effects of contaminants [23,28,29]. Additionally, glyphosate can affect the metabolic 399 
processes of bacteria and algae simultaneously, resulting in an enhanced production of 400 
the EPS matrix as response to physical, chemical and biological stress factors [28,29] 401 
(Figure 2). 402 
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 403 

3.3. Dissipation of pure and formulated glyphosate in natural water samples 404 
without the presence of biofilms 405 
Differences were observed between pure and POEA-formulated glyphosate levels (Figure 406 

3). Significantly higher initial concentrations were measured (30 min after the addition of 407 
100 µg L-1 of the glyphosate IPA salt (equivalent to 74.1 µg L-1 glyphosate acid) in water 408 
samples originated from River Danube for formulated glyphosate treatment due to the 409 
presence of formulating agent POEA. A possible mechanism involved in this process can 410 
be that the surfactant suppressed the physical adsorption of glyphosate on the solid-liquid 411 

surfaces (e.g. glass materials of aquaria, solid phase and floating particles in water 412 
samples) [54]. 413 

Degradation of glyphosate was not detected in water samples from Lake Balaton, 414 
the level of glyphosate stagnated at 90 and 100 µg L-1 in case of the pure and POEA-415 
formulated active ingredient, respectively. Therefore, the observed changes in 416 

concentration are likely to be due to absorption or accumulation in the tissue of the 417 

biofilm. In contrast, the concentration of glyphosate in River Danube, after an initial rapid 418 

decrease, reached a constant level approximately at the concentration of 60 µg L-1. 419 
According to our results, the environmental fate and degradation of glyphosate can 420 

be different in various natural water matrices, as the processes may be influenced by the 421 
presence of the formulating agents, the composition of the microbial communities, and 422 

the physical and chemical parameters of the water phase [14,55]. 423 
 424 

3.4. Dissipation of pure and formulated glyphosate in the presence of biofilms 425 
Differences were observed between the reduction of pure and POEA-formulated 426 
glyphosate levels in the presence of biofilms. Similar effects of the formulating agent 427 

POEA on initial glyphosate concentrations (30 min after the addition of 100 µg L-1 of the 428 
glyphosate IPA salt (equivalent to 74.1 µg L-1 glyphosate acid) as described in Section 429 

3.2 (Figures 4-7). However, the presence of the biofilm resulted in further decreases of 430 

glyphosate levels, likely due to the adsorption capacity [24-26] of the EPS matrix 431 

produced by microbial activity of the biofilms. When pure glyphosate was applied, after 432 
an immediate (within 30 minutes) steep drop, glyphosate concentration remained stagnant 433 

during the first week at 15 and 80 µg L-1 for River Danube and Lake Balaton, respectively. 434 

When applied in formulation, glyphosate concentrations decreased similarly, but less 435 
instantaneously likely due to the surfactant effect of POEA, possibly facilitating the 436 

maintenance of the active ingredient molecules in solution. 437 
 438 
3.4.1. River Danube 439 

The phytotoxic effects of glyphosate, particularly if enhanced by a formulating agent, 440 
may have contributed to the observed decrease of the algal biomass relative to the 441 

untreated control. Moreover, the gradual increase in glyphosate concentrations detected 442 
after repeated weekly addition of 100 µg L-1 of pure glyphosate IPA salt (equivalent to 443 
74.1 µg L-1 glyphosate acid) is likely to be due to saturation of the sorption sites in the 444 

EPS matrix in the biofilm. By the fourth week, the total biomass increased, accompanied 445 
by significant decreases in glyphosate concentration, possibly due to the utilization of 446 
glyphosate from water as a nutrient by tolerant algal species (Figure 4) [34,48]. 447 

When glyphosate was applied in a formulated form, the treatment resulted in a rapid 448 

gradual decrease of the concentration of glyphosate during the first week in the presence 449 
of high biomass. The treatment resulted in a decrease in the algal biomass, relative to the 450 
untreated control, within 2 weeks. Possible factors contributing to this trend are the 451 
phytotoxic effect of the formulation and the increased production of the EPS matrix 452 
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observed in a qualitative estimation based on the SEM images. The measured level of 453 

glyphosate was stagnant upon weekly additions of glyphosate. From the third week on, 454 
gradually increasing glyphosate concentrations were detected likely due to the saturation 455 
of the sorption sites in the EPS matrix (Figure 5). Similarly to the treatment with pure 456 

glyphosate, the algal biomass increased by the fourth week. Despite the lower 457 
bioavailability of glyphosate in water, tolerant algal species occurred utilising glyphosate 458 
as a nutrient from the EPS matrix. 459 
 460 
3.4.2. Lake Balaton 461 

Biofilms formed in Lake Balaton resulted different dissipation patterns of glyphosate 462 
than those seen for River Danube. The phytotoxic effect of glyphosate or Roundup 463 
Classic® herbicide formulation resulted in a continuous decrease in the biomass during 464 
the five-week experimental period. Compared to the degradation without the presence of 465 
biofilms, lower concentrations of glyphosate were detected in the first week possibly 466 

attributed to chelate or complex formation with the EPS matrix [31]. After the first week 467 

during the weekly, repeated addition of pure glyphosate into the aquaria, the 468 

concentration of glyphosate stabilised at the same level as observed in the first week, but 469 
on the fifth week the concentration (62.3 µg L-1) of the spiked glyphosate dose was 470 
significantly reduced 30 minutes after the addition (Figure 6). 471 

Upon treatment with POEA-formulated glyphosate, the initial decline in glyphosate 472 

concentration during the first week was less rapid as observed with pure glyphosate. Upon 473 
repeated addition of formulated glyphosate, the entire dose (100 µg L-1 of pure glyphosate 474 

IPA salt (equivalent to 74.1 µg L-1 glyphosate acid) applied was detected in the water 475 
samples 30 minutes after treatment until the fourth week, when the level of glyphosate 476 
detected slightly dropped (86.5 µg L-1) (Figure 7). This is expected to result from an 477 

increased stress response of the algal community to the exposure to Roundup Classic®, 478 
potentially resulting in an increased EPS matrix production. 479 

 480 

4. Conclusion 481 
Among studies on pesticide formulating agents only a few investigate the effects of 482 
surfactants on the environmental fate of the active ingredients. Our results demonstrate 483 

that dissipation of glyphosate can be different in various natural waters, and additionally 484 

highly depends on the presence of the formulating agents, the composition of the 485 
microbial communities exposed, as well as the physical and chemical parameters of the 486 

water phase. Dissipation profiles of given glyphosate forms were different in natural 487 
water samples investigated without or in the presence of biofilms. Worldwide detectable 488 
water contamination by glyphosate can modify the structure of the algal communities in 489 

freshwater biofilms, and may induce increased stress response in them. Tests used for 490 
authorisation and environmental risk assessment of the active ingredients and their 491 

formulations are based on DT50 values determined in distilled water under laboratory 492 
conditions. However, several data and our results suggest that a revision of the applied 493 
DT50 values and determination of habitat-specific data are needed to be used in the 494 

environmental risk assessment of the pesticide active ingredients and their formulations. 495 
 496 
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Table 1.  636 
Chemical characteristics of the selected plant protection product, active ingredient and surfactant 637 
 638 

Substance a 
Chemical or 

product name 
Chemical structure CAS No. b 

Concentration 

in formulation 

Type of 

formulation 

PPP Roundup Classic®  – – liquid 

a.i. 

glyphosate 

isopropylammonium 

(IPA) salt 

 
38641-94-0 41.5% liquid 

surfactant 

polyethoxylated 

tallowamines 

(POEA) 

 

61791-26-2 15.5% liquid 

 639 
a PPP: plant protection product; a.i.: active ingredient 640 
b CAS No.: Chemical Abstracts registry number 641 

 642 
 643 

N
H

P
OH

O

OH

OHO
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Figure legends: 644 

 645 
Figure 1. Occurrence of filamentous green algae (indicated by arrow) in natural biofilms 646 
from River Danube, due to treatment, visualised by scanning electron microscopy. A: 647 

Control biofilm without green algae (as verified by fluorimetry). B: The characteristic 648 
filaments of green algae occurring upon exposure to POEA-formulated glyphosate-based 649 
herbicide. 650 
 651 
Figure 2. Increased production of EPS matrix (indicated by arrow) in natural biofilms 652 

from River Danube, due to treatment, visualised by scanning electron microscopy. A: 653 
Control biofilm with smooth EPS layer. B: Intensive EPS formation upon exposure to 654 
POEA-formulated glyphosate-based herbicide. 655 
 656 
Figure 3 Dissipation of the IPA salt of glyphosate in pure form (hollow markers) and in 657 

preparation Roundup Classic® (filled markers) in water samples from River Danube (□/■) 658 

and Lake Balaton (◊/♦). Glyphosate concentrations were detected with HPLC-UV. 659 

 660 
Figure 4 Dissipation of pure glyphosate (□) in water samples from River Danube in the 661 
presence of biofilms, depicting glyphosate concentrations (■) in 30 minutes after each 662 
repeated glyphosate addition (▼). Arrows indicate concentration changes due to 663 

dissipation (solid lines) or reagent addition (dashed lines). Biomass levels in the treatment 664 
group (open black columns with solid line) and the untreated control (open grey columns 665 

with dashed line) are indicated. Corresponding algal composition (pie diagrams below 666 
each column, treatment group in the upper and control in the lower row) show the 667 
biomass proportion of cyanobacteria (dark grey), diatom (black) and green (light grey) 668 

algae. 669 
 670 

Figure 5 Dissipation of formulated glyphosate (■) in water samples from River Danube 671 

in the presence of biofilms, depicting glyphosate concentrations (■) in 30 minutes after 672 

each repeated glyphosate addition (▼). Arrows indicate concentration changes due to 673 
dissipation (solid lines) or reagent addition (dashed lines). Biomass levels in the treatment 674 

group (open black columns with solid line) and the untreated control (open grey columns 675 

with dashed line) are indicated. Corresponding algal composition (pie diagrams below 676 
each column, treatment group in the upper and control in the lower row) show the 677 

biomass proportion of cyanobacteria (dark grey), diatom (black) and green (light grey) 678 
algae. 679 
 680 

Figure 6 Dissipation of pure glyphosate (◊) in water samples from Lake Balaton in the 681 
presence of biofilms, depicting glyphosate concentrations (♦) in 30 minutes after each 682 

repeated glyphosate addition (▼). Arrows indicate concentration changes due to 683 
dissipation (solid lines) or reagent addition (dashed lines). Biomass levels in the treatment 684 
group (open black columns with solid line) and the untreated control (open grey columns 685 

with dashed line) are indicated. Corresponding algal composition (pie diagrams below 686 
each column, treatment group in the upper and control in the lower row) show the 687 
biomass proportion of cyanobacteria (dark grey), diatom (black) and green (light grey) 688 
algae. 689 

 690 
Figure 7 Dissipation of formulated glyphosate (♦) in water samples from Lake Balaton in 691 
the presence of biofilms, depicting glyphosate concentrations (♦) in 30 minutes after each 692 
repeated glyphosate addition (▼). Arrows indicate concentration changes due to 693 
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dissipation (solid lines) or reagent addition (dashed lines). Biomass levels in the treatment 694 

group (open black columns with solid line) and the untreated control (open grey columns 695 
with dashed line) are indicated. Corresponding algal composition (pie diagrams below 696 
each column, treatment group in the upper and control in the lower row) show the 697 

biomass proportion of cyanobacteria (dark grey), diatom (black) and green (light grey) 698 
algae. 699 
 700 
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