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Abstract

We prove the existence of optimal strategies for agents with cu-
mulative prospect theory preferences who trade in a continuous-time
illiquid market, transcending known results which pertained only to
risk-averse utility maximizers. The arguments exploit an extension of
Skorohod’s representation theorem for tight sequences of probability
measures. This method is applicable in a number of similar optimiza-
tion problems.

Keywords: Optimization, non-concave utility, Skorohod’s representation,
illiquidity, market frictions.

1 Introduction

Optimal investment for an agent with given preferences has always been a
core topic in mathematical finance. Classical papers on the subject ([36, 52])
as well as most subsequent studies neglected the presence of market frictions
such as transaction costs, taxes and liquidity effects, and they also stuck
to the paradigm of a concave utility function expressing risk-aversion of the
agent.

Non-concave preferences involving distorted probabilities emerged over
the time, [32], 43}, [54], and incorporating frictions in the model led to math-
ematical settings that are different from the classical one, see e.g. [I] and
Chapter 3 of [30].
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Our purpose in the present paper is to prove existence theorems for opti-
mal strategies in a general, continuous-time setting, following the footsteps of
[35], B, 53], 16l [7, [39L 10, 12, 19, 41]. Just like |10} 12} 19, 41], we wish to treat
markets with friction. The essential novelty is that our method allows pref-
erences that correspond to possibly non-concave utility functions and may
involve distorted probabilities. Such problems seem to be intractable with
the usual techniques of convex duality and arguments involving convex com-
binations, [35], 31], 53]. We propose a method for establishing the existence
of optimizers based on an extension of Skorohod’s famous representation
theorem, see Theorem 2.1l and Remark [4.7] below.

The approach we present works for preferences of a very general form
and for various financial models. Here we confine ourselves to the illiquid
market of [22] and to preferences in the spirit of cumulative prospect theory
(CPT), see [32] 54]; this setting illustrates the power of the method fairly
well. Further extensions are left for future research. We also point out that
our method seems flexible enough for applications to e.g. model uncertainty
where expected utility is maximized in the worst-case sense over a set of
probabilities, see Remark below.

Optimal investment with CPT preferences concentrated almost exclu-
sively on frictionless markets: [0, 25] treated one-step models and found
rather precise conditions for the existence of optimal portfolio. The pa-
pers [14] [47] considered multistep models and proved that there are optimal
strategies when the investor is allowed to use a randomization (which is inde-
pendent of the market). The present paper is similar to [14, [47] in the sense
that we also allow randomization, see Assumption below.

Most continuous-time studies assumed a complete market: [4, 13, [50]
considered nonconcave utilities but no probability distortions; in [27] ex-
plicit solutions were obtained under suitable assumptions, see also [15]; [11]
considered informational aspects of the problem while [45], [46] investigated
well-posedness. Only a narrow class of incomplete markets have been treated
so far, [511 [45] 48], using ad hoc techniques. Further problems of optimal con-
trol within CPT were treated in [28] [16], 24, 23] but these are connected to
our setting only remotely.

We are aware of only [40] that treats markets with frictions and agents
with nonconcave preferences. That paper established a fairly general dy-
namic programming principle in a discrete time setting without probability
distortions which is applicable to optimization problems in a wide range of
market models. The present paper seems to be the first continuous-time
study involving CPT preferences and market frictions at the same time.

In Section 2l we present an extension of Skorohod’s representation theorem
from [26] and verify that it applies to our setting. In Section Bl we present a
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model of an illiquid market. In Section d] we use the representation theorem
of Section 2] to construct optimal strategies in investment problems under
liquidity constraints. Section [0 sketches an alternative formulation for our
results. Finally, Section [@] collects some useful lemmas.

2 A representation theorem

For a random variable X on some probability space we denote by Law(X)
its law. When there might be an ambiguity about the probability space we
use the notation Lawg(X) for the law of X under the probability Q.

We denote by B(Z) the Borel-field of a topological space Z. A sequence
of probabilities ux, kK € N on B(Z) is said to be tight if, for all £ > 0, there
is a compact K (¢) C Z such that, for all k, ux(Z\ K(g)) < e. We first recall
a remarkable result from [26].

Theorem 2.1. Let Z be a topological space such that there is a countable
collection f;, v € N of continuous, real-valued functions which separate points
on Z. Let ug, k € N be a tight sequence of measures on 3(Z). Then there is
a subsequence kj, 7 € N and a probability space on which there exist Z-valued
random variables £, &;, with Law(&;) = py,, j € N and §; — € a.s., j — oo.
O

Lemma 2.2. Let Z be a reqular Hausdorff topological space such that there is
an increasing sequence A,,, n € N of closed subspaces of Z which are separable
metric spaces (under a suitable metric) and Z = UpenA,. Then there is a

countable collection of continuous, real-valued functions which separate points
on Z£.

Proof. Each A, is Lindelof hence so is Z. A Lindelof regular space is normal,
so Z is also a normal Hausdorff space. For each n, there is clearly a sequence

.1 € N of continuous real-valued functions on A,, which separate points on
A,,. These can be extended in a continuous way to Z by Tietze’s theorem,
for all n, 7. Then the countable collection of extended functions f, i,n € N
separates points on Z. ]

Corollary 2.3. Let B be a separable Banach space with dual B equipped
with the weak-star topology and let M be a separable metric space. Then
Z =B x M satisfies the hypotheses of Lemma[2.2.

Proof. Indeed, topological vector spaces and metric spaces are both regular;
B’ as well as M are clearly Hausdorff. So the product Z is regular Hausdorff.
Denote by || - ||" the norm of B’ and set B,, := {z € B’ : ||z]|' < n}. In the
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weak-star topology, any closed ball in the dual of a separable Banach space
is metrizable and compact, so A, := B, X M is a separable metric space,
closed in the relative topology of Z, for each n. O

Example 2.4. Fix 1 < < co. Let v be defined by 1/5+ 1/y = 1. Let
LP = LA(]0,1],B(]0, 1]), Leb) denote the usual Banach space of (equivalence
classes of) B-integrable functions on the unit interval. Let T be L? equipped
with the weak topology. L? is the dual of the separable Banach space L” and
the weak topology on L? is precisely the weak-star topology in the duality
(L7, LP). For any separable metric space M, Theorem 1] applies to Z :=
T x M, by Lemma 2.2] and Corollary 2.3

This topological space Z will be crucial in our study of optimal investment
in illiquid markets as strategies will be represented by random elements in
T and a certain M will code the information structure of the market, see
Section [3] for details.

Example 2.5. Consider C0, 1], the separable Banach space of continuous
functions on the unit interval (with the supremum norm). Let M denote the
Banach space of finite signed measures on B([0, 1]), the dual space of C|0, 1].
We take T to be M equipped with the weak-star topology. Again, Theorem
2.1 applies to Z :=T x M for any separable metric space M.

The space Z can be used in the treatment of optimal investment un-
der transaction costs where strategies correspond to random elements in T’
and the price process is assumed continuous (i.e. it is a random element in
C10,1]). Due to the numerous technicalities, details will not be presented
here.

Remark 2.6. For the moment, the case of frictionless markets is not acces-
sible with our methods as the construction of stochastic integrals is carried
out in a filtration-dependent way and cannot be performed pathwise.

Remark 2.7. Note that neither of the spaces in Examples [2.4] is metriz-
able so the well-known versions of Skorohod’s representation theorem (see
e.g. Lemma 4.30 in [33]) are not applicable to them. We also point out that
topological spaces with a Skorohod representation property behave delicately:
they are not known to be closed for topological products; counterexamples
show that, even for a weakly convergent sequence of probabilities, Skorohod
representation may only work for a subsequence, etc. We refer the interested
reader to [2] for details.



3 A model of an illiquid market

We now recall a simple version of the market model in [22] where security
prices depend on the trading speed. In that model, price impact is assumed
instantaneous (the activities of the small agent in consideration do not move
prices permanently) and superlinear, see Assumption B.7 below. Superlin-
earity is in accordance with empirical studies, see e.g. [18].

We will assume throughout the paper that trading takes place continu-
ously in the time interval [0,1]. Let (0, F, (Fi)cjo,1), P) be a filtered prob-
ability space, where the filtration is complete and right continuous, Fy is
trivial. A process 1 on this space is an F & B([0, 1])-measurable mapping
on 2 x [0,1]. The notation EX will refer to the expectation of the random
variable X. If there is ambiguity about the probability space then EgX will
denote the expectation of X under the probability ). We denote by 14 the
indicator of a set A.

In the sequel we will need that the filtration is of a specific type and that
the probability space is large enough.

Assumption 3.1. There exists a cadlag R™-valued process Y with indepen-
dent increments such that F; is the P-completion of 0(Y,, 0 < u < t), for
t €10,1].

Assumption 3.2. There exists a random variable U that is uniformly dis-
tributed on [0,1] and independent of JF.

For m € N, we denote by D™ the space of R™-valued right-continuous
functions with left-hand limits on [0, 1], equipped with Skorohod’s topology,
see Chapter 3 of [§].

Remark 3.3. The Borel-field of D™ is generated by the coordinate mappings
r € D™ — z(t) € R™ t € [0,1], see Theorem 12.5 of [§]. It follows that
the function w € @ — Y(w) € D™ is a random variable and so is w €
Q =" Y(w) € D™, for all t € [0,1], where 'Y is the process defined as
("Y)u = Yuljoy +Yilp gy, w € [0,1]. Furthermore, F; = o(Y;, s < t) = o(*Y),
for all ¢ € [0, 1].

Let us define the augmented filtration G, := F; V o(U). Standard argu-
ments (like Lemma 4.9 of [49]) imply that G;, ¢t € [0, 1] also satisfies the usual
hypotheses of completeness and right-continuity.

The market consists of a riskless asset S° with price SY = 1 for all ¢ € [0, 1]
(“money account”) and a risky asset whose price S is assumed to be an R-
valued cadlag adapted process. (The extension of our results is straightfor-
ward to the case of multiple risky assets.)
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Lemma 3.4. There exists a measurable function f : D™ — D! such that
S = f(Y). Furthermore, 'S is measurable with respect to o('Y), for all
t €(0,1], where'S is the process defined as (*S), = Sulipy+Silp. u € [0,1].

Proof. As S is a cadlag process, it is a D'-valued random variable, by the
argument of Remark 3.3l The first statement now follows from Doob’s lemma
(Lemma 1.13 of [33]) since S is o(Y)-measurable. The second statement also
follows as in Remark 3.3 O

Definition 3.5. A feasible strategy is a process ¢ : 2 x R, — R such that it
is progressively measurable with respect to Gy, t € [0,1] and

1
/‘¢t|dt < +00, a.s.
0

We denote by A the set of all feasible strategies.

Remark 3.6. We indicate that Definition slightly deviates from the
corresponding Definition 2.1 in [22]. In that paper strategies are assumed
optional while here we only require progressive measurability. The latter
class fits better the purposes of the present paper and the proofs of all the
results we cite from [22] (Lemma 3.4 and Theorem 5.1) go through without
any modifications for the class of progressively measurable processes as well.

The process ¢ represents the trading rate. Assume that the initial posi-
tions in the money account and in the stock are z°, z!, respectively. For each

¢ € A, we may define by

¢
IRES zl+/ Oy du, t €[0,1],
0

the number of risky assets in the portfolio at time ¢.

If there were no liquidity effects, the self-financing condition would imply
that the change of the portfolio value over [0,¢] is fot vudS, (implicitly as-
suming that S is a semimartingale). As the value of the stock position at ¢ is
Sy, a heuristic integration by parts gives that the value at ¢ of the money
account is

t
20+ / ©udS, — 1S, =
0

t t
20 — / S,dp, = 2°— / 00 Sy du. (1)
0 0

Notice that the last expression makes mathematical sense for any ¢ € A and
for any cadlag S.



We now add liquidity effects to our model by a function G in such a way
that G(z) represents the “penalty” for trading at speed z at time t.

Assumption 3.7. There is a« > 1 and a continuous function H : R — R,
such that Gi(x) = g(Sy, x) with

g(s,x) = H(s)|x|* (2)

and inficjo ) H(Sy) > 0 a.s. Furthermore, fir 1 < 8 < o and assume
/ HA/B=)(8,)(1 4 1S:])%/ @) dt < 0. (3)

Remark 3.8. Typical specifications are Gi(z) = Mz|* or Gi(x) = ASi|z|*
with some a > 1, A > 0, see e.g. [20]. The first one satisfies Assumption B.7]
whenever fOT E|Sy|Pe/(@=B) dt < oo, the second one whenever S is positive,
has continuous trajectories and fOT[E\StW(O‘_l)/(O‘_ﬁ) + E|S| 78/ =R dt < 0.
It would be possible to substantially relax both (2)) and (B) and to allow
dependence of H on the whole trajectory of S but this would lead to com-
plications without enhancing the message of our paper, so we refrain from
seeking greater generality.

Definition 3.9. For a given strateqy ¢ € A and an initial position z € R?,
the positions at time t € [0, T in the risky and riskless asset are defined as

%(0) = + [ dudu
0
=20 — tuSud— tGu w)du, 4
0) =2 /O<z> “/o (du)du (4)

respectively (compare to (Il) above).

Note that X;(¢) may take the value —oo. For simplicity, we assume
from now on that 2 = 2* = 0, the case of nonzero initial positions is easily
incorporated into the present setting.

Let G* be the Fenchel-Legendre conjugate of G,

Gi(y) := sup(zy — Gi(r)) =

z€eR (6%

a—1

al/(l—a)Hl/(l—oz)(St)|y|a/(a—1)’ (5)
as an elementary calculation shows. From (4), under Assumption 3.7 one has
1
Xi(¢) < B:= / Gi(—Sy)dt < o0, a.s., (6)
0

see Lemma 3.1 of [22]. We call B the market bound as it dominates the
terminal money account position of any feasible portfolio.
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4 Optimal investments

For z € R we denote z* := max{x,0}, 2= := max{—=x,0}. Let uy,u_ :
R, — R, be continuous, increasing functions such that uy(0) = 0. Let
wy,w_ : [0,1] = [0,1] be continuous with wy(0) = 0, we(1) = 1. Func-
tions u4 express the agent’s attitude towards gains and losses while wy are
functions distorting the probabilities of events, see [54], [14].

We define, for any random variable X > 0,

V)= [T (P () 2 )
and
VA= [T (Pl (X) 2 )
For each real-valued random variable X with V_(X~) < co we set
V(X)) =V (XT) =V (X).

Let W be an Fj-measurable random variable representing a benchmark
for the agent in consideration. For example, W can be the value of an index
or of the portfolio of a rival at time 1 which serves as a reference point
for our investor. The quantity V(X — W) expresses the satisfaction of an
agent with CPT preferences when (s)he receives a random amount X, see
[27, 14] for more detailed discussions. Positive X — W means outperforming
a benchmark, negative X — W means falling short of it. Doob’s theorem
implies that there is a measurable £ : D™ — R such that W = £(Y).

Let us define A" := {p € A: X; =0, V_([X1(¢) —W]) < oo}. For each
¢ € A’ the position in the risky asset is liquidated by the terminal date 1 and
the utility functional V' is well-defined for the value of the money account at
1 minus the benchmark. We aim to find an optimal investment strategy, i.e.
o' € A" with

V(Xl(CbT) — W) = sup V(Xi(¢) — W).
P A’
Remark 4.1. Note that if wi(p) = p (that is, there is no distortion) then
we have V(X) = Eu(X) where u(x) = uy(z), z > 0 and u(x) = —u_(—x)
for x < 0. This shows that the above setting generalizes the well-known
expected utility framework, see e.g. [35, BT, 53, 6, [7].

It would be possible to prove analogues of Theorem below for other
types of objectives e.g. the performance measures of [I7]. We stress that the
main purpose of the present paper is to demonstrate a useful method and
not to explore all possible ramifications.
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Assumption 4.2. We assume that V. ([B — W|T) < oo and EW™' < oc.
Furthermore, there exist 0 < 0o < 0y such that

0 _ Co (7)

u_(x) >z

and
w_(p) > c5p™, (8)

with some constants cy,ce,c3 > 0 and for all x € Ry, p € [0, 1].

Remark 4.3. V. ([B — W]") < oo, EWT < oo are integrability conditions
that are easy to verify in concrete situations. Specifications of u_, w_ satisfy
@), ) with some 61,02 > 0 quite often, going back to [54]. It was shown
in [45] that in a frictionless Black-Scholes market 0; > 0y is necessary for
well-posedness of (). Hence the conditions of Assumption are rather
natural. If we assumed u, bounded above, we could substantially relax ()
and (8) along the lines of [46].

For comparisons with Theorem below, we recall a consequence of
Theorem 5.1 in [22].

Theorem 4.4. Let Assumption [3.7 be in vigour, let u : R — R be concave
and nondecreasing, and let Elu(B — W)| < oo hold. If A° # () then there is
o' € A° such that

Bu(X:(¢") = W) = sup Bu(X,(¢) = W),

where A°={p e A: X1(¢) =0, E(u(X1(4)))” < oo}

Proof. Assumptions 2.2 and 2.3 of [22] hold by Assumption 3.7 above hence
Theorem 5.1 of [22] applies. We remark that, regrettably, the condition
A° # ) is missing from the statement of Theorem 5.1 of [22] though it is
clearly necessary. Here we publish a corrected statement. O

The next theorem is the main result of the present paper which extends
Theorem 4] to a much broader family of preferences.

Theorem 4.5. Let Assumptions[31, (3.2, (5.7 and[{.3 be in vigour. If A" # ()
then there exists ¢" € A’ such that

V(Xa(e") = W) = sup V(Xa(9) = W).



Proof. We provide a quick overview of the main steps in our argument. Tak-
ing an optimizer sequence we show that their laws form a tight sequence (on
LP with the weak topology). Then we invoke results of Section B to realize
(on another probability space) a sequence whose members have the same laws
but which converge almost surely. Using convex combinations coming from
the theorem of Komlds we can show that the limit is an optimizer. However,
we have to construct this optimizer on the original space as well so we use
U and rely on the usual construction of a random variable which has a given
joint law with another, fixed random variable, see Lemma [6.3]
Let us take ¢, € A’, n € N such that

V(Xi(on) = W) = sup V(Xi(¢) = W), n — .

Recall that v denotes the conjugate number of 3, see Example 2.4l above.
We consider the space L? as defined in Example 2.4 above, equipped with
the weak topology. We intend to use Corollary 2.3 Lemma 2.2l and Theorem
2.1 with the choice B := L7 (then B’ = L#) and M := D™ x (RU {—o0}),
Hn = LaW(Cbna Y, X1<¢n))

First we show that ¢, :  — L? is measurable when L? is equipped with
the Borel field of the weak topology. It clearly suffices to show that, for all
G1 ® B([0, 1])-measurable ¢ with fol |G (w)]Pdt < o0, w — fol C(t)(w)g(t)dt
is measurable for all ¢ € L". Approximating ¢ by step functions and using
linearity of the integral, it is enough to show this for ( := 1 where K €
G1 ® B([0,1]). A monotone class argument reduces this to the case where

K = A x B with A € G, and B € B([0,1]). But then

/0 () @)a(t)dt = La(w) / J(0) dt,

which is trivially G;-measurable.

Xi1(¢n) is a (R U {—oo}-valued) random variable by Lemmata and
Finally, Y : @ — D is measurable, see Remark above. This clearly
implies the measurability of the triplet (¢,,Y, Xi(¢,)).

(@) implies that Law(X;(¢,)) is a tight sequence in R U {—oo}. Clearly,

inf V(X (6) — W) > —o0

so necessarily sup,, V_([X1(¢,) — W]7) < oo, by (@) and by V. ([B—W]t) <
oo in Assumption

Lemma 3.12 of [45] (with the choice s := 1, a := dy, b := d1) implies that
also sup,, £(X1(¢,) — W)~ < co. By the proof of Lemma 3.4 of [22] and by
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E(X1(¢n) — W)™ < E(X1(¢n))” + EWT, we get that
E / a(OIP(1+ SO dt < B(Xu(60)) + EW* + (9)

1
2/ / HA/B=0)(S)(1 4 |S,)P/ @D dt 11 = C < oo,
0

by Assumptions B.7 and 2l As C' is independent of n, Markov’s inequality
implies

P (/01\¢n(t)|5(1+ 1S(t)])Pdt Zr) <oy

for all r > 0. Noting that closed balls of L? around the origin are weakly
compact by the Banach-Alaoglu theorem (since L? is a reflexive Banach
space), we get that Law(¢,), n € N is a tight sequence of probabilities on
B(LP). Finally, as Y takes values in a Polish space, Law(Y) is tight. It
follows that i, is tight on B(L# x D™ x (RU {—oc})).

Now apply Corollary 2.3, Lemma and Theorem 2.1 to get a proba-
bility space (O, H,Q) and L” x D x (R U {—o0})-valued random variables
(¢, Yy, X)) that converge a.s. to (¢*,Y*, X*) along a subsequence (for which
we keep the same notation) and Lawg(¢n, Yy, X,) = Law(én, Y, X1(¢n)),
n € N. Passing to a further subsequence, we may and will assume S,, :=
f(Y,) = S*:= f(Y*) as. in D!, by Lemmata 3.4, 6.2 and by the fact that
each Y, has the same law (on D™). Analogously, we may and will assume
W, = 0Y,) - W* :={(Y*) as. in R. By the argument of Lemma [6.6]
we may assume that ¢, can be identified with a # ® B(]0, 1])-measurable
process.

Let us define the analogue of the functionals V.., V', for real-valued random
variables X on (O, H, Q).

VO = [T (@ ()2 ) do

and

For each X with V¥(X~) < co we set
VOX) = VE(XH) - VO(X).
Define

ta—1
Bn = / —Oél/(lfa)Hl/(lfa) (Sf)‘sfw/(afl)dt’
0 (6%
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see (B)) and (@). The family (B, W,), n € N has the same law under @ (that
of (B, W) under P) hence the family of functions

t = wi(Que([By = Wa]T) 2 1)), n €N, (10)

is uniformly integrable (with respect to the Lebesgue measure on R, ), by
Assumption As for all n,

/cbn dt—/ H(S,(t)|on()|*dt < B, as.,

uniform integrability of (I0) and Fatou’s lemma imply that

V(X —W*) > limsup VO(X,, — W,),

s0 VO(X* —W*) > supye 4 V(X1(¢) — W), in particular, VE(X* — W*) >
—00.

With the functional F’ defined in Lemmal6.4] we have, a.s., fol O (t)S, (1) dt
F (g?)n, Sy,) and hence, by Lemma [6.4]

/01 ¢"(1)S*(t) dt = lim /01 b (1) (t) dt. (11)

It is also clear that .
/ ¢*(t)dt =0 (12)
0

since ¢, tends to ¢* a.s. weakly in LP. .
From the almost sure convergence of ¢, to ¢* we get that, for almost
every w € O,

sup/ | (1) (w)|Pdt < 0 (13)

(since a weakly convergent sequence in L” is weakly bounded hence also
norm-bounded). A fortiori, sup,, fol |6 (1) (w)]dt < 00 a.s.

Applying Lemmal[G.8 on the probability space (O x [0, 1], H@B([O 1]) Q®
Leb) we get a subsequence (still denoted by n) such that oN = ¥ LN 6
converge to some ¢° P ® Leb-a.s., N — oo, and, by (I3]), also almost surely
in the norm of L!. This implies convergence in the weak topology of L'. As
¢, and hence also gbn converge to ¢* in the weak topology of L? and thus
also in the weak topology of L, we get that ¢° = ¢* necessarily, P ® Leb-a.s.
hence we may and will use ¢° as a version of ¢* in what follows; ¢° is an
H x B([0, 1])-measurable process.

12



Continuity of H implies H(S,(t)) — H(S*(t)) > 0 a.s. so Fatou’s lemma
and convexity of x — |z|* lead to

- / S wena =
hm—Z/ H(SW(0)|on(D] dt >
/hmmf—ZH )| du(t)|*dt =
/hmmf—ZH (S ()| dn(B)*dt >
/ H(S* (1)l nf [9x (D] di =
/O H(S" (0)]6" (1) dt.
It follows that — [} S*(t)¢*(t) dt — [i} H(S*(t))|¢"(£)|* dt > X* s0

1 1
ve (- [ swowa- | H(S*<t>>|¢*<t>|adt—w*) > sup V(X,(6)-W).
0 0 Y
(14)
Let us invoke Lemma with the choice ¢ := ¢*, H := Y* and H :=
Y. We get a Gj-measurable random element ¢* = ¢ € L? satisfying
Law (¢ Y) = Lawg(¢*, Y*). Let us fix 0 < ¢t < u < 1. We recall that
¢nljoy is independent from Y (u) — Y (), or equivalently,

Law (¢ 1,4, Y (u) = Y(t)) = Law(¢nljo) @ Law(Y (u) — Y'(1)).

By construction, Law(¢,1j94,Y (u) — Y (1)) = LaWQ(gZ;nl[M, Yo (u) — Y, (1)).
This implies also

Lawg (¢nlj0.g, Ya(u) = Ya(t)) = Lawg(dnlion) ® Lawo(Ya(u) — Ya(t)).
Passing to the limit as n — oo,
Lawq (6™ 0., Y™ (u) = Y7 (1)) = Lawq (¢ 1) @ Lawq(Y"(u) — Y*(1)),

which implies independence of qﬁil[o’t] € L? from ,Y € D™ as well where
(1Y) =0if0<s<tand (}Y)s =Y, - Y, t<s <L
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Since Y is clearly a measurable function of (;Y,'Y) € D™ x D™, applying
Lemma [6.T] with the choice b :=; Y and a := (U,'Y') we get that gbil[o,t] is G-
measurable, for all ¢, see Remark[3.3l Applied to ¢ := ¢*, Lemmal[6.6 provides
a G;-progressively measurable ¢! such that Lawg(¢*,Y*) = Law(¢',Y), so
pteA.

As Law (¢!, Y) = Lawg(¢*, V™), also Law(¢', S) = Lawg(¢*, S*). Recall-
ing Lemmata and [6.5]

Lawg (— /0 S* ()" (t) dt — /0 H(S*(t))\¢*(t)\°‘dt—W*) — Law(Xy (6 —1).

It follows from (I4) that V(X (¢!) — W) > —occ and [, ¢'(t)dt = 0 by (I2)
hence ¢f € A’ and ¢' is the maximizer we have been looking for. O

Remark 4.6. The last part of the proof shows why the independent incre-
ments property of Y is a crucial hypothesis. Even if the sequence ¢,1j is
Gi-measurable this does not necessarily hold for its limit (in any sense). So
we proceed by noticing that énlm] are “orthogonal” to ;Y,, and this property
easily passes to the limit and leads to the eventual construction of ¢'.

The need for U is also apparent: taking a limit in weak convergence
may easily generate additional randomness (think about the construction of
weak solutions for stochastic equations such as the Tanaka equation) and
hence ¢*1jy is not necessarily a functional of Y* (even though each b, was
a functional of Y},).

Remark 4.7. It is worth commenting on the use of convex combinations in
papers dealing with concave utility functions (e.g. [35, B1],[53]) in comparison
with the current paper.

When the utility function is concave and no distortions are present then
using convex combinations improves performance (either in the utility max-
imization or in its dual problem where minimization of a convex functional
is considered). Converging convex combinations thus directly yield an opti-
mizer in these cases.

The present setting is essentially different: the optimizer is found as
the weak limit of a sequence of laws. At this point, taking convex com-
binations ¢, of the ¢, would not make sense since, by lack of convexity,
vy, = V(X1(¢n) — W) will not necessarily dominate the respective con-
vex combintions of V(X;(¢,) — W) and thus v, may cease to converge to
sup, V(X1(6) — W).

In our approach, convex combinations are needed at a subsequent stage, in
order to show that the X* we constructed is indeed (dominated by) a portfolio
value. The representation of Theorem 2.1] is crucial in that argument as it

14



permits to form such convex combinations on the auxiliary probability space
(O,H,Q). A similar use of Skorohod’s representation theorem appears in
the proof of Lemma A.6.4 in [29] where we drew our inspiration from.

Remark 4.8. Theorem proves the existence of an optimizer in the fam-
ily of randomized strategies, i.e. G;-progressively measurable ones. Such a
formulation with “relaxed” controls is standard, see e.g. [21] [9], but there
are at least two additional arguments in favour of this family in our specific
setting.

Lack of concavity and the presence of distortions seem to exclude argu-
ments based on almost sure convergence of convex combinations (e.g. the
Komlés lemma, see Lemma [6.7]) which is the typical technique for existence
proofs in infinite dimensional spaces, see e.g. [35, 19]. The natural way
to attack such problems is switching to convergence in law (as usual in the
weak formulation of stochastic differential equations, too), see e.g. [15] [14].
However, it was demonstrated in Section 5 of [44] that the set of laws of
attainable portfolio values can easily fail to be closed for weak convergence,
even in one-step, frictionless models. Finding an optimizer over a non-closed
domain looks hopeless. It was shown in Section 6 of [I4] in a discrete-time
setting that the set of attainable portfolio values becomes closed when using
randomized strategies. This is the first reason for our choice of the class of
feasible strategies.

As noticed in Section 5 of [14], the investor may actually increase her
satisfaction by randomizing her strategy, a phenomenon due to the presence
of distortions. This is a second argument for the use of G;-adapted strategies.

It is a delicate question under what kind of conditions Theorem re-
mains true with G;-measurable strategies replaced by JF;-measurable ones.
This is object of current research.

Remark 4.9. It would also be desirable to exhibit cases where optimal
strategies can be found that are adapted to (F;)icjo.1], the filtration gen-
erated by the asset price S. As explained in Remark .7 it doesn’t seem
possible to carry out the construction of optimal strategies using almost
sure convergence, so even if we start with an (F° )tefo,1)-adapted optimizer
sequence there is no guarantee that an (F° )icpo,-adapted limit could be
found.

One could expect positive results in the case where (F; )01 is “rich
enough” in the sense that for every

p € {Law(X1 () : ¢ € A'}

there exists A, adapted to (F;")sefo,1], such that Law(X; (X)) = p. This seems
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to require delicate arguments even in the case of frictionless markets and
hence lies beyond the scope of the present work.

Remark 4.10. The main lines of the above proof seem to work in situations
with model uncertainty as well. In that case V(Xi(¢)) = V5(X1(9)) is
calculated for each S € S§ where S is a family of price processes and one
tries to maximize the worst-case functional infges V5 (X1 (0)) over ¢, see e.g.
38, [37.

As an optimizing sequence one can consider (¢",S,) instead of (¢™,Y},)
in this case (assuming e.g. that each S € S generates the same filtration
as Y). In this setting the S, may well have different laws. Nevertheless,
under appropriate tightness conditions the construction above may provide
an optimizer ¢* as well as the worst-case model S* = argmingV® (X, (¢*)).
These ideas are left for exploration in future research.

5 A formulation with generalized strategies

In the theory of stochastic differential equations, the concept of weak solu-
tions allows to vary the underlying probability space, giving more flexibility
for the construction of solutions. Weak convergence of probability measures
and Skorohod’s theorem are typical tools in that area.

As weak convergence techniques predominate in the present paper as
well and the solution ¢ is also a “weak” one, in this section we reformulate
problem () in a manner that is closer in spirit to the world of weak solutions.

Definition 5.1. Let (Q, F, (Fi)icpo], P), Y, S, W be as in Section[3. A five-
tuple o
ﬂ- = (07 H? Q7 Y7 ¢)

is called a generalized strategy if (O, H, Q) is a probability space, Y;, t €[0,1]
is a cadlag process on (O, H, Q) identical in law to Y, and gZ) 1S @ Process on
(O H, Q) such that ¢, is independent of Y, — Y, for all0 < s <t < u and

fo || dt < 00 Q-a.s.

Clearly, Y is the copy of Y providing the information structure on (O, H,Q)
and ¢ represents the trading speed which must be non-anticipative with re-
spect to Y. Defining W := £(Y) and S := f(Y), we can set

X1(¢) = —A ¢tSt dt — A H(St)|¢t|a dt,
~ 1 ~
X1 ((]5) = A (bt dt.
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Let IT denote the class of generalized strategies. Another version of The-
orem could be stated as follows. Its proof closely follows that of Theorem
4.5

Theorem 5.2. Let Assumptions[31], [3.7 and[{.2 be in force. Let ' := {7 €
IT: V(X1 () — W]) < o0, Xi(¢) = 0}. There exists wt € II' such that

VXL(@) = W) = sup VO(X1() - W),

mell’

where ©1 = (OT, H1, Q1 YT, ) and WT = ¢(YT). O

6 Auxiliary results

Lemma 6.1. Let (A, A), (B,B) be measurable spaces and j : A x B — R
a measurable mapping. Let (a,b) be an A x B-valued random variable. If
o(j(a,b),a) is independent of b then j(a,b) is o(a)-measurable.

Proof. Denote by pa(-) (resp. pp(:)) the law of a (resp. b). Considering
arctan oj instead of j, we may and will assume that j is bounded. We claim
that j(a,b) = k(b) a.s. where k(a) := [, j(a,b)up(db). Using an argument
with monotone classes, it sufﬁces to establish that, for all bounded measur-
ablem: A — R, n: B — R, one has Ej(a, b)m(a)n(b) = Ek(a)m(a)n(b).
By independence of a, b and by definition, the latter expression equals

@m(@En() = [ [ i@ wps(tomianado Ente) =

Ek
/ / @, w)m(a)ps(dw)yua(da) En(b) = Ej(a, b)m(a) En(s) =
Ej(a, b)m(a)n(b),
by our independence hypothesis. This completes the proof. O

We now recall Théoreme 1 of [3]. Just like Theorem 2] in Section
above, this result is crucial for the developments of the present paper.

Lemma 6.2. Let A, B be separable metric spaces and &, € A, n € N a
sequence of random variables converging to £ € A in probability such that
Law(¢&,) is the same for all n. Then for each measurable h : A — B the
random variables h(&,) converge to h(&) in probability (hence also a.s. along
a subsequence). O
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Lemma 6.3. Let the topological space Z be the union of its closed, increasing
subspaces A, n € N which are Polish spaces (with appropriate metrics) and
let B be a measurable space. Let H, H be random elements in B with identical
laws, defined on the probability spaces (Z,€, R), (Z,€, R), respectively. Let ¢
be a random element in Z, defined on (é, g, E’) Let U be independent of H
with uniform law on [0, 1]. There exists a measurable function f : Bx[0,1] —

Z such that ¢ = f(H,U) satisfies Lawr(H, ¢) = Lawi(H, ¢).

Proof. In view of Lemma 3.22 of [33] it suffices to show that Z is a Borel
space in the sense of [33], i.e. it is Borel-isomorphic to a Borel subset of [0, 1].
We define C,, :== A, \U;<,A;, n > 0. Borel subsets of Polish spaces are clearly
Borel spaces, let ¢, : C,, — [1 —1/2*"*1 1 —1/22""2] be Borel isomorphisms
attesting this. Then it is easy to check that ¥ (z) := ¥, (x), x € C,, defines a
Borel isomorphism between Z and a Borel subset of [0, 1]. O

Lemma 6.4. The mapping F : L’ xD' — R defined by F (¢, ) := f[o g Y(O)x(t) dt
is sequentially continuous and (jointly) measurable when LP is equipped with
the weak topology.

Proof. Take sequences v, — 1 in L? and y,, — x in D'. Then the sequence
Xn, being relatively compact in D!, is uniformly bounded by a constant K
(see Theorem 12.3 of [§]) and x,(t) tends to x(t) at every continuity point ¢
of the latter, in particular outside a countable set (see page 124 of [§]). So

Un(t)xn(t) dt — }w(t)x(t) dt' <

[0,1] [0,1

) ool [ e 0x) vl <

0,1

(/M |¢n(t)|5dt) 1/5 (/w X (t) — X(t)pdt) " N

/[0 ; | (t)x () — P (t)x(t)] dt.

The first term tends to 0 as v, is weakly bounded hence also norm bounded in
L? and Lebesgue’s theorem applies to |x,(t) — x(¢)|” < (2K)7. The second
term tends to 0 by the weak convergence of 1, to ¥ noting that y € L7
trivially.

As closed balls with radius 7 around the origin in L? (denoted by B,) are
metrizable by the separability of L”, sequential continuity implies continuity
and hence measurability of F' restricted to B, x D! for every r, which easily
implies the measurability of F' on the whole of L# x D O
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Lemma 6.5. The mapping (s, ¢) € D' x L# — fo () |ot)|>dt € R is
B(D! x L?) measurable when LP is equipped by the weak topology.

Proof. By the monotone convergence theorem it is enough to prove the mea-
surability of

—>/ H(s ()| AN)dt, (15)

for all N > 0. Since L? is a separable Banach space, by results of [42], Borel
sets of L? for the weak topology coincide with those of the norm topology.
So it suffices to prove continuity of (I5) when L is equipped with the norm
topology. Let (s,,d,) — (s,¢) in D! x LP. Then s, are uniformly bounded
and converge Lebesgue-a.s. to s and ¢,, converge to ¢ in Lebesgue measure.
Dominated Convergence implies the convergence of folH (5 (1)) (|pn(t)|* A

N)dt to fo () (Jo(t)|* A N) dt as n — oo. O

Lemma 6.6. Let ¢ : @ — LP be such that o(¢lpy) C G, for all't. Then
there exists p(w,t) = ¢(w)(t), P x Leb-a.s. such that ¢, is G,-progressively
measurable.

Proof. Define

o) = timsupn [ gl 50.8) 1= 6001 sy

n

By Lebesgue’s differentiation theorem and by measurability of w — ¢(w) €
LP this is F ® B([0, 1])-measurable and equals ¢(w)(t), P ® Leb-a.s. By
o(¢lyp,) C G, we get progressive measurability, too. O

We recall the main result of [34], see the Appendix of [29] for a recent
account of the proof.

Lemma 6.7. Let f, be a sequence of real-valued random variables satisfying

sup E|f,| < 0.

Then there is a subsequence nj, j € N and a random variable f such that
1
fi = ;Zlfnj — f, a.s.,1 — o0.
]:

We will need an easy corollary of the above lemma, used in the proof of
Theorem
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Corollary 6.8. Let f, : O x [0,1] = R, n € N be H ® B([0, 1])-measurable
such that

1
J::sup/ | fr(w, )] dt < oo
n Jo

almost surely. Then there is a subsequence n;, j € N and f: O x [0,1] = R
such that

1 d
;== n: — [, Leb-a.s., 1 — o0.
f Z.;fj f, Q® Leb-a.s., i — oo

Proof. Define du/d(Q @ Leb) := e~/ /FEe~’. Under u, Lemma [6.7 applies to
the sequence f, so we get f; converging to f, u-a.s. Since u ~ () ® Leb, this
completes the proof. O
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