
This manuscript is contextually identical with the following published paper: 

Farkas, A., Ács, A., Vehovszky, Á., Falfusynska, H., Stoliar, O., Specziár, A., Győri, J. 

(2017) Interspecies comparison of selected pollution biomarkers in dreissenid spp. 

inhabiting pristine and moderately polluted sites. - Science of the Total Environment, 

599-600, pp. 760-770. DOI: 10.1016/j.scitotenv.2017.05.033 

The original published PDF available in this website: 

http://www.sciencedirect.com/science/article/pii/S0048969717311324?via%3Dihub 

 

Interspecies comparison of selected pollution biomarkers in dreissenid spp. inhabiting 

pristine and moderately polluted sites 

 

A. Farkas
a
*, A. Ács

a
, Á. Vehovszky

a
, H. Falfusynska

b
, O. Stoliar

c
, A. Specziár

a
, J. Győri

a 

 

 
a
 MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., 

PO Box 35, H-8237 Tihany, Hungary 
b
 General Chemistry department, Ternopil Medical State University, Maidan Voli, 1, 

Ternopil, 46001, Ukraine 
c
 Research Laboratory of molecular biology and comparative biochemistry, Ternopil National 

Pedagogical University, Kryvonosa Str., 2, Ternopil, 46027, Ukraine 

 

* Corresponding author. Tel.: +36 87 448 244. E-mail address: farkas.anna@okologia.mta.hu 

(A. Farkas). 

 

Abstract 

 

Stress biomarkers, which can outline impacts of contaminants in aquatic biota at the 

biochemical level, are increasingly used as early warning tools in environmental monitoring. 

Reliable biomarker based assessment schemes, however, request appropriate knowledge of 

baseline levels of selected endpoints, and the potential influence of a range of natural 

influencing factors (both abiotic and biotic) as well. In this study, we examined the 

interspecies variability of various biomarkers (metallothioneins (MT), ethoxyresorufin-O-

deethylase activity (EROD), lipid peroxidation (LPO), DNA strand breaks (DNA_sb), 

vitellogenin-like proteins (Vtg)) in Dreissena polymorpha and Dreissena bugensis inhabiting 

either pristine- or moderately impacted sites of Lake Balaton (Hungary). Levels of all 

biomarkers considered revealed low interspecies variability in the two dreissenid species at all 

sampling sites, with consistently higher (but statistically insignificant) values in Dreissena 

polymorpha. Levels of all biomarkers varied within the two investigated seasons, with 

significant influence of the reproduction cycle particularly on the levels of metallothioneins 

and vitellogenin-like proteins. Each biomarker considered was elevated by October, with 

significantly higher values in the mussels inhabiting harbours. Insignificant spatial and 

temporal variability in the general health indicators (condition index, total protein content) of 

dreissenids was observed, which, in parallel with evident rise in biomarker levels, apparently 

suggest that the anthropogenic impacts in harbours affect mussel fitness yet at sub organismal 

level. Our data might serve useful basis for future environmental monitoring surveys, 

especially in habitats where the progressive replacement of Dreissena polymorpha by 
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Dreissena bugensis is taking place, as the interspecies variability in susceptibility to chemical 

stress of the two species is well comparable. 
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1. Introduction 

 

Alterations of biochemical markers in bivalves have been efficiently used for decades to 

evaluate the ecological relevance of anthropogenic pollution affecting aquatic ecosystems 

(Lemaire et al., 1993; Regoli and Principato, 1995; Solé et al., 1996; Faria et al., 2010; 

Schmidt et al., 2013; Okay et al., 2014). This evaluation approach is based on the ability of 

these sessile organisms to filter large quantities of water, leading to high accumulation rates of 

anthropogenic contaminants in their tissues. The range of contaminants accumulated in 

bivalves inform about the contamination status of the habitat where they live in an integrated 

way, while the cellular and molecular alterations eventually evolved in these bioindicator 

organisms inform about the relevance of that contamination. (Goldberg, 1975; de Lafontaine 

et al., 2000; Galloway et al., 2004; Smolders et al., 2004; Minier et al., 2006). It has been 

recognized, however, that a range of biomarkers routinely screened in cells, body fluids, 

tissues and organs of bioindicator organisms to interpret contamination impacts, primarily 

participate in the normal homeostasis of the organism, therefore, they are significantly 

influenced also by several environmental and biological factors. The complexity of 

contaminant accumulation kinetics and metabolism, the synergistic/antagonistic effects of 

xenobiotics and a range of natural environmental parameters (temperature, salinity, nutrient 

availability etc.) proved to be additional significant influencing factors of biomarkers’ 

modulation in environmental monitoring studies (Sheehan and Power, 1999; Hamer et al., 

2004; Gauthier et al., 2014). Biological variables as age, sex, reproductive status, and the 

general health of indicator organisms (highly dependent on food availability and parasitism) 

proved to further complicate the linkage between biomarker alterations recorded in sentinel 

organisms and contamination status of the habitat subjected to anthropogenic pressure 

(Viarengo et al., 2007; Minguez et al., 2009; Pain-Devin et al., 2014). Interpretations of 

biomarker responses in environmental monitoring were therefore refined by focused research 

on bivalves’ biological cycles and the seasonal variation of biomarkers’ baseline levels 

(Sheehan and Power, 1999; Minier et al., 2000; Shaw et al., 2004; Depledge, 2009; Faria et 

al., 2014). While seasonality, reproduction status and food availability as confounding factors 

were addressed in several studies (Viarengo et al., 2007; Sheehan and Power, 1999; Shaw et 

al., 2004; Kopecka and Pempkowiak, 2008; Nahrgang et al., 2010; Faria et al., 2014), the 

relevance of interspecies variability of biomarker alterations to pollution were far less 

investigated (Habig and Di Giulio, 1991; Corsi et al., 2007; Lysenko et al., 2014). Evaluation 

of the interspecies variability of biomarker baseline levels in sentinel organisms is particularly 

justified when, due to bioinvasion, the gradual displacement of established populations by 

new invaders occurs, and the quality status of the habitats of concern is regularly assessed by 

biomonitoring techniques built on established sentinel species. Currently, investigation of the 

species specific variability in biomarkers baseline levels and their modulation due to natural 

environmental factors and anthropogenic impact appears to have actuality for dreissenid 

mussels: the zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena 

rostriformis bugensis). The rapid range expansion of D. bugensis in freshwaters was noted 

both in North America and Europe, resulting in a relevant dominance shift from the 

established D. polymorpha populations to D. bugensis (Mills et al., 1996; Nalepa et al., 2010; 

Bij de Vaate et al., 2014). Several differences in the physiological attributes of the two species 

were suggested to support the gradual displacement of D. polymorpha by D. bugensis. D. 



bugensis was shown to have higher assimilation efficiency (Baldwin et al., 2002), higher 

filtration rate (Diggins, 2001) and lower respiration rate (Stoeckmann, 2003), which imply 

higher growth rate. These features are particularly important when food resources are 

limiting. It was also suggested that D. bugensis is able to spawn at colder temperatures, 

enabling earlier breeding in the season, which results in a competitive advantage for larval 

settlement (Claxton and Mackie, 1998). 

In the pollution assessment of freshwater habitats the zebra mussel D. polymorpha proved to 

be an efficient sentinel organism because its ecophysiological features (abundance, wide 

distribution, high filtration rate, and ability to accumulate large amounts of anthropogenic 

contaminants) enabled reliable in situ habitat contamination evaluations (Kraak et al., 1991; 

de Kock and Bowmer, 1993; Roper et al., 1996). More recently, zebra mussels have been 

successfully used even in integrated biomarker assessment studies when bioaccumulated 

contaminant data revealed good correlation with alterations of several cellular- molecular 

biomarker endpoints in these mussels (de Lafontaine et al., 2000; Minier et al., 2006; 

Contardo-Jara et al., 2009; Faria et al., 2010). Focused research provided relevant information 

about the natural variability of biomarker responses in zebra mussels, particularly related to 

seasonality and reproduction status, that helped establish validated biomonitoring approaches 

for the assessment of the environmental significance of chemical contamination in freshwater 

habitats (Stoeckmann and Garton, 2002; Binelli et al., 2005; Guerlet et al., 2007; Faria et al., 

2014). Thus, the application of zebra mussels in monitoring the quality status of freshwaters 

appears a reliable approach. However, the widespread invasion of the quagga mussel 

(Dreissena rostriformis bugensis), resulting in an overgrowth of the quagga mussels within 

dreissenid populations (Mills et al., 1996; Bij de Vaate et al., 2014) calls for knowledge on the 

modulation of the routinely used biomarkers also in quagga mussels in response to 

anthropogenic pollutants. Interspecies differences in bioaccumulation of pollutants for the two 

dreissenid species have already been reported (Richman and Somers, 2005; Mathews et al., 

2015). This variability was thought to be related to differences in both habitat preference 

characteristics and in physiological attributes of the two species such as energy consumption, 

filtration- and growth rate (Veltman et al., 2008; Le et al., 2011). Accordingly, interspecies 

differences in susceptibility to chemical stress between the two dreissenid species could also 

be expected. The goals of this study were therefore: a. to identify potential interspecies 

differences in baseline levels of selected biochemical parameters commonly used in pollution 

monitoring, between zebra mussels and quagga mussels; b. to assess the variability of these 

endpoints in two outlining seasons.  

For this purpose various biomarkers of defence (metallothionein (MT), ethoxyresorufin-O-

deethylase (EROD)), biomarkers of damage (lipid peroxidation (LPO) and DNA damage 

(DNA_sb)) and reproduction (vitellogenin-like proteins (Vtg)) were recorded in established 

populations of D. polymorpha and D. bugensis within four harbours of Lake Balaton known 

to be affected by moderate pollution due to ship traffic, and compared with biomarker levels 

of mussels collected from a highly protected pristine habitat. In addition, as indicators of 

nutritional state, the condition index and total protein levels were used to assess the overall 

mussel fitness also at individual level. Samplings were scheduled after the main spawning 

period of mussels in June and in the resting stage in October, when gametes are almost 

completely lacking. 

 

2. Materials and Methods 

 

2.1. Site descriptions 

 



Four harbours (H1, H2, H3, H4) and a highly protected remote area, as reference site (R) (Fig. 

1), were selected for the biomarkers assessment of Dreissena spp. populations. Harbours, as 

moderately impacted sites, were selected based on historical contamination data published 

(Hlavay and Polyák, 2002; Nguyen et al., 2005; Bodnár et al., 2005) as well as according to 

contaminant- and toxicity data recorded for bottom sediments of these locations in our recent 

investigations performed in 2013 (Ács et al., 2015). 

 

 
 
Fig. 1. Location and geographical coordinates of sampling sites along Lake Balaton (R = pristine site; H1, H2, 

H3, H4 = harbour sites) 

 

Selected harbours are shallow (2.0 – 3.5 m depth) with wide openings, enabling intense water 

exchange therefore, the hydrodynamic features and the physico-chemical characteristics of the 

water do not significantly differ from the conditions in open areas of the lake (Tátrai et al, 

2008; Szabó et al., 2011). During samplings, at all locations water temperatures varied 

between 18 - 21 
o
C; the pH was between 8.5 – 8.6; salinity spanned 310 – 460 mg L

-1
; 

dissolved oxygen was around 10 mg L
-1

; conductivity was 600 – 700 µS cm
-1

 and the redox 

potential varied between 400 – 600 mV. Data on metals and polycyclic aromatic 

hydrocarbons determined in harbour sediments in midsummer 2013, were considered as 

descriptors of harbour contamination (Table 4., data retrieved from Ács et al., 2015). 

 

2.2. Dreissenid spp. sampling 

 

Mussel sampling and biomarker measurements were performed in 2014 in June after the main 

spawning period of mussels and in October. The littoral zone of the lake is populated by 

mixed populations of D. polymorpha and D. bugensis, with the later species prevailing in 

general. Mussels were sampled randomly at mid shore level from each mussel bed area. 

Overall, three groups of ca. 50 mussels tied on rocks (distance between replicates was approx. 

10 – 15 m) belonging to the 10 – 20 mm length range were detached from the substrates by 

byssus excision and used for biomarker analysis (approx. 150 - 200 individuals per site). 



The mussels were transported to laboratory in containers filled with lake water of the site. 

Mussels were cleaned of shell debris and allowed to flush sediment and gut contents 

overnight in aerated filtered lake water in 200 L flow-through system aquaria. 

Separation of mussel samples in groups of D. polymorpha and D. bugensis was performed 

based on the differences in ventral surface morphology, which is distinctly flattened for zebra 

mussels and slightly rounded for quagga mussels (Dermott and Munawar, 1993; Claxton et 

al., 1998). Except for a single harbour (H3), where the mussel population was dominated by 

D. polymorpha (approx. 90% in June and 65% in October), at each sampling location 

significantly higher preponderance (70 – 95%) was found for D. bugensis. 

For each individual mussel the length (maximum anterior-posterior axis) and wet weight were 

determined to the nearest 0.1 mm and 0.1 g respectively. Following morphometric 

measurements the soft tissues were excised, immediately weighed then, pooled in batches of 

10 – 20 individuals (depending on size), frozen and stored at -80
o
C until biomarker 

measurements were taken. 

 

2.3. Biomarker measurements 

 

2.3.1. Condition index and total protein content 

 

Based on the weight data recorded after field sampling and soft tissue collection, the condition 

index of mussels was determined according to formula: CI = soft body weight/total wet 

weight. As second indicator of mussel fitness we considered the total protein content of tissue 

homogenates, which was determined according to Bradford (1976) using bovine serum 

albumin (Fluka Chemie GmBH, Buchs, Germany) as standard. 

 

2.3.2. Biochemical biomarkers 

 

Biomarker measurements were run in pooled whole soft tissues of several mussels (10 – 20 

individuals, n = 3 – 4 samples per site) homogenized in ice-cold Hepes-NaOH buffer (25 mM, 

pH 7.4) containing 130 mM NaCl, 1 mM EDTA and 1 mM dithiothreitol, at a weight to 

volume ratio of 1:5 w/v. Subsamples of homogenates were stored at -80
O
C until analysis. 

 
Metallothionein-like proteins were quantified according to the method developed by Viarengo et 

al. (1997). Subsamples of tissue homogenates were centrifuged at 12,000g for 30 min at 4 oC. 

Then, 500 µL of supernatant was mixed with 500 µL of ethanol (95%) containing 8% chloroform 

and centrifuged at 6000g for 10 min at 2 oC. Next, 700 µL of resultant supernatant was further 

mixed with 50 µL RNA (1 mg mL-1), 10 µL HCl 6 M and 1.2 mL of ethanol (4 oC), then held at -

80 oC for 25 min. The mixture was further centrifuged at 6000g for 10 min at 2 oC. The retained 

pellet was re-suspended with 87% ethanol:1% chloroform (300 µL) and centrifuged again at 

6000g for 1 min at 2oC. The retained pellet was re-suspended this time with 150 µL of 0.25 M 

NaCl and 150 µL HCl 0.2 M containing 4 mM EDTA. Three hundred microliter of Ellman’s 

reagent (dithionitrobenzoate 0.4 mM, 2 M NaCl and 0.2 M Tris base, pH 8) was added to the 

reaction mixture, and the absorbance was measured at 412 nm after 10 min incubation at room 

temperature. Replicates of re-suspension buffer as blanks and standards of glutathione (GSH) 

were included in each run. Results were expressed as nmol of MT-equivalents per milligram 

protein. 

EROD activity was determined in the 12,000g microsomal fraction according to Burke and Mayer 

(1974). Subsamples of tissue homogenates were centrifuged at 12,000g for 30 min at 4 oC (S12, 

fraction). Two hundred microliters of S12 supernatant were incubated at 30 oC for 60 min in a 

final volume of 1,8 mL containing 100 mM phosphate buffer, pH 7.4, 100 µM reduced NADPH 

and 10 µM 7-ethoxyresorufin. The reaction was started by the addition of NADPH, and stopped 



by the addition of 100 µL of 0.5 M NaOH. The resultant 7-hydroxyresorufin was determined by 

fluorometry at 520 nm excitation and 590 nm emission wavelengths. Calibration was performed 

with serial dilutions of 7-hydroxyresorufin. Results were expressed as pmol min-1 mg-1 total 

protein. 

Lipid peroxidation was evaluated based on the formation of malonaldehyde in tissue homogenates 

by the thiobarbituric acid method elaborated by Wills (1987). A 450 µL homogenate was mixed 

with 900 µL of 10% TCA containing 1 mM FeSO4 and 450 µL of 0.67% thiobarbituric acid. The 

mixture was heated to 80 oC for 10 min then, precipitates were removed by centrifugation 

(10,000g for 10 s). The supernatant was subjected to fluorescence measurement at 516 

excitation/600 nm emission. Blanks and standards of tetramethoxypropane were prepared in 

Hepes homogenization buffer. Results were expressed as µmoles of thiobarbituric acid reactants 

per milligram of homogenate protein. 

DNA strand breaks were quantified by an adaptation of the alkaline precipitation assay of Olive 

(1988). A 100 µL tissue homogenate was mixed with 800 µL of 2% SDS containing 10 mM 

EDTA, 10 mM Tris-base and 40 mM NaOH and shaken for 1 min. Eight hundred microliter of 

0.12 M KCl was added, the mixture was further heated at 60 oC for 10 min, mixed by inversion 

and cooled at 4 oC for 30 min then, centrifuged at 8000g for 5 min at 4 oC. Five hundred 

microliter of supernatant was added to 1500 µL of Hoechst dye (1 µg mL-1, in buffer containing 

0.4 M NaCl, 4 mM sodium cholate and 0.1 M Tris-acetate, pH 8.5-9 and mixed for 5 min on a 

plane shaker. Fluorescence was measured at 360 excitation/450 nm emission wavelengths. Blanks 

contained identical constituents, with 100 µL Hepes buffer replacing the tissue homogenate. 

Salmon sperm DNA standard (Sigma) was used for DNA calibration and the results were 

expressed as DNA_sb µg mg-1 protein. 

Vitellogenin-like proteins (Vtg) were determined in the 12,000g microsomal fraction following 

the alkali-labile phosphate (ALP) method developed by Blaise et al. (1999). Four hundred 

microliter of sample homogenate was mixed with 220 µL acetone (35% final concentration) for 

10 min and centrifuged at 10,000g for 5 min. The retained pellet was then dissolved in 200 µL 1 

M NaOH and mixed for 30 min at 60 oC. The total phosphate was then determined by the 

colorimetric phosphomolybdenum method developed by Stanton (1968). To a 200 µL sample 

1250 µL H2O, 50 µL 100% TCA, 250 µL of molybdate reactive and 250 µL ascorbate 1% were 

added, mixed for 10 min and the absorbance was read at 815 nm and 444 nm. Rainbow trout 

vitellogenin was used for calibration and aliquots of NaOH (1M) were used as blanks. Vtg levels 

were expressed as µmoles of ALP per milligram of protein. 

The values of each biomarker were normalized against the protein content of either the whole 

homogenate or supernatant (S12) (Bradford, 1976). 
Proteins and enzyme activities were determined in triplicate using a microplate reader 

(VICTOR3
TM 1420 Multilabel Counter, Perkin Elmer, USA) at 25 °C. 

 

2.4. Statistical analysis 

 

Analysis of variance (ANOVA) or Kruskal Wallis One Way Analysis of Variance on Ranks 

was applied to evaluate the significance of inter-species differences in biomarker responses in 

relation to site- and sampling ocasion. If significant, pairwise multiple comparisons were 

performed using the Tukey or Dunn’s tests. Statistical analyses and graphical plotting were 

performed in OriginPro. 

Since we could not collect both dreissenid species from each sampling site at both sampling 

occasions, the resultant data matrix did not fulfil ANOVA-like design. Therefore, we 

performed partial direct gradient analysis supplemented with variance partitioning (Cushman 

and McGarigal, 2002) to rate the influence of inter-specific differences, size of individuals, 

season and sampling site (explanatory variables) on stress indicators (response variables) in 

molluscs. For analyses, stress indicator values were standardized by their standard deviation 

and lnx transformed to improve their normality. Of the potential explanatory variables, 



species (D. bugensis and D. polymorpha), season (June and October) and sampling site (S, 

H1, H2 and H3) were recoded into binary dummy variables prior to analysis. According to a 

preliminary detrended correspondence analysis (DCA), our data represented only a relatively 

short gradient length (0.624 in standard deviation units), and therefore redundancy analysis 

(RDA) was applied for data evaluation (Lepš and Šmilauer, 2003). A forward stepwise 

selection procedure (at P<0.05) based on Monte Carlo randomization test (full model and 

9,999 unrestricted permutations) was performed to exclude explanatory variables with 

insignificant explanatory power. This selection revealed that all non-redundant dummy 

variables (i.e. species: D. bugensis; sampling occasion: June; and site: R, H1, H2 and H3) and 

also size of individuals contributed significantly to the overall RDA model. To show their 

position in the ordination plane, we also included the redundant dummy variables (i.e. D. 

polymorpha, October and H4) as inactive supplementary variables to the analysis. Then, a 

series of RDA and partial RDAs were performed to rate relative effects of significant 

explanatory variables on the stress level of molluscs (Cushman and McGarigal, 2002). 

Significances of the overall model and each partial model were evaluated again with the 

Monte Carlo randomization test (full model and 9,999 unrestricted permutations). DCA and 

RDA analyses were run with CANOCO version 4.5 software (ter Braak and Šmilauer, 2002). 
 

3. Results 

 

3.1. Comparisons of size and the nutritional state of investigated mussels 

 

Dreissenid spp. collected in June 2014 at the reference site were slightly larger in mean size 

(D. bugensis length: 17 ± 3; D. polymorpha length: 16 ± 3 mm) comparative to the samples 

collected from harbour areas (Table 2.), and mussels collected from the H2 harbour location 

in both sampling campaigns (June, October) were consistently smaller than the exemplars 

collected from other sites, but even in these cases differences in the size of mussel samples 

were statistically not significant. 
 

Table 1. Mean length, condition index and protein content of dreissenid spp. subjected to biomarker investigations. 

Data are presented as mean ± SD. For each set of data normality and homogeneity of variances were met (Levene’s 

test, p>0.05). For none of the parameters considered were detected any statistically significant differences at p<0.05 

(ANOVA, Bonferoni test). 

   Reference  Harbor areas 

     H1 H2 H3 H4 

June D. bugensis Number of mussels 50  60 70 0 60 
  Length [mm] 16.6 ± 2.8  16.1 ± 1.6 13.0 ± 1.0 - 13.7 ± 1.2 

  CI [ww ww-1] 0.30 ± 0.05  0.26 ± 0.02 0.26 ± 0.03 - 0.23 ± 0.05 
  protein 

[mg ml-1 supernatant] 

2.08 ± 0.26  2.07 ± 0.25 1.82 ± 0.14 - 1.88 ± 0.20 

 D. polymorpha Number of mussels 40  50 0 60 0 
  Length 16.3 ± 2.5  14.5 ± 2.1 - 13.6 ± 2.6 - 

  CI [ww ww-1] 0.31 ± 0.05  0.22 ± 0.03 - 0.25 ± 0.05 - 

  protein 

[mg ml-1 supernatant] 

1.8 ± 0.22  1.92 ± 0.15 - 1.86 ± 0.32 - 

October D. bugensis Number of mussels 50  60 70 50 50 

  Length 15.8 ± 2.9  17.6 ± 1.5 13.7 ± 1.9 16.5 ± 3.4 15.5 ± 2.3 
  CI [ww ww-1] 0.33 ± 0.05  0.25 ± 0.05 0.22 ± 0.04 0.30 ± 0.09 0.21 ± 0.05 

  protein 

[mg ml-1 supernatant] 

2.33 ± 0.19  1.87 ± 0.17 2.12 ± 0.17 2.22 ± 0.33 2.09 ± 0.31 

 D. polymorpha Number of mussels 50  0 0 40 35 

  Length 1.6.6 ± 2.9  - - 17.2 ± 2.2 15.1 ± 1.0 

  CI [ww ww-1] 0.29 ± 0.07  - - 0.32 ± 0.06 0.18 ± 0.02 
  protein 

[mg ml-1 supernatant] 

2.25 ± 0.35  - - 2.04 ± 0.42 1.88 ± 0.33 



 

 

Insignificant seasonal- and site specific differences in the general condition of mussels, 

reflected by condition index and total protein content, were detected. Additionally, 

insignificant interspecies differences related to size and general condition of mussel samples 

subjected to biomarker investigations were evidenced. 

 

3.2. Biomarkers baseline levels in dreissenid spp. 

 

The overall comparison of biomarker baseline levels in the two dreissenids collected in the 

pristine area revealed low interspecies variability in both sampling campaigns (Table 2.). 

Relevant seasonal variation was recorded for the metallothionein- and vitellogenin like 

proteins (three- and four fold increase in October, respectively), and closely similar increase 

in DNA alteration (by 70%) was recorded for both dreissenid spp. by October. 
 

Table 2. Baseline levels of biomarkers in dreissenid spp. populating pristine area (average ± S.D.; n = 4 

cumulative samples per site of 10 – 20 individuals). 

Biomarker Unit D. bugensis D. polymorpha 

  June October June October 

MT nmol mg protein
-1 

1.59 ± 0.54 4.64 ± 0.86***  1.48 ± 0.28  4.44 ± 0.54*** 

EROD pmol min
-1

 mg protein
-1 

14.8 ± 4.4  19.5 ± 3.2 11.8 ± 3.5 16.0 ± 2.2 

LPO µg TBARS mg protein
-1 

  2.01 ± 0.43 2.55 ± 0.58    1.9 ± 0.29 2.69 ± 0.19** 

DNA_sb µg mg protein
-1 

 46.7 ± 15.3 79.9 ± 17.9*  53.3 ± 17.7 92.3 ± 21.3* 

Vtg µg ALP mg protein
-1 

  0.46 ± 0.15   1.86 ± 0.49**  0.57 ± 0.11   2.10 ± 0.69*** 

 
Asterisks indicate significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001) between measured data 

recorded in the two sampling campaigns (ANOVA, Tukey test). For each set of data normality and homogeneity 

of variances were met (Shapiro-Wilk, Levene’s test, p < 0.05). In both sampling campaigns, interspecies 

comparison of biomarkers in mussels inhabiting the pristine site revealed statistically non-significant differences. 

 

3.3. Biomarker alterations in dreissenid spp. inhabiting harbour areas 

 

In June, relatively low spatial variability of antioxidant defence status in mussels was 

observed. Compared to the biomarker baseline levels recorded in the mussels inhabiting the 

pristine area, distinctly higher levels of metallothionein like proteins (by 50- and 80% 

respectively, p < 0.05) were recorded in D. polymorpha at two harbours (H1, H3) (Fig. 2. A), 

and significantly higher EROD activity (2.7 fold higher level, p < 0.01) was detected in D. 

bugensis populating site H4, (Fig. 2. C). 

  



 

 
 
Fig.2. Metallothionein like protein concentrations (A,B) and EROD activity (C,D) recorded in whole tissue 

homogenates of dreissenid mussels inhabiting sites of Lake Balaton (R = pristine area, H1 – 4 = harbours). Plots 

represent the median (square), 25 – 75% percentiles (box) and 10
th

 – 90
th

 percentiles range (whiskers) values (n 

= 4, except for D. bugensis at site H2 in June and for D. polymorpha at site H4 in October where n = 3). Empty 

box corresponds to D. bugensis, grey box corresponds to D. polymorpha. Asterisks indicate significant 

differences (* p < 0.05; ** p < 0.01; *** p < 0.001) between data measured in mussels inhabiting harbours 

versus pristine area within same season (ANOVA, Tukey test). For each set of data normality and homogeneity 

of variances were met (Shapiro-Wilk, Levene’s test, p < 0.05). 

 

By October significant elevation in metallothionein like proteins was detected in both 

dreissenid species and at all sampling locations. While in dreissenids inhabiting the pristine 

area a threefold increase in metallothioneins levels was observed in both species, in the 

mussels species collected in harbour areas a significantly  higher fourfold increase was 

characteristic (p < 0.001). Significant increase in EROD activity was observed for both 

dreissenids at the H4 sampling point ( 2.5 and 3.3 fold increase respectively, p < 0.001). 

Overall, low interspecies variability in the antioxidant defence markers was noted in both 

sampling campaigns (statistically insignificant, data not shown). 

Of the three biomarkers of damage assessed (Fig. 3.), in June distinct site-specific alterations 

were recorded for DNA damage only (Fig. 3. C.). In both dreissenids significantly higher 

DNA strand breaks (an overall 2 fold increase, p < 0.01, ANOVA, Tukey test) were observed 

in mussels populating the H1 – 3 sites. 
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Fig.3. Lipid peroxidation (A, B), DNA strand breaks (C, D) vitellogenin- like proteins concentration (E, F) 

recorded in whole tissue homogenates of dreissenid mussels inhabiting the five study sites (R = pristine area, H1 

– 4 = harbours). Plots represent the median (square), 25 – 75% percentiles (box) and 10
th

 – 90
th

 percentiles range 

(whiskers) values (n = 4, except for D. bugensis at site H2 in June and for D. polymorpha at site H4 in October 

where n = 3). Empty boxes correspond to D. bugensis, grey boxes correspond to D. polymorpha. Asterisks 

indicate significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001) between data measured in mussels 

inhabiting harbours versus pristine area within same season (ANOVA, Tukey test). For each set of data 

normality and homogeneity of variances were met (Levene’s test, p < 0.05). 

 

 

By October, all three biomarkers of damage indicated significant alterations in the dreissenid 

populations inhabiting harbour areas compared to the pristine site. The pattern of spatial 

variability of the three biomarkers revealed in general a common trend with highest alteration 

rate observed at the H2 harbour for LPO and DNA damage, while the highest levels of Vtg 

like proteins for both dreissenid spp. were recorded at harbour H4 ( 11 fold increase vs. 

reference site, p < 0.001, ANOVA, Tukey test). 
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3.4. Relationships between variables 

 

The RDA analysis explained a remarkable 80.4% of the variance in stress indicators of 

mussels (Table 3). 

 
Table 3. Percentage explained variance by explanatory variable groups in the redundancy analysis exploring 

stress levels of D. bugensis and D. polymorpha in pristine and altered harbor habitats of Lake Balaton, Hungary. 

Results revealed the predominant and highly independent influence of seasonality and sampling site on the set of 

biomarkers considered. 

  Variance explained (%)    

   pure shared total F p 

Season 40.3% 10.5% 50.8% 57.8 <0.001 

Site 25.8% 4.7% 30.5% 5.82 <0.001 

Length 2.3% 2.2% 4.5% 2.66 0.07 

Species 2.3% -2.1% 0.2% 0.14 0.97 

      Full model - - 80.4% 29.25 <0.001 

 

 

Sampling season and site proved to be powerful explanatory factors accounting for the 40.3% 

and 25.8% of variance as pure effect and 50.8% and 30.5% in total, respectively. Results also 

showed that effects of season and site were highly independent with moderate proportions of 

shared effects in the explained variance. On the other hand, interspecies and size-dependent 

variability in the stress indicators of molluscs seemed to be inconsiderable. The first RDA 

axis captured most of the explained variance (62.3%) suggesting lower stress in June and for 

the pristine reference site (S) compared to October and human impacted harbour sites (H1-

H4) (Fig. 4). 

 

 
Fig. 4. Results of redundancy analysis depicting the relationships between the selected effective explanatory 

variables (filled circles represent dummy coded and bold arrow continuous variables, both written in normal 

letters) and stress markers (thin arrows and written in small italic letters) of D. bugensis (Db) and D. polymorpha 

(Dp) in pristine (R) and altered harbour habitats (H1-H4) of Lake Balaton, Hungary. Inactive dummy coded 



variables (empty circles and written in normal grey letters) are also plotted. Percentage variances represented by 

axes are indicated in brackets (of species data; of species-vegetation relation) after the axis name. 

 

4. Discussion 

 

Differences in the basic physiological attributes of D. bugensis and D. polymorpha are 

reported in the literature, which might well imply also differential susceptibility/tolerance and 

adaptive abilities of the two species to anthropogenic pollution pressure. Consequently, a 

species-specific modulation of stress biomarkers in response to contaminants in D. bugensis 

and D. polymorpha could be expected as well. D. bugensis was proven to allocate more 

energy to soft tissue relative to shell length (Roe and MacIsaac, 1997), has higher assimilation 

efficiency (Baldwin et al., 2002), grows faster (Baldwin et al., 2002; Karatayev et al., 2011; 

Le et al., 2011), filters at a higher rate (Diggins, 2001; Veltman et al., 2008) and was reported 

to have a lower respiration rate (Stoeckmann, 2003). Interspecies differences were also found 

for the accumulation of metals and organic contaminants, in general with higher contaminant 

burdens in D. polymorpha (Rutzke et al., 2000; Richman and Somers, 2005; Schäfer et al., 

2012; Matthews et al., 2015). In the meantime, while several studies have addressed the 

interspecies variability in biomarker responses to chemical stress in different aquatic 

invertebrates, in the case of dreissenids these issues have seldom been addressed. For 

example, species-specific susceptibility to xenobiotics as revealed by the differential 

expression of several biomarkers of effect or damage have been reported for amphipods 

(Timofeyev et al., 2008; Quintaneiro et al., 2015) or clams (Carregosa et al., 2014). The 

incidence of interspecies variability in biomarker baseline levels, and the potential for their 

differential modulation under pollution pressure in D. bugensis and D. polymorpha was 

assessed at sites of Lake Balaton owing its well-known environmental characteristics as well 

as its low-to-moderate pollution state. Pollution surveys performed over decades have 

outlined an overall low contamination of the lake, with low spatial variability and 

insignificant seasonal pattern (Kiss et al., 1997; Kiss et al., 2001; Hlavay and Polyák, 2002; 

Bodnár et al., 2005; Nguyen et al., 2005). The pollution of harbour areas was evidenced only 

by significantly higher contaminant burdens in bottom sediments compared to open areas 

(Hlavay and Polyák; 2002; Kiss et al., 2001; Nguyen et al., 2005; Bodnár et al., 2005; Ács et 

al., 2015). Within harbours, significant variability in the contamination of the sediment 

compartment was never recorded, which results from the fact that these harbours are 

characterized by very similar usage.  Sediments in the selected study sites did not significantly 

differ in terms of grain-size composition and organic matter content (Ács et al., 2015). According 

to the most recent pollution survey (Ács et al., 2015), the sediment compartment was 

characterized by a relatively low level of anthropogenic contamination as according to the 

consensus-based sediment-quality criteria of MacDonald et al. (2000), none of the investigated 

contaminants exceeded the threshold effect concentration (TEC) below which no biological 

effects could be expected (Table 4.). 

  



Table 4. Range of basic physico-chemical characteristics and contaminant concentrations recorded in the 

sediments of study sites in 2014 (retrieved from Ács et al., 2015). 

Contaminant R H1-4 TEC - PECa 

 N = 2 N = 4  

% < 63 µm 15 - 29 16 - 34  

TOC (%) 5 5 - 10  

Metals [µg g-1]    

Pb 6.8 – 8.1 16.0 – 25.0 47 – 220 
Cd 0.08 – 0.18 0.16 – 0.31 1.2 – 9.6 

Cr 2.50 – 3.25 4.8 – 7.0 81 – 370 

Cu 5.5 – 6.3 10.3 – 20.3 34 – 270 
Ni 5.7 – 7.5 3.1 – 6.7 20.9 – 51.6 

Zn 3.0 – 8.9 11.1 – 61.3 150 - 410 

PAHs [ng g-1]    
Naphthalene 1.20 – 4.46 0.65 – 5.33 160 - 2100 

Acenaphthene 1.57 – 1.71 1.26 – 1.91 16 – 500 

Fluorene 0.47 – 2.20 1.28 – 3.80 19 – 540 
Phenanthrene 4.26 – 6.90 12.1 – 40.1 240 – 1500 

Anthracene 0.28 – 0.76 2.13 – 2.74 85.3 – 1100 

Fluoranthene 4.6 – 12.4 20.5 – 37.8 600 – 5100 

Pyrene 4.5 – 11.9 25.3 – 40.6 665 – 2600 

Benz[a]anthracene 0.49 – 2.48 8.0 – 10.4 261 – 1600 

Chrysene 1.03 – 3.66 8.9 – 11.9 384 – 2800 
Benzo[b]fluoranthene 9.2 – 16.8 13.3 – 30.6 - 

Benzo[k]fluoranthene 0.93 – 3.93 6.6 – 10.7 - 

Benzo[a]pyrene 1.2 – 5.7 12.2 – 16.6 430 – 1600 
Dibenz(a,h)anthracene 0.39 – 0.82 1.12 – 2.27 4022 – 44792 

Benzo(ghi)perylene 1.8 – 8.9 10.9 – 21.0 63.4 - 260 

Indenopyrene 1.3 – 7.0 10.7 – 17.6 - 

 

TOC = total organic carbon 

R = reference location; H1-4 = harbour areas; N = number of individual measurements per reference- i.e. harbor 

locations 

Contaminant concentrations of harbour sediments outlined in bold were distinctly higher than the concentration 

ranges recorded in the pristine area. 
a
TEC = threshold effect concentration; PEC = probable effect concentration (McDonald et al., 2000) 

 

However, distinctly higher loads for some metals and polycyclic aromatic hydrocarbons were 

evidenced in harbour areas compared to the values recorded in the sediments of the pristine area. 

This fact was evidenced by the 2- to 2.6-fold increase for summed metal concentrations and the 2- 

to 4-fold increase for summed PAHs concentrations in the bottom sediments of harbours 

compared to the sediments from the pristine site or open areas (Ács et al., 2015). 

In the current study, investigated mussels showed insignificant temporal and spatial 

variability in the condition index and total protein content, suggesting their closely similar 

physiological states. The range of biomarker levels (MT, EROD, LPO, DNA_sb, Vtg) 

detected in dreissenids inhabiting Lake Balaton were comparable with previously reported 

data for zebra mussels populating various aquatic habitats, either pristine- or affected by 

certain anthropogenic impact, as the St Lawrence River in Canada (de Lafontaine et al., 

2000), Lago Maggiore in Italy (Binelli et al., 2005) or Lough Ree in Ireland (Quinn et al., 

2011). Moreover, the spatial and temporal alternation of these biomarkers fell within ranges 

and followed similar pattern with that previously reported for pure D. bugensis populations 

inhabiting Lake Balaton (Ács et al., 2016). 

The statistical evaluation of data outlined insignificant interspecies differences for the studied 

biomarkers, although in general consistently higher expression of all endpoints considered 

was observed for D. polymorpha. Inconsistent interspecies differences in susceptibility to 

contaminants for the two dreissenids have been previously reported by Schäfer et al., (2012) 

who have recorded in a laboratory study significantly higher DNA damage in the gills of D. 

bugensis, and conversely significantly higher heat-shock protein content (hsp70) in D. 



polymorpha following the simultaneous exposure to differentially polluted sediments from a 

tributary of the Elbe River (Germany). These apparently inconclusive results indicate some 

differential sensitivity to chemical stress of the two mussel species, which to fully clarify, 

needs further consideration. 

Application of redundancy analysis to our biomarker datasets revealed the predominant and 

highly independent influence of season and sampling site (by 50%- and 30% total variance, 

respectively). While in June, relatively low spatial variability of biochemical markers were 

recorded, by October significant rise for each endpoint (MT, EROD, LPO, DNA_sb, Vtg) was 

observed in mussels at all sampling sites, with distinctly more pronounced elevation for the 

mussels inhabiting harbour areas. In the mussels populating the pristine site significant 

increase by October was observed for metallothionein- and vitellogenin like proteins (3- and 4 

fold increase respectively), moderate increase in DNA strand breaks (by 70%), and 

insignificant rise in LPO and EROD activity. 

In interpreting the time related changes in biomarker levels of dreissenids populating the 

pristine site, first we relied on the knowledge that this location is safe of anthropogenic 

impact. This fact was demonstrated by the trace metal datasets repeatedly recorded over time 

in this area, which always fell within the regional geochemical background (Hlavay and 

Polyák, 2002; Nguyen et al., 2005; Ács et al., 2015). Similarly for PAHs, their concentration 

in the sediment was always very low and did not significantly differ from the values 

characteristic for open areas of the lake (Kiss et al., 1997; Kiss et al., 2001; Bodnár et al., 

2005; Ács et al., 2015). Secondly, we considered the basic knowledge that contamination by 

metals and polycyclic hydrocarbons in aquatic organisms above certain level may: a. exceed 

the antioxidant capacity of the defence system; b. decrease the function of key antioxidant 

proteins and enzymes. Both mechanisms imply an excessive ROS formation that leads finally 

to oxidative cell damage, including proteins, lipids and DNA (Livingstone, 2001). Induction 

of the antioxidant system was proven to usually imply both significant rise in DNA damage 

and lipid peroxidation (de Lafontaine et al., 2000; Barhoumi et al., 2012; Maranho et al., 

2015). As in the dreissenids populating the pristine site just moderate increase in DNA_sb 

with unaltered LPO status were observed by October, we consider that rise in MT and Vtg 

levels were most probably related to the progression of gametogenesis in mussels. 

Seasonal fluctuation in the constitutive levels of several biochemical markers (particularly 

MT and Vtg) in both aquatic invertebrates and fish have been commonly reported and were 

related to rise in ambient temperature, food availability and gonad development (Sheehan and 

Power, 1999; Leiniö and Lehtonen, 2005; Izagirre et al., 2008; Schmidt et al., 2013; Lekube et 

al., 2014; Faria et al., 2014). This phenomenon is attributed to the close functional 

relationship between the digestive system and gonad development as periods of food 

abundance and gonad development (both evolving in the warm season) are often coincident 

(Mackie, 1984; Sheehan and Power, 1999). Significant increase in MT levels during 

gametogenesis were reported for several aquatic invertebrates inhabiting unpolluted sites 

(Raspor et al., 2004; Geffard et al., 2005; Geffard et al., 2007; Bochetti et al., 2008). As for 

example, fourfold increase in metallothionein-like proteins was reported by Baudrimont et al. 

(1997) for the Asiatic clam (Corbicula fluminea) inhabiting a remote site in France, and this 

elevation was unrelated to metal exposure but seemed to be strongly correlated with the 

reproductive cycle of this bivalve. It was demonstrated that during the progress of 

gametogenesis, MTs act in the homeostatic regulation of essential metals (Cu, Zn) as an 

essential metal storage and aim at meeting enzymatic and other metabolic demands 

(Roesijadi, 1996). Meistertzheim et al. (2009) have reported for Crassostrea gigas, 

encountering large temperature fluctuations as stress factor, insignificant variation of 

metallothionein levels in gills, mantle and digestive glands of oysters, while endogenous 

metallothionein levels in gonad increased significantly during gametogenesis, reaching more 



than 3-fold rise by full maturation of oocytes, then suddenly decreased after spawning. This 

rise of MTs in the gonads of mussels suggest a role for these proteins during meiosis 

(Anderson and Nusslein-Volhard, 1984; Meistertzheim et al., 2009). 

Similarly for vitellogenins, a common biomarker of estrogenic effects (Neubert, 1997; Blaise 

et al., 2003; Pampanin et al., 2005) natural fluctuations related to the reproductive cycle were 

recorded (as reviewed by Matozzo et al., 2008). Vitellogenins (Vtg) are the main precursors 

of the egg-yolk proteins, vitellins, which serve as energy reserves during embryonic 

development in oviparous organisms. In mature females, Vtg are generally synthesized in 

response to endogenous estrogens, such as 17ß-estradiol (E2), released into the bloodstream 

and then stored in developing oocytes. Studies have outlined that levels of E2 in molluscs 

display a seasonal alternation associated with the reproductive cycle and are synchronized 

with variations of oocyte diameter and assumed Vitellogenin mRNA levels from early 

vitellogenic stage to spawning stage (Matsumoto et al., 1997, 2003; Osada et al., 2004; Ni et 

al., 2014). Ni et al. (2014) in their study recorded several magnitude higher vitellogenins 

expression in the ovary of C. gigas in the maturation and ripeness stages than in the partially 

spent stage. 

This study outlined distinct alterations by October (versus conditions in June) in all the 

biomarkers investigated for both dreissenids populating harbours. Significantly higher 

elevation in metallothioneins compared to that observed in the pristine area was apparent for 

dreissenids from three harbours (H1, H3, H4), while moderate rise  in EROD activity (by 70- 

and 35%, respectively) was recorded in two harbours (H1, H4). Although EROD activity 

assessment in bivalves was considered a disputable method in outlining exposure to organic 

chemicals (Viarengo et al., 2007), we have included this endpoint based on evidences of 

significant induction of CYP-like enzymes and associated mixed function oxidase 

components in mussels either in in situ studies (de Lafontaine et al., 2000; Binelli et al., 2005; 

Okay et al., 2014) or laboratory experiments (Faria et al., 2009; Martin-Diaz et al., 2009; 

Sapone et al., 2016). Our results outlined just moderate spatial and temporal variability in the 

EROD activity of dreissenids inhabiting the investigated sites therefore, we considered for the 

moment these results as inconclusive. In this interpretation we have based first on the 

evidence that the molluscan mixed function oxidase components seem to respond less 

efficiently to chemical stress than in vertebrates (Peters et al., 2002). Secondly, it was 

evidenced that the natural variability of EROD activity in mussels may span several fold 

range as reported by Jimenez et al., (1990), and considered within the 2 – 6 fold range also by 

de Lafontaine et al. (2000) as baseline level. Another important issue that has to be considered 

here is the fact that certain ubiquitous contaminants as pharmaceuticals (diclofenac, 

carbamazepine, clofibrate etc.), organochlorine residues and some metallic contaminants 

(organotins, mercury) were proven to inhibit the CYP-like enzymes and associated mixed 

function oxidase components (Thibaut et al., 2006; Lavado et al., 2006; Edwards et al., 2007; 

Faria et al., 2010) in several biological models. Thus, for sites as harbours, which are usually 

affected by complex mixtures of contaminants, the antagonism of chemicals on the EROD 

activity of aquatic biota might also be expected. 

The biomarkers of damage (DNA strand breaks, LPO and Vtg-like proteins) measured in both 

dreissenid species populating harbours were characterized by even greater alterations. 

Although these biomarkers cannot be considered as specific to a particular group of 

contaminants, they represent an integrative response to the impact of multiple toxic and 

environmental stress factors (Mayer et al., 1992; de Lafontaine et al., 2000). By October, 

lower amplitude of variation within sampling sites was recorded for LPO in both dreissenid 

spp., while distinctly higher alterations in all harbours were apparent in DNA damage 

(twofold increase). Mean concentrations of Vtg-like proteins achieved the highest elevation in 

mussels inhabiting harbours that cannot be attributed to the natural variability of these 



proteins related to the progress of gametogenesis. The alterations observed for the biomarkers 

of damage in the mussels inhabiting harbours suggest that various metabolic functions in 

dreissenids were negatively affected. 

 

5. Conclusions 

 

The focus of our study was to assess the relevance of interspecies variability and the seasonal 

alternation of ubiquitous biomarkers of defence (metallothioneins, ethoxyresorufin-O-

deethylase activity), biomarkers of damage (lipid peroxidation, DNA damage) and 

reproduction (vitellogenin-like proteins) in D. polymorpha and D. bughensis, within an in situ 

monitoring survey. 

Our results indicated statistically insignificant interspecies variability for the biomarkers 

tested in the two dreissenid species, and the seasonal variation of these endpoints was also 

comparable. The fact that season proved to be the most powerful explanatory factor for the 

biomarker variations observed in dreissenids, outlines its major importance that has to be 

considered in future environmental assessment programs. The significant influence of site 

location on the levels of investigated biomarkers, evidenced by consistently higher values in 

harbour areas, raises the question of pollution impact on mussel populations at these sites 

which, to fully clarify, would require further investigations. 
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