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ABSTRACT: During the synthesis of gold nanoparticle (NP)
assemblies, the interfacial charge and hydrophobicity of the
primary particles play a distinguished role. In the present
article, we demonstrate that the association of poly-
(ethyleneimine) (PEI) capped gold NPs with sodium alkyl
sulfates provide a powerful route for the manipulation of these
interfacial properties. Dynamic light-scattering, electrophoretic
mobility, UV−vis−near-infrared spectroscopy, nanoparticle
tracking analysis, and transmission electron microscopy
measurements were used to characterize the PEI/surfactant/
gold nanoassemblies. The results indicate the formation of
gold NPs surrounded by a PEI/surfactant shell with
composition-dependent charge and hydrophobicity. The
mean size and the aggregation of the nanoassemblies can be fine tuned by the amount of surfactant bound to the primary
gold NPs as well as by the application of controlled mixing methods. The specific features of the prepared nanocomposites may
be further exploited in next-generation applications.

■ INTRODUCTION

Gold nanoparticles (NPs) and their assemblies are promising
candidates in a diversity of fields, including biomedical1−4 or
photochemical and optical devices.5−8 In nearly all of these
applications, the surface charge and hydrophobicity of the NPs
must be strictly controlled and adjusted. For instance, the surface
charge of gold NPs can seriously affect their cellular uptake and
biodistribution.9,10 Furthermore, the hydrophobic nature of their
surface layer may considerably affect the charge transfer of the
individual NPs.11 In addition, both parameters crucially affect the
interparticle interactions as well as the formation of self-
organized or directed gold assemblies.12−14

Various macromolecules bound onto gold NPs are good
candidates for adjusting charge and hydrophobicity through their
functionalization.15 These polymers also provide (electro)steric
stabilization after the nucleation of goldNPs. Recent studies have
revealed that several polymers, such as Pluronic triblock
copolymers16,17 or polyamines,18,19 play specific multiple roles
in the synthesis of gold NPs, i.e., they could simultaneously act as
reducing and stabilizing agents.16−19 Thus, stable dispersions of
macromolecule-entrapped noble-metal NPs can be prepared
without the need of reducing compounds.

Branched poly(ethyleneimines) (PEIs), in particular, provide
an economic alternative for the synthesis of dendrimer capped
gold NPs due their low cost and commercial availability.20−23 In
this case, a mild reduction of gold(III) ions occurs with a
pronounced role of the secondary amine groups. The reduction
and nucleation processes result in either single NPs20,21 or
supraparticles embedded in the PEI matrix.22,23 In addition,
functionalized branched PEI molecules have also been applied
recently for the synthesis of gold NPs with promising properties.
PEGylated PEI-entrapped gold NPs, for instance, were utilized
for computed tomography imaging and polymerase chain
reactions.24,25 It was also shown that the functionalization of
amine groups with alkyl chains or maltose units could
significantly affect the morphology of gold NPs, including the
appearance of anisometric nanohybrids.26,27

In principle, an alternative of surface functionalization may be
provided using the association of surfactants with polymer-
entrapped noble-metal nanoparticles. Earlier studies revealed
that the nonequilibrium polyelectrolyte (PE)/surfactant (S)
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association can be tuned to prepare PE/S NPs with controlled
size, structure, and chemistry via the adequate choice of the
oppositely charged components as well as of the co-associating
materials.28−35 Specifically, it was shown that through the
application of well-defined preparation methods, stable poly-
amine/anionic surfactant nanophases28−30 or nanolayers36,37 of
variable size, charge, structure, and hydrophobicity can be
produced.
In the present article, the association of PEI-entrapped gold

NPs with sodium alkyl sulfates will be explored using dynamic
light-scattering (DLS), nanoparticle tracking analysis (NTA),
electrophoretic mobility, UV−vis−near-infrared (NIR) spec-
troscopy, and transmission electron microscopy (TEM)
techniques. To the best of our knowledge, this is the first
systematic study of the direct application of PE/S complexation
for the preparation of noble-metal nanohybrids with tunable
properties. We will demonstrate that via the controlled addition
and mixing with anionic surfactants, the charge and hydro-
phobicity of the PEI-capped gold NPs and their interparticle
interactions can be adequately adjusted, resulting in the
formation of bulk and solid gold nanocomposites.

■ RESULTS AND DISCUSSION
PEI-Capped Gold NPs. Earlier studies revealed the

formation of quasi-spherical gold NPs as a result of the mild
reduction and stabilizing effects of hyperbranched PEI
molecules. However, the reported size distributions are
controversial with respect to the role of absolute concentrations
and ratio of Au(III) ions and ethyleneimine (EI) mono-
mers.20−23 In this work, the final concentrations of these
components are fixed at 1.2 mM EI and 0.2 mM HAuCl4, in
agreement with refs 18 and 20, to ensure optimal conditions for
the detection of the nucleation of gold NPs but to avoid the large
excess of free PEI molecules. The variation in the UV−vis spectra
of the PEI−Au systems with time in Figure S1 clearly indicates
that the reduction of gold(III) ions is a slow process at room
temperature, in agreement with earlier studies. However, a much
faster and reproducible way of PEI-capped gold NP synthesis was
achieved after 2 h of incubation at 80 °C.
As shown in Figure 1 (left), the spectrum of the pretreated

gold NP dispersions becomes time independent after the thermal
pretreatment, and its shape is consistent with the formation of
quasi-spherical particles. The polydispersity of the formed NPs is
significant, and their mean diameters were found to be 20± 2 nm

by DLS and 12± 4 nm by TEM (Figure 1 (right)). The observed
localized surface plasmon resonance (LSPR) bandmaximum at λ
= 519 nm is in reasonable agreement with the diameter values
predicted by the Mie theory or observed in aqueous medium.38

PEI/Surfactant/Gold Nanoassemblies. The complexation
of PEI−Au NPs with anionic surfactants was investigated for
mixtures, which were prepared through the application of the so-
called rapid- and slow-mixing procedures33,34 developed earlier
for the controlled preparation of oppositely charged PE/S
systems. The photos in Figure 2a reveal a remarkable difference
in some of the samples prepared via the two preparation
methods. During the application of rapid-mixing procedure,
precipitates are formed at intermediate STDS concentrations,
whereas transparent (rosy) gold nanosystems are observable at
larger or smaller surfactant concentrations. In the case of slow-
mixing procedure, however, opalescent systems are formed over
a wide composition range (i.e., above a certain sodium tetradecyl
sulfate (STDS) concentration, ≅0.3 mM) indicating the
formation of large aggregates. Similar effect of the mixing
methods was also observed for PEI−Au/sodium dodecyl sulfate
(SDS) systems.
In the light of these findings, the rapid-mixing protocol was

utilized primarily to synthesize gold nanohybrids in the following
part of our work. The association between the PEI-entrapped
gold NPs and the alkyl sulfates is completed within a couple of
hours, as demonstrated by the absorbance (at λ = 524 nm) vs
surfactant concentration curves in Figure 2b,c, except the
intermediate surfactant concentration range, where slow
aggregation of the NPs occurs.
Characteristic examples for the time dependence of the whole

UV−vis spectra of PEI−Au/STDS and PEI−Au/SDS systems
are shown in Figure S2a,b, respectively.
The mean mobility and the apparent mean hydrodynamic

diameter of the bulk nanocomposites against the surfactant
concentration is plotted in Figure 3a,b, for STDS and SDS
containing nanoassemblies, respectively, prepared by rapid-
mixing method. Several examples for the monomodal size
distributions of the nanoassemblies, determined by DLS, are
shown in Figure S3.
The net positive charge of the nanohybrids decreases, whereas

their size increases with increasing surfactant concentration up to
the appearance of precipitation. The charge neutralization
surfactant concentration is smaller for STDS (0.3 mM) than
for SDS (0.45 mM) due to the higher driving force of STDS

Figure 1. UV−vis spectra of PEI−Au NPs in the HAuCl4 + PEI system at pH = 4 after 2 h pretreatment at 80 °C, followed by measurements at 25 °C
(left). TEM pictures of the prepared gold NPs (right). It should be noted that the agglomeration of individual positively charged NPs shown in the
picture is not the consequence of bulk assembly formation but due to their aggregation on the negatively charged carbon grid during TEM sample
preparation.

ACS Omega Article

DOI: 10.1021/acsomega.7b01623
ACS Omega 2017, 2, 8709−8716

8710

http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b01623/suppl_file/ao7b01623_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b01623/suppl_file/ao7b01623_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.7b01623/suppl_file/ao7b01623_si_001.pdf
http://dx.doi.org/10.1021/acsomega.7b01623


binding on the PEI molecules. A further increase in the surfactant
concentration leads to charge reversal and decrease in the size of
the nanoassemblies, which levels off in the vicinity of the bulk
critical micelle concentration (cmc) of the amphiphiles. As
indicated inFigure S4, the mean size of the bulk gold
nanoassemblies is not dependent on the time within the
experimental error over a wide concentration range, as checked
by DLS for 2 weeks (except in the vicinity of charge
neutralization where slow aggregation is observable).
At two selected initial compositions, the mean Stokes

diameters were also determined from NTA measurements in
the concentration range of surfactant excess. As shown in Figure
3a,b, the dH values from NTA to DLS are in good agreement.
Furthermore, the three-dimensional representation of the
particle concentration vs scattered intensity and Stokes diameter
functions (Figures S6 and S7) unambiguously reveals the
existence of only one population of gold nanoassemblies (i.e.,

the negligible amount of free PEI/surfactant complexes not
bound to the primary gold NPs).
The variation in the mean size of the gold NPs with sodium

alkyl sulfate concentration correlates qualitatively with the
observed small blue shift at low and the slight red shift at high
surfactant concentrations, as shown by the UV−vis spectra in
Figure 3c,d, respectively. The lack of additional absorbance peaks
in the near IR regime (see also Figure S5 in the SI) is consistent
with the quasi-spherical shape of the particles. The enhanced
absorbance compared to the bare gold NPs is mainly attributable
to the aggregation of the primary gold NPs coated with PEI/
surfactant layers into larger assemblies with positive or negative
net charge (an example is given in Figure 3e). On the other hand,
the significantly reduced absorbance and the slight red shift of the
LSPR bandmaximum at the bulk cmc of SDS and STDS (521 nm
compared to 519 nm of the PEI-capped gold NPs) suggest the
formation of individual, overcharged gold NPs at these
compositions. This is also consistent with the TEM picture in

Figure 2. (a) Photos of PEI−Au/STDS mixtures prepared by the slow- (top) and rapid-mixing (bottom) methods. The concentration of STDS
increases from left to right. Time dependence of the absorbance (at λ = 524 nm) vs surfactant concentration curves of (b) PEI−Au/STDS and (c) PEI−
Au/SDS gold nanosystems made by the rapid-mixing protocol. All of the mixtures were prepared from the PEI−Au NPs, synthesized by the 2 h of
thermal pretreatment at 80 °C.
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Figure 3f as well as with the similar Stokes diameters measured at
the cmc (25 ± 2 nm) and in the absence of surfactant (20 ± 2
nm).
Figure 4 shows the comparison of the mean Stokes diameters

and UV−vis spectra of the PEI−Au/STDS nanocomposite
dispersions made by the two types of mixing protocols at the
same compositions. The graphs clearly reveal that, in contrast to
rapid-mixing methods, the major consequence of the application
of slow-mixing method is manifested in the formation of large
aggregates of gold NPs over a wide concentration range of
surfactant excess, in agreement with Figure S8 and the visual
appearance of the samples in Figure 2a as well. However, the

observed spectra and the measured dH values did not reveal any
time dependence for 2 weeks within the experimental error.
The interpretation of our observations is summarized in Figure

5. The PEI-capped gold NPs are positively charged due to the
excess protonated amine groups of the polymer. We speculate
that essentially the charged primary amine groups provide the
electrostatic stabilization of the hyperbranched PEI-entrapped
gold NPs because the secondary amine groups provide the
strongest reduction capability.39 This is also supported
qualitatively by the amounts of surfactant bound onto the PEI-
capped NPs, which can be estimated as 0.2 and 0.35 mM for SDS
and STDS, respectively, at zero mobility of the gold nanohybrids

Figure 3. (a, b) Variation in the mean electrophoretic mobility (uς) and the apparent mean diameter (dH) with the surfactant concentration of PEI−Au/
STDS and PEI−Au/SDS nanoassemblies, respectively, prepared through the rapid-mixing protocol. The dH values were determined by the DLS (red
symbols) and the NTA techniques (black symbols) as well. (c, d) Surfactant concentration dependence of the UV−vis spectra of the same systems as in
(a) and (b). (e, f) TEM pictures of PEI−Au/STDS nanocomposites, prepared via rapid-mixing method at 0.41 and 2.0 mM STDS concentrations,
respectively.
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(assuming similarly low (≤0.1 mM) equilibrium free surfactant
concentration under these conditions as in the case of bulk PEI/
SDS complexes with uς = 0).40 These values are roughly
commensurable with the primary amine group concentration of
PEI.
With increasing surfactant concentration, the binding of the

alkyl sulfate ions to the amine groups compensate the positive
net charge of the PEI−Au NPs, leading to decrease in charge and
increase in hydrophobicity of their external layer (similarly to the
formation of compact hydrophobic PEI/SDS layers on silica or
mica36,37). This leads to an increase in the mean size of the
nanocomposites due to the aggregation of the gold NPs
surrounded by the hydrophobic polyelectrolyte/surfactant
layers, and then solid precipitates are observable at intermediate
surfactant concentrations. At even higher surfactant concen-
trations, the alkyl sulfate ions may bind onto the neutralized
hydrophobic PEI/alkyl sulfate layer of the gold NPs similarly to
the PEI/SDS-coated silica or mica surfaces in refs 36 and 37.
This adsorption process results in the charge reversal of the

gold nanoassemblies and could prevent their coagulation at
larger STDS or SDS concentrations, provided that the rapid-
mixing protocol was used for the preparation of the nano-
composites.

This phenomenon is analogous with the electrostatic
stabilizing mechanisms of hydrophobic PEI/SDS NP dispersions
made by the rapid-mixing procedure at surfactant excess and the
observed impact of solution preparation methods on these
systems.30,34,35 During the rapid-mixing process, the equilibrium
free surfactant concentration and thus the corresponding excess
charge of the NPsdue to the adsorbed surfactant ionsare
achieved relatively quickly at high surfactant concentrations.
Therefore, the overcharged gold nanoassemblies are not
destabilized as a result of the initial concentration gradients,
but remain stable, as demonstrated by the scheme in Figure 5 and
in the TEM photograph in Figure 3f. In contrast, during slow-
mixing method, the surfactant is gradually dripped into the PEI-
capped gold NP dispersion. This prevents the completion of the
surfactant ion adsorption on the surface of the neutralized NPs
before their irreversible coagulation into larger agglomerates
occurs.

■ CONCLUSIONS
In conclusion, we have shown that branched PEI molecules can
not only be used for the entrapment and stabilization of gold
NPs, but their association with anionic surfactants can be utilized
in the synthesis of nanohybrids with polyamine/surfactant shell
around the gold core. The charge and hydrophobicity of this

Figure 4. Comparison of the apparent mean diameter vs surfactant concentration curves (left) and the UV−vis spectra (right) of PEI−Au/STDS
mixtures prepared via the slow- and rapid-mixing protocols, respectively, at surfactant excess.

Figure 5. Schematic representation of the assembly formation of PEI-capped gold NPs due to their interaction with anionic surfactant molecules upon
application of the rapid- and slow-mixing protocols.
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layer as well as the interparticle interactions of the NPs can be
adequately adjusted through the variation in polymer/surfactant
ratios, provided that the well-defined rapid-mixing method is
used. It was demonstrated that only this preparation method
provides the stable dispersion of small, negatively charged gold
nanohybrids with reproducible mean size. These findings may be
further utilized for the controlled synthesis of aqueous
dispersions and solid assemblies of noble-metal NPs with
hierarchical structure and tunable properties. Finally, the
synthesis of biosurfactant/polymer-coated NPs in the future
may lead to novel nanocomposites with potential biomedical
applications.

■ METHODS
Materials. The sodium dodecyl sulfate and sodium tetradecyl

sulfate (SDS and STDS, Sigma-Aldrich, ≥98.0%) samples were
recrystallized twice from ethanol. The cmc of SDS and STDS in
water was found to be 8.1 and 1.9 mM, respectively, at 25.0± 0.1
°C from conductivity measurements. The branched poly-
(ethyleneimine) (PEI, Sigma-Aldrich) sample had a mass
averaged molar mass of 25 kDa, with an approximate 1:2:1
ratio of the primary, secondary, and tertiary amine groups.28

Ultrapure water (Milli-Q) was used for the preparation of the
solutions.
Solution Preparation Methods. The aqueous solutions of

HAuCl4 was added to poly(ethyleneimine) (PEI) solutions to
prepare a 20 mL mixture under continuous stirring with a
magnetic stirrer (1800 rpm). The final ethyleneimine (EI)
monomer and HAuCl4 concentrations were 1.2 and 0.2 mM,
respectively, resulting in a mixture with pH ≈ 4. In the
preliminary experiments, these mixtures were stored at room
temperature and analyzed by UV−vis spectroscopy for a week.
However, to achieve reproducible results and faster equilibration
with the added surfactants, in themajority of the experiments, the
mixtures were pretreated at 80°C for 2 h (immediately after their
preparation at room temperature). The as-prepared gold colloids
were stored at t = 25.0± 0.5 °C and used for further experiments
within 1 day. For the synthesis of PEI−Au/surfactant nano-
composites, two types of mixing methods, developed earlier for
PE/S systems,33,34 were used. During the so-called rapid-
mixing33,34 method, equal volumes (1.5 mL) of SDS or STDS
solution (at double their intended final concentration) and PEI-
capped gold NP dispersion were quickly mixed under continuous
stirring with a magnetic stirrer (1800 rpm). In the case of slow-
mixing method,34,35 the surfactant solution was added slowly,
drop-by-drop, to the PEI−Au dispersion of equal volume (1.5
mL) under continuous stirring with a magnetic stirrer. All of the
mixtures were made and stored at t = 25.0 ± 0.5 °C.
UV−Vis−NIR Spectroscopy. The formation of gold

nanoparticles was monitored by observing changes in the
absorption spectra at 25 °C. A Perkin-Elmer Lambda 1050
UV/vis/NIR spectrophotometer was used to record the spectra
in the 320−1000 nm wavelength interval with a path length of
1.00 cm. Because the detected absorbance values were negligible
in the near-IR region (see Figure S5 of the SI), the major part of
the measurements was carried out only in the UV−vis range of
the spectra.
Electrophoretic Mobility Measurements. The mean

electrophoretic mobility (uζ) of the gold/polymer/surfactant
nanocomposites was determined at 25.0 ± 0.1 °C, immediately
after solution preparation, using a Malvern Zetasizer Nano ZSP
instrument. The apparatus utilizes the M3-PALS technique to
determine the mean velocity of the PE/S complexes (vE) at a

given electric field strength (E), from the measured frequency
shift of the scattered light due to the movement of the particles.
The mean mobility values are derived from the uζ = vE/E
relationship. In the case of the transparent systems, the
measurements were repeated after 24 h, but no deviations
from the previously measured data were found within the
experimental error.

Dynamic Light-Scattering (DLS) Measurements. The
mean hydrodynamic size of the polyelectrolyte/surfactant
complexes was determined by dynamic light-scattering (DLS).
The experimental setup (Brookhaven Instruments) consisted of
a BI-200SM goniometer system and a BI-9000 AT digital
correlator using a Genesis MX488-1000 OPS laser (1 W). The
measurements were carried out at λ = 488 nm wavelength, θ =
90° scattering angle, and at 25.0 ± 0.1 °C for 24 h, as well as 2
weeks after the preparation of the systems. The CONTIN
analysis of the normalized electric field autocorrelation functions
revealed wide unimodal distributions of the nanocomposites in
the investigated composition range. The apparent mean diffusion
coefficient of the particles (Dapp) was derived from the second-
order cumulant analysis of the autocorrelation function and their
apparent mean hydrodynamic diameter (dH) was calculated on

the basis of the Einstein−Stokes relation: =
πη

D k T
dapp 3

B

H
, where T

is the temperature, k is the Boltzmann constant, η is the viscosity
of the medium, and dH is the diameter of the particle.
Occasionally, the Stokes diameters were also determined from
the DLS measurements carried out at θ = 175° scattering angle
by the backscattering utility of the previously described Malvern
Zetasizer Nano ZSP instrument using a 10 mWHe−Ne laser at λ
= 633 nm. In the investigated transparent concentration range,
the observed dH values were not dependent on the type of the
applied DLS setups. The turbid concentration range was only
monitored by the backscattering method because this technique
considerably suppresses the effect of multiple scattering.

Nanoparticle Tracking Analysis (NTA). For the determi-
nation of the mean size of the nanocomposites, the NTA
technology (Nanosight LM10) was also applied. Prior to
injecting the gold NP dispersions, the cell was cleaned by
isopropyl alcohol and dried by high-purity nitrogen jet. A laser
beam (40 mW, at λ = 642 nm) was passed through the sample
chamber and the motion of the particles in the path of this beam
was visualized using a microscope with a charge-coupled device
camera, operating at 30 frames/s. The videos were analyzed using
the NTA 3.1 software and the apparent diffusion coefficient of
the individual particles was calculated from their mean square

displacement, x y( , )
2
: =D x y

tapp
( , )

4

2

, where x and y are the two-

dimensional coordinates and t is the time of particle tracking. The
apparent diameter of the individual particles was calculated
according to the Einstein−Stokes equation. A unique feature of
the NTA technique is that the scattered intensity and the size of
the particles can be determined independently, and thus
nanoparticles with largely different refractive indices could be
distinguished. It should be noted, however, that no information
about the shape and structure of the particles can be resolved by
the NTA method in the investigated nanoscale range. In
addition, accurate tracking of the particles is only possible for
very dilute nanosystems with typical concentrations between 106

and 1010 particles/cm3. Therefore, the gold nanocomposite
dispersion was diluted 100-fold with polymer free surfactant
solution of the same analytical SDS or STDS concentration than
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that of the dispersion. These diluted systems were filtered
through 0.22 μm membrane filters before the measurements.
Transmission Electron Microscopy (TEM). The diluted

NPs were drop-dried on carbon-coated microgrids for the TEM
study. A Philips CM 20 (200 kV) microscope was used for the
conventional electron microscopy (bright field and dark field
images), whereas a JEOL 3010 (300 kV, point resolution: 0.17
nm) equipped with Gatan Tridiem electron energy loss
spectroscopy was used for high-resolution TEM investigations.
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(27) Köth, A.; Appelhans, D.; Prietzel, C.; Koetz, J. Asymmetric Gold
Nanoparticles Synthesized in the Presence of Maltose-Modified
Poly(Ethyleneimine). Colloids Surf., A 2012, 414, 50−56.
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