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Abstract

Some 76 years ago Paul Turán was the first to establish lower estimations of the
ratio of the maximum norm of the derivatives of polynomials and the maximum
norm of the polynomials themselves on the interval I := [−1, 1] and on the unit
disk D := {z ∈ C : |z| ≤ 1} under the normalization condition that the zeroes
of the polynomial all lie in the interval or in the disk, respectively. He proved
that with n := deg p tending to infinity, the precise growth order of the minimal
possible ratio of the derivative norm and the norm is

√
n for I and n for D.

Erőd continued the work of Turán and extended his results to several other
domains. The growth of the minimal possible ratio of the ∞-norm of the deriva-
tive and the polynomial itself was proved to be of order n for all compact convex
domains a decade ago.

Although Turán himself gave comments about the above oscillation question
in Lq norms, till recently results were known only for D and I. Here we prove that
in Lq norm the oscillation order is again n for a certain class of convex domains,
including all smooth convex domains and also convex polygonal domains having
no acute angles at their vertices.
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1. Introduction

1.1. The oscillation of a polynomial in maximum norm

At the turn of the 19th and 20th centuries, the first estimates of the deriva-
tive of a polynomial via the maximum of its values appeared. They were obtain
by V.Markov in 1889, for algebraic polynomials on an interval, by Bernstein and
M. Riesz in 1914, for trigonometric polynomials on [0, 2π] and algebraic polyno-
mials on the unit circle. In 1923, Szegő [52] obtained an estimate for a large class
of (not necessarily convex, but piecewise smooth) domains. Namely, if K ⊂ C

is a piecewise smooth simply connected domain, with its boundary consisting
of finitely many analytic Jordan arcs, and if the maximum of the outer angles
at the joining vertices of these arcs is1 β ∈ [π, 2π], then the domain admits a
Markov type inequality of the form ‖p′‖K ≤ cKn

β/2π‖p‖K for any polynomial p
of degree n. Here the norm ‖·‖ := ‖·‖K denotes sup norm over values attained
on K. This inequality is essentially sharp for all such domains. In particu-
lar, this immediately implies that for analytically smooth convex domains the
Markov factor is O(n). For the unit disk

D := {z ∈ C : |z| ≤ 1}

even the exact inequality is well-known:

‖p′‖
D
≤ n‖p‖

D
. (1)

This was conjectured, and almost proved, by Bernstein [9, 10]; for the first
published proof see [44]. Similarly, the precise result is also classical for the unit
interval

I := [−1, 1]

then we have Markov’s Inequality ‖p′‖
I
≤ n2‖p‖

I
, which is sharp2, see [34].

In 1939 Paul Turán started to study converse inequalities of the form

‖p′‖K ≥ cKn
A‖p‖K .

Clearly such a converse can only hold if further restrictions are imposed on
the occurring polynomials p. Turán assumed that all zeroes of the polynomials
belong to K. So denote the set of complex (algebraic) polynomials of degree
(exactly) n as Pn, and the subset with all the n (complex) roots in some set
K ⊂ C by Pn(K). Denote by Γ the boundary of K. The (normalized) quantity
under our study is the “inverse Markov factor” or “oscillation factor”

Mn,q(K) := inf
p∈Pn(K)

Mq(p) with Mq(p) :=
‖p′‖Lq(Γ)

‖p‖Lq(Γ)

, (2)

1If the domain is bounded, then for all directions it has supporting lines, whence there are
points where the outer angle is at least π.

2Note that in this case the outer angles at the break-points of the piecewise smooth bound-
ary are exactly 2π at each end.
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where, as usual,

‖p‖q : = ‖p‖Lq(Γ) :=

(∫

Γ

|p(z)|q|dz|
)1/q

, (0 < q <∞)

‖p‖K : = ‖p‖L∞(Γ) = sup
z∈Γ

|p(z)| = sup
z∈K

|p(z)|.

Theorem A (Turán, [56, p. 90]). If p ∈ Pn(D), then we have

‖p′‖
D
≥ n

2
‖p‖

D
. (3)

Theorem B (Turán, [56, p. 91]). If p ∈ Pn(I), then we have

‖p′‖
I
≥

√
n

6
‖p‖

I
.

Inequality (3) of Theorem A is best possible. Regarding Theorem B, Turán
pointed out by example of (1− x2)n that the

√
n order is sharp. Some slightly

improved constants can be found in [6] and [31], however, the exact value of the
constants and the corresponding extremal polynomials were already computed
for all fixed n by Erőd in [21].

Now we are going to describe results concerning Turán-type inequalities (2)
for general convex sets. To study (2) some geometric parameters of the convex
domain K are involved naturally. We write d := d(K) := diam(K) for the
diameter of K, and w := w(K) := width(K) for the minimal width of K. That
is,

d(K) := max
z′,z′′∈K

|z′ − z′′|,

w(K) := min
γ∈[−π,π]

(
max
z∈K

ℜ(zeiγ)−min
z∈K

ℜ(zeiγ)
)
.

Note that a (closed) convex domain is a (closed), bounded, convex set K ⊂ C

with nonempty interior, hence 0 < w(K) ≤ d(K) <∞.
The key to Theorem A was the following observation, which had already

been present implicitly in [56, the footnote on p. 93] and [21] and was later
formulated explicitly by Levenberg and Poletsky in [31, Proposition 2.1].

Lemma C (Turán). Assume that z ∈ ∂K and that there exists a disc DR =
{ζ ∈ C : |ζ − z0| = R} of radius R so that z ∈ ∂DR and K ⊂ DR. Then for
all p ∈ Pn(K) we have

|p′(z)| ≥ n

2R
|p(z)|. (4)

The proof of this is really easy, so let us recall it for completeness.
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Proof. As
p′

p
(z) =

∑
j

1

z − zj
and ℜ 1

1− ζ
≥ 1/2 (∀|ζ| < 1), if all zj ∈ DR,

then

R ·
∣∣∣∣
p′

p
(z)

∣∣∣∣ ≥ ℜ



(z − z0)

∑

j

1

z − zj





=
∑

j

ℜ z − z0
(z − z0)− (zj − z0)

=
∑

j

ℜ 1

1− zj−z0
z−z0

≥ n

2
.

Given this elementary observation, Levenberg and Poletsky found it worth-
while to formally define the crucial property of convex sets, necessary for drawing
such an easy and direct conclusion on the inverse Markov factors.

Definition 1. A set K ⋐ C is called R-circular, if for any z ∈ ∂K there exists
a disk DR of radius R, such that z ∈ ∂DR and DR ⊃ K .

Thus for any R-circular K and p ∈ Pn(K) at the boundary point z ∈ ∂K
with ‖p‖K = |p(z)| we can draw the disk DR and it follows

Theorem D (Erőd; Levenberg-Poletsky). For an R-circular K we have

‖p′‖K ≥ n

2R
‖p‖K (∀p ∈ Pn(K)) that is Mn(K) ≥ n

2R
.

There are many important examples ofR-circular compact sets and domains.
E.g. a union of two circular arcs, joining at a vertex of angle less than π, is
always R-circular with some R. Smooth convex closed curves, together with
the encircled convex domain K, with curvature exceeding κ > 0 are always R-
circular with R = 1/κ according to a classical theorem of Blaschke [11]. Further
extensions of the Blaschke Rolling Ball Theorem allows to realize R-circularity
of much more general convex curves γ.

Lemma E (Strantzen). Let the convex domain K have boundary curve Γ =
∂K and let κ > 0 be a fixed constant. Assume that the convex boundary curve Γ
(which is twice differentiable linearly almost everywhere) satisfies the curvature
condition Γ̈ ≥ κ almost everywhere. Then to each boundary point ζ ∈ ∂K there
exists a disk DR of radius R = 1/κ, such that ζ ∈ ∂DR, and K ⊂ DR. That is,
K is R = 1/κ-circular.

Proof. This result is essentially the far-reaching, relatively recent generaliza-
tion of Blaschke’s Rolling Ball Theorem by Strantzen. A reference for it is
Lemma 9.11 on p. 83 of [16]. For more details on this, as well as for some new
approaches to the proof of this generalization of the classical Blaschke Rolling
Ball Theorem, see [43].

Obviously, the above entails an order n oscillation result for all convex do-
mains with this a.e. condition on the curvature of the boundary curve. This
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leads us to the topic of Turán type oscillation problems for more general sets
and domains.

Drawing from the work of Turán, Erőd [21, p. 74] already addressed the
question: “For what kind of domains does he method of Turán apply?” Clearly,
by ”applies” he meant that it provides order n oscillation for the derivative.
Moreover, he introduced new ideas into the investigation – including the appli-
cation of Chebyshev’s Inequality (6) below – so clearly he did not simply pursue
the effect of Turán’s original methods, but was indeed after the right oscillation
order of general domains. In particular, he showed

Theorem F (Erőd, [21, p. 73]). Let 0 < b < 1 and let Eb denote the
ellipse domain with major axes [−1, 1] and minor axes [−ib, ib]. Then for all
p ∈ Pn(Eb) we have

‖p′‖ ≥ b

2
n‖p‖.

Moreover, he elaborated on the inverse Markov factors belonging to do-
mains with some favorable geometric properties.The most general domains with
M(K) ≫ n, found by Erőd, were described on p. 77 of [21].

Theorem G (Erőd). Let K be any convex domain bounded by finitely many
Jordan arcs, joining at vertices with angles < π, with all the arcs being C2-
smooth and being either straight lines of length < ∆(K), where ∆(K) stands
for the transfinite diameter of K, or having positive curvature bounded away
from 0 by a fixed constant κ > 0. Then there is a constant c(K), such that
Mn(K) ≥ c(K)n for all n ∈ N.

Note that this latter result of Erőd incorporates regular k-gons Gk for large
enough k, but not the square Q = G4, because the side length h of a square
is larger than the quarter of the transfinite diameter ∆: actually, ∆(Q) ≈
0.59017 . . .h, while for the regular k-gon of side length h we have

∆(Gk) =
Γ(1/k)√

π21+2/kΓ(1/2 + 1/k)
h

(see e.g. [38, p. 135]), so ∆(Gk) > h iff k ≥ 7. This implies Mn(Gk) ≥ ckn for
k ≥ 7.

In [19], Erdélyi proved order n oscillation for the square3 Q = G4, too. A
result of [40] also implied Mn(Gk) ≥ ckn for k ≥ 4, but still not for a triangle.

To deal with the flat case of straight line boundary arcs, Erőd involved
another approach, cf. [21, p. 76], appearing later to be essential for obtaining a
general answer formulated in Theorem I below, and playing an essential role in
many further developments, including ours here. Namely, Erőd quoted Faber

3Erdélyi also proves similar results on rhombuses, under the further condition of some
symmetry of the polynomials in consideration – e.g. if the polynomials are real, or odd. Note
also that his work on the topic preceded [41] and apparently was accomplished without being
aware of details of [21].
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[22] for the fundamental result of Chebyshev on the monic polynomial of minimal
norm on an interval. Since this approach will be extensively applied also in our
work, we summarized basic facts regarding this in the below Section 3.

For a few further examples, remarks and open problems regarding inverse
Markov factors for various classes of compact sets which are not necessarily
convex, see [31, 41, 42].

A lower estimate of the inverse Markov factor for any compact convex set
(and of the same order as was known for the interval) was obtained in full
generality only in 2002, see [31, Theorem 3.2].

Theorem H (Levenberg-Poletsky). If K ⊂ C is a compact, convex set,
d := diamK and p ∈ Pn(K), then we have

‖p′‖K ≥
√
n

20 diam(K)
‖p‖K .

Clearly, assuming boundedness is natural, since all polynomials have ‖pn‖K=
∞ when the set K is unbounded. Also, restricting ourselves to closed bounded
sets – i.e., to compact sets – does not change the sup norm of polynomials under
study, as all polynomials are continuous.

Recall that the term convex domain stands for a compact, convex subset of
C having nonempty interior. That is, assuming that K is a (bounded, closed)
convex domain, not just a compact convex set, means that we exclude only the
case of the interval, for which already Turán clarified that the order of oscillation
is precisely

√
n.

So in order to clarify the order of oscillation for all compact convex sets it
remains to clarify the order of oscillation for compact convex domains. The
solution of this general problem4 has been published in 2006, see [41].

Theorem I (Halász–Révész). Let K ⊂ C be any bounded convex domain.
Then for all p ∈ Pn(K) we have

‖p′‖K ≥ 0.0003
w(K)

d2(K)
n‖p‖K .

Remark 1. This indeed provides the precise order, for an even larger order
than n cannot occur, not for any particular compact set. Namely, let K ⊂ C

be any compact set with diameter d := diam(K). Then for all n there exists a
polynomial p ∈ Pn(K) of degree exactly n satisfying

‖p′‖ ≤ C′(K) n ‖p‖ with C′(K) := 1/ diam(K).

4Preceding this, an intermediate result of order n2/3 oscillation for all compact convex
domains has been worked out in [40] – in view of the later developments, this has not been
published in a journal.
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Indeed, considering a diameter [z0, w0] and the polynomial p(z) = (z − z0)
d,

the respective norm is ‖p‖∞ = dn while the derivative norm becomes ‖p′‖∞ =
ndn−1, both attained at w0 ∈ K.

So, this settles the question of the order, but not the precise dependence on the
geometry. However, up to an absolute constant factor, even the dependence on
the geometrical features of the domain was also clarified in [41].

Theorem J (Révész). Let K ⊂ C be any compact, connected set with diameter
d and minimal width w. Then for all n > n0 := n0(K) := 2(d/16w)2 log(d/16w)
there exists a polynomial p ∈ Pn(K) of degree exactly n satisfying

‖p′‖K ≤ C′(K)n‖p‖K with C′(K) := 600
w(K)

d2(K)
.

So, interestingly, it turned out that among all convex compacta only intervals
can have an inverse Markov constant of order

√
n, while domains with nonempty

interior have oscillation order n.
One may ask, how useful, how general these results are? One fundamental

area of potential applications is the theory of orthogonal polynomials. Badkov
[7, 8] applied Turán’s inequality (3) for estimations of polynomials orthogonal on
the circle with respect to a weight. It is well known that polynomials orthogonal
on a circle or on an interval (with respect to some weight there) have all their
zeros on the interval or inside the circle, respectively. That is, if Pn is the
nth orthogonal polynomail, then certainly we have Pn ∈ Pn(K) and the above
oscillation results apply.

Analogous phenomenon takes place in the case of a rectifiable curve or, more
generally, a compact set with a measure. The precise statements can be found
in [23, Satz III], [46], [18, §10.2], [54, Ch XVI, 16.2, (6)], [51].

The respective upper estimations, i.e. Bernstein-Markov type inequalities
were extensively studied under analogous constraints for the zeroes [20]. Since
the oscillation results of Turán type are also formulated under zero restrictions,
it is of interest to compare the upper and lower estimations of these derivative
norm estimates.

The first relevant result were asked about by Erdős and solved by Lax [30]:
this states that if the zeroes of a polynomial are all outside the unit circle, then

the classical Bernstein Inequality (1) can be improved to ‖p′‖D ≤ n

2
‖p‖D. For

further study of the topic of constrained Bernstein-Markov Inequalities we refer
the reader to [32, Theorem, p. 58], [20, 3] and the references therein.

This improvement by the factor 1/2 reminds us the Turán inequality: the
common extremal polynomial is indeed the boundary case pn(z) := zn− 1 (and
rotations of thereof). Note that here the Turán type restriction of p ∈ Pn(K)
does not allow any improvement: the extremal zn provides an oscillation of
exactly n in regard of the Bernstein Inequality. Therefore, this very first result
in constrained Bernstein-Markov Inequalities already prompts us to consider
classes of polynomials with taking the norm on one set, while restricting the
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location of zeroes to another one. Concretely, the above Lax result talks about
the class Pn(C\D), under the (maximum) norm on D (or on the boundary circle
∂D). Analogously, we can consider Pn(K) under the norm on another set L:
the respective oscillation factors we may denote by

Mn,L(K) := inf
P∈Pn(K)

M‖·‖L
(P ) with M‖·‖L

(P ) :=
‖P ′‖L
‖P‖L

,

with the norm ‖ · ‖L being the maximum norm5 taken on the set L.
In connection to the Turán topic, this has also been investigated at least

when the set L is a disk: L = DR = {z : |z| ≤ R}.
Malik [32] (R < 1) and Govil [28] (R > 1) showed that

Theorem K (Malik, Govil). For any R ≥ 0 we have

Mn,DR
(K) =

{
n

1+R , R ≤ 1,
n

1+Rn , R ≥ 1.

See also [1, 4, 36] and the references therein. However, apart from these
rather special choices of concentric disks, we have not found any result in the
literature for more general situations.

1.2. Pointwise and integral mean estimates of oscillation

There are many papers dealing with the Lq-versions of Turán’s inequality
for the (unit) disk D, the (unit) interval I, or for the period (one dimensional
torus or circle) T := R/2πZ (here with the understanding that we consider
real trigonometric polynomials, not complex polynomials). A nice review of the
results obtained before 1994 is given in [35, Ch. 6, 6.2.6, 6.3.1].

The story started by an obvious observation. Namely, already Turán himself
mentioned in [56] that on the perimeter of the disk D – and, as is easily observed,
the same way under conditions of Theorem A – actually a more general pointwise
inequality holds at all points of ∂D. Namely, for p ∈ Pn(K) we have

|p′(z)| ≥ n

2
|p(z)|, |z| = 1, (5)

and as a corollary, for any q > 0,

(∫

|z|=1

|p′(z)|q|dz|
)1/q

≥ n

2

(∫

|z|=1

|p(z)|q|dz|
)1/q

.

5Or, more generally, one may even consider Mn,‖·‖(K) := infP∈Pn(K) M‖·‖(P ) with

M‖·‖(P ) :=
‖P ′‖
‖P‖

being an arbitrarily fixed norm ‖ · ‖.
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In other words, the Turán result Theorem A extends to all norms on the perime-
ter, including all norms Lq(∂D), and we have for all polynomials p ∈ Pn(K)

‖p′‖Lq(∂D) ≥
n

2
‖p‖Lq(∂D), Mn,q(D) ≥

n

2
.

The same way, for R-circular domains the result of Theorem D extends as

‖p′‖Lq(∂K) ≥
n

2R
‖p‖Lq(∂K), Mn,q(K) ≥ n

2R
.

However, calculating the respective quantities for the function pn(z) := zn−1, it
turns out that this inequality is not the best (at least not for the most symmetric
choice pn), and the determination of the value of the precise constant, as well
as identifying the extremal functions, remains to be done.

A related question is to compare the maximum norm of p′ to the Lq norm
of p itself. In this regard, the exact constant is known from the work of Malik
in [33].

Theorem L (Malik). For the unit disc D and any 0 < q <∞ we have

‖p′‖D ≥
(

Γ(q/2 + 1)

2
√
πΓ(q/2 + 1/2)

)1/q
n

2
‖p‖Lq(∂D),

moreover, the inequality is the best possible, equality occurring precisely for all
azn + b with |a| = |b|.

Some other results comparing different norms were obtained by Saff and
Sheil-Small [47], Rubinstein [45], Aziz and Ahemad [4], Paul, Shah and Singh
[36].

In the paper [7, Cor. 11.1], another proof of the pointwise Turán inequal-
ity (5) is given. The proof is based on the properties of orthogonal polynomials
and the Christoffel function.

The classical inequalities of Bernstein and Markov are generalized for various
differential operators, too, see [2]. In this context, also Turán type converses
have been already investigated: namely, Akopyan [1] studied Turán-type in-
equalities in L2-norm on the circle for some generalization of the operator of
differentiation.

The estimation of the Lq norm, or of any norm including e.g. any weighted
Lq-norms, goes the same way if we have a pointwise estimation for all, (or for
linearly almost all), boundary points. Therefore, as above, we can formulate
e.g. the next result, see [42].

Theorem M . Assume that the boundary curve γ : [0, L] → Γ := ∂K of the
convex domain K satisfies at (linearly) almost all points the condition that it
has a curvature, not smaller than a given positive constant κ, i.e. γ̈ ≥ κ(> 0)
a.e.

Then for any norm ‖ · ‖, defined for some class of functions (including the

polynomials) on the boundary curve, we have ‖p′‖ ≥ n

2κ
‖p‖. In particular,

Mn,q(K) ≥ n

2κ
.
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In case we discuss maximum norms, one can assume that p(z) is maximal,
and it suffices to obtain a lower estimation of p′(z) only at such a special point
– for general norms, however, this is not sufficient. The above results work only
for we have a pointwise inequality of the same strength everywhere, or almost
everywhere. The situation becomes considerably more difficult, when such a
statement cannot be proved. E.g. if the domain in question is not strictly
convex, i.e. if there is a line segment on the boundary, then the zeroes of the
polynomial can be arranged so that even some zeroes of the derivative lie on
the boundary, and at such points p′(z) – even p′(z)/p(z) – can vanish. As a
result, at such points no fixed lower estimation can be guaranteed, and lacking
a uniformly valid pointwise comparision of p′ and p, a direct conclusion cannot
be drawn either.

This explains why the case of the interval I already proved to be much more
complicated for the integral mean norms.

In a series of papers [66, 67, 68, 69, 70], Zhou proved the inequality

(∫ 1

−1

|p(k)(x)|pdx
)1/p

≥ C(k)
p,q (n)

(∫ 1

−1

|p(x)|qdx
)1/q

,

in the case of k = 1 and 0 < p ≤ q ≤ ∞, 1− 1/p+ 1/q ≥ 0 with the constant

C
(1)
p,q (n) = cp,q (

√
n)

1−1/p+1/q
.

The best possible constants C
(k)
p,q (n) were found by Babenko and Pichugov [5]

for p = q = ∞, k = 2, by Bojanov [12] for 1 ≤ p ≤ ∞, q = ∞, 1 ≤ k ≤ n, and
by Varma [60] in the case of p = q = 2, k = 1.

Exact Turán-type inequalities for trigonometric polynomials in different Lq-
metrics on T were proved in [5, 6, 13, 57, 58, 29].

Other inequalities on I, D, the positive semiaxes, or on T in various weighted
Lq-metrics can be found in [59, 61, 63, 71, 29, 62].

As said above, we also have a direct result for R-circular domains, and R-
circularity could be ascertained by some conditions on the curvature. However,
apart from these, for general domains, the situation was much less clear. Here
is the only result, known for convex domains in general, and formulated in [31].

Theorem N (Levenberg-Poletsky). Asume that K is a compact convex sub-
set of the complex plane. Let z ∈ ∂K and p ∈ Pn(K). Then there exists another
point ζ ∈ K, of distance |z − ζ| ≤ cK/

√
n, such that |p′(ζ)| ≥ c′K

√
n|p(z)|.

Clearly, this is too weak for proving anything on ‖p′‖Lq(∂K), for in general
ζ 6∈ ∂K, and in any case the full set of such ζ points can well be just a finite
point set (some ck/

√
n net of the boundary).

To obtain something in the Lq(∂K) norm, we need to prove pointwise esti-
mates for much more points, essentially for the ”majority” of the points, with
the respective ζ points strictly lying on the boundary ∂K, and in fact essentially
we cannot allow ζ be different from z (and so perhaps coincide for a large set
of points z). We undertake this, also aiming at stronger inequalities, than the√
n order in the above result.

10



2. Statement of new results

In the later parts of our paper we will prove a rather general main result,
the formulation of which, however, requires some preparations, i.e. certain
geometrical notions and definitions, to be developed first. Therefore, here we
give only the two main corollaries of the below Theorem 3, which provide us
the main motivation for the whole study.

Theorem 1. Let K ⋐ C be any smooth convex domain on the plane. Then
there exists a positive constant C = CK , such that we have Mn,q(K) > CKn for
all n ∈ N.

Recall that we use the terminology of being smooth in the sense that the
boundary curve γ : R → ∂K is differentiable – i.e. it has a (unique) tangent at
each points. In case of convex domains this also implies that γ ∈ C1(R), but
still we did not assume γ to be C2(R), as is quite usual in (classical) convex
geometry.

That the very nature of this result does not really depend on smoothness, is
well seen from our next result.

Theorem 2. Let K ⋐ C be any convex (non-degenerate, i.e. bounded and with
nonempty interior) polygon on the plane, with no acute angles at its vertices.
Then there exists a positive constant C = CK , such that we have Mn,q(K) >
CKn for all n ∈ N.

Remark 2. For the infinity norm case, clarifying the situation (the order of
growth ofMn(Gk)) for regular k-gons took long. Here we see that for any k ≥ 4
the regular k-gon has Mn(Gk) > Ckn. However, the regular (and any other)
triangle, necessarily having some acute angles, turns to be an entirely different
case, the treatment of which requires further ideas, too. We hope to return to
that in a subsequent paper.

The organization of the material in the current work is as follows. Next we
summarize classical results on the Chebyshev constant and transfinite diameter,
and then we continue in the subsequent section by introducing a few geometrical
notions, necessary to the formulation of our further results.

In Section 5 we formulate and prove our main result, together with a certain
pointwise result of independent interest. The below Theorem 3 directly implies
both the above stated Theorems 1 and 2 as corollaries (which is seen from
Proposition 1 and Corollary 1), whence we may indeed say that Theorem 3 is
our main result in this paper.

Next, in Section 6 we prove that in rather general situations–and surely
for all convex domains–the investigated oscillation factor is at most a constant
times n, thus clarifying at least the order of growth (with the degree n) of this
factor for the domains discussed in our results.

Finally, in the concluding section we formulate our conjecture about the
general situation, and offer some further comments.
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3. Chebyshev estimates and transfinite diameter

In this section we summarize classical, yet powerful results going back to
Chebyshev.

Lemma O (Chebyshev). Let J = [u, v] be any interval on the complex plane
with u 6= v. Then for all k ∈ N we have

min
w1,...,wk∈C

max
z∈J

∣∣∣∣∣∣

k∏

j=1

(z − wj)

∣∣∣∣∣∣
≥ 2

( |J |
4

)k
. (6)

Proof. Lemma O is essentially the classical result of Chebyshev for a real in-
terval [17], cf. [37, Part 6, problem 66], [15, 35]. In fact, it holds for much
more general situations, e.g. it remains valid in exactly the same form for arbi-

trary J ⋐ R. Indeed, according to [49] we have min
w1,...,wk∈R

max
z∈J

∣∣∣
∏k
j=1(z − wj)

∣∣∣ ≥
2 cap(J)k, which can be combined with the below result of Pólya, see Lemma
Q, to get the statement.

Recall the well-known basic facts about the Chebyshev constant, the trans-
finite diameter ∆(K), and logarithmic capacity cap(K), which coincide for all
K ⋐ C, as is known from Fekete [24] and Szegő [53]. That also means a weak
(i.e. logarithmic) asymptotical equality of the quantities on the two sides of (6).
However, even the same result as in (6) holds true (perhaps with the unimpor-
tant loss of the factor 2) even for complex compacta. We will use such type of
estimations in the following form.

Lemma P (Faber, Fekete, Szegő). Let M ⋐ C be any compact set. Then
for all k ∈ N we have

min
w1,...,wk∈C

max
z∈M

∣∣∣∣∣∣

k∏

j=1

(z − wj)

∣∣∣∣∣∣
≥ ∆(M)k = cap(M)k, (7)

where ∆(M) = cap(M) is the transfinite diameter and the capacity of the setM .

Proof. Regarding the formulation in Lemma P cf. Theorem 5.5.4. (a) in [38] or
[48, (3.7) page 46]. Historically, it was first Fekete who proved the inequality and
also (with say R = C) that the left and middle quantities are–logarithmically,
i.e. after normalizing by taking kth roots–asymptotically equivalent. Moreover,
he showed that in cases when C \ M is a simply connected domain (if con-
sidered with the point ∞), then the limits of the kth roots also agree to the
so-called conformal radius ρ(M). Before that, Faber [22] has already proved

maxz∈M

∣∣∣
∏k
j=1(z − wj)

∣∣∣ ≥ ρ(M)k for M a Jordan domain bounded by a closed

analytic Jordan arc. Following Fekete, Szegő showed that the condition of C\M
being simply connected is not necessary, and that with the so-called Robin con-
stant γ(M) (equivalent to capacity), the stated inequalities hold true, moreover,
γ(M) = ∆(M) in general for all compacta.
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Lemma Q (Pólya, see [26][Ch. VII]). Let J ⊂ R be any compact set, |J |∗
be its outer Jordan measure. Then |J |∗ ≤ 4∆(J).

Proof. See [26, Ch. VII])6. To reflect back to the above discussion of general
forms of Chebyshev’s Lemma O, recall that ∆(J) = cap(J).

There are several known estimates for capacities and the so-called “Widom
factors” (see e.g. [27, 64] and the references therein) between Chebyshev con-
stants and corresponding powers of the transfinite diameter: for us, these more
precise estimates are not needed, as (7) suffices. There are some known explicit
computations or comparisons and estimates of capacities from other geometric
parameters of the respective sets: a few most basic ones can be found e.g. in
the survey of Ransford [39] or in his book [38, page 135].

One remarkable fact to be noted also here is that the values of the diameter
and the transfinite diameter are within a constant factor: for any compact
set E ⊂ C we have ∆(E) ≤ diam(E)/2, and if E is also connected, then
∆(E) ≥ diam(E)/4, too, the disk D and the interval I showing sharpness of
both estimates, respectively. See e.g. [39, §1.7.1.]7.

4. Some geometrical notions and definitions

We start with a convex, compact domain K ⋐ C. Then its interior intK 6= ∅
and K = intK, while its boundary Γ := ∂K is a convex Jordan curve. More
precisely, Γ = R(γ) is the range of a continuous, convex, closed Jordan curve γ
on the complex plane C.

If the parameter interval of the Jordan curve γ is [0, L], then this means, that
γ : [0, L] → C is continuous, convex, and one-to-one on [0, L), while γ(L) = γ(0).
While this is the most used setup for curves, we need the two, essentially equiv-
alent interpretations i.e. this compact interval parametrization and also the
periodically extended interpretation with γ(t) := γ(t − [t/L]L) defined period-
ically all over R. If we need to distinguish, we will say that γ : R → C and
γ∗ : T := R/LZ → C, or equivalently, γ∗ : [0, L] → C with γ∗(L) = γ∗(0).

Curves can be parameterized equivalently various ways. However, in this
work we will restrict ourselves to parametrization with respect to arc length:
as the curves are convex, whence rectifiable curves, they always have finite arc
length L := |γ∗|, and parametrization is possible with respect to arc length.
Whence also

L := |γ∗| = |Γ|
is the arc length of Γ, i.e. the perimeter of K. The parametrization γ : R → ∂K
defines a unique ordering of points, which we assume to be positive in the
counterclockwise direction, as usual.

6Of course, the Lebesgue measure |J | of the compact set J ⋐ R does not exceed its outer
Jordan mesure |J |∗

7However, note a disturbing misprint in this fundamental reference: in §1.7.2. the first two
displayed formulas must be corrected to have the opposite direction of the inequality sign.
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This has an immediate consequence also regarding the derivative, which
must then have |γ̇| = 1, whenever it exists, i.e. (linearly) a.e. on [0, L) ∼ T.
Since γ̇ : R → ∂D, we can as well describe the value by its angle or argument:
the derivative angle function will be denoted by α := arg γ̇ : R → R. Since,
however, the argument cannot be defined on the unit circle without a jump,
we decide to fix one value and then define the extension continuously: this way
α will not be periodic, but we will have rotational angles depending on the
number of (positive or negative) revolutions, if started from the given point.
With this interpretation, α is an a.e. defined nondecreasing real function with
α(t) − 2π

L t periodic (by L) and bounded. With the usual left- and right limits
α− and α+ are the left- resp. right-continuous extensions of α. The geometrical
meaning is that if for a parameter value τ the corresponding boundary point is
γ(τ) = ζ, then [α−(τ), α+(τ)] is precisely the interval of values β ∈ T such that
the straight lines {ζ + eiβs : s ∈ R} are supporting lines to K at ζ ∈ ∂K. We
will also talk about half-tangents: the left- resp. right- half-tangents are the
half-lines emanating from ζ and progressing towards −eiα−(τ) and eiα+(τ), resp.
The union of the half-lines {ζ + eiβs : s ≥ 0} for all β ∈ [α+(τ), π + α−(τ)] is
precisely the smallest cone with vertex at ζ and containing K.

We will interpret α as a multi-valued function, assuming all the values in
[α−(τ), α+(τ)] at the point τ . Restricting to the periodic (finite interval) inter-
pretation of γ∗ : [0, L) → C, without loss of generality we we may assume that
α∗ := arg(γ̇∗) : [0, L] → [0, 2π]. In this regard, we can say that α∗ : R/LZ → T

is of bounded variation, with total variation (i.e. total increase) 2π–the same
holds for α : R → R over one period.

The curve γ is differentiable at ζ = γ(θ) if and only if α−(θ) = α+(θ); in
this case the unique tangent of γ at ζ is ζ + eiαR with α = α−(θ) = α+(θ).

It is clear that interpreting α as a function on the boundary points ζ ∈ ∂K,
we obtain a parametrization-independent function: to be fully precise, we would
have to talk about γ̃, γ̃∗, α̃ and α̃∗. In line with the above, we consider α̃, resp
α̃∗ multivalued functions, all admissible supporting line directions belonging to
[α−(τ), α+(τ)] at ζ = γ(τ) ∈ ∂K being considered as α̃-function values at ζ. At
points of discontinuity α± or α∗

± and similarly α̃± resp. α̃∗
± are the left-, or

right continuous extensions of the same functions.
A convex domain K is called smooth, if it has a unique supporting line at

each boundary point of K. This occurs iff α± := α is continuously defined for
all values of the parameter. For a supporting line ζ + eiβR the outer normal
vector is ν(ζ) := eiβ−iπ/2, and the (outer) normal vectors are precisely the
vectors ν satisfying 〈z − ζ,ν〉 ≤ 0 (∀z ∈ K) with the usual R2 scalar product,
or equivalently, ℜ ((z − ζ)ν)) ≤ 0.

For obvious geometric reasons we call the jump function Ω := α+ − α−

the supplementary angle function. This is identically zero almost everywhere
(and in fact except for a countable set), and has positive values such that the
total sum of the (possibly infinite number of) jumps does not exceed the total
variation of α, i.e. 2π.

In the sequel we use some local quantities like the local depth hK(ζ) at
boundary points ζ ∈ ∂K. Take any boundary point ζ ∈ ∂K, and a supporting
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line at ζ to K with corresponding normal vector ν = ν(ζ). It is easy to see8

that at least for some normal directions ν we have

ζ + νR ∩K = [ζ, ζ − hν] (8)

with some positive length h (unless intK = ∅). Further, it is also easy to see
that the supremum of all such positive lengths in (8) is actually a maximum.
This maximum is denoted as h := hK(ζ), and is called the (local) depth of K at
ζ.

With this, we can as well define the (global) depth of the convex domain K.

Definition 2. A convex body K has depth hK with

hK := inf{hK(ζ) : ζ ∈ ∂K} . (9)

The convex domain K has fixed depth or positive depth, if hK > 0.

Note that this quantity is not always a minimum, and it can as well be zero,
as e.g. in case of the regular triangle.

It is easy to see that if a convex domain has a boundary point ζ ∈ ∂K, where
Ω(ζ) > π/2, then the convex domain cannot have positive depth. On the other
hand there cannot be too many of such boundary points, since the sum of the
jumps of α± at these points cannot exceed the total variation 2π of α±. So there
exist at most three points with obtuse supplementary angles, and at most four
points with Ω(ζ) > 2π/5, etc.. It is then clear that the largest supplementary
angle exists as the maximum of the nonnegative function Ω over the boundary
∂K. We can thus define

Definition 3. For any convex domain K the largest supplementary angle is

ΩK := max
∂K

Ω = max
∂K

(α+ − α−).

Note that ΩK = 0 if and only if K is smooth. Also note that the Szegő type
outer angle of a say convex domain is ΩK + π.

Finally, let us introduce a version of the modulus of continuity function of
the normal direction(s) argν(ζ) (with respect to distance, i.e. chord length)
on the boundary ∂K. Let dT(θ, τ) denote the usual distance on the circle, i.e.
the distance of θ − τ from 2πZ. Then the modulus of continuity of the normal
vectors of the boundary is defined the following parametrization–free way.

8For if with some normal ν and the normal line ℓ := ζ+νR we have ℓ∩K = {ζ}, then (due
to convexity) there cannot be interior points on both sides of this line; the same being true
for the supporting line t := ζ+ iνR, we find that intK 6= ∅ lies strictly inside one quadrant of
the plane, whence by the fatness of K also K is in one closed quadrant, and so to any interior
point w ∈ intK the direction of ζ −w is normal to K at ζ.
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Definition 4. The modulus of continuity of the (say: outer) normal directions
of the boundary of K is defined for 0 ≤ t < w as

ωK(t) := sup {dT(argν, argµ) :

ν, µ are normal to K at z, z′ resp., |z − z′| ≤ t} . (10)

This is equivalent to the modulus of continuity of the tangent directions α(τ)
with respect to chord length or distance, i.e.

ωK(t) = sup{dT(α∗(σ), α∗(τ)) : τ, σ ∈ R, |γ(σ) − γ(τ)| ≤ t}.
Further, ωK can be expressed the following (also parametrization-free) way, too:

ωK(t) = sup{dT(α̃∗(ζ), α̃∗(ζ′)) : ζ, ζ′ ∈ ∂K, |ζ − ζ′| ≤ t}.
Observe that by the definition of the width w = wK , precisely when the chord

length reaches w, then there are points z, z′ ∈ ∂K with parallel supporting lines,
i.e. with opposite normals, achieving dT(ν,ν

′) = π. From that distance on, any
definition of the modulus of continuity can only say that ωK(t) = π for t ≥ w .

Note that ωK : [0, w) → [0, π) is a nondecreasing function with possible
jumps: in particular, if ω := ωK is not continuous, then ωK(0) = ΩK is the
very first jump (compared to 0), and all jumps have to be between zero and
ΩK . Now defining 9

ω−(0) := 0, ω+(w) = ωL(w) = π,

ω−(t) := sup
s<t

ωK(s) = lim sup
s→t−0

ωK(s) = lim
s→t−0

ωK(s),

and
ω+(s) := inf

s>t
ωK(s) = lim inf

s→t+0
ωK(s) = lim

s→t+0
ω(s) (s < w),

we can consider the modulus of continuity function a multivalued function with
ωK(s) = [ω−(s), ω+(s)]. This way ωK becomes a surjective mapping from
[0, w] → [0, π] (the full set of possible distances on T) and, again allowing
a multivalued interpretation, its inverse can be defined as ω−1(σ) := {s ∈
[0, w] : ωK(s) = σ}–again, in general, a multivalued function mapping [0, π]
surjectively to [0, w].

A version of the modulus of continuity on the boundary curve can also be
considered according to arc length, or, equivalently, according to parametriza-
tion: this will be the ordinary modulus of continuity of the composite function
ν ◦ γ, interpreting ν as a multi-valued function assuming all admissible values
of outer normal directions; equivalently, the modulus of continuity of α = α̃ ◦ γ
on R. Note that–as we parameterize the boundary curve γ with respect to
arc length–the arc length of the subarc of γ in the counterclockwise direction
between points corresponding to parameter values τ < σ is

∫ σ
τ
|dγ| = τ − σ.

9Observe that now, because we have defined ωK with the ≤ sign, we in fact have ωK(t) =
ω+(t); defining the modulus of continuity with respect to the condition |ζ − ζ′| < t would
provide ω−(t).
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Definition 5. The modulus of continuity of normal directions (or tangent di-
rections) with respect to arc length on the boundary curve is

ωγ(s) := ω(ν ◦γ; s) = ω(α̃◦γ; s) = ω(α; s) = sup{α(σ)−α(τ) : τ ≤ σ ≤ τ+s}.

Note that ω(α, s) : [0, L) → [0, 2π) monotonically. The main difference
between the two definitions is lying not in the different measurement of the
distances between the points– which is already an essential difference, though–
but in the fact that the distance of values is measured not in T, but in R, thus
allowing ωγ to increase all over [0,∞). Still, after reaching the period L there
is not much point to consider this modulus, for there we only add the number
of full revolutions times 2π, i.e. we have ωγ(t) = ωγ(t− [t/L]L) + [t/L]2π.

5. A result for domains with positive depth

5.1. Statement of the result

The aim of this section is to prove the following theorem on the order of the
oscillation in Lq norm for a class of domains defined by the property of having
positive depth.

Theorem 3. Assume that K ⋐ C is a convex domain with positive depth hK >
0. Then for any n ∈ N and p ∈ Pn(K) it holds

‖p′‖q,K ≥ h4K
3000d5

n ‖p‖q,K . (11)

Remark 3. Note the generality of the statement. E.g. a regular k-gon Gk is
always of positive depth from k = 4 on; the only (and essential) exception being
the regular triangle. More generally, a polygonal domain has fixed depth iff it
has no acute angles.

The whole section is devoted to the proof of this result. In the course of
proof we will work out various intermediate steps and results, which will be
used later.

In Section 6 we will show that this order of oscillation is again the best
possible, like in the case q = ∞, thus settling the question of the order of the
oscillation in Lq norms for all these domains.

Before starting the main argument, we first give a geometrical discussion of
the property that hK > 0.

5.2. A characterization of fixed depth

We have already remarked that ΩK > π/2 implies that hK = 0. When
ΩK = π/2, the situation is a little ambiguous.
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Remark 4. Observe that in particular in case ΩK = π/2 a rectangle R has
positive depth, but the upper semi-disk U := {z : |z| ≤ 1 and ℜz ≥ 0}
admits zero depth. This is easy to see directly, observing that local depths
of boundary points on the diameter tend to zero as the points approach the
vertices at ±1. In particular, in case ΩK = π/2, both hK > 0 and hK = 0 can
occur.

Still, a precise characterization of positive depth is possible. The following
must be well-known in geometry, but finding no reference to that, we decided
to describe this characterization also here.

Proposition 1. Let K be any convex domain. Then there are the following
cases.

(i) If for all boundary points the supplementary angles Ω(ζ) admit Ω(ζ) < π/2,
– that is, if ΩK < π/2 – then the domain K has a fixed positive depth
hK > 0.

(ii) If for some boundary point(s) the supplementary angle(s) satisfy Ω(ζ) >
π/2, then hK = 0.

(iii) If ΩK = π/2, but at each boundary point with Ω(ζ) = π/2 the tangent
angle function α is constant α−(ζ) resp. α+(ζ) in a small left, resp. right
neighborhood of ζ – i.e. if the point ζ ∈ ∂K is a vertex, with two orthogonal
straight line segment pieces of the boundary joining at ζ – then the domain
K has a fixed positive depth hK > 0.

(iv) If ΩK = π/2, but there exists a maximum point of Ω, in any neighborhood
of which either the left or the right neighboring piece of the boundary fails
to be a straight line segment, then hK = 0.

Corollary 1. If K is smooth–i.e. ∂K is a smooth convex Jordan curve–then
hK > 0.

Proof. First note that Cases (i)–(iv) indeed give a full list of possibilities.
Let us first consider Case (i). We argue by contradiction. Take any boundary

points ζn with corresponding normal vectors νn and satisfying

ζn + νnR ∩K = [ζn, ζn − hnνn] . (12)

with hn < 1/n. Let ωn := ζn − hnνn and any corresponding outer normal
vector be µn. After selecting a subsequence, if necessary, by compactness we
may assume that these points and vectors converge. Hence let ζn → ζ, νn → ν

and µn → µ. Since hn → 0, it follows that ωn → ζ, too.
Observe that for any point z ∈ K normality of νn at ζn means 〈νn, z − ζn〉 ≤

0, and normality of µn at ωn means 〈µn, z − ωn〉 ≤ 0, hence by the above
convergence we must have 〈ν, z − ζ〉 ≤ 0, and also 〈µ, z − ζ〉 ≤ 0. In other
words, both ν and µ are normal vectors at ζ ∈ ∂K.

However, ζn − ωn = hnνn is parallel to νn, hence normality of µn at ωn
yields 〈µn,νn〉 ≤ 0. Again by continuity this entails 〈µ,ν〉 ≤ 0, that is, the
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angle between these two normal vectors is at least π/2. Clearly then Ω(ζ) ≥ π/2,
a contradiction to our assumption. This concludes the proof of Case (i).

Case (ii) is obvious, and even (iv) can be proved easily, but we give the proof
here. So let us take a point ζ ∈ ∂K with the given property, and assume, as we
may, that ζ = 0, and α−(ζ) = 3π/2, and α+(ζ) = 0, i.e., the two extremal half-
tangents at ζ are the (positively directed) imaginary axis and the (positively
directed) real axis. Also let us assume e.g. that no non-degenerate segment
piece of the positive imaginary half-axis (i.e. the left half-tangent) belong to
the boundary.

Put a := max{ℜz : z ∈ K}. It can happen that there are several points
of K where this maximum is attained; however, for 0 the condition that the
imaginary axis is a tangent and that no straight line piece of it belongs to K,
implies that K ∩ iR = {0}. Consider now any x ∈ [0, a], and the intersection
{ℜz = x} ∩K. This vertical segment has to be above (not below) the positive
real axis, since R is a tangent with α+(0) = 0, and so we can write {ℜz =
x} ∩ K = [x + ig(x), x + if(x)] with two continuous, nonnegative functions
0 ≤ g ≤ f satisfying g(0) = f(0) = 0 and g convex, f concave (i.e. ”convex
from below”), both continuous and in particular limx→0+0 f(x) = 0, moreover,
both g and f are nondecreasing in a right neighborhood of 0.

Now let us show that at z := x + ig(x) the normal vector ν has angle
argν ∈ [3π/2, 2π). First, 0 ∈ K implies that 〈−z,ν〉 ≤ 0, entailing arg ν ≥
arg(−z) + π/2 = arg z + 3π/2 ≥ 3π/2. Then again, arg ν achieves 2π only
when the boundary point is in rightmost position (i.e. of maximal real part
value) in K, and thus argν ∈ [3π/2, 2π) for 0 < x < a. So these mean that the
normal line z+νR to z = x+ ig(x) intersects the boundary of K at some point
z′ := x′ + if(x′) with some 0 ≤ x′ ≤ x, and thus f(x′) ≤ f(x) → 0 implies that
the length of intersection of K and this normal line tends to 0 together with x.
This completes the proof of hK = 0.

Finally, Case (iii) is again easy to prove. First, a little thought shows that
the condition is equivalent to the statement that the modulus of continuity
satisfies ω+(0) = π/2 and ωK(t) = π/2 for all 0 ≤ t ≤ t0 with some positive
value 0 < t0 < w.

So we prove now that if ω(t0) = π/2, or, more generally, if π/2 ∈ ω(t0)
for some t0 > 0, then for any boundary point z ∈ ∂K and any normal line
m := z + νR to K at z, the length of the intersection of m ∩K = [z, z′] is at
least t0 (and so even hK ≥ t0 > 0).

Obviously, the chord vector between z and z′ is in inner normal direction,
whence has an angle (argument) exactly π/2 above the angle of the positively
directed tangent, orthogonal to ν at z.

Assume, as we may, that z = 0, z′ = iy′ (with some y′ > 0) and m is just the
imaginary axis. By definition of the width w = w(K), as w > t0, there exists a
point z0 = x0 + y0 ∈ K with y0 ≥ w: if x0 = 0, then we would have z0 = iy0 ∈
[z, z′] = [0, y′] and we would get y′ ≥ w > t0, concluding the argument. So it
remains to deal with 0 < y′ < w and x0 6= 0. Let e.g. x0 < 0: then the three
points z, z′, z0 cut the boundary Γ of K into three parts, each of them extending
between two of them and not containing the third one, and following in the
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counterclockwise direction as z ≺ z′ ≺ z0 and Γ(z, z′) ≺ Γ(z′, z0) ≺ Γ(z0, z).
According to these normalizations, α(z′) ≤ arg(z0−z′) ∈ (π/2, π), for the latter
chord vector is x0 + i(y0 − y′) with x0 < 0 and y0 ≥ w > y′. It follows that
for any further points z∗ ∈ Γ(z′, z0) we necessarily have π ≥ α(z∗) ≥ α+(z

′).
Note that (unless z∗ = z′) we cannot have z∗ ∈ m, but only ℜz∗ < 0 and
arg(z∗ − z) > arg(z′ − z) = π/2. Whence π ≥ α(z∗) ≥ arg(z∗ − z) > π/2, so
that ωK(|z∗ − z|) > π/2. As now z∗ can be arbitrarily close to z′, for any value
t∗ > |z′ − z| = y′ we have ωK(t∗) > π/2, i.e., any such t∗ must satisfy t∗ > t0.
So if t∗ > y′ then we have t∗ > t0, whence |z′ − z| = y′ ≥ t0, and hK ≥ t0, as
needed.

Proposition 2. For a convex, compact domain K we have hK > 0 if and only
if the modulus of continuity function has ωK(τ) ≤ π/2 for all 0 ≤ τ ≤ t with
some t > 0.

Furthermore, with the above extended interpretation of the inverse function
of the modulus of continuity function, we have hK ≥ µK := maxω−1(π/2).

Proof. Consider the four cases in the above Proposition 1. A little thought
shows that Case (i) is equivalent to state ωK(τ) < π/2 (0 ≤ τ ≤ t) for sufficiently
small t > 0, and (iii) is exactly the case when ωK(τ) = π/2 (0 ≤ τ ≤ t) for
sufficiently small t > 0. So these cases with hK > 0 are such that ωK(τ) ≤ π/2
for all 0 ≤ τ ≤ t with some t > 0. Moreover, Case (ii) means ωK(0) > π/2,
and Case (iv) means that ωK(0) = π/2, but for all τ > 0 already ωK(τ) > π/2,
whence the cases with hK = 0 are the ones with ωK(τ) > π/2 for all τ > 0.
This proves the first assertion of the Proposition.

As for the last assertion, there is nothing to prove for µK = 0, so we may
take µK > 0, meaning that there are points 0 < t0 ∈ ω−1

K (π). Recalling the
last argument of the proof of the previous Proposition 1, we can then see that
for any such t0 also hK ≥ t0 holds. Taking t0 := maxω−1

K (π/2) thus provides
hK ≥ µK , too.

Remark 5. To see that the inequality hK > ω−1
K (π/2) is possible, it suffices to

consider a regular hexagon G6 of side length h, say. Then hK(G6) = 2h, while
ω−(h) = π/3, ω+(h) = 2π/3 and ω−1

K (π/2) = {h}, µK = h.

5.3. Technical preparations for the investigation of Lq(∂K) norms

First, we will prove a Nikolskii-type estimate, which is similar to the well-
known analogous inequality on the real line, found in the book of Timan [55,
4.9.6 (36)].

Lemma 1. For any polynomial of degree at most n we have that

‖p‖Lq(∂K) ≥
(

d

2(q + 1)

)1/q

‖p‖L∞(∂K) n
−2/q. (13)
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Proof. We first prove a Bernstein-Markov type estimate in the maximum
norm. Let z ∈ K be arbitrary. Then we always have a chord J := [z, z∗] ⊂ K
of length at least d/2, for we can take any diameter I of K, and for z∗ take the
endpoint of I, which is situated farthest from z–which is of course at least of
distance d/2 from z. Applying Markov’s Inequality on J , we obtain

|p′(z)| ≤ n2

|J |/2‖p‖L∞(J) ≤
4n2

d
‖p‖L∞(∂K).

Therefore, it holds

‖p′‖L∞(∂K) ≤
4

d
n2‖p‖L∞(∂K). (14)

Consider now a point z0 = γ(t0) ∈ ∂K, where ‖p‖∞ is attained. Then –
using also convexity of K – at each point z ∈ K we have

|p(z)| =
∣∣∣∣p(z0) +

∫ z

z0

p′(ζ)dζ

∣∣∣∣ ≥ ‖p‖∞ − |z − z0|‖p′‖∞

≥ ‖p‖∞
(
1− 4|z − z0|

d
n2

)
.

(15)

Now, from (15) we can estimate the q-integral of p as follows. Take r0 = d/(4n2),
U := D(z0, r0) and Γ0 := Γ∩U . More precisely, in case there are several pieces
of arcs in this intersection (which can only happen for small n, though) then
we take only one arc which passes through the point z0 and extends to the
circumference of U in both directions – and drop the remaining pieces. Let us
denote the points, falling on the circumference ∂U right preceding and following
z0 = γ(t0) on γ as z± := γ(t±). Recalling that γ is parameterized according
to arc length, and writing for the parametrization γ : [t−, t+] → Γ0, and so in
particular γ− : [t−, t0] → Γ− and γ+ : [t0, t+] → Γ+, we get

∫

γ+

|p|q|dγ| ≥
∫ t+

t0

(
1− 4|γ(t)− z0|

d
n2

)q
‖p‖q∞dt

≥ ‖p‖q∞
∫ t+

t0

(
1− 4|γ[t0,t]|

d
n2

)q

+

dt

= ‖p‖q∞
∫ t0+

d

4n2

t0

(
1− 4(t− t0)

d
n2

)q
dt = ‖p‖q∞

d

4n2

∫ 1

0

(1− s)
q
ds

and similarly for γ−, whence
∫
γ0

|p|q|dγ| ≥ ‖p‖q∞
d

2(q + 1)n2
. As a result, we get

‖p‖Lq(∂K) ≥
(∫

γ0

|p|q|dγ|
)1/q

≥
(

d

2(q + 1)

)1/q

‖p‖∞n−2/q,

and the result follows.
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Next, let us define the subset H := Hq
K(p) ⊂ ∂K the following way.

H := Hq
K(p) := {ζ ∈ ∂K : |p(ζ)| > cn−2/q‖p‖∞}, c := (8π(q + 1))

−1/q
.

(16)
Then we can restrict ourselves to the points of H and neglect whatever happens
for points belonging to

Hc = Γ \ H.
Indeed, Γ is contained in a disk of radius d around any point of K, whence by
the well-known property10 of convex curves, L := |γ| ≤ 2πd, and the above
Lemma 1 furnishes

∫

Γ\H

|p(z)|q|dz| ≤ 2πdcq

n2
‖p‖q∞ ≤ 4π(q + 1)cq‖p‖qq =

1

2
‖p‖qq.

That leads to
∫

H

|p|q|dγ| =
∫

γ

|p|q|dγ| −
∫

γ\H

|p|q|dγ| ≥ ‖p‖qq −
1

2
‖p‖qq ≥

1

2
‖p‖qq.

Therefore we can restrict to (lower) estimations of |p′(ζ)| on the set H where p
is assumed to be relatively large (compared to its maximum norm), so that we
can assume that

log
‖p‖∞
|p(ζ)| ≤ log(c−1n2/q) =

log(1 + q)

q
+

log (8π)

q
+

2

q
logn ≤ log(16π)+ 2 logn.

for all q ≥ 1 and n ≥
√
16π, i.e. already for n ≥ 8. Summing up we have

Lemma 2. Let H ⊂ ∂K be defined according to (16). Then for all p ∈ Pn we
have ∫

H

|p|q ≥ 1

2
‖p‖qLq(∂K). (17)

Furthermore, for any point ζ ∈ H, and for any p ∈ Pn(K) we also have

log
‖p‖∞
|p(ζ)| ≤ log(16π) + 2 logn (∀n ∈ N). (18)

For relatively small values of the degree n we may get better constants if
using an entirely different argument, not suitable to analyze the order regarding
the degree, but yielding better numerical values for small n. We will base our
calculation on the following classical result of Gabriel [25, Theorem 5.1].

Lemma R (Gabriel). If Γ is any convex (closed) curve and C any convex
curve inside Γ, and if F (Z) is regular inside and on Γ,

∫

C

|Fλ(Z)||dZ| ≤ (π(e + 1) + e)

∫

Γ

|Fλ(Z)||dZ|, (λ ≥ 0).

10A reference is [14, p. 52, Property 5] about surface area, presented as a consequence of
the Cauchy Formula for surface area.
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With this we can now state the next.

Lemma 3. For any point ζ ∈ ∂K on the boundary of the convex domain K
and q ≥ 1 we have the estimate

|p(ζ)| ≤ d(π(π(e + 1) + e))1/q‖p′‖q. (19)

As a direct consequence, we also have

‖p′‖q >
1

45.3

1

d
‖p‖q > 0.022

1

d
‖p‖q. (20)

Proof. Evidently, it is enough to consider the case 1 < q <∞. Let z0 ∈ K be
any zero of p. Then for any ζ ∈ Γ := ∂K the interval [z0, ζ] ⊂ K (by convexity),
and so Hölder’s inequality furnishes

|p(ζ)| =
∣∣∣∣∣

∫

[z0,ζ]

p′(z)dz

∣∣∣∣∣ ≤
(∫

[z0,ζ]

|dz|
)(q−1)/q(∫

[z0,ζ]

|p′(z)|q|dz|
)1/q

.

Noting that |ζ − z0| ≤ d and applying Lemma R to the integral of |p′(z)|q
over the convex curve C := [z0, ζ] ∪ [ζ, z0] (the degenerate closed convex curve
encircling around the points ζ and z0) we get

|p(ζ)| ≤ d(q−1)/q

(
1

2
(π(e + 1) + e)

∫

Γ

|p′(z)|q|dz|
)1/q

= d(q−1)/q

(
π(e + 1) + e

2

)1/q

‖p′‖q,

proving (19).
Now integrating on q-th power, and using again L ≤ 2πd leads to

‖p‖qq ≤ dq−1 π(e+ 1) + e

2
‖p′‖qq L ≤ dq π(π(e + 1) + e)‖p′‖qq < 45.3 dq ‖p′‖qq.

Taking q-th root, a small rearrangement finally furnishes even the last assertion,
as from here

‖p′‖q >
(

1

45.3

)1/q
1

d
‖p‖q ≥

1

45.3

1

d
‖p‖q > 0.022

1

d
‖p‖q.

5.4. Proof of a local result in terms of the local depth

In the following we will work out an unconditional pointwise estimate in
the sense that it will provide an estimate locally at points ζ ∈ H in terms of
h = h(ζ,K), not using the assumption that hK = infζ∈∂K h(ζ,K) stays positive
or not. When this happens to hold, the below result will almost immediately
imply Theorem 3.
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Theorem 4. Let p ∈ Pn(K) and let H = Hq
K(p) be defined by (16). Then it

holds

|p′(ζ)| ≥ h4

1500d5
n |p(ζ)| ( if ζ ∈ H) . (21)

Proof. First of all, we may assume that

n ≥ n0 := 32 d4/h4,

for values of n not exceeding this bound we can settle the issue referring to (20)
of Lemma 3 providing

‖p′‖q ≥
n

32d4/h4
‖p′‖q >

1

1500

h4

d5
n ‖p‖q. (22)

So from here on let us assume n ≥ 32 d4/h4. Without loss of generality we
also assume ζ = 0 and that a tangent line at ζ = 0, chosen according to the
requirement h = h(ζ,K)(≥ hK), is just the real line R (and thus the normal
line is the imaginary axis iR). Then we have K ⊂ H := {z ∈ C : ℑz ≥ 0} and
K ∩ iR = [0, ih].

Let us denote the set of zeroes of p ∈ Pn(K) as

Z := {zj = rje
iϕj : j = 1, . . . , n} ⊂ K

(listed with possible repetitions according to their multiplicity). We assume, as
we may, that p(z) =

∏n
j=1(z − zj).

In what follows we will use for any interval [σ, θ] (and similarly for [σ, θ)
etc.) the following notations for the angular sectors, the zeroes in the angular
sectors, and the number of zeroes in the angular sectors:

S[σ, θ] := {z ∈ C : arg z ∈ [σ, θ]},
Z[σ, θ] := {zj ∈ Z : arg zj ∈ [σ, θ]} = Z ∩ S[σ, θ],
n[σ, θ] := #Z[σ, θ].

Let us fix the angle

ϕ := arcsin

(
h

8d

)
.

We partition the zero set Z into two subsets as follows.

Z+ := Z[ϕ, π − ϕ] Z− := Z \ Z+ .

For the corresponding cardinals we write

k := #Z+ = n[ϕ, π − ϕ], m := #Z− = n[0, ϕ) + n(π − ϕ, π] .

Observe that for any subset W ⊂ Z we have

∣∣∣∣
p′

p
(0)

∣∣∣∣ ≥ −ℑp
′

p
(0) =

n∑

j=1

ℑ−1

zj
≥
∑

zj∈W

ℑ−1

zj
=
∑

zj∈W

sinϕj
rj

, (23)
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because all terms in the full sum are nonnegative. We apply inequality (23)
with W = Z+ to obtain

M :=

∣∣∣∣
p′

p
(0)

∣∣∣∣ ≥
∑

zj∈Z+

sinϕj
rj

≥ sinϕ
∑

zj∈Z+

1

rj
≥ h

8d2
k , (24)

since for zj ∈ Z+ we have ϕj ∈ [ϕ, π − ϕ], sinϕj ≥ sinϕ = h/(8d), and rj ≤ d.
Now put

J :=

[
3

4
ih, ih

]
⊂ K .

We estimate the distance of any zj = xj + iyj ∈ Z− from J . In fact, taking
any point z = x + iy = reiψ ∈ Dd(0) ∩ (S[0, ϕ) ∪ S(π − ϕ, π]), we necessarily
have |z|2 = x2 + y2 ≤ d2, 0 ≤ y ≤ d sinϕ = h/8, and therefore, dist(z, J) =
|z − i3h/4| =

√
x2 + (y − 3h/4)2. Clearly, then

dist(z, J)2

|z|2 =
x2 + y2 − 3yh/2 + (3h/4)2

x2 + y2
≥ 1 +

3h2

8d2
. (25)

In fact, we can do a little better here, taking into account that the other
endpoint of J , ih, also belongs to K, whence the diameter provides an upper
bound to |z − ih|, too, yielding x2 + (y − h)2 ≤ d2. Using this in the middle of
(25), we may write

dist(z, J)2

|z|2 =
x2 + y2 − 3yh/2 + (3h/4)2

x2 + y2

= 1 +
9h2 − 24yh

16(x2 + y2)
≥ 1 +

9h2 − 24yh

16(d2 − h2 + 2yh)
,

where the last expression is decreasing in y ≤ h/8, whence admitting

9h2 − 24yh

16(d2 − h2 + 2yh)
≥ 9h2 − 24(h/8)h

16(d2 − h2 + 2(h/8)h)
=

3h2

8d2 − 6h2
.

Introducing the parameter u := d/h ∈ [1,∞) we thus obtain

dist(z, J)2

|z|2 ≥ 1 +
3h2

8d2 − 6h2
=

8u2 − 3

8u2 − 6

(
u :=

d

h
∈ [1,∞)

)
.

From here taking logarithms we get
∣∣∣∣
zj − τ

zj

∣∣∣∣ ≥ exp

(
1

2
log

(
8u2 − 3

8u2 − 6

)) (
u :=

d

h
∈ [1,∞)

)
. (26)

Next consider the set R := K ∩ S[ϕ, π − ϕ]. Applying Lemma O to R and
J ⊂ R we are led to

max
z∈J

∏

zj∈Z+

∣∣∣∣
zj − z

zj

∣∣∣∣ ≥
1

dk
max
z∈J

∏

zj∈Z+

|zj − z| ≥ 1

dk

( |J |
4

)k

= exp

(
−k log

(
16d

h

))
.

(27)
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Taking now the point z0 ∈ J where this maximum (i.e. the maximum of |p(z)|
on J) is attained, combining (26) and (27) and using m+ k = n leads to

∣∣∣∣
p(z0)

p(0)

∣∣∣∣ =
∏

zj∈Z

∣∣∣∣
zj − z0
zj

∣∣∣∣ ≥ exp

(
m
1

2
log

(
8u2 − 3

8u2 − 6

)
− k log (16u)

)

= exp

(
n
1

2
log

(
8u2 − 3

8u2 − 6

)
−
{
1

2
log

(
8u2 − 3

8u2 − 6

)
+ log (16u)

}
k

)

= exp

(
n

2
log

(
8u2 − 3

8u2 − 6

)
− ψ(u)k

)
,

where

ψ(u) :=
1

2
log

(
8u2 − 3

8u2 − 6

)
+ log(16u).

Taking logarithm, dividing by ψ(u) and rearranging thus provides

k ≥ 1

ψ(u)

(
n

2
log

(
8u2 − 3

8u2 − 6

)
− log

∣∣∣∣
p(z0)

p(0)

∣∣∣∣
)

≥ 1

ψ(u)

(
n

2
log

(
8u2 − 3

8u2 − 6

)
− log

‖p‖∞
|p(0)|

)
,

which, when combining with (24) yields

8
d5

h4
M ≥ u3k ≥ u3

ψ(u)

(
n

2
log

(
8u2 − 3

8u2 − 6

)
− log

‖p‖∞
|p(0)|

)
.

We have already seen in Lemma 2 why it suffices to restrict to points of the set
H. So from here on we will consider only points ζ ∈ H, for which points we
may invoke (18) to get

8
d5

h4
M ≥ u3

ψ(u)

(
n

2
log

(
8u2 − 3

8u2 − 6

)
− log(16π)− 2 logn

)
( for ζ ∈ H) .

Introducing another parameter v := n/u4 = (h/d)4n and collecting every-
thing from the above, a little rearrangement leads to

8
d5

h4
M

1

n
≥
u3 log

(
8u2−3
8u2−6

)
− 2

vu
{log(16π) + 2 log v + 8 logu}

log
(

8u2−3
8u2−6

)
+ 2 log(16u)

It is clear that for v ≥ e this expression is an increasing function of v, therefore
we can as well write in the minimal possible value v ≥ v0 = 32 to get

8
d5

h4
M

n
≥
u3 log

(
8u2−3
8u2−6

)
− 2

32u {log(π) + 14 log 2 + 8 log u}

log
(

8u2−3
8u2−6

)
+ 2 log(16u)

(
u :=

d

h
≥ 1

)
.
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Here simultaneously dividing the numerator and the denominator by u yields

8
d5

h4
M

n
≥
u2 log

(
8u2−3
8u2−6

)
− 1

16u2 {log π + 14 log 2 + 8 log u}
1
u log

(
8u2−3
8u2−6

)
+ 2 log(16u)

u

(
u :=

d

h
≥ 1

)
.

(28)

As 1/u, log
(

8u2−3
8u2−6

)
and 2 log(16u)

u = 32 log(16u)
16u are all decreasing for u ≥ 1,

the denominator is a decreasing function and its maximal value is at the point
u = 1. So,

1

u
log

(
8u2 − 3

8u2 − 6

)
+ 2

log(16u)

u
≤ log(5/2) + 2 log(16) = log(640).

From this and (28) a computation provides

d5

h4
M

n
≥ 1

64 log 640

(
8u2 log

(
8u2 − 3

8u2 − 6

)
− log(4π) + 4 log(8u2)

2u2

)

=
1

413.5339 . . .

(
8u2 log

(
1− 3

8u2

1− 6
8u2

)
− 4 log(4π)

8u2
− 16

log(8u2)

8u2

)

≥ 1

414
f(t)

(29)

with f(t) :=
1

t
log

(
1− 3t

1− 6t

)
− 4 log(4π) t + 16t log t and t :=

1

8u2
∈ (0, 1/8].

It is easy to see that f(t) is a convex function. Indeed, t log t is convex (with
second derivative 1/t > 0), the linear term is of course convex, and the first part

can be developed into a totally positive Taylor-Maclaurin series: 1
t log

(
1−3t
1−6t

)
=

∑∞
k=1

6k−3k

k tk−1.
Numerical evidence shows that f(t) attains its minimal value somewhere

around 0.0786 . . . , and it stays above 0.7 all over (0, 1/8]. To establish a
sufficiently good lower estimation of the function all over the interval (0, 1/8],
we will use convexity simply in the form of a supporting line argument: with
any fixed value τ in (0, 1/8] the tangent of f at (τ, f(τ)) is a supporting line
(from below) to f , i.e. f(t) ≥ L(t) := L(τ ; t) := f(τ) + f ′(τ)(t − τ).

A computation furnishes

f ′(t) = − 1

t2
log

(
1− 3t

1− 6t

)
+

1

t

( −3

1− 3t
+

6

1− 6t

)
− 4 log(4π) + 16 + 16 log t.

So now let us take τ := 0.078628, say. Then f(τ) ≈ 0.700037 . . . > 0.70003,
and another numerical computation furnishes f ′(τ) ≈ −0.000321 . . . > −0.0004.
Since f ′(τ) < 0, we find f(t) ≥ min(0,1/8] L = L(0.125) > 0.70003 − 0.0004 ·
(0.125− 0.07) = 0.700008 > 0.7.

Substituting this estimate in (29), we conclude

M ≥ 0.7

414

h4

d5
n >

1

600

h4

d5
n.
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5.5. Conclusion of the proof for fixed positive depth

Proof (Proof of Theorem 3). We will use for all points ζ ∈ H the estimate
(21) complemented by the lower estimation h ≥ hK .

‖p′‖qq ≥
∫

H

|p′|q ≥
(

1

1500

h4K
d5

)q ∫

H

|p|q ≥
(

1

1500

h4K
d5

)q
1

2
‖p‖qq.

Taking qth root and estimating 21/q simply by 2 yields Theorem 3.

6. Upper estimation of the oscillation order of convex domains

Given the results for maximum norm and the above results of Theorem M
and Theorem 3, it is in order to clarify if the linear growth with n is indeed the
maximal possible order of oscillation in Lq norms. That is settled by the next
result.

Theorem 5. Let K ⋐ C be any compact, connected–not necessarily convex–
domain, bounded by a finite or countable number of closed, rectifiable Jordan
curves Γj (j = 1, . . . ) with finite total arc length

∑
j |Γj | = L < ∞. Then

for any n ∈ N there exists some polynomial p ∈ Pn(K) with ‖p′‖Lq(∂K) ≤
C(K)n‖p‖Lq(∂K).

Note that the rectifiable assumption is necessary to have finite Lq norms, for
otherwise most polynomials have infinite Lq norms on the boundary. However,
apart from this assumption, the domainK is quite general, including nonconvex,
multiply connected domains. For disconnected domains, the analysis may be
done separately for connected components, and for compact sets without an
interior even a lower order of oscillation is possible, as it has been shown at least
for the interval I. Therefore, we may be satisfied with the degree of generality
of the above formulated assertion.

Proof. We will provide a simple example. Let J ⊂ K be any diameter, and
chose an endpoint of the diameter J . Without loss of generality we may assume
that this endpoint is just the origin 0, and we can as well assume that J = [0, d].
Then our polynomial will simply be p(z) := zn.

At points, where |z| ≤ d/2, we have |p(z)| ≤ (d/2)n = 2−ndn = 2−n‖p‖K ,
and |p′(z)| = n|zn−1| ≤ n2−(n−1)dn−1. On the other hand, for points in the
ring domain R := {z ∈ C : d/2 ≤ |z| ≤ d} and belonging to K we have∣∣∣p

′

p (z)
∣∣∣ = |n/z| < 2n/d. So we can write

‖p′‖qq :=
∫

Γ

|p′|q ≤ (2n2−ndn−1)qL+

∫

Γ∩R

(
2n

d
|p|
)q

≤
(
2n

d

)q {(
2−n

‖p‖∞
‖p‖q

)q
L+ 1

}
‖p‖qq. (30)
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By construction, the point d on the other end of the diameter J sits in ∂K,
and belongs to some of the boundary curves Γj , which boundary curve must
have some positive length |Γj | = ℓ > 0, say. So parameterizing by arc length
and starting the parametrization at the point d, we can write γj : [0, ℓ] → Γj
with γj(0) = d = γj(ℓ), and obviously for any parameter value 0 ≤ t ≤ d
|γj(t)| ≥ d− t, since the arc γj

∣∣
[0,t]

cannot go farther from the left endpoint at

d then its arc length t. It follows that at z = γj(t) it holds |p(z)| ≥ (d − t)n

until 0 ≤ t ≤ λ := min(d, ℓ), and so we have

‖p‖qq ≥
∫

Γj

|p(z)|q|d(z)| ≥
∫ λ

0

(d− t)nqdt =
1

nq + 1

[
dnq+1 − (d− λ)nq+1

]

≥ d [dnq − (d− λ)nq]

nq + 1

and
(‖p‖∞

‖p‖q

)q
≤ nq + 1

d

(
1

1− (1 − λ/d)nq

)
<
nq + 1

d

(
1

1− (1 − λ/d)

)
=
nq + 1

λ

Finally applying this in (30) leads to

‖p′‖qq ≤
(
2n

d

)q {
nq + 1

λ2nq
L+ 1

}
‖p‖qq.

Since q ≥ 1 and nq + 1 ≥ 2, it suffices to observe that x/2x decreases for x ≥ 2
and thus (nq + 1)2−nq ≤ 2maxx≥2 x2

−x = 1. We finally obtain

‖p′‖q ≤
2

d

L+min(d, ℓ)

min(d, ℓ)
n‖p‖q. (31)

As here the constant depends only on the domain K, we conclude that ‖p′‖q ≤
C(K)n‖p‖q holds for the chosen polynomial p ∈ Pn(K), whence the assertion.

Remark 6. In case of a convex domain K, the parameters occurring here in
C(K) have a simpler meaning. First, the boundary ∂K is connected (consists of
only one convex curve), and thus ℓ = L and min(d, ℓ) = min(d, L) = d. Second,
as we have used several times, for convex curves the estimate L ≤ 2πd holds

true, always, whence (31) simplifies to ‖p′‖q ≤
4π + 2

d
n‖p‖q <

15

d
n‖p‖q, say.

Remark 7. In [41] a more precise value of the constant C(K) has also been
obtained for the case of the infinity norm. As for Lq-norm neither the order (in
general), nor the more exact constants are known, it seemed to be well ahead
of time to bother with sharper values of the constant C(K) here. Nevertheless,
our feeling is that the slightly more involved construction of [41] would indeed
provide a better constant, which may be sharp, apart from an absolute constant
factor, like in case q = ∞. Here we do not pursue this issue any more.
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7. Concluding remarks

Above we have seen, that like in case of the maximum norm, also for the
Lq(∂K) norm any compact convex domain K admits polynomials p ∈ Pn(K)
with oscillation not exceeding O(n). On the other hand we have shown for some
classes of convex domains that the order of oscillation indeed reaches cKn.

A natural question–quite resembling to the question posed by Erőd 77 years
ago in case of the maximum norm–is to identify those domains which indeed
admit order n oscillation even in Lq(∂K) norm.

It has been clarified that, like in case of the maximum norm, also for Lq

norms the interval I behaves differently: there the order of oscillation may be
as low as

√
n. Therefore, it is certainly necessary that some conditions are

assumed for an order n oscillation. The question is if apart from having a
nonempty interior, is there need for any additional assumption? We think that
probably not.

Conjecture 1. For all compact convex domains K ⋐ C there exist cK > 0 such
that for any p ∈ Pn(K) we have ‖p′‖Lq(∂K) ≥ cKn‖p‖Lq(∂K).

We are not really close to this conjecture. Let us point out that a general
estimate–however weak–is still missing in the full generality of all convex com-
pact domains. Apart from the cases discussed here, we mentioned that the case
of the interval I is clarified–there the oscillation being of order

√
n. So clearly

also here there is a difference between various compact convex sets. However,
we do not really know if I is indeed to be “the worst”, i.e. of lowest possi-
ble oscillation, as for general domains really nothing–not even some mere logn
e.g.–has been proved to date.

Therefore, posing a more modest goal, we would be interested as well in any
estimate working for general compact convex domains, without further assump-
tions on the geometrical features of it.
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[37] G.Pólya, G.Szegő, Problems and theorems in analysis. Vol. II. Theory of
functions - zeros - polynomials - determinants - number theory - geometry.
Revised and enlarged translation of the 4th ed. Springer Study Edition,
Springer-Verlag, New York - Heidelberg - Berlin, 1976.

[38] T. Ransford, Potential Theory in the Complex Plane, London Mathemati-
cal Society Student Texts, vol. 28, Cambridge University Press, Cambridge,
1994.

[39] T. Ransford, Computation of Logarithmic Capacity, Computational Meth-
ods and Function Theory 10 (2) (2010) 555–578.
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Preprint of the Alfréd Rényi Institute of Mathematics, #3/2004.
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and P.Turán concerning algebraic polynomials, Acta Math. Hungar. 73 (2)
(1996) 1–28.

[62] D. Yu, B. Wei On Turán type inequality with doubling weights and A∗

weights, J. Zhejiang Univ. SCI. 6A (7) (2005) 764–768.

[63] J.L. Wang, S.P. Zhou, The weighted Turán type inequality for generalised
Jacobi weights. Bull. Austral. Math. Soc. 66 (2) (2002) 259–265.

[64] H. Widom Extremal Polynomials Associated with a System of Curves in
the Complex Plane. Adv. Math. 3 (1969) 127–232.

[65] W. Xiao and S.P. Zhou, On weighted Turán type inequality, Glas. Mat. 34
(2) (1999), 197–202.

[66] S.P. Zhou, On Turán’s inequality in Lp norm, J. Hangzhou Univ. 11 (1984)
28–33 (in Chinese).

[67] S.P. Zhou, An extension of the Turán inequality in Lp for 0 < p < 1, J.
Math. Res. Exposition, 6 (2) (1986) 27–30.

[68] S.P. Zhou, Some remarks on Turán’s inequality, J. Approx. Theory 68 (1)
(1992) 45–48.

[69] S.P. Zhou, Some remarks on Turán’s inequality, II, J. Math. Anal. Appl.
180 (1993) 138–143.

[70] S.P. Zhou, Some remarks on Turán’s inequality. III: The completion, Anal.
Math. 21 (1995), 313–318.

[71] S.P. Zhou, On weighted Turán type inequality in Lp spaces, Analysis, com-
binatorics and computing, Nova Sci. Publ., Hauppauge, NY, 2002, 473–481.

35


	1 Introduction
	1.1 The oscillation of a polynomial in maximum norm
	1.2 Pointwise and integral mean estimates of oscillation

	2 Statement of new results
	3 Chebyshev estimates and transfinite diameter
	4 Some geometrical notions and definitions
	5 A result for domains with positive depth
	5.1 Statement of the result
	5.2 A characterization of fixed depth
	5.3 Technical preparations for the investigation of Lq(K) norms
	5.4 Proof of a local result in terms of the local depth
	5.5 Conclusion of the proof for fixed positive depth

	6 Upper estimation of the oscillation order of convex domains
	7 Concluding remarks

