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Abstract 

Breath analysis holds the promise of a non-invasive technique for the diagnosis of 

diverse respiratory conditions including COPD and lung cancer. Breath contains small 

metabolites that may be putative biomarkers of these conditions. However, the 

discovery of reliable biomarkers is a considerable challenge in the presence of both 

clinical and instrumental confounding factors. Among the latter, instrumental time drifts 

are highly relevant, as since question the short and long-term validity of predictive 

models. In this work we present a methodology to counter instrumental drifts using 

information from interleaved blanks for a case study of GC-MS data from breath 

samples. The proposed method includes feature filtering, and additive, multiplicative 

and multivariate drift corrections, the latter being based on Component Correction. 

Biomarker discovery was based on Genetic Algorithms in a filter configuration using 

Fisher´s ratio computed in the Partial Least Squares – Discriminant Analysis subspace 

as a figure of merit. Using our protocol, we have been able to find nine peaks that 

provide a statistically significant Area under the ROC Curve (AUC) of 0.75 for COPD 

discrimination. The method developed has been successfully validated using blind 

samples in short-term temporal validation. However, in the attempt to use this model for 

patient screening six months later was not successful. This negative result highlights the 

importance of increasing validation rigour when reporting biomarker discovery results.  
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Introduction 

Volatile biomarker discovery is increasingly gaining attention in the improvement of 

screening, diagnosis, and prognosis in medicine.1 Volatilome is the volatile fraction of 

metabolome,2 which contains all those volatile organic compounds (VOCs) generated 

within an organism. VOCs are organic analytes with a substantial vapour pressure 

(typically less than 300 Da) and their analysis allows monitoring human chemistry and 

health related conditions.3 VOCs reflect metabolic processes that occur in the body and 

which may change with disease. Thus, finding specific VOC fingerprints that are 

characteristic of a pathology is an important field of research.4,5,6 The analysis of 

exhaled breath is a specifically attractive and promising means of access to the 

volatilome, as breath can be obtained non-invasively and contains potentially 

informative VOCs. VOCs can reach the alveoli, cross the alveolar interface and then be 

exhaled by the subject.7,8 

The discovery of new disease markers is based on measuring the global metabolic 

profile of a sample without bias, which is known as untargeted metabolomics or 

metabolic fingerprinting.9 Advanced analytical instrumentation, mainly mass 

spectrometry (MS) and nuclear magnetic resonance (NMR), provides the researchers 

with possibility of examining hundreds or thousands of metabolites in parallel. Gas 

chromatography – mass spectrometry (GC-MS) in particular, is one of the most popular 

and powerful analytical techniques for breath analysis.8  

The comparison of metabolic fingerprints among different experimental groups; namely 

condition and control, can lead to the identification of metabolic patterns that have 

changed due to a disease, and which may be used as a diagnostic tool. Chemometric or 

pattern recognition methods are required to extract information from exhaled breath 

data and discover relevant VOCs.10 However, many data processing techniques are not 
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designed to deal with large amounts of irrelevant or correlated features, which is the 

case with current analytical technologies that are applied to metabolomics. For instance, 

in a review on the statistical analysis of metabolomics data, Vinaixa11 observes a 

number of metabolomics studies (based on Liquid Chromatography-Mass 

Spectrometry, LC-MS) where the number of features ranges between 4000-10000, 

while the number of subjects is always below 30. In other words, from a data-analysis 

perspective, metabolomics data is characterized by high dimensionality and small 

sample counts. Consequently, the ‘Curse of Dimensionality’12 has to be taken into 

account, and data processing methods must be scrutinized in their ability to deal with 

small sample-to-dimensionality ratios.13,14 The inherent difficulty in the analysis of this 

type of data has long-been recognized and methods to deal with it have been proposed 

since the 60s.15 The application of conventional statistical testing is plagued with 

theoretical difficulties,16 and in many cases machine learning approaches are preferred. 

However, the scarcity of examples poses problems with respect to the complexity of 

those predictive models that may be built. Complexity control can be attained through 

regularization or through dimensionality- reduction techniques.13 Some authors 

advocate the use of penalized likelihood estimation.17 One example is the use of the 

Least Absolute Shrinkage and Selection Operator (LASSO) based on L1 penalty in the 

quest for sparse solutions,18 while others propose projection methods, such as Principal 

Component Analysis (PCA)19 or Partial Least Squares-Discriminant Analysis (PLS-

DA).20 However, the use of feature selection methods based on iterative searches and 

optimization procedures, using either wrappers or filters as objective functions is 

perhaps the most popular approach.21 The performance of these methods in high-

dimensionality, small-sample conditions has been analysed previously.22 Among them, 
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Genetic Algorithms (GA) have been used extensively.23,24,25 The combination of GA 

and PLS-DA in metabolomics has been previously reported.26 

 

The application of dimensionality-reduction techniques based on feature selection 

methods is therefore the natural choice.17  

Breath analysis is particularly challenging due to the lack of standards for sampling and 

storage that are employed.27,28,29 As such, researchers prefer to analyse breath samples 

soon after collection. If patient recruitment takes a long time, then analysis may extend 

over several months. In these conditions, instrumental changes, such as 

chromatographic column aging, temperature variations and the effects of contamination 

can shift intensity value measurements over time.30,31,32,33 As computational methods in 

metabolomics rely on a quantitative comparison between metabolite abundances in 

diverse groups, instrumental drift may become an important source of errors. It is 

therefore extremely important to block this potentially confounding factor at the design 

stage, if possible.34 Another inherent difficulty involved in breath analysis is the large 

inter and intra-individual variability of exhaled breath, even among healthy subjects,35 

and the change of VOCs patterns according to food consumption, smoking, gender, age, 

and so forth.36,37 There are definitely several sources of unwanted variance that may act 

as confounding factors, and which can be divided into two types: instrumental (e.g. 

different location, operator, instrument or sampling conditions), and clinical (e.g. 

gender, age, smoking status, comorbidities or treatments).38,29 If some factors cannot be 

controlled with experimental design,39 they must be taken into consideration during data 

analysis.40 

Normalization methods adjust data for biases caused by non-biological conditions or 

unwanted variations.36,41,42 Most adopted normalization methods rely on scaling factors 
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 6 

using all the data set (e.g. total sum or norm). However, these methods have been shown 

to adjust data incorrectly, as an increased abundance in some metabolites leads to a 

decrease in other metabolites.43  

Alternatively, internal standards (IS) and quality control (QC) samples are often used 

for the posterior removal of certain systematic errors that maybe platform specific.40 

The internal standards method is based on the addition of known metabolites (in a 

determined amount) to the samples in order to improve quantitative analysis and 

normalize each sample according to their variation. The simplest approach is based on a 

single internal standard and assumes that the variation in sensitivity observed for this 

metabolite is constant across all the analytes. Thus, a multiplicative correction factor 

may be applied. However, it is not clear that the underlying hypothesis can be sustained, 

and therefore the use of multiple internal standards has been proposed, but then the 

selection of the proper normalization method remains an open problem. Application 

examples of normalization methods based on IS have been reported on literature.43,40 

For instance M. Sysi-Aho et al. proposes that the correction factors are a linear function 

of the variation observed for the IS, and he optimizes the coefficients of the model to 

maximize the likelihood of the observed data.32 However, in untargeted studies, the 

metabolites that are to be detected are not known a priori, and therefore the addition of 

numerous IS for detection and to normalize for analytical variation is not practical, 

indeed it would prejudice the integrity of the samples.31 As such, QC are often preferred 

in untargeted metabolomics in order to avoid changing the physical sample and using IS 

that may coelute with metabolites of interest.44 QC samples may be either commercial 

or pooled (i.e., a mixture of equal aliquots from a representative set of the study 

samples). The latter are of special interest, as their measurement contains all those 

metabolites under investigation. Even though pooled QC samples may be relatively 
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 7 

easy to prepare for some biofluids, such as urine or plasma,45,46 exhaled breath presents 

inherent complications in terms of sampling and storage, which prevents its use, 

especially in long-term studies. Different signal correction methods rely on QC 

samples,44,47 which can be employed to estimate sample- or feature-based correction 

factors.31 According to previous works,42,48 one of the best normalization methods that 

employs QC samples is Probabilistic Quotient Normalization (PQN).49  

Since machine drifts are frequently observed in chromatography and MS, the 

assessment of reproducibility and repeatability is of utmost importance.50,51 Over the 

last decade, a number of computational algorithms have been applied in order to correct 

instrumental drifts, or batches in data. For instance, ComBat technique was proposed in 

the genomics field and was later also applied in metabolomics, for adjusting data for 

batch effects.52,30 Many methods are based on projection filters. Examples of these 

methods are Component Correction (CC) and Common Principal Component Analysis 

(CPCA). They consist of the estimation of the drift subspace with a reference class or 

the entire data set, respectively, and the subtraction of this subspace from the original 

data.30,53 The dimensionality of the drift subspace should be carefully determined using 

calibration data, in order to avoid valuable information removal. For example, 

Fernández-Albert et al. used Dunn and Silhouette indexes to compare different drift 

correction methods and the dimensionalities of the drift subspace.30 Another example in 

this family is Orthogonal Signal Correction (OSC), which removes the data variance 

that is uncorrelated to the class information.54 Similarly, orthogonal projections to latent 

structures, such as Orthogonal Partial Least Squares algorithms (O-PLS or O2-PLS), 

have also been applied for drift compensation.55,56,57 The existing literature mostly uses 

these methods for predictive models, but not specifically in biomarker discovery, where 
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 8 

the impact of instrumental drift on computational biomarker discovery is not yet totally 

understood, and remains an under-studied topic. 

Unfortunately, those studies of biomarker discovery in metabolomics that have been 

undertaken are usually plagued by statistical bias, and involve small sample sizes, 

which lead to very poor reproducibility. This is aggravated by the use of weak 

validation methodologies that mostly consist of internal validation. We believe that only 

external validation (blind samples) can provide further reliability to biomarker 

discoveries. Moreover, an additional temporal validation, undertaken months after the 

model development process has been closed, should be a recommended practise. 

However, in most published literature this long-term validation is missing. If we expect 

that discovered biomarkers can be adapted and be put into clinical use, then their use 

has to be reliable enough to maintain predictive power in a variety of instrumental 

conditions, or even instrument vendors. Reporting long-term validation results would 

allow the discovery of the limitations of current research and speed up further 

investigation into the most promising biomarker discovery studies. 

In this work, methods for the instrumental drift in GC-MS data from exhaled breath are 

proposed and investigated through their application in a practical case. The analysed 

dataset consists of breath samples obtained from patients with lung cancer (LC), chronic 

obstructive pulmonary disease (COPD), and control subjects, in order to discover the 

markers of these diseases. Since this dataset was acquired over a two-year period, the 

correction of instrumental drift in the entire dataset was one of the data analysis 

objectives. The influence of time varying effects requires special attention to the 

application of strict validation procedures, which was an essential part of our workflow. 

We not only used external validation, but also an additional temporal validation in order 

to assess the predictive power of the biomarkers, six months after the end of the model 
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 9 

development phase, which is a validation level that is not usually reported in similar 

studies. From a machine-learning standpoint, biomarker discovery may be addressed 

using feature-selection techniques. 

In this quest for putative biomarkers, additional issues, such as potential clinical 

confounders have also been investigated. Finally, biomarker selection and classification 

was applied to the binary problem case of COPD vs. control. 
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 10 

Experimental Methods 

Sampling System 

Exhaled breath was collected using the tidal breath sampler (TBS) shown in Figure 1, 

which was and developed by the Department of Biochemistry and Molecular Biology of 

the University of Barcelona.58 It consists of a glass tube with a specific shape that 

allows the collection of tidal exhaled air. The subject breathes into a unidirectional 

Rudolph valve, which allows medical air (22% O2, 78% N2) contained in a Douglas bag 

to pass through his mouth and which then transports the exhaled breath to the glass 

tube. An air pump (FLEX Air Pump 1001) extracts the air from the first section of the 

glass tube and drives it to a sorbent trap that is filled by a fibre comprising 200 mg 

Tenax and 200 mg Unicarb. Between the glass tube and the fibre is a filter made of 

silica gel, to avoid humidity, which distorts mass spectra. In order to avoid breath 

condensation on the walls of the glass, the tube is heated using a long, warmed filament, 

which is wrapped along its length. See Supplementary Material for sampling protocol 

information. 

 

Figure 1. Tidal Breath Sampler. A diagram of the sampling system used to collect 

VOCs from exhaled breath is shown above. 1: Douglas bag with medical air. 2: 

Unidirectional Rudolph valve. 3: Mouthpiece for subject´s breath. 4: Glass tube at high 

temperature. 5: Outlet for the vast majority of air. 6: Outlet for the final part of the 
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 11 

subject´s exhalation (containing the VOCs from gas exchange). 7: Silica gel filter for 

humidity control. 8: Sorbent trap. 9: Air pump. 10: Air exiting the pump. 

 

GC-MS Analysis 

Samples were injected into the gas chromatograph system using a Unity thermal 

desorption unit for sorbent tubes (Markes). This unit applied a flow of hot carrier gas 

through the fibres contained in the sorbent traps, desorbing the VOCs in its surface and 

carrying them to the GC system (FocusGC, fThermo Scientific). The chromatographic 

column used was a 60 m DB-624 capillary column with an internal diameter of 0.32 

mm and a stationary phase thickness of 1.8 µm. The temperature ramp used to optimize 

the separation and sensitivity of the chromatographic process was: 40 ºC (5 minutes) – 

10 ºC (1 minute) – 180 ºC (1 minute) – 15 ºC (1 minute) – 230 ºC (10 minutes). Once 

eluded from the column at different retention times, the separated compounds were 

injected into the MS (DSQII MS, from ThermoScientific), where they were ionized via 

electron impact and subsequently fragmented. In order to reuse the sorbent traps, once 

desorbed, they were then cleaned to eliminate any possible remaining VOCs, with a 

flow of N2 at 320 ºC for 2 hours, before being closed and stored in vacuum.  
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Dataset and Data Processing Algorithms 

Dataset Description 

The dataset contained four classes or medical groups: control, COPD, LC, and both 

diseases (COPDLC). Standard diagnostic criteria were used for the inclusion of each 

study group. The main exclusion criteria were: (i) Lack of clinical stability; (ii) 

Abnormal non-obstructive forced spirometry results; (iii) Previous history of cancer; 

(iv) Previous history of active inflammatory disease; (v) Treatment with steroids or 

immunomodulators; and, (vi) Data suggesting infectious disease. The protocol was 

submitted and approved by the Human Studies Ethical Committee at Hospital Clinic 

and all patients signed informed consent forms before any procedure was initiated. 

 

The sample collection procedure lasted almost two years (from 20/05/11 to 6/5/13) and 

was divided in two campaigns. The first campaign lasted from 20/05/11 to 7/3/12 and 

was divided into calibration (initial 80%) and short-term external validation set (last 

20% of each class). The second campaign lasted from 10/7/12 to 6/5/13. It is important 

to note that the collection and analysis protocol was identical in both campaigns. The 

purpose of the second campaign was to further validate the results obtained from the 

study carried out in the first campaign. This second campaign served not only to provide 

blind samples, but also to test the stability of the predictive model. It is important to 

note that this stability test is neglected in most studies and validation is internal to the 

same measurement campaign. All model development and optimization, including drift 

counteraction strategies, was undertaken within the calibration set. The number of 

samples included in the study is summarized in Table 1.  
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Data subsets Control COPD COPDLC LC 

Calibration 15 22 15 10 

Short-term 

validation 
6 7 4 2 

Long-term 

validation 
6 5 5 - 

Total 27 34 24 12 

 
 

Table 1. Data Set Overview. The number of samples of each class is reported by data 

subsets (calibration, short-term, and long-term validation) and also the total number. 

COPD: Chronic Obstructive Pulmonary Disease, LC: Lung Cancer, COPDLC: COPD 

and LC. 

 

The metadata of the patients was also available, including sex, age, weight, height, 

smoking status, functional respiratory results (forced expiratory volume and forced vital 

capacity) and haematology tests, current treatments or drugs that the patients were 

taking, comorbidities (e.g. hypertension, asthma, diabetes), and diagnostics of the 

studied disease. 

Apart from the patient samples, two types of spectra blanks were available: (i) 7 fibre 

blanks (GC-MS analysis of new sorbent traps that were not previously used for any 

sample), and (ii) 49 sample blanks (GC-MS analysis of sorbent traps in each day of 

measurement). Fibre blanks are used to assess the existence of specific peaks due to the 

presence of fibre, whereas sample blanks serve to assess the potential contamination of 
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the system. Even if no sample is injected, a signal can be obtained, due to the VOCs 

trapped in the column, while sample blanks provide quantification. 

Data Pre-processing 

Data pre-processing was performed with MZmine259 software. Peak detection was based 

on the Noise Amplitude algorithm. In this algorithm, intensity range is specified by the 

user and the algorithm automatically locates the where the noisy baseline is 

concentrated, and establishes the baseline level at this level. A peak is recognised when 

the chromatographic signal is registered above the noise level during a certain time 

span. A smoothed second derivative, Savitzky-Golay digital filter is then used to detect 

the borders of the peaks. After detection, peaks were aligned using the RANSAC 

aligner. Here the retention time tolerance was 1 minute, with an m/z tolerance of 0.4. 

The number of iterations was automatically determined by the software. MZmine also 

provides tools for isotopic peak grouping and gap filling in the event of missing 

values.60 After MZmine pre-processing, 3049 peaks with an associated intensity were 

obtained. Each peak was identified by its mass to charge ratio (m/z) and retention time 

(RT). The area under the peaks was computed in order to obtain the data matrix. Since 

there were peaks with the same RT (differences less than the GC resolution, 0.1 min) 

and large correlation (Pearson correlation r > 0.9) between them, they were considered 

to be part of the same original compounds. By clustering these peaks and removing near 

zero variance features, the dimensionality of the data was reduced from 3049 to 1749 

features. In total, 1297 features were removed by peak clustering, while 3 were 

removed, as they had near zero variance. Finally, 1793 features (peak areas) were 

retained.  
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Rank Products 

Rank Products (RP) is a feature-selection algorithm proposed by Breitling that is used 

to find the differentially expressed genes.61 It is an intuitive method that was designed to 

rank genes according to the up or down-regulation magnitude in all microarray 

replicates. If one variable is highly ranked in many replicates, greater confidence can be 

given to the consistence of the results. The Rank Product method has been widely 

applied in other domains, such as proteomics and metabolomics.62,63 RP provides an 

estimator that may be computed for each feature. It is important to compare the obtained 

RP value with the sampling distribution under the null hypothesis that the differential 

expression values are identically distributed. In order to do this, we have used the 

permutation sampling procedure originally proposed by Breitling, using 100 iterations. 

In order to calculate the RP estimator, the RankProd library in R was used.64 For each 

feature f in k replicates, each containing ni features, the rank product is calculated as: 

RPf
up

=  ∏ (
ri,f

ni

k
i =1 )             (Eq.1) 

Where 𝑟𝑖,𝑓 is the ranking position of the feature f in the replicate i. 

Probabilistic Quotient Normalization 

PQN method estimates a gain for every sample by using a reference spectrum.49,42 This 

reference spectrum is normally a Quality Control (QC) sample made up of a pooled mix 

of equal aliquots from a representative set of the study samples. The median of the ratio 

between the sample and reference spectrum is computed and serves as a quotient to 

compensate for variations.  

𝑥𝑖
𝑃𝑄𝑁 = [

𝑥𝑖,1

median(
𝑥𝑖,1

𝑥𝑟𝑒𝑓,1

)

, … ,
𝑥𝑖,𝑛

median(
𝑥𝑖,𝑛

𝑥𝑟𝑒𝑓,𝑛

)

]     (Eq.2)  
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for sample i with features xi,j - with j ranging from 1 to n. xi
PQN is the corrected feature 

vector for sample i and xref
 is the reference spectrum with features xref,j. Note that the 

median is calculated across samples for each feature. The challenges associated with 

normalization techniques in metabolomics are discussed by Filzmoser.42 

 

Component Correction 

CC assumes that the variance introduced by the drift is explained with one or more 

principal components (PCs) of a given reference class.30 PCs that define the drift 

subspace are subtracted from the original data.54 

𝑋𝑐 = 𝑋 − (𝑋 · 𝑃)𝑃𝑇         (eq. 3) 

where Xc is the corrected data, X is the original data matrix, and P are the loadings (or 

principal components) spanning the drift subspace.  

Genetic Algorithms 

Genetic Algorithms (GA) are a feature-selection technique based on the survival of the 

fittest individual.65 An individual is defined as a subset of selected features (binary 

vector with 1s and 0s, which are taken to mean selected or not selected, respectively). 

GA initializes a population of many individuals and evaluates their performance 

according to a predefined criterion (fitness function). The fittest individuals are selected 

and used to generate a new population through crossover; either by mating and/or by 

mutation The chosen figure of merit has been the Generalized Fisher Ratio,66 computed 

in latent variable space using internal validation samples. This goal function is more 

sensitive than the classification rate (CR), and it is known that filters are less 

computationally expensive than wrappers. 
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 The general framework was obtained from GA library.67 Readers interested in an 

overview of feature selection techniques for omics readers are referred to Gromski et 

al.68 and Saeys et al. 21 and the examples therein.  

 

Partial Least Squares – Discriminant Analysis 

Partial Least Squares – Discriminant Analysis (PLS-DA) can be understood as a PLS 

regression between a data matrix, X, and a categorical one, Y.69,70 X contains the set of 

predictors, whereas Y consists of labels or responses, in this case a binary vector. PLS 

regression is based on an iterative process to define a new subspace of latent variables 

(LV).71 In order to define it, PLS considers a compromise between maximum variance 

modelling X and maximum correlation with Y. Different algorithms are used to compute 

PLS, in this work, the kernel PLS algorithm implemented in pls R package has been 

applied.72 The use of PLS-DA for metabolomics has been covered extensively in the 

literature.73,74  

 

Random Forests 

Random Forests (RF)75 are machine-learning techniques often used for omics data 

analysis for the purposes of classification.76 RF is an ensemble classifier that consists of 

multiple decision trees, each of which is built using a subset of features and data 

samples. They also possess an additional advantage in that they deliver an automatic 

ranking of variable importance that can be used for biomarker discovery.77 Here the 

RandomForest R package was used.  
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Data Analysis Protocol 

Instrumental drift correction 

Data was inspected by PCA in order to determine the effect of time. Blanks were then 

used for in order to filter out noisy features. To this end, two strategies were adopted: (i) 

Non-parametric Wilcoxon test for fibre blanks, and (ii) RP for sample blanks. The one-

sided Wilcoxon test78 was used to check which features had a median distribution of 

intensity values that were higher in sample than in fibre blanks. Metabolites that were 

equally or less abundant in sample than in fibre blanks were considered as 

contamination, as they were likely to be non-informative, and as a result, they were 

discarded. The testing of this hypothesis was performed for all classes taken together, 

versus fibre blanks, due to the availability of only 7 fibre blanks. The RP method, 

however, was applied in order to compare the metabolic profiles of each class versus the 

sample blanks, for which a larger sample of 49 blanks was available. Therefore, four 

contrasts were defined in order to assess which features possessed more intensity in any 

of the classes than in sample blanks. The consideration of all samples (control, COPD, 

COPD-LC, and LC) in the same group in order to undertake the contrast versus sample 

blanks may have resulted in peaks that were highly abundant only in one class being 

removed. Thus, in order to avoid removing the relevant variables, all those variables 

that were more present in any patient group than in blanks were retained. 

Contamination and memory effects in the conserved ion fragments were assumed to be 

additive noise that could be corrected. The intensity measured in the previous blank was 

then subtracted from the intensity of an ion fragment from a sample.79,80 The possibility 

of gain variations in time was explored beyond the additional correction of potential 

instrument contamination. A normalization strategy inspired in PQN was introduced, 
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 19 

which was aimed at removing the so-called size-effect.42 The major difference between 

PQN and the applied method is that the gain variations were estimated with sample 

blanks. The multiplicative factor of a sample is given by the median of the ratio 

between the reference blank and a blank acquired previous to sampling. The reference 

blank chosen was one of 13/12/11, as intensity fluctuations within that time period were 

limited. The expression that encompasses both the removal of sample blanks and 

multiplicative correction is the following. 

𝑥𝑖𝐶 =  median (
𝑥𝐵𝑙𝑎𝑛𝑘 𝑟𝑒𝑓

𝑥𝐵𝑙𝑎𝑛𝑘 𝑖
) (𝑥𝑖 −  𝑥𝐵𝑙𝑎𝑛𝑘 𝑖)  (Eq. 4) 

Where xi is a sample, xiC is the corrected sample, xBlank i is the previous blank to the 

sample, and xBlank ref is the blank of reference in the middle of the study (13/11/11). 

Moreover, CC was applied using sample blanks as the reference class to estimate drift 

subspace. Two figures of merit were considered at this stage, in order to optimize the 

number of PCs to be eliminated: the Pearson Correlation Coefficient of data with time,81 

and the Hotelling T2 Statistic, which is used to estimate the distance between classes.82  

Potential Clinical Confounders 

Then hypothesis testing was used to check if controlled clinical variables were equally 

distributed between the defined groups, or if they acted as confounding factors. Tests 

were carried out to compare classes two-by-two. The Chi-squared test (or Fisher´s Test, 

if at least one expected frequency was lower than 5) was applied to the factorial 

variables; sex, smoking status, presence of hypertension, and presence of diabetes.83 For 

the numerical variables; age and body mass index (BMI), the non-parametric Wilcoxon 

Test was used. 
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Biomarker Discovery 

Pre-processing included outlier detection using the Mahalanobis distance, centring and 

auto-scaling to unit variance. Biomarker candidates were selected by GA, Fisher´s ratio 

computed in PLS-DA latent variable space being the figure of merit to maximize.84 

Some measures were adopted following the recommendations of R. Leardi and A. 

Lupiáñez González to ensure a proper choice of selected features that do not lead to 

model overfitting.85 One of them was to limit the number of GA iterations according to 

the fitness saturation of the best individual. Moreover, in order to avoid the exploration 

of only a reduced part of the search domain, different GA runs with random 

initialization were performed, and feature selection frequencies were computed. The 

entropy of this feature selection frequency distribution was introduced as a stopping 

criterion for GA.86 The saturation of entropy was related to a stable feature selection 

that does not change with more runs, i.e., more executions do not lead to an increase in 

information. The frequency distribution of a random selection (simulation of random 

selection 1,000 times) was computed, and the final subset consisted of those features 

selected in more runs than would be expected by chance. A PLS-DA model was built 

with this feature subset, and the number of latent variables (LV) was optimized using a 

cross-validation in the calibration set. External validation of the model was carried out 

using short-term and long-term validation data, and permutation tests of 10,000 

iterations were employed to check if the results were statistically significant as 

compared to a random classification. 

At this point it is important to note that the data processing workflow implemented that 

includes feature selection using GA provides only fragment candidates. Mass spectra 

matching is needed to obtain analytes from fragment candidates. The NIST Mass 

Spectral Search Program 2.3 was used for this purpose. 
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For reasons of comparison, the use of feature selection based on PLS-DA and RF 

models was also explored and compared to the proposed methodology of GA and PLS-

DA. On the one hand, the Variable Importance in Projection (VIP) was applied to the 

global PLS-DA model (without GA).87 Moreover, two variable importance measures 

were used for the RF model. The first was the total decrease in node impurities from 

splitting on the variable, averaged over all trees (for classification, the Gini index). The 

second measure of importance was based on the error rate in classification for out-of-

bag data, when variable predictors are permuted and averaged over all trees.  

 

Results and Discussion 

Instrumental Drift Correction 

Data Inspection: Unsupervised Exploration of Time Effects in Uncorrected Data 

 

For a better understanding of high dimensional data, it is convenient to visually inspect 

the projection to subspace that capture maximum variance using PCA. Figure 2 shows 

PCA score plots for calibration and short-term validation subsets. Figure 2a is coloured 

according to date of acquisition and reveals a clear relationship between the maximum 

variance directions in the data set and time. The two observed clusters are not due to the 

medical conditions under study, as it can be seen from Figure 2b, but consist of 

unwanted variance that should be removed, since it seems to be causing a separation 

between samples collected at various times. Therefore, through unsupervised data 

exploration, an instrumental signal drift explaining a considerable variance of the 

dataset was detected. However, it was not possible to specify a particular date in which 

the instrument changed within the calibration subset. 
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Figure 2. PCA score plot of calibration data. Score plots of PC1 and PC2 are shown 

(a) colouring samples (using a two-colour gradient) according to the date of acquisition 

(i.e., number of days since the first data acquisition of the study), and (b) colouring 

samples according to the class under study. 

 

Feature filtering 

In this section, we set up procedures to select features that are informative about the 

breath composition of the subjects, while rejecting sample contamination due to the 

absorbent fibre used or memory effects in the instrument. In order to do so, we took 

advantage of the two types of blanks were available in this study, fibre and sample 

blanks. They provide a measurement of baseline noise due to peaks caused respectively 

by the fibre or memory in the instrument in each day of acquisition. These data were 
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employed to reduce the dimensionality of the dataset by removing noisy features. We 

would like to emphasize that this feature filtering was exclusively done using 

calibration data. 

First, a univariate Wilcoxon test indicated that 1693 of 1752 features had significantly 

higher intensity profile in patients’ samples than in the analysis of fibre blanks (new 

sorbent traps without samples). For the rest, the null hypothesis was accepted, and 59 

features were removed from the data. In this step, features that fulfilled the null 

hypothesis were filtered out. With the intention of removing only those features that 

clearly belong to the blanks, no multiple testing correction was implemented. Multiple 

correction testing is stricter in order to identify samples that do not conform to the null 

hypothesis but, in this case, the aim was to identify features that clearly do conform to 

the null hypothesis. 

Second, an alternative use of the RP method, which is often utilized as a univariate 

feature selection for biomarker discovery in genomics, was proposed. Instead of 

comparing classes under study among them to find putative biomarkers, binary 

contrasts of each class vs. sample blanks were computed. Features can have larger value 

distributions in one or more classes with respect to sample blanks, and RP results 

indicated that 79 features had higher intensity in one study class, 66 in two, 84 in three, 

and 243 in the four classes with respect to blanks. With this RP strategy, dimensionality 

was further reduced, from 1693 to 472 features. Figure 3 shows that eliminated features 

mainly correspond to compounds eluting at longer RTs, which might be related to 

compounds of lower volatility, higher molecular weight, or more affinity with the 

chromatographic column. Since these RTs were shown to contribute more in the PCA 

loadings of the initial data, they largely hide the effect of lower intensity features. As a 
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consequence, feature filtering did not only reduce computational cost, but probably 

improved the power in identifying real biomarkers.  

 

Figure 3. Data filtering based on sample blanks data. Density estimations are shown 

for the retention times of the conserved (red) and removed (blue) features using sample 

blanks data. 

The score plot in Figure 4 indicates that despite this filtering, the data still showed a 

temporal separation of samples. In this figure, long-term validation samples were also 

added to show how they differ from the other data points. When the long-term 

validation subset is considered, the first PC reflects the separation between them and the 

rest of samples, and the second PC is the one which reveals the two previously observed 

clusters.  
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Figure 4. PCA score plot of all the data of the study after filtering. Score plots of 

PC1 and PC2 for all the samples (calibration, short-term, and long-term blinds) after 

data filtering using blanks data (i.e., data set with 472 features). 

 

Figure 5 represents the first PC scores with respect to the date of acquisition and also 

shows that long-term data are remarkably different from the samples collected during 

the first year of the study. Acquisition of the last data subset was over a long period of 

time, which results in different batches even within long-term validation samples. 
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Figure 5. Change of PC1 scores over time. Score plots of PC1 are reported for all the 

samples with respect to the date of acquisition for filtered data (i.e., 472 features). 

 

Even though in this study there were no QC samples, inspection of the changes in 

sample blanks allowed us to learn about time effects. Our initial observation was that 

sample blanks shared a lot of common fragments. On this basis, additive and 

multiplicative corrections were proposed. 

Additive and multiplicative corrections 

We have already mentioned that ion fragments with the same amplitude in the real 

samples and in the blanks were discarded. Beyond this additive correction, sample 

blanks showed contamination and memory effects in the conserved features. Therefore, 

each sample had the intensity values of the previous blank subtracted from its 

Long%term
validation set

Training1set Short%term
validation set
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intensities. Even after additive correction, large variations in the intensity of the 

chromatograms were still observed and the possibility of gain variations over time was 

explored. Figure 6 shows boxplots of the intensity ratios between a reference blank in 

the middle of the study and the rest. While ratios among fragments showed some 

scatter, there was a clear central value that differed across days. This effect leads us to 

the hypothesis of instabilities of sensitivity over time. In order to compensate for this, a 

gain correction was estimated through the median of the ratios across ion fragments. 

Figure 6 reports a clear pattern for a change in the gain over time. There was a sharp 

variation in the gain on a particular date (10/07/12), which separates the group of the 

short-term and long-term validation data.  

In order to compensate for the observed time effect, the multiplicative correction 

method described by Equation 4 was used—this assumes that there is a uniform gain 

variation across features for each sample. Additionally, an underlying hypothesis for 

this correction is that the estimated gain variation with sample blanks is the same for all 

the samples measured in this particular day. This normalization approach to correct the 

multiplicative effect is inspired by PQN, but using data from blanks as reference. 
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Figure 6. Intensity ratios of sample blanks. The ratios between a reference blank 

(13/12/11) and the rest of blanks are shown for each date of acquisition. Note that the 

time scale in x-axis is not uniform. 

 

The application of the former normalization method minimized the effect of gain 

variations, and the long-term validation data was especially effective in diminishing 

their variability with respect to the rest of samples. However, temporal variation might 

also be correlated among features and, consequently, some privileged drift directions 

may exit. To account for such multivariate correction of instrumental drift, CC was 

implemented. 
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Component correction 

For CC, sample blanks were chosen as the reference class. Variance in the reference 

class was modelled with PCA. The technique assumes that the drift subspace was 

shared between the blanks and the samples. This drift subspace is spanned by a number 

of principal components estimated from the PCA of the blanks. Since the removed 

component(s) might be explaining not merely the drift, but also biological differences 

under study, it is important to optimize the number of removed components and making 

an appropriate trade-off is essential. Correlation of data with time decreased with 

respect to the original data when removing the first PCs of sample blanks, so CC 

appeared to diminish the temporal dependence. Moreover, the use of the two-sample 

Hotelling T2 statistic was proposed to estimate distance between classes. Results 

showed that removing the first PC of the blanks in the original data matrix maximizes 

the Hotelling T2 statistic. Therefore, one PC was shown to minimize correlation with 

time and maximize distance between groups in binary contrasts (as measured by the 

Hotelling statistic).  

Figure 7 shows the PCA score plot for data corrected by the methodology we have 

outlined. The two “date of acquisition” data clusters vanished after the correction was 

applied. In addition, long-term validation samples are closer to the other data points. 

Visually there has been a great improvement, but the correlation of the data with time 

was also computed to compare the methods, in particular the four cases explained above 

i.e. feature filtering (FF), feature filtering plus additive and multiplicative correction 

(AM), feature filtering plus CC, and the combination of all the methods (FF+AM+CC). 
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Figure 7. PCA score plot of all data after multiplicative and Component 

Correction. Score plots of PC1 and PC 2 are reported after multiplicative and 

component correction based on sample blanks data. 

 

 

 Figure 8 shows that correlation with time substantially diminished when applying the 

three strategies: feature filtering, additive and multiplicative correction, and CC. 

Therefore, blanks were successfully used to diminish the significant instrumental drift 

present in the GC-MS data. 
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Figure 8. Comparison of applied corrections. The correlation with time (r coefficient) 

is shown for original data (O), data after feature filtering (FF), FF plus additive and 

multiplicative corrections (AM), FF plus component correction (CC), and the 

combination of the three strategies, FF+AM+CC. 

 

Potential clinical confounders 

The clinical variables, sex, age, BMI, smoking status, and the two more frequent 

comorbidities in the dataset, hypertension and diabetes mellitus II, were tested for 

different distributions between study groups. These factors were equally distributed 

between the study groups COPD and control (with 95% confidence). However, there 

were potential confounding factors for the cases of COPDLC (hypertension, age, and 

smoking status) and LC (hypertension). 
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Biomarker discovery 

LC and COPD are complex diseases; indeed, both are a family of condition subtypes 

and COPD can be an indirect warning of LC. Hence, identification of VOCs signatures 

which allow proper classification of all condition subtypes is a real challenge, especially 

with insufficient data. Additionally, the consideration of clinical confounders in the 

final model complicates biomarker discovery even further. Due to these difficulties, the 

present study has corrected instrumental drift for the complete data set, but has focused 

on the case of COPD for the biomarker discovery stage. COPD intensity profiles were 

compared with those of the control group. This is the condition-control binary 

classification problem but with more samples available (15 for control, after eliminating 

3 outliers, and 23 for COPD in the calibration set), and clinical confounders were not 

found. 

Biomarker selection 

Our biomarker selection strategy aimed at finding a small subset of features that may 

discriminate the two classes, in contrast to other strategies that identify volatile 

fingerprints with several tens or even hundreds of compounds. The discrimination of 

disease by a small subset of variables opens the possibility of further development of 

specific sensor kits for point of care, or clinical applications after biomarker 

identification. 

The search technique based on GA looked for the features that maximize the distance 

between the classes in the PLS-DA subspace. The selection reached the entropy 

saturation criterion after 35 GA runs. Figure 9 reports the frequency of selection of the 

features after these 35 runs. The hypothesis of this approach is that combinations of 

features that exhibit random correlations tend to be selected less often than real 

discriminant features after some trials. Figure 9 shows that nine features were 
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systematically chosen by the algorithm. Hence, they were assumed to contain class 

discriminant information and constituted the subset of putative biomarkers. 

 

Figure 9. GA selection. Frequency of selection for every feature after 35 runs of the 

GA. Features above the threshold were ultimately selected, while features below the 

threshold were selected as often as would be expected at a random.  

Metabolite identification 

As we have already mentioned, the methodology implemented provides only fragments, 

or groups of fragments, that are characterized by an RT and a, m/z. To identify the 

metabolites, the correlation threshold for fragment grouping, which initially was set to 

0.9, was decreased. By decreasing this threshold to 0.6 for fragments appearing at the 

same RT (with a window of 12 seconds), more complete mass spectra were obtained, 
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which allowed the identification of three putative biomarkers. A fourth set of fragments 

did not match any candidate compound from the NIST library.  

(i) Isoprene. This compound appears both in healthy and COPD subjects. Isoprene is a 

major metabolite in the breath. It has been mentioned as a product of lipid peroxidation 

and previous studies have linked it to cholesterol metabolism.88 This compound has 

been proposed as biomarker for COPD in previous studies5 and has been detected in 

breath associated with other respiratory diseases,89 including lung cancer.90 The utility 

of isoprene as biomarker has been reviewed by Salerno-Kennedy and Cashman.91  

(ii) Succinic Acid (Succinate). Succinate in living organism has many roles as a 

metabolic intermediate and as a signal of metabolic state at the cellular level.92 It is 

generated in the mitochondria through the Krebs cycle. Succinate has been proposed as 

a metabolic signal for inflammation,93 and has been found at an increased level in 

inflammatory bowel disease and colitis.93 

(iii) Pentamethylene sulphide. This compound appears in diverse patents as related to 

medication of COPD as a chymase inhibitor94,95 and also in the formulation of anti-

inflammatory agents.96 Consequently, we suspect that this is not a biogenic compound, 

and may be related to the patients’ medication. 

The ranking of fragments provided by VIP in PLS-DA global model, and the feature 

importance provided by RF, were also compared. We note that the models were much 

less sparse than the ones obtained after our GA feature selection. Particularly for VIP in 

PLS-DA, there were many fragments providing similar values. There was not a good 

matching between the fragments selected by GA, and the ones ranked higher in VIP. On 

the other hand, RF gave a very high (top five positions) ranking to fragments related to 

Isoprene, but the rest of fragments selected by GA were medium-ranked by RF.  
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Predictive modelling: Assessment of accuracy in short-term external validation 

Calibration data were used to assess model complexity assessment, both feature 

selection and optimization of the number of LV. Internal cross-validation determined 

that LV=2 was the optimum hyperparameter for a PLS-DA classifier with the selected 

features. A final PLS-DA model was built with all the calibration data, in order to 

estimate its predictive performance when classifying new samples as control or COPD. 

Figure 10 shows the PLS-DA score plot for control and COPD classification, including 

calibration and short-term validation subsets. Control and COPD groups have 

distributions that are slightly separated. The first LV gives two density distributions 

with a certain overlap and the inclusion of the second LV in the model provides a small 

increment in the distance between classes. For short-term validation data, the model 

correctly classified 77% of the samples (CR=77%) and had an Area Under the ROC 

Curve (AUC) of 0.75. Sensitivity was 100%, i.e., all patients with the disease had a 

positive result, whereas the specificity was lower, 50%. Obviously, the trade-off 

between sensitivity and specificity can be adjusted by proper selection of the classifier 

output threshold. Moreover, permutation tests for CR and AUC distributions gave p-

values of 0.015 and 0.029, respectively, which are statistically significant. 
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Figure 10. PLS-DA scores. LV1 and LV2 scores for calibration and short-term 

validation data subsets of control and COPD groups are reported. 

 

Results were compared to other standard classifiers in metabolomics, namely: (i) PLS-

DA on the corrected data without any feature selection using GA and (ii) RF. For PLS-

DA, internal validation provided a model with five latent variables with a classification 

in the short-term external validation which resulted in an accuracy of CR=0.73±0.13 

and an AUC=0.74. Maximum accuracy resulted in a sensitivity of 100%, but a poor 

specificity of 33%. For RF, the same level of accuracy CR=0.69±0.13 was reached, but 

with a poorer AUC of 0.60. These results were achieved with an optimum number of 

variables (mtry in the RandomForest Package) of 25. 

 

Model  CR Sensitivity Specificity AUC 
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PLS-DA with GA 77±12% 100% 50% 0.75 

Random Forest 69±13% 100% 33% 0.60 

PLS-DA  73±13% 100% 40% 0.70 

Table 2: Predictive model performance in short-term external validation. 

Table 2 shows that all models show a moderate prediction capability, despite the drift in 

the dataset. However, there is clear evidence that, after feature selection, the PLS-DA 

model achieves a higher accuracy, and has the added advantage of providing 

parsimonious models involving a reduced number of biomarkers. 

 

Predictive modelling: Assessment of accuracy in long-term external validation 

One of the objectives of the present investigation is to improve the validation of the 

predictive models, and the biomarkers involved in the prediction of the subject 

conditions. Unfortunately, most published works disregard this step, and present the 

results with internal validation or external validation data extracted from the same 

measurement regime. When these external validation data (blind samples), are time 

interleaved with calibration samples, the time effects do not play a role since, the model 

‘knows’ about the future changes in the dataset. However, in the quest for the maximum 

reliability of the chosen biomarkers, the predictive models should, in the future, be able 

to deliver accurate classification of the calibration. In other words, the model should be 

resilient to instrumental or operator changes.  

Results for the long-term validation of the PLS-DA model with the selected biomarkers 

were equivalent to a random classification (CR=55% with a p-value of 0.726). 

Therefore, the built model had a certain degree of predictive ability in the near future, 
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but this did not hold for samples acquired during the second year of the study. 

Instrumental signal drift caused considerable changes on intensity profiles, chiefly 

during long-term validation samples acquisition, making these samples fall outside the 

applicability domain of the model. This loss of predictive power was also observed for 

PLS-DA without feature selection (CR=45%), and for the RF (CR=36%). These results 

show that, on many occasions, instrumental drift called the final application of the 

selected biomarkers into question. More emphasis on long-term validation of results and 

further research on instrumental drift correction are required.  

Conclusions 

We do not yet completely understand how instrumental drift affects biomarker 

discovery studies. The presence of, inter alia, column aging, temperature variations, or 

maintenance operations causes signal drift and hinders the development of models with 

long-term predictive power. This raises a dilemma for biomarker discovery studies: 

analysing more samples leads to the risk of there being more instrumental drift in the 

signals, but a small sample size may not be statistically robust. This is particularly 

relevant for breath analysis, since standardized procedures for the storage of breath 

samples over a long timescale, or for the use of pooled QC samples, simply do not exist. 

In the present study, a GC-MS dataset was obtained from exhaled breath samples and a 

posterior analysis conducted. We have shown how the instrumental drift problem can be 

counteracted in one specific biomarker discovery study. For this particular study, we 

have proposed data processing techniques to minimize instrumental drift using 

information from blanks. In summary, the methodology consisted of using such data for 

feature filtering and removal, a multiplicative correction to compensate for the 

estimated instrumental gain variations in each spectrum, and CC to account for a drift 

subspace correlated among features. This combination of techniques was successfully 
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applied and considerably diminished the correlation of the data with time. It is 

important to be aware that a complete removal of instrumental drift might also eliminate 

discriminant information. Therefore, signal drift compensation is a trade-off between 

removing an unwanted source of variance, and losing the variability of interest. As far 

as we know, RP have not been previously applied in this context of feature filtering, 

since it is generally used for condition vs. control instead of condition/control vs. 

blanks. We also proposed two figures of merit for the choice of the number of PCs to be 

extracted in CC: correlation with time (minimization) and the Hotelling T2 statistic 

(maximization).  

In addition, the combination of a feature selection strategy based on GA, and a PLS-DA 

model, allowed us to classify short-term validation samples in COPD or control classes 

with an accuracy of 77% and an AUC of 0.75, both these magnitudes being statistically 

significant under a permutations test. These results were slightly better than competing 

algorithms such as PLS-DA without GA, and RF.  

 

While the methodology implemented is sufficient to preserve model accuracy in 

external short-term validation, the model could not extrapolate and satisfactorily predict 

long-term test samples which, due to instrumental variations, fall outside its domain of 

applicability. In other words, the methods implemented were not capable of predicting 

the instrumental variations over a longer time horizon.  

In conclusion, we note that instrumental drift entails substantial difficulties in building 

models that are nonlocal in time. The predictive models obtained are unduly sensitive to 

instrumental conditions and in consequence are not robust enough for use in the field. 

We encourage other researchers to devise additional validation levels to improve 

research reproducibility. 
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